JP2004265923A - Semiconductor light emitting device and its manufacturing method - Google Patents

Semiconductor light emitting device and its manufacturing method Download PDF

Info

Publication number
JP2004265923A
JP2004265923A JP2003032580A JP2003032580A JP2004265923A JP 2004265923 A JP2004265923 A JP 2004265923A JP 2003032580 A JP2003032580 A JP 2003032580A JP 2003032580 A JP2003032580 A JP 2003032580A JP 2004265923 A JP2004265923 A JP 2004265923A
Authority
JP
Japan
Prior art keywords
light emitting
electrode
emitting device
layer
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003032580A
Other languages
Japanese (ja)
Other versions
JP4255710B2 (en
Inventor
Ryoichi Takeuchi
良一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003032580A priority Critical patent/JP4255710B2/en
Priority to TW093102666A priority patent/TWI231053B/en
Priority to DE112004000262T priority patent/DE112004000262T5/en
Priority to PCT/JP2004/001338 priority patent/WO2004070851A1/en
Priority to US10/544,940 priority patent/US7528417B2/en
Priority to CNB2004800062445A priority patent/CN100527452C/en
Priority to KR1020057014770A priority patent/KR100644151B1/en
Publication of JP2004265923A publication Critical patent/JP2004265923A/en
Application granted granted Critical
Publication of JP4255710B2 publication Critical patent/JP4255710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a superior ohmic contact between an electrode and a semiconductor layer and to extract light emitted from a light emitting member without intercepting it so as to improve a semiconductor light emitting device in luminous efficiency. <P>SOLUTION: The semiconductor light emitting device 10 is equipped with a semiconductor substrate 1 where a first electrode 5 is formed on its rear surface; a semiconductor layer 3 which is formed on the semiconductor substrate 1, contains an AlInGaP light emitting member 2a, and has a current diffusion layer 2b as an upper layer; distributed electrodes 7 which are formed so as to come into ohmic contact with the current diffusion layer 2b as they are distributed on a part of the surface of the current diffusion layer 2b, a transparent conductive film 4 which is formed over the surface of the current diffusion layer 2b and the distributed electrodes 7, and electrically connected to the distributed electrodes 7, and a top electrode 6 which is formed on a part of the surface of the transparent conductive film 4 so as to be electrically connected to it. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、可視光を発光する半導体発光素子に関する。
【0002】
【従来の技術】
従来、黄緑〜赤橙色系の光を出射する発光ダイオード(LED)やレーザーダイオード(LD)等の発光素子として、(AlGa1−XIn1−YP(0≦X≦1、0<Y<1)混晶層からなる発光部構造を含む発光素子が、例えば下記の特許文献1で知られている。
【0003】
【特許文献1】
特開平8−83927号公報
【0004】
この特許文献1に開示された発光素子は、(AlGa1−XIn1−YP混晶層からなる発光部表面上に酸化インジウム錫からなる透明導電膜を積層し、その透明導電膜上に上面電極を形成して構成されており、この構成により、上面電極からの電流を、透明導電膜を介して半導体表面上のできるだけ広い範囲に拡散させるようにしている。
【0005】
ところで、上記した従来の発光素子では、透明導電膜と発光部表面との間のオーミック接触を十分に得ることができず、順方向電圧を大きくし、寿命特性を低下させる要因となっており、この点を改善したものとして、例えば下記の特許文献2が知られている。
【0006】
【特許文献2】
特開平11−17220号公報
【0007】
この特許文献2に開示された発光素子は、発光部表面上にウインドウ層を形成し、このウインドウ層の上にコンタクト層を形成し、このコンタクト層の上に、酸化インジウム錫からなる透明導電膜(導電透光酸化層)を積層し、その透明導電膜上に上面電極(上層電極)を形成することで構成されており、この上面電極からの電流を、透明導電膜、コンタクト層およびウインドウ層を介して発光部表面上のできるだけ広い範囲に拡散させるようにしている。
【0008】
【発明が解決しようとする課題】
しかし、上記した特許文献2に記載された発光素子においては、確かに、透明導電膜と半導体層とのオーミック接触の点では、改善されているものの、コンタクト層を設けるがゆえに、このコンタクト層に発光が吸収されてしまい、したがって、高輝度発光を得るに至らず、発光効率が改善されていないのが現状である。
【0009】
このような現状に対して、本発明者等は、半導体層の表面の一部に分配電極を設けることで、透明導電膜と半導体層との間の電気抵抗に比べて、分配電極と半導体層との間の電気抵抗を低減し、台座電極から供給される駆動電流の大部分がより電気抵抗の低い、台座電極→透明導電膜→分配電極→半導体層(発光部)の経路を流れるようにした発光素子を、下記の特許文献3で提案した。
【0010】
【特許文献3】
特開2001−189493号公報
【0011】
この特許文献3に開示された発光素子では、発光部での発光を分配電極の周辺で行わせることができので、台座電極の直下方向での発光は発生せず、したがって、発光の大部分は台座電極に遮られることなく、上方から取り出すことができ、発光効率を改善することができた。また、コンタクト層を設けないので、コンタクト層に発光が吸収されるのを防止でき、この点からも発光効率を改善することができた。
【0012】
しかし、上記の特許文献3の発光素子の場合、分配電極は分散し面積も小さいものではあるものの、分配電極の直下方向での発光が上方に取り出される際には、その分配電極で遮られる事態が生じており、発光効率が低下する一因となっていることが分かった。
【0013】
この発明は上記に鑑み提案されたもので、電極と半導体層との良好なオーミック接触を実現し、かつ発光部での発光を遮ることなく取り出すことで、発光効率を改善できるようにした半導体発光素子およびその製造方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明は、(1)裏面に第1の電極が形成された半導体基板と、前記半導体基板上に形成され、AlInGaPからなる発光部を含むとともに上層に電流拡散層を有する半導体層と、前記電流拡散層の表面の一部に分配して形成され、その電流拡散層とオーミック接触をなす分配電極と、前記電流拡散層の表面と前記分配電極とを覆って形成され、その分配電極と導通する透明導電膜と、前記透明導電膜の表面の一部に形成され、その透明導電膜と導通する台座電極と、を有することを特徴としている。
【0015】
また、本発明は、(2)上記した(1)に記載の発明の構成に加えて、前記半導体基板はn型で、電流拡散層はp型である、ことを特徴としている。
【0016】
また、本発明は、(3)上記した(1)または(2)に記載の発明の構成に加えて、前記電流拡散層の厚さが3μm以上である、ことを特徴としている。
【0017】
また、本発明は、(4)上記した(1)乃至(3)に記載の発明の構成に加えて、前記電流拡散層の厚さとキャリア濃度との積(N・d)が、5×1014cm−2以上である、ことを特徴としている。
【0018】
本発明は、(5)上記した(1)乃至(4)に記載の発明の構成に加えて、前記電流拡散層の表面キャリア濃度が、1×1018cm−3以上である、ことを特徴としている。
【0019】
また、本発明は、(6)上記した(1)乃至(5)に記載の発明の構成に加えて、前記電流拡散層は、ZnまたはMgを不純物としたp型のGaP層からなる、ことを特徴としている。
【0020】
また、本発明は、(7)上記した(1)乃至(6)に記載の発明の構成に加えて、前記分配電極は、平面的に見て台座電極と重ならない半導体層表面に形成されている、ことを特徴としている。
【0021】
さらに、本発明は、(8)上記した(1)乃至(7)に記載の発明の構成に加えて、前記分配電極の面積は台座電極の面積より小さい、ことを特徴としている。
【0022】
本発明は、(9)上記した(1)乃至(8)に記載の発明の構成に加えて、前記分配電極の合計の平面積が、発光有効面積の3%以上で30%以下である、ことを特徴としている。
【0023】
また、本発明は、(10)上記した(1)乃至(9)に記載の発明の構成に加えて、前記分配電極が金合金である、ことを特徴としている。
【0024】
また、本発明は、(11)上記した(1)乃至(10)に記載の発明の構成に加えて、前記透明導電膜が酸化インジウム錫(ITO)である、ことを特徴としている。
【0025】
本発明は、(12)上記した(1)乃至(11)に記載の発明の構成に加えて、前記台座電極が平面的に見て素子表面の中心に形成されている、ことを特徴としている。
【0026】
また、本発明は、(13)上記した(1)乃至(12)に記載の発明の構成に加えて、前記台座電極の表面が金である、ことを特徴としている。
【0027】
また、本発明は、(14)上記した(1)乃至(13)に記載の発明の構成に加えて、前記台座電極が多層膜からなり、透明導電膜と接する層がクロムである、ことを特徴としている。
【0028】
さらに、本発明は、(15)上記した(1)乃至(14)に記載の発明の構成に加えて、前記分配電極は、台座電極を囲む略四角形あるいは略円形の線状体である、ことを特徴としている。
【0029】
本発明は、(16)上記した(1)乃至(15)に記載の発明の構成に加えて、前記分配電極は線幅が20μm以下の線状体である、ことを特徴としている。
【0030】
本発明は、(17)半導体発光素子の製造方法であって、単結晶基板上に、AlInGaPからなる発光部を含むとともに上層にp型の電流拡散層を有する半導体層をエピタキシャル成長させる第1の工程と、前記第1の工程で形成された電流拡散層の表面の一部に、その電流拡散層とオーミック接触をなす分配電極を形成する第2の工程と、前記電流拡散層の表面と前記分配電極とを覆い、その分配電極と導通する透明導電膜を形成する第3の工程と、前記透明導電膜の表面の一部に、その透明導電膜と導通する台座電極を形成する第4の工程と、を有することを特徴としている。
【0031】
本発明は、(18)上記した(17)に記載の発明の構成に加えて、前記半導体層が有機金属化学気相堆積法(MOCVD法)により形成される、ことを特徴としている。
【0032】
また、本発明は、(19)上記した(17)または(18)に記載の発明の構成に加えて、前記透明導電膜がスパッタリング法により形成される、ことを特徴としている。
【0033】
また、本発明は、(20)上記した(17)乃至(19)に記載の発明の構成に加えて、前記台座電極がスパッタリング法により形成される、ことを特徴としている。
【0034】
【発明の実施の形態】
以下に、この発明の実施の形態を図面に基づいて詳細に説明する。
【0035】
図1および図2はこの発明の半導体発光素子の概略構成を模式的に示す図で、図1はその平面図、図2は図1のI−I線断面を示す図である。なお、本明細書では、半導体層表面を平面的に見るとは、図1のような平面図で見ることを言う。
【0036】
これらの図において、この発明の半導体発光素子10は、裏面に第1の電極5が形成された半導体基板1と、半導体基板1上に形成され、AlInGaPからなる発光部2aを含むとともに上層に電流拡散層2bを有する半導体層3と、電流拡散層2b(半導体層3)の表面の一部に分配して形成され、その電流拡散層2bとオーミック接触をなす分配電極7と、電流拡散層2bの表面と分配電極7とを覆って形成され、その分配電極7と導通する透明導電膜4と、透明導電膜4の表面の一部に形成され、その透明導電膜4と導通する台座電極6と、を有することを特徴としている。なお、発光部2aは、公知のダブルヘテロ構造、マルチカンタムウェル(MQW)構造の発光効率の高い構造を用いることが望ましい。ここで、分配電極7は、図1に示すように、半導体層3表面の平面的に見て台座電極6とは重ならない部分に配置するのが好ましく、さらに、台座電極6と重なる部分には配置しないようにするのがより好ましい。また、分配電極7と電流拡散層2bとの間の接合は良好なオーミック接触を保ってその間の電気抵抗は小さくなり、一方の透明導電膜4と電流拡散層2bとの間の接合では十分なオーミック接触は得られないため、その間の電気抵抗は大きい。
【0037】
上記構成の半導体発光素子10において、電流拡散層2bの表面の一部にオーミック接触をなす分配電極7を設けることで、透明導電膜4と電流拡散層2bとの間の電気抵抗に比べて、分配電極7と電流拡散層2bとの間の電気抵抗が大幅に小さくなり、台座電極6から供給される駆動電流は、図2の矢印で示すように、その大部分がより電気抵抗の低い、台座電極6→透明導電膜4→分配電極7→電流拡散層2b→発光部2aの経路を流れる。そして、分配電極7から電流拡散層2bに入った電流は、電流拡散層2bで適度に拡散されるので、発光部2aでの発光は、分配電極7を中心とした周辺で行われる。このため、発光部2aでの発光は、分配電極7で遮られることが少なく、その大部分を上方に取り出すことができ、したがって、発光効率を改善することができる。
【0038】
上記の電流拡散層2bは、n型、p型の何れでも発光効率の改善に寄与する。p型は、一般的に移動度が低く、分配電極7からの電流が拡散しにくくなるが、この発明では、このp型が特定の条件を満たし、例えば層厚、その層厚とキャリア濃度との積、表面キャリア濃度、材質等を最適化することにより、高輝度化に大きく寄与することを発見した。
【0039】
すなわち、電流拡散層2bがp型の場合、層厚については3μm以上の厚さであれば、充分な電流拡散を起こすことが分かった。ただし、厚すぎる場合は、表面状態の悪化を招くので20μm以下が望ましく、低コストを実現するには、10μm以下がより望ましい。
【0040】
また、電流拡散層2bの厚さとキャリア濃度との積が高輝度化に深く関与しており、高輝度化の効果が大きくなる範囲は、5×1014cm−2以上であることも分かった。
【0041】
さらに電流拡散層2bの表面キャリア濃度については、1×1018cm−3以上であれば、分配電極7との接触抵抗の低下につながり、電流拡散を促進し、高輝度化をもたらす。
【0042】
また、この電流拡散層2bの材質については、発光に対して透明で、電流を充分に拡散する材質が望ましく、例えば、GaPは、有機金属化学気相堆積法(MOCVD法)で成長できるだけでなく、低抵抗化、厚膜化が容易で電流拡散層として最適な材料の1つである。
【0043】
分配電極7は、図1では台座電極6を囲む略円形の線状体であり、その線状体は円形からさらに四方に延出している。線状体の幅は20μm以下が望ましい。このような分配電極7の平面的な配置によって、上記の電流拡散層2bでの電流拡散は、より一層効果的に行うことができ、台座電極6からの駆動電流を電流拡散層2b表面の広い範囲に拡げることができるようになる。
【0044】
また上記のように、分配電極7は、台座電極6とは重ならないように配置するので、台座電極6の直下方向での発光は弱く、発光の大部分は台座電極6に遮られることなく、上方から取り出すことができ、発光効率を大幅に改善し高輝度化ができる。
【0045】
さらに、この発光効率については、分配電極7の面積を台座電極6の面積より小さくすることにより、従来の半導体発光素子に比べて外部に光を効率よく取り出せるため、発光効率をより一層向上させることができる。
【0046】
また、分配電極7と半導体層3との間の電気抵抗は、上記したように、オーミック接触としたことにより小さくなるので、半導体発光素子10の順方向電圧の上昇を抑制することが可能となり、寿命特性を向上することができる。
【0047】
透明導電膜4は、例えば酸化インジウム錫(ITO)からなる良好な透光性を備えるものであり、特にスパッタリング法で形成した膜は、低抵抗で、透過率の高い優れた膜質が得られる。このため、発光部2aからの発光は、この透明導電膜4を通過する間でもほとんど吸収されることがなく、効率よく透明導電膜4から上方へ取り出すことができる。
【0048】
台座電極6は、半導体発光素子10と外部電気回路との接続のためのワイヤボンディングを行うための電極である。そのため、ある程度の面積が必要であるが、従来この台座電極6から直下方向に流れる駆動電流に基づく発光は、台座電極6で遮られて外部に取り出すことができなかった。このため、従来は台座電極6と発光部2aとの間に絶縁層を設ける等で対策を施し、台座電極6から直下方向へ駆動電流が流れるのを強制的に防ぐようにしていたが、本発明では、駆動電流を分配電極7に分配して誘導することができ、したがって、絶縁層を設けなくとも、より簡単な構成の下で、台座電極6の直下方向に流れる駆動電流をなくすことができる。
【0049】
ここで、透明導電膜4の表面(あるいは半導体層3の表面)のうち、発光させると有効となる面(発光有効面)の面積は、透明導電膜4の面積から、台座電極6の面積(図1の平面視での面積)を差し引いた面積であり、この面積を発光有効面積Sと称するとする。ところで、台座電極6がその直下方向での発光の取り出しを妨害する現象は、分配電極7についても若干発生する。そこで、本発明では、分配電極7の合計の平面積(平面視での面積)が、発光有効面積Sの3%以上で30%以下となるようにし、分配電極7の面積が広すぎて発光の取り出し妨害が過剰に発生したり、逆にその面積が小さすぎて、順方向電圧(Vf)が増大することによる不都合が発生したりするのを防止するのが好ましい。
【0050】
また、分配電極7がその直下方向での発光の取り出しを妨害する現象は、電流拡散層2bの拡散が良好で適切であればある程、光の取り出しが妨げられる確率が低下する。
【0051】
次にこの発明の半導体発光素子のより具体的な構成例を図3〜図7を用いて順に説明する。
【0052】
図3および図4はこの発明の半導体発光素子の第1の構成例を示す図で、図3はその平面図、図4は図3のII−II線断面を示す図である。これらの図において、この発明の半導体発光素子20は、黄緑色系の光を出射する発光ダイオード(LED)である。
【0053】
面方位が(001)15度オフのSiドープn型GaAs単結晶基板21上に、半導体層23が形成されている。この半導体層23は、基板21上に順次積層された、Siドープn型GaAsからなる緩衝層231、Siドープn型Al0.5Ga0.5As/Al0.9Ga0.1As多層膜からなるDBR反射層232、Siドープn型とアンドープのAl0.5In0.5Pからなる下部クラッド層233、発光波長570nmとなるように組成が調整されたアンドープのAlGaInP混晶からなる発光層22、アンドープAl0.5In0.5PとZnドープp型Al0.5Ga0.5Pとからなる上部クラッド層234、およびZnドープp型GaP電流拡散層235から構成される。
【0054】
半導体層23を構成する各層231,232,233、22、234および235は、トリメチルアルミニウム((CHAl)、トリメチルガリウム((CHGa)およびトリメチルインジウム((CHIn)をIII族構成元素の原料とし、減圧のMOCVD法により基板21上に成膜した。亜鉛(Zn)のドーピング原料にはジエチル亜鉛((CZn)を利用した。n型のドーピング原料にはジシラン(Si)を使用した。また、V族元素の原料としては、ホスフィン(PH)またはアルシン(AsH)を用いた。各層231,232,233、22、234および235の成膜温度は735℃に統一した。
【0055】
緩衝層231のキャリア濃度は約2×1018cm−3に、また、層厚は約0.5μmとした。反射層232のキャリア濃度は約2×1018cm−3に、また、層厚は約1.2μmとした。下部クラッド層233のキャリア濃度は約1×1018cm−3に、層厚はSiドープn型層を約1.3μmに、その上のアンドープ層は0.2μmとした。発光層22の層厚は約1μmとした。上部クラッド層234は、アンドープ層を0.5μmとし、その上のZnドープp型層を約0.5μmとした。このZnドープp型層のキャリア濃度は約6×1017cm−3とした。
【0056】
p型電流拡散層235は、キャリア濃度が約3×1018cm−3、層厚は約6μmとした。このときの電流拡散層235の厚さdとキャリア濃度Nとの積N・dは、約1.8×1015cm−2であった。
【0057】
ここで、下部クラッド層233,発光層22および上部クラッド層234が、この半導体発光素子20の発光部を構成する。したがって、発光部はAlGaInPからなるダブルヘテロ構造である。
【0058】
この半導体発光素子20では、分配電極27を形成するために、電流拡散層235の表面の全面に、一般的な真空蒸着法により、先ず膜厚を約50nmとする、金・ベリリウム合金(Au99重量%−Be1重量%合金)膜を一旦被着させ、続けて、その金・ベリリウム合金膜の表面上に膜厚を約100nmとする金(Au)膜を被着させた。
【0059】
次に、一般的なフォトリソグラフィー手段を利用して金・ベリリウム合金からなる第1膜と、金からなる第2膜とからなる2層構造の重層膜が、分配電極27の形になるようにパターニングを施し、幅が約6μmの線状体からなる一辺150μm略正方形の額縁形状の分配電極27を形成した。分配電極27の面積は、約0.36×10−4cm−2であった。この第1膜と第2膜とからなる分配電極27は、図3に示すように、台座電極26の直下領域を除く電流拡散層235の表面上にその台座電極26を囲むように形成し、平面視で左右対称、略四角形状である。
【0060】
一方、単結晶基板21の裏面に、金・ゲルマニウム合金を約0.3μm、その下面に金を約0.3μm積層し、n型オーミック電極25を形成した。その後、窒素気流中において450℃で10分間の合金化熱処理を施し、分配電極27と電流拡散層235とのオーミック接触、およびn型オーミック電極25と単結晶基板21とのオーミック接触を形成した。
【0061】
次に、公知のマグネトロンスパッタリング法により、電流拡散層235とその表面の分配電極27の上に、酸化インジウム錫(ITO)透明導電膜24を被着させた。透明導電膜24の比抵抗は約4×10−4Ω・cmであり、層厚は約500nmとした。発光波長に対する透過率は、約95%の良好な膜質である。
【0062】
透明導電膜24の上に公知のマグネトロンスパッタリング法により、Crを30nm、金を1μmの重層膜を形成した。一般的な有機フォトレジスト材料を塗布した後、台座電極26を設けるべき領域を、公知のフォトリソグラフィー技術を利用してパターニングし、直径を約110μmとする円形の台座電極26を形成した。台座電極26の平面積は約1×10−4cmとなった。
【0063】
台座電極26を設けるべき領域は、図3に示すように、平面的に見て半導体発光素子表面の中心、すなわち四角形の半導体発光素子表面の対角線の交点を含む領域とした。これは、台座電極26が半導体発光素子表面の中心にある方が、電流が半導体発光素子全体に均一に流れやすく、また台座電極26にワイヤボンディングを行うときにチップが傾きにくい利点がある。
【0064】
その後、通常のダイシング法により一辺を230μm間隔で裁断して正方形の素子形状に分離し、半導体発光素子20となした。透明導電膜24の平面積は約4×10−4cmとなり、この透明導電膜24の平面積から台座電極26の平面積を差し引いた発光有効面積Sは約3×10−4cmとなった。また、分配電極27の合計の平面積は約0.36×10−4cmであり、この面積が発光有効面積Sに対して占める割合は約12%となった。
【0065】
上記のようにして作製した半導体発光素子20のオーミック電極25および台座電極26間に順方向に電流を通流したところ、透明導電膜24の表面から波長を約570nmとする黄緑色の光が出射された。20mAの電流を通流した際の順方向電圧(Vf:20mA当り)は、各分配電極27の良好なオーミック特性、および電流拡散層2bでの電流の拡散効果を反映し、約2Vとなった。
【0066】
また、オーミック性の分配電極27を半導体発光素子20の周縁部に配置した効果、および電流拡散層2bの効果により、半導体発光素子20の周縁の領域においても発光が認められ、チップ状態で、簡易的に測定される発光の強度は約40ミリカンデラ(mcd)であった。さらに、駆動電流が分配電極27および電流拡散層2bによってより均等に分配されることにより、透明導電膜24の表面に見られる発光強度は、ほぼ均等な分布となっていた。
【0067】
上記の第1の構成例では、ドーパントにZn、Siを用いたが、公知のMg、Te、Se等のドーパントを用いても同様な効果が得られる。また、発光層22は、ダブルヘテロ構造としたが、MQW構造でも同様の効果が得られる。
【0068】
この第1の構成例で得られた半導体発光素子20は、上記のように、電流拡散層235の層厚が約6μm、キャリア濃度が約3×1018cm−3、層厚dとキャリア濃度Nとの積N・dが約1.8×1015cm−2であり、この半導体発光素子20を実施例1とした。この電流拡散層の層厚およびキャリア濃度を、表1に示すように種々変更し、その他は実施例1と同じ条件でさらに5種類の半導体発光素子を作製し、その半導体発光素子を実施例2,3,4,5,6とした。この実施例1〜6の各半導体発光素子のVf値および発光強度を測定し、表1に示す結果が得られた。
【0069】
【表1】

Figure 2004265923
【0070】
(比較例) 上記した実施例1〜6の半導体発光素子の持つVf値および発光強度と比較するために、電流拡散層を設けず、その他は全て実施例1と同一の構成からなる半導体発光素子(LED)を比較用素子として作製した。その比較結果を表1に示す。
【0071】
表1の比較例は、Vf値(20mA当り)が約2.2Vであり、実施例1〜6の半導体発光素子20のVf値、1.99V〜2.02Vより高い結果であった。一方、比較例の発光は、オーミック性電極の直下とその周辺のみで生じることとなり、発光のかなりの割合が電極に遮られ、外部に取り出せない事態を招いた。その結果、輝度は、15mcd未満の低きに低迷した。これに対し実施例1〜6の輝度は30mcd〜42mcdであった。
【0072】
この比較例と、本発明の実施例とを対比すれば、本発明の半導体発光素子は、Vfの増加もなく、高輝度化が顕現されることが明らかである。
【0073】
図5〜図8は平面的に見た分配電極の他の配置例を示す図である。上記の説明では、台座電極周辺に分配電極を線状体で連続的に分布させたが、図5のように、台座電極6の周囲に、個別に独立に分散させて配置することで分配電極7を構成してもよい。また、図6のように、線状体を図形的に組み合わせた分配電極7でもよい。また、図7のように、線状体を格子状に配置して分配電極7を構成してもよい。また、図8のように、線状体と、独立した個別の電極の組合せで分配電極7を構成してもよい。
【0074】
このように、分配電極7に関しては、個別に分散させて配置するだけでなく、帯状、線状のものを連続的に配置してもよいし、面状のものを配置するようにしてよい。
【0075】
また、分配電極7を個別に分散させて配置する場合や帯状、線状のものを連続させる場合は、それらの形状は、正方形、長方形、円形、楕円、多角形など、任意の形状のものでよく、分散させる際のパターンも放射状や円周状、螺旋状、その他任意のパターンでよい。
【0076】
【発明の効果】
以上説明したように、この発明の半導体発光素子では、電流拡散層の表面の一部にオーミック接触をなす分配電極を設けることで、透明導電膜と電流拡散層との間の電気抵抗に比べて、分配電極と電流拡散層との間の電気抵抗が大幅に小さくなり、台座電極から供給される駆動電流は、その大部分がより電気抵抗の低い、台座電極→透明導電膜→分配電極→電流拡散層→発光部の経路を流れる。そして、分配電極から電流拡散層に入った電流は、電流拡散層で適度に拡散されるので、発光部での発光は、分配電極を中心とした周辺で行われる。このため、発光部での発光は、分配電極で遮られることが少なく、その大部分を上方に取り出すことができ、したがって、発光効率を改善することができる。
【0077】
また、電流拡散層がp型の場合、層厚については3μm以上の厚さとしたので、充分な電流拡散を起こすことできる。
【0078】
また、電流拡散層がp型の場合、層厚とキャリア濃度との積を5×1014cm−2以上としたので、電流拡散層を高輝度化に効果的に貢献させることができる。
【0079】
さらに電流拡散層がp型の場合、その表面キャリア濃度については、1×1018cm−3以上としたので、分配電極との接触抵抗の低下につながり、電流拡散を促進し、高輝度化をもたらすことができる。
【0080】
また、この電流拡散層をZnまたはMgを不純物としたp型のGaPで形成したので、発光に対して透明となり、電流を充分に拡散することができ、さらに低抵抗化、厚膜化を容易に行うことができ、電流拡散層の最適化も容易に行うことができる。
【図面の簡単な説明】
【図1】この発明の半導体発光素子の概略構成を模式的に示す平面図である。
【図2】この発明の半導体発光素子の概略構成を模式的に示す図で、図1のI−I線断面を示す図である。
【図3】この発明の半導体発光素子の実施例を示す平面図である。
【図4】この発明の半導体発光素子の実施例を示す図で、図3のII−II線断面を示す図である。
【図5】この発明に係る分配電極の他の配置例を示す図である。
【図6】この発明に係る分配電極の他の配置例を示す図である。
【図7】この発明に係る分配電極の他の配置例を示す図である。
【図8】この発明に係る分配電極の他の配置例を示す図である。
【符号の説明】
1 半導体基板
2a 発光部
2b 電流拡散層
3 半導体層
4 透明導電膜
5 第1の電極
6 台座電極
7 分配電極
10 半導体発光素子
20 半導体発光素子
21 単結晶基板
22 発光層
23 半導体層
231 緩衝層
232 反射層
233 下部クラッド層
234 上部クラッド層
235 電流拡散層
24 透明導電膜
25 n型オーミック電極
26 台座電極
27 分配電極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor light emitting device that emits visible light.
[0002]
[Prior art]
Conventionally, as a light emitting element such as a light emitting diode (LED) or a laser diode (LD) that emits yellow-green to red-orange light, (Al) X Ga 1-X ) Y In 1-Y A light-emitting element including a light-emitting portion structure composed of a P (0 ≦ X ≦ 1, 0 <Y <1) mixed crystal layer is known, for example, from Patent Document 1 below.
[0003]
[Patent Document 1]
JP-A-8-83927
[0004]
The light-emitting device disclosed in Patent Document 1 has (Al X Ga 1-X ) Y In 1-Y A transparent conductive film made of indium tin oxide is laminated on the surface of the light emitting portion made of a P mixed crystal layer, and an upper electrode is formed on the transparent conductive film. In this case, the light is diffused as widely as possible on the semiconductor surface via the transparent conductive film.
[0005]
By the way, in the above-mentioned conventional light emitting element, it is not possible to sufficiently obtain an ohmic contact between the transparent conductive film and the light emitting portion surface, which increases the forward voltage and decreases the life characteristics. As an improvement on this point, for example, the following Patent Document 2 is known.
[0006]
[Patent Document 2]
JP-A-11-17220
[0007]
The light emitting device disclosed in Patent Document 2 has a window layer formed on a light emitting portion surface, a contact layer formed on the window layer, and a transparent conductive film made of indium tin oxide formed on the contact layer. (Conductive light-transmitting oxide layer), and an upper electrode (upper electrode) is formed on the transparent conductive film. Current from the upper electrode is supplied to the transparent conductive film, the contact layer, and the window layer. The light is diffused as widely as possible on the surface of the light emitting unit through the light emitting device.
[0008]
[Problems to be solved by the invention]
However, in the light-emitting element described in Patent Document 2 described above, although the ohmic contact between the transparent conductive film and the semiconductor layer is improved, the contact layer is provided. At present, light emission is absorbed, and therefore high-luminance light emission is not obtained, and luminous efficiency is not improved.
[0009]
In order to cope with such a current situation, the present inventors provide a distribution electrode on a part of the surface of the semiconductor layer so that the distribution electrode and the semiconductor layer can be compared with the electric resistance between the transparent conductive film and the semiconductor layer. So that most of the drive current supplied from the pedestal electrode flows through the path of the pedestal electrode → transparent conductive film → distribution electrode → semiconductor layer (light emitting portion) with lower electric resistance. The light emitting device thus proposed was proposed in Patent Document 3 below.
[0010]
[Patent Document 3]
JP 2001-189493 A
[0011]
In the light-emitting element disclosed in Patent Document 3, light emission in the light-emitting portion can be performed around the distribution electrode, so that light emission does not occur immediately below the pedestal electrode. It could be taken out from above without being blocked by the pedestal electrode, and the luminous efficiency could be improved. In addition, since no contact layer was provided, it was possible to prevent light emission from being absorbed in the contact layer, and from this point, it was possible to improve luminous efficiency.
[0012]
However, in the case of the light-emitting element of Patent Document 3, although the distribution electrodes are dispersed and have a small area, when the light emitted immediately below the distribution electrodes is taken out upward, the light is blocked by the distribution electrodes. It was found that this was one of the causes of the decrease in luminous efficiency.
[0013]
The present invention has been proposed in view of the above, and realizes a good ohmic contact between an electrode and a semiconductor layer, and improves light emission efficiency by extracting light emitted from a light emitting unit without blocking the light emission. An object is to provide an element and a method for manufacturing the element.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides (1) a semiconductor substrate having a first electrode formed on a back surface, a light emitting portion formed on the semiconductor substrate and made of AlInGaP, and a current diffusion layer formed on an upper layer. A distribution electrode formed on a part of the surface of the current diffusion layer and forming an ohmic contact with the current diffusion layer, and formed over the surface of the current diffusion layer and the distribution electrode. And a transparent conductive film conducting to the distribution electrode, and a pedestal electrode formed on a part of the surface of the transparent conductive film and conducting to the transparent conductive film.
[0015]
According to the present invention, (2) in addition to the configuration of the invention described in the above (1), the semiconductor substrate is an n-type and the current diffusion layer is a p-type.
[0016]
Further, the present invention is characterized in that (3) the configuration of the invention described in (1) or (2) above, wherein the thickness of the current diffusion layer is 3 μm or more.
[0017]
Further, the present invention provides (4) In addition to the configuration of the invention described in the above (1) to (3), the product (N · d) of the thickness of the current diffusion layer and the carrier concentration is 5 × 10 14 cm -2 That is the feature.
[0018]
According to the present invention, (5) In addition to the configuration of the invention described in the above (1) to (4), the surface carrier concentration of the current diffusion layer is 1 × 10 18 cm -3 That is the feature.
[0019]
Further, according to the present invention, (6) in addition to the configuration of the invention described in the above (1) to (5), the current diffusion layer is made of a p-type GaP layer containing Zn or Mg as an impurity. It is characterized by.
[0020]
Further, according to the present invention, (7) in addition to the configuration of the invention described in the above (1) to (6), the distribution electrode is formed on the surface of the semiconductor layer which does not overlap with the pedestal electrode in plan view. Is characterized.
[0021]
Further, the present invention is characterized in that (8) In addition to the configuration of the invention described in the above (1) to (7), the area of the distribution electrode is smaller than the area of the pedestal electrode.
[0022]
According to the present invention, (9) In addition to the constitution of the inventions described in the above (1) to (8), the total plane area of the distribution electrodes is 3% or more and 30% or less of the effective light emitting area. It is characterized by:
[0023]
Further, the present invention is characterized in that (10) In addition to the configuration of the invention described in the above (1) to (9), the distribution electrode is a gold alloy.
[0024]
Further, the present invention is characterized in that (11) the transparent conductive film is made of indium tin oxide (ITO) in addition to the constitutions of the inventions described in the above (1) to (10).
[0025]
The present invention is characterized in that (12) In addition to the configuration of the invention described in the above (1) to (11), the pedestal electrode is formed at the center of the element surface when viewed in plan. .
[0026]
Further, the present invention is characterized in that (13) the surface of the pedestal electrode is made of gold, in addition to the configuration of the invention described in the above (1) to (12).
[0027]
Further, the present invention provides (14) In addition to the constitutions of the inventions described in (1) to (13) above, the pedestal electrode is formed of a multilayer film, and the layer in contact with the transparent conductive film is chromium. Features.
[0028]
Further, according to the present invention, (15) In addition to the configuration of the invention described in (1) to (14) above, the distribution electrode is a substantially square or substantially circular linear body surrounding the pedestal electrode. It is characterized by.
[0029]
The present invention is characterized in that (16) In addition to the configuration of the invention described in (1) to (15) above, the distribution electrode is a linear body having a line width of 20 μm or less.
[0030]
The present invention is (17) a method for manufacturing a semiconductor light emitting device, wherein a first step of epitaxially growing a semiconductor layer including a light emitting portion made of AlInGaP and having a p-type current diffusion layer as an upper layer on a single crystal substrate is provided. A second step of forming a distribution electrode in ohmic contact with the current diffusion layer on a part of the surface of the current diffusion layer formed in the first step; A third step of forming a transparent conductive film covering the electrode and conducting to the distribution electrode; and a fourth step of forming a pedestal electrode conducting to the transparent conductive film on a part of the surface of the transparent conductive film. And having the following.
[0031]
The present invention is characterized in that (18) In addition to the constitution of the invention described in the above (17), the semiconductor layer is formed by metal organic chemical vapor deposition (MOCVD).
[0032]
Further, the present invention is characterized in that (19) the transparent conductive film is formed by a sputtering method in addition to the configuration of the invention described in the above (17) or (18).
[0033]
Further, the present invention is characterized in that (20) the pedestal electrode is formed by a sputtering method, in addition to the configuration of the invention described in the above (17) to (19).
[0034]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0035]
1 and 2 are diagrams schematically showing a schematic configuration of a semiconductor light emitting device of the present invention. FIG. 1 is a plan view thereof, and FIG. 2 is a diagram showing a cross section taken along line II of FIG. Note that in this specification, viewing the surface of the semiconductor layer in a plan view means viewing in a plan view as in FIG.
[0036]
In these figures, a semiconductor light emitting device 10 of the present invention includes a semiconductor substrate 1 having a first electrode 5 formed on the back surface, a light emitting portion 2a formed on the semiconductor substrate 1 and made of AlInGaP, and a current A semiconductor layer 3 having a diffusion layer 2b; a distribution electrode 7 formed on a part of the surface of the current diffusion layer 2b (semiconductor layer 3) so as to make ohmic contact with the current diffusion layer 2b; And a pedestal electrode 6 formed on a part of the surface of the transparent conductive film 4 and electrically connected to the transparent conductive film 4. And having the following. It is preferable that the light emitting unit 2a use a known double hetero structure or a multi quantum well (MQW) structure having a high luminous efficiency. Here, as shown in FIG. 1, the distribution electrode 7 is preferably arranged on a portion of the surface of the semiconductor layer 3 which does not overlap with the pedestal electrode 6 in plan view. More preferably, it is not arranged. Also, the junction between the distribution electrode 7 and the current diffusion layer 2b maintains a good ohmic contact and the electrical resistance therebetween decreases, and the junction between one of the transparent conductive films 4 and the current diffusion layer 2b is sufficient. Since an ohmic contact cannot be obtained, the electrical resistance between them is large.
[0037]
In the semiconductor light emitting device 10 having the above configuration, by providing the distribution electrode 7 forming an ohmic contact on a part of the surface of the current diffusion layer 2b, the electric resistance between the transparent conductive film 4 and the current diffusion layer 2b can be reduced. The electric resistance between the distribution electrode 7 and the current diffusion layer 2b is greatly reduced, and most of the drive current supplied from the pedestal electrode 6 has a lower electric resistance as shown by the arrow in FIG. It flows through the path of the pedestal electrode 6 → the transparent conductive film 4 → the distribution electrode 7 → the current diffusion layer 2b → the light emitting section 2a. Then, the current that has entered the current spreading layer 2b from the distribution electrode 7 is appropriately diffused in the current spreading layer 2b, so that light emission from the light emitting unit 2a is performed around the distribution electrode 7 as a center. For this reason, light emitted from the light emitting section 2a is hardly interrupted by the distribution electrode 7, and most of the light can be extracted upward, so that the light emission efficiency can be improved.
[0038]
The above current diffusion layer 2b contributes to the improvement of the luminous efficiency in both the n-type and the p-type. Although the p-type generally has low mobility and makes it difficult for the current from the distribution electrode 7 to diffuse, in the present invention, the p-type satisfies a specific condition, for example, the layer thickness, the layer thickness and the carrier concentration. It has been found that optimizing the product, surface carrier concentration, material, and the like greatly contributes to higher luminance.
[0039]
That is, it was found that when the current spreading layer 2b was p-type, sufficient current spreading occurred when the layer thickness was 3 μm or more. However, if the thickness is too large, the surface condition is deteriorated, so that the thickness is preferably 20 μm or less. To realize low cost, the thickness is more preferably 10 μm or less.
[0040]
Further, the product of the thickness of the current diffusion layer 2b and the carrier concentration is deeply involved in the high luminance, and the range in which the effect of the high luminance is large is 5 × 10 14 cm -2 It turns out that it is above.
[0041]
Further, regarding the surface carrier concentration of the current diffusion layer 2b, 1 × 10 18 cm -3 If it is above, the contact resistance with the distribution electrode 7 is reduced, current diffusion is promoted, and high luminance is brought.
[0042]
The material of the current diffusion layer 2b is preferably a material that is transparent to light emission and sufficiently diffuses current. For example, GaP can be grown not only by metal organic chemical vapor deposition (MOCVD) but also by metal organic chemical vapor deposition (MOCVD). It is one of the most suitable materials for the current diffusion layer because it is easy to reduce the resistance and increase the film thickness.
[0043]
The distribution electrode 7 is a substantially circular linear body that surrounds the pedestal electrode 6 in FIG. The width of the linear body is desirably 20 μm or less. With such a planar arrangement of the distribution electrodes 7, the current diffusion in the current diffusion layer 2b can be performed more effectively, and the drive current from the pedestal electrode 6 can be applied to a wide surface of the current diffusion layer 2b. It can be expanded to the range.
[0044]
Further, as described above, since the distribution electrode 7 is arranged so as not to overlap with the pedestal electrode 6, light emission in a direction directly below the pedestal electrode 6 is weak, and most of the light emission is not blocked by the pedestal electrode 6. It can be taken out from above, and the luminous efficiency can be greatly improved to achieve higher luminance.
[0045]
Furthermore, regarding the luminous efficiency, by making the area of the distribution electrode 7 smaller than the area of the pedestal electrode 6, light can be efficiently extracted to the outside as compared with the conventional semiconductor light emitting element, so that the luminous efficiency is further improved. Can be.
[0046]
In addition, since the electrical resistance between the distribution electrode 7 and the semiconductor layer 3 is reduced by the ohmic contact as described above, it is possible to suppress an increase in the forward voltage of the semiconductor light emitting device 10, The life characteristics can be improved.
[0047]
The transparent conductive film 4 has good translucency made of, for example, indium tin oxide (ITO). In particular, a film formed by a sputtering method has low resistance and excellent film quality with high transmittance. Therefore, light emitted from the light emitting section 2a is hardly absorbed even while passing through the transparent conductive film 4, and can be efficiently extracted upward from the transparent conductive film 4.
[0048]
The pedestal electrode 6 is an electrode for performing wire bonding for connection between the semiconductor light emitting element 10 and an external electric circuit. For this reason, a certain area is required. However, conventionally, light emission based on a drive current flowing directly downward from the pedestal electrode 6 was blocked by the pedestal electrode 6 and could not be extracted to the outside. For this reason, conventionally, measures were taken by providing an insulating layer between the pedestal electrode 6 and the light emitting portion 2a, for example, so as to forcibly prevent a drive current from flowing directly downward from the pedestal electrode 6. According to the present invention, the drive current can be distributed to the distribution electrode 7 and induced. Therefore, it is possible to eliminate the drive current flowing directly below the pedestal electrode 6 with a simpler configuration without providing an insulating layer. it can.
[0049]
Here, of the surface of the transparent conductive film 4 (or the surface of the semiconductor layer 3), the area of the surface that becomes effective when light is emitted (effective light emission surface) is determined by the area of the pedestal electrode 6 from the area of the transparent conductive film 4. This is an area obtained by subtracting the area in plan view of FIG. 1), and this area is referred to as an effective light emission area S. Incidentally, the phenomenon that the pedestal electrode 6 hinders the extraction of light emission in the direction directly below the pedestal electrode 6 also slightly occurs in the distribution electrode 7. Therefore, in the present invention, the total plane area (area in plan view) of the distribution electrode 7 is set to be 3% or more and 30% or less of the light emission effective area S, and the area of the distribution electrode 7 is too large to emit light. It is preferable to prevent excessive take-out disturbance, or conversely, the problem that the area is too small and the forward voltage (Vf) is increased to cause a disadvantage.
[0050]
In the phenomenon that the distribution electrode 7 obstructs the extraction of light emission immediately below the distribution electrode 7, the better and more appropriate the diffusion of the current diffusion layer 2b, the lower the probability that the extraction of light is obstructed.
[0051]
Next, more specific configuration examples of the semiconductor light emitting device of the present invention will be described in order with reference to FIGS.
[0052]
3 and 4 are views showing a first configuration example of the semiconductor light emitting device of the present invention, FIG. 3 is a plan view thereof, and FIG. 4 is a view showing a cross section taken along line II-II of FIG. In these figures, a semiconductor light emitting device 20 of the present invention is a light emitting diode (LED) that emits yellow-green light.
[0053]
A semiconductor layer 23 is formed on a Si-doped n-type GaAs single crystal substrate 21 whose plane orientation is (001) 15 degrees off. The semiconductor layer 23 includes a buffer layer 231 made of Si-doped n-type GaAs and a Si-doped n-type Al 0.5 Ga 0.5 As / Al 0.9 Ga 0.1 DBR reflection layer 232 composed of an As multilayer film, Si-doped n-type and undoped Al 0.5 In 0.5 A lower cladding layer 233 made of P; a light emitting layer 22 made of undoped AlGaInP mixed crystal whose composition is adjusted to have an emission wavelength of 570 nm; 0.5 In 0.5 P and Zn doped p-type Al 0.5 Ga 0.5 An upper cladding layer 234 made of P and a Zn-doped p-type GaP current diffusion layer 235 are formed.
[0054]
Each of the layers 231, 232, 233, 22, 234 and 235 constituting the semiconductor layer 23 is made of trimethyl aluminum ((CH 3 ) 3 Al), trimethylgallium ((CH 3 ) 3 Ga) and trimethylindium ((CH 3 ) 3 In) was used as a raw material of a group III constituent element, and a film was formed on the substrate 21 by a reduced pressure MOCVD method. As a doping material for zinc (Zn), diethyl zinc ((C 2 H 5 ) 2 Zn) was used. Disilane (Si) is used as an n-type doping material. 2 H 6 )It was used. In addition, phosphine (PH 3 ) Or arsine (AsH) 3 ) Was used. The deposition temperatures of the layers 231, 232, 233, 22, 234 and 235 were unified to 735 ° C.
[0055]
The carrier concentration of the buffer layer 231 is about 2 × 10 18 cm -3 The layer thickness was about 0.5 μm. The carrier concentration of the reflection layer 232 is about 2 × 10 18 cm -3 The thickness was set to about 1.2 μm. The carrier concentration of the lower cladding layer 233 is about 1 × 10 18 cm -3 The thickness of the Si-doped n-type layer was about 1.3 μm, and the thickness of the undoped layer thereon was 0.2 μm. The thickness of the light emitting layer 22 was about 1 μm. The upper cladding layer 234 had an undoped layer of 0.5 μm and a Zn-doped p-type layer thereon of about 0.5 μm. The carrier concentration of this Zn-doped p-type layer is about 6 × 10 17 cm -3 And
[0056]
The p-type current diffusion layer 235 has a carrier concentration of about 3 × 10 18 cm -3 And the layer thickness was about 6 μm. At this time, the product N · d of the thickness d of the current diffusion layer 235 and the carrier concentration N is about 1.8 × 10 Fifteen cm -2 Met.
[0057]
Here, the lower cladding layer 233, the light emitting layer 22, and the upper cladding layer 234 constitute a light emitting portion of the semiconductor light emitting device 20. Therefore, the light emitting section has a double hetero structure made of AlGaInP.
[0058]
In this semiconductor light emitting device 20, a gold-beryllium alloy (Au99 weight) having a thickness of about 50 nm is first formed on the entire surface of the current diffusion layer 235 by a general vacuum deposition method in order to form the distribution electrode 27. % -Be 1% by weight alloy) film, and then a gold (Au) film having a thickness of about 100 nm was deposited on the surface of the gold-beryllium alloy film.
[0059]
Next, using a general photolithography means, a multilayer film having a two-layer structure including a first film made of a gold-beryllium alloy and a second film made of gold is formed in the shape of the distribution electrode 27. The patterning was performed to form a frame-shaped distribution electrode 27 having a width of about 6 μm and a linear shape having a side of about 150 μm and a substantially square shape. The area of the distribution electrode 27 is about 0.36 × 10 -4 cm -2 Met. As shown in FIG. 3, the distribution electrode 27 composed of the first film and the second film is formed on the surface of the current diffusion layer 235 except for a region immediately below the pedestal electrode 26 so as to surround the pedestal electrode 26, It is symmetrical in plan view and has a substantially square shape.
[0060]
On the other hand, an n-type ohmic electrode 25 was formed by laminating a gold-germanium alloy on the rear surface of the single crystal substrate 21 at about 0.3 μm and gold on the lower surface at about 0.3 μm. Thereafter, an alloying heat treatment was performed at 450 ° C. for 10 minutes in a nitrogen stream to form an ohmic contact between the distribution electrode 27 and the current diffusion layer 235 and an ohmic contact between the n-type ohmic electrode 25 and the single crystal substrate 21.
[0061]
Next, an indium tin oxide (ITO) transparent conductive film 24 was deposited on the current diffusion layer 235 and the distribution electrode 27 on the surface thereof by a known magnetron sputtering method. The specific resistance of the transparent conductive film 24 is about 4 × 10 -4 Ω · cm, and the layer thickness was about 500 nm. The transmittance with respect to the emission wavelength is good film quality of about 95%.
[0062]
A multilayer film of 30 nm of Cr and 1 μm of gold was formed on the transparent conductive film 24 by a known magnetron sputtering method. After applying a general organic photoresist material, a region where the pedestal electrode 26 is to be provided was patterned by using a known photolithography technique to form a circular pedestal electrode 26 having a diameter of about 110 μm. The flat area of the pedestal electrode 26 is about 1 × 10 -4 cm 2 It became.
[0063]
As shown in FIG. 3, the region where the pedestal electrode 26 is to be provided is a region including the center of the surface of the semiconductor light emitting element when viewed in plan, that is, the intersection including the diagonal intersection of the square semiconductor light emitting element surface. This has the advantage that when the pedestal electrode 26 is located at the center of the surface of the semiconductor light emitting device, the current can easily flow uniformly throughout the semiconductor light emitting device, and the chip is less likely to tilt when performing wire bonding to the pedestal electrode 26.
[0064]
Thereafter, one side was cut at an interval of 230 μm by a normal dicing method, and separated into square element shapes, thereby forming a semiconductor light emitting element 20. The plane area of the transparent conductive film 24 is about 4 × 10 -4 cm 2 The effective light emission area S obtained by subtracting the plane area of the pedestal electrode 26 from the plane area of the transparent conductive film 24 is about 3 × 10 -4 cm 2 It became. The total plane area of the distribution electrodes 27 is about 0.36 × 10 -4 cm 2 The ratio of this area to the luminous effective area S was about 12%.
[0065]
When a current flows in the forward direction between the ohmic electrode 25 and the pedestal electrode 26 of the semiconductor light emitting device 20 manufactured as described above, yellow-green light having a wavelength of about 570 nm is emitted from the surface of the transparent conductive film 24. Was done. The forward voltage (Vf: per 20 mA) when a current of 20 mA flows was about 2 V, reflecting the good ohmic characteristics of each distribution electrode 27 and the current diffusion effect in the current diffusion layer 2b. .
[0066]
In addition, due to the effect of arranging the ohmic distribution electrode 27 on the periphery of the semiconductor light emitting element 20 and the effect of the current diffusion layer 2b, light emission is also recognized in the peripheral area of the semiconductor light emitting element 20. The luminescence intensity measured typically was about 40 millicandela (mcd). Furthermore, since the drive current is more evenly distributed by the distribution electrode 27 and the current diffusion layer 2b, the light emission intensity seen on the surface of the transparent conductive film 24 has a substantially uniform distribution.
[0067]
In the first configuration example, Zn and Si are used as dopants. However, similar effects can be obtained by using well-known dopants such as Mg, Te, and Se. Further, the light emitting layer 22 has a double hetero structure, but the same effect can be obtained with an MQW structure.
[0068]
As described above, in the semiconductor light emitting device 20 obtained in the first configuration example, the current diffusion layer 235 has a layer thickness of about 6 μm and a carrier concentration of about 3 × 10 18 cm -3 The product N · d of the layer thickness d and the carrier concentration N is about 1.8 × 10 Fifteen cm -2 The semiconductor light emitting device 20 was designated as Example 1. The thickness and carrier concentration of this current diffusion layer were variously changed as shown in Table 1, and five other types of semiconductor light emitting devices were manufactured under the same conditions as in Example 1 except for the above. , 3,4,5,6. The Vf value and emission intensity of each of the semiconductor light emitting devices of Examples 1 to 6 were measured, and the results shown in Table 1 were obtained.
[0069]
[Table 1]
Figure 2004265923
[0070]
Comparative Example In order to compare the Vf value and the light emission intensity of the semiconductor light emitting devices of Examples 1 to 6 described above, a semiconductor light emitting device having no current diffusion layer and having the same configuration as that of Example 1 in all other respects (LED) was produced as a comparative element. Table 1 shows the comparison results.
[0071]
The comparative example in Table 1 had a Vf value (per 20 mA) of about 2.2 V, which was higher than the Vf values of the semiconductor light emitting devices 20 of Examples 1 to 6, 1.99 V to 2.02 V. On the other hand, the light emission of the comparative example occurred only directly under and around the ohmic electrode, and a considerable proportion of the light emission was blocked by the electrode, which caused a situation in which the light could not be extracted outside. As a result, the brightness was low, less than 15 mcd. On the other hand, the luminance of Examples 1 to 6 was 30 mcd to 42 mcd.
[0072]
Comparing this comparative example with the example of the present invention, it is clear that the semiconductor light emitting device of the present invention exhibits a high luminance without an increase in Vf.
[0073]
FIGS. 5 to 8 are views showing other examples of the arrangement of the distribution electrodes as viewed in plan. In the above description, the distribution electrodes are continuously distributed in the form of a linear body around the pedestal electrode. However, as shown in FIG. 7 may be configured. Further, as shown in FIG. 6, a distribution electrode 7 in which linear bodies are graphically combined may be used. Further, as shown in FIG. 7, the distribution electrodes 7 may be configured by arranging linear bodies in a lattice shape. In addition, as shown in FIG. 8, the distribution electrode 7 may be configured by a combination of a linear body and independent individual electrodes.
[0074]
As described above, the distribution electrodes 7 may be arranged not only separately but also in a strip shape or a linear shape, or may be arranged in a planar shape.
[0075]
In the case where the distribution electrodes 7 are individually dispersed and arranged, or in the case where strip-shaped or linear ones are continuous, their shapes are arbitrary shapes such as square, rectangle, circle, ellipse, and polygon. The pattern for dispersion may be radial, circumferential, spiral, or any other pattern.
[0076]
【The invention's effect】
As described above, in the semiconductor light emitting device of the present invention, by providing the distribution electrode forming an ohmic contact on a part of the surface of the current diffusion layer, compared with the electric resistance between the transparent conductive film and the current diffusion layer. The electric resistance between the distribution electrode and the current diffusion layer is greatly reduced, and the driving current supplied from the pedestal electrode is mostly lower in electric resistance, the pedestal electrode → transparent conductive film → distribution electrode → current Flows from the diffusion layer to the light emitting section. The current that has entered the current diffusion layer from the distribution electrode is appropriately diffused in the current diffusion layer, so that light emission in the light emitting unit is performed around the distribution electrode. For this reason, the light emitted from the light emitting unit is less likely to be blocked by the distribution electrode, and most of the light can be extracted upward, and thus the light emission efficiency can be improved.
[0077]
When the current spreading layer is of a p-type, the layer thickness is set to 3 μm or more, so that sufficient current spreading can be caused.
[0078]
When the current spreading layer is p-type, the product of the layer thickness and the carrier concentration is 5 × 10 14 cm -2 As described above, the current diffusion layer can effectively contribute to higher luminance.
[0079]
Further, when the current diffusion layer is p-type, the surface carrier concentration is 1 × 10 18 cm -3 As described above, the contact resistance with the distribution electrode is reduced, current diffusion is promoted, and higher luminance can be obtained.
[0080]
Further, since the current diffusion layer is formed of p-type GaP containing Zn or Mg as an impurity, the layer is transparent to light emission, can sufficiently diffuse a current, and can easily reduce the resistance and increase the thickness. And the optimization of the current diffusion layer can be easily performed.
[Brief description of the drawings]
FIG. 1 is a plan view schematically showing a schematic configuration of a semiconductor light emitting device of the present invention.
FIG. 2 is a diagram schematically showing a schematic configuration of a semiconductor light emitting device of the present invention, and is a diagram showing a cross section taken along line II of FIG. 1;
FIG. 3 is a plan view showing an embodiment of the semiconductor light emitting device of the present invention.
4 is a view showing an embodiment of the semiconductor light emitting device of the present invention, and is a view showing a cross section taken along line II-II of FIG. 3;
FIG. 5 is a diagram showing another arrangement example of the distribution electrode according to the present invention.
FIG. 6 is a diagram showing another arrangement example of the distribution electrode according to the present invention.
FIG. 7 is a diagram showing another arrangement example of the distribution electrode according to the present invention.
FIG. 8 is a diagram showing another arrangement example of the distribution electrode according to the present invention.
[Explanation of symbols]
1 semiconductor substrate
2a Light emitting unit
2b Current diffusion layer
3 Semiconductor layer
4 Transparent conductive film
5 First electrode
6 pedestal electrode
7 Distribution electrode
10 Semiconductor light emitting device
20 Semiconductor light emitting device
21 Single crystal substrate
22 Emitting layer
23 Semiconductor layer
231 buffer layer
232 Reflective layer
233 Lower cladding layer
234 Upper cladding layer
235 Current diffusion layer
24 Transparent conductive film
25 n-type ohmic electrode
26 pedestal electrode
27 Distribution electrode

Claims (20)

裏面に第1の電極が形成された半導体基板と、
前記半導体基板上に形成され、AlInGaPからなる発光部を含むとともに上層に電流拡散層を有する半導体層と、
前記電流拡散層の表面の一部に分配して形成され、その電流拡散層とオーミック接触をなす分配電極と、
前記電流拡散層の表面と前記分配電極とを覆って形成され、その分配電極と導通する透明導電膜と、
前記透明導電膜の表面の一部に形成され、その透明導電膜と導通する台座電極と、
を有することを特徴とする半導体発光素子。
A semiconductor substrate having a first electrode formed on the back surface;
A semiconductor layer formed on the semiconductor substrate, including a light emitting portion made of AlInGaP, and having a current diffusion layer as an upper layer;
A distribution electrode that is formed by being distributed on a part of the surface of the current spreading layer and makes ohmic contact with the current spreading layer;
A transparent conductive film formed over the surface of the current diffusion layer and the distribution electrode, and electrically connected to the distribution electrode;
A pedestal electrode formed on a part of the surface of the transparent conductive film and electrically connected to the transparent conductive film,
A semiconductor light-emitting device comprising:
前記半導体基板はn型で、電流拡散層はp型である、請求項1に記載の半導体発光素子。The semiconductor light emitting device according to claim 1, wherein the semiconductor substrate is n-type, and the current diffusion layer is p-type. 前記電流拡散層の厚さが3μm以上である、請求項1または2に記載の半導体発光素子。The semiconductor light emitting device according to claim 1, wherein the thickness of the current diffusion layer is 3 μm or more. 前記電流拡散層の厚さとキャリア濃度との積(N・d)が、5×1014cm−2以上である、請求項1乃至3に記載の半導体発光素子。4. The semiconductor light emitting device according to claim 1, wherein a product (N · d) of a thickness of the current diffusion layer and a carrier concentration is 5 × 10 14 cm −2 or more. 5. 前記電流拡散層の表面キャリア濃度が、1×1018cm−3以上である、請求項1乃至4に記載の半導体発光素子。The semiconductor light emitting device according to claim 1, wherein a surface carrier concentration of the current diffusion layer is 1 × 10 18 cm −3 or more. 前記電流拡散層は、ZnまたはMgを不純物としたp型のGaP層からなる、請求項1乃至5に記載の半導体発光素子。The semiconductor light emitting device according to claim 1, wherein the current diffusion layer is formed of a p-type GaP layer containing Zn or Mg as an impurity. 前記分配電極は、平面的に見て台座電極と重ならない半導体層表面に形成されている、請求項1乃至6に記載の半導体発光素子。The semiconductor light-emitting device according to claim 1, wherein the distribution electrode is formed on a surface of the semiconductor layer that does not overlap with the pedestal electrode when viewed in plan. 前記分配電極の面積は台座電極の面積より小さい、請求項1乃至7に記載の半導体発光素子。The semiconductor light emitting device according to claim 1, wherein an area of the distribution electrode is smaller than an area of the pedestal electrode. 前記分配電極の合計の平面積が、発光有効面積の3%以上で30%以下である、請求項1乃至8に記載の半導体発光素子。9. The semiconductor light emitting device according to claim 1, wherein a total plane area of the distribution electrodes is 3% or more and 30% or less of a light emitting effective area. 前記分配電極が金合金である、請求項1乃至9に記載の半導体発光素子。The semiconductor light emitting device according to claim 1, wherein the distribution electrode is a gold alloy. 前記透明導電膜が酸化インジウム錫(ITO)である、請求項1乃至10に記載の半導体発光素子。The semiconductor light emitting device according to claim 1, wherein the transparent conductive film is indium tin oxide (ITO). 前記台座電極が平面的に見て素子表面の中心に形成されている、請求項1乃至11に記載の半導体発光素子。The semiconductor light-emitting device according to claim 1, wherein the pedestal electrode is formed at the center of the device surface when viewed in plan. 前記台座電極の表面が金である、請求項1乃至12に記載の半導体発光素子。The semiconductor light emitting device according to claim 1, wherein a surface of the pedestal electrode is gold. 前記台座電極が多層膜からなり、透明導電膜と接する層がクロムである、請求項1乃至13に記載の半導体発光素子。14. The semiconductor light emitting device according to claim 1, wherein the pedestal electrode is formed of a multilayer film, and a layer in contact with the transparent conductive film is chromium. 前記分配電極は、台座電極を囲む略四角形あるいは略円形の線状体である、請求項1乃至14に記載の半導体発光素子。The semiconductor light emitting device according to claim 1, wherein the distribution electrode is a substantially square or substantially circular linear body surrounding the pedestal electrode. 前記分配電極は線幅が20μm以下の線状体である、請求項1乃至15に記載の半導体発光素子。The semiconductor light emitting device according to claim 1, wherein the distribution electrode is a linear body having a line width of 20 μm or less. 単結晶基板上に、AlInGaPからなる発光部を含むとともに上層にp型の電流拡散層を有する半導体層をエピタキシャル成長させる第1の工程と、
前記第1の工程で形成された電流拡散層の表面の一部に、その電流拡散層とオーミック接触をなす分配電極を形成する第2の工程と、
前記電流拡散層の表面と前記分配電極とを覆い、その分配電極と導通する透明導電膜を形成する第3の工程と、
前記透明導電膜の表面の一部に、その透明導電膜と導通する台座電極を形成する第4の工程と、
を有する半導体発光素子の製造方法。
A first step of epitaxially growing a semiconductor layer including a light emitting portion made of AlInGaP and having a p-type current diffusion layer as an upper layer on a single crystal substrate;
A second step of forming a distribution electrode in ohmic contact with the current diffusion layer on a part of the surface of the current diffusion layer formed in the first step;
A third step of forming a transparent conductive film that covers the surface of the current diffusion layer and the distribution electrode and conducts with the distribution electrode;
A fourth step of forming, on a part of the surface of the transparent conductive film, a pedestal electrode that is electrically connected to the transparent conductive film;
A method for manufacturing a semiconductor light emitting device having:
前記半導体層が有機金属化学気相堆積法(MOCVD法)により形成される、請求項17に記載の半導体発光素子の製造方法。The method according to claim 17, wherein the semiconductor layer is formed by a metal organic chemical vapor deposition (MOCVD) method. 前記透明導電膜がスパッタリング法により形成される、請求項17または18に記載の半導体発光素子の製造方法。The method according to claim 17, wherein the transparent conductive film is formed by a sputtering method. 前記台座電極がスパッタリング法により形成される、請求項17乃至19に記載の半導体発光素子の製造方法。20. The method according to claim 17, wherein the pedestal electrode is formed by a sputtering method.
JP2003032580A 2003-02-10 2003-02-10 Semiconductor light emitting device Expired - Fee Related JP4255710B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003032580A JP4255710B2 (en) 2003-02-10 2003-02-10 Semiconductor light emitting device
TW093102666A TWI231053B (en) 2003-02-10 2004-02-05 Semiconductor light emitting device and the manufacturing method thereof
PCT/JP2004/001338 WO2004070851A1 (en) 2003-02-10 2004-02-09 Light-emitting diode device and production method thereof
US10/544,940 US7528417B2 (en) 2003-02-10 2004-02-09 Light-emitting diode device and production method thereof
DE112004000262T DE112004000262T5 (en) 2003-02-10 2004-02-09 Light-emitting diode and associated manufacturing method
CNB2004800062445A CN100527452C (en) 2003-02-10 2004-02-09 Light-emitting diode device and production method thereof
KR1020057014770A KR100644151B1 (en) 2003-02-10 2004-02-09 Light-emitting diode device and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032580A JP4255710B2 (en) 2003-02-10 2003-02-10 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2004265923A true JP2004265923A (en) 2004-09-24
JP4255710B2 JP4255710B2 (en) 2009-04-15

Family

ID=33112035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032580A Expired - Fee Related JP4255710B2 (en) 2003-02-10 2003-02-10 Semiconductor light emitting device

Country Status (2)

Country Link
JP (1) JP4255710B2 (en)
CN (1) CN100527452C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160008745A (en) * 2014-07-15 2016-01-25 엘지이노텍 주식회사 Light emitting device and lighting system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7834373B2 (en) * 2006-12-12 2010-11-16 Hong Kong Applied Science and Technology Research Institute Company Limited Semiconductor device having current spreading layer
JP5095840B2 (en) * 2011-04-26 2012-12-12 株式会社東芝 Semiconductor light emitting device
KR102101356B1 (en) * 2013-06-18 2020-04-17 엘지이노텍 주식회사 Light emitting device, and lighting system
CN104300058B (en) * 2014-10-14 2018-02-27 扬州乾照光电有限公司 A kind of green-yellow light LED of the wide barrier structure containing doping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160008745A (en) * 2014-07-15 2016-01-25 엘지이노텍 주식회사 Light emitting device and lighting system
KR102249627B1 (en) * 2014-07-15 2021-05-10 엘지이노텍 주식회사 Light emitting device and lighting system

Also Published As

Publication number Publication date
CN100527452C (en) 2009-08-12
CN1759490A (en) 2006-04-12
JP4255710B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
KR100631840B1 (en) Nitride semiconductor light emitting device for flip chip
US7291865B2 (en) Light-emitting semiconductor device
US6316792B1 (en) Compound semiconductor light emitter and a method for manufacturing the same
JP5992174B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
WO2005081750A2 (en) Group iii-nitride based led having a transparent current spreading layer
US7528417B2 (en) Light-emitting diode device and production method thereof
TW200939542A (en) Light emitting diode and manufacturing method thereof
CN108346726B (en) Light emitting diode element
EP1530242B1 (en) Semiconductor light emitting device
JP3989658B2 (en) Semiconductor light emitting diode
US6420731B1 (en) Light emitting diode and manufacturing method thereof
JP4255710B2 (en) Semiconductor light emitting device
JP4409684B2 (en) AlGaInP light emitting diode and manufacturing method thereof
JP2001144330A (en) Semiconductor light-emitting diode
KR100644151B1 (en) Light-emitting diode device and production method thereof
JP6190591B2 (en) Semiconductor light emitting device
JP4439645B2 (en) AlGaInP light emitting diode
JP4031611B2 (en) Light emitting diode, lamp, and manufacturing method thereof
JP2004363572A (en) Semiconductor light emitting device and light emitting diode
JP4119602B2 (en) Semiconductor light emitting device, electrode for semiconductor light emitting device, method for manufacturing the same, LED lamp using the semiconductor light emitting device, and light source using the LED lamp
WO2004070851A1 (en) Light-emitting diode device and production method thereof
JP2001168395A (en) Iii-v compound semiconductor light emitting diode
JP4376361B2 (en) AlGaInP light emitting diode
JP3663869B2 (en) Gallium nitride compound semiconductor device
JP2001036130A (en) AlGaInP LIGHT EMITTING DIODE PROVIDED WITH WINDOW LAYER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090128

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150206

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees