JP4251125B2 - 微粒αアルミナの製造方法 - Google Patents

微粒αアルミナの製造方法 Download PDF

Info

Publication number
JP4251125B2
JP4251125B2 JP2004256682A JP2004256682A JP4251125B2 JP 4251125 B2 JP4251125 B2 JP 4251125B2 JP 2004256682 A JP2004256682 A JP 2004256682A JP 2004256682 A JP2004256682 A JP 2004256682A JP 4251125 B2 JP4251125 B2 JP 4251125B2
Authority
JP
Japan
Prior art keywords
alumina
aluminum
seed crystal
particles
crystal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004256682A
Other languages
English (en)
Other versions
JP2006076800A (ja
Inventor
忍 丸野
一 真木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004256682A priority Critical patent/JP4251125B2/ja
Priority to TW094107252A priority patent/TW200540116A/zh
Priority to US11/079,163 priority patent/US20050214201A1/en
Priority to FR0502469A priority patent/FR2869029B1/fr
Priority to CNA2005100545930A priority patent/CN1669933A/zh
Priority to DE102005011607A priority patent/DE102005011607A1/de
Priority to KR1020050021028A priority patent/KR20060043612A/ko
Publication of JP2006076800A publication Critical patent/JP2006076800A/ja
Priority to US12/348,137 priority patent/US20090123363A1/en
Application granted granted Critical
Publication of JP4251125B2 publication Critical patent/JP4251125B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、微粒αアルミナの製造方法の製造方法に関し、詳しくはネッキングしている粒子が少なく、高α化率でBET比表面積の大きな微粒αアルミナの製造方法に関する。
微粒αアルミナは、主結晶相がα相であるアルミナ〔Al23〕の微細な粒子であって、例えば透光管などのような焼結体を製造するための原材料として広く用いられている。かかる微粒αアルミナには、強度に優れた焼結体が得られる点で、α化率が高く、BET比表面積が大きいと共に、ネッキングしている粒子が少ないものが求められている。
高α化率でBET比表面積の大きな微粒αアルミナを製造する方法として、非特許文献1〔A.Krell, NanoStructured Materials, Vol.11, 1141(1999)〕には、アルミニウム塩を水に溶解させて水溶液とし、この水溶液に種晶粒子を分散させた状態で60℃以下にて、水素イオン濃度がpH5以下で塩基を加えて加水分解して、水にアルミニウム加水分解物および種晶粒子が分散された水性混合物を得、この水性混合物から水を留去してアルミニウム加水分解物および種晶粒子を含む粉末混合物を得、得られた粉末混合物を焼成する方法が開示されている。
A.Krell, Nano Structured Materials, Vol.11, 1141(1999)
しかし、かかる従来の製造方法で得られた微粒αアルミナには、粒子同士のネッキングが多いという問題があった。
そこで本発明者は、アルミニウム塩を水に溶解させ、種晶粒子を分散させた水溶液から、粒子同士のネッキングが少なく、高α化率で大きなBET比表面積を示す微粒αアルミナを製造する方法を開発すべく鋭意検討した結果、種晶粒子の使用量をBET比表面積に応じた量とし、加水分解をpH5以下の水素イオン濃度で60℃以下の温度にて行い、加水分解後、水を留去して得た粉末混合物を気流中で塩分解したのち、焼成することで、α化率が高く、BET比表面積が大きい微粒αアルミナが得られることを見出し、本発明に至った。
すなわち本発明は、アルミニウム塩が溶解され、アルミナ、酸化鉄又は酸化クロムからなる種晶粒子を含み、アルミニウム塩および種晶粒子の酸化物換算の合計含有量100重量部あたりの種晶粒子の含有量X(重量部)が式(1)
X ≧ 350 / S (1)
〔式中、Sは種晶粒子のBET比表面積(m2/g)を示す。〕
を満足する水溶液に、60℃以下にて、該水溶液の水素イオン濃度がpH5を超えないように塩基を加えて該水溶液中のアルミニウム塩を加水分解して、水にアルミニウム加水分解物および種晶粒子が分散された水性混合物を得、得られた水性混合物から水を留去してアルミニウム加水分解物および種晶粒子を含む粉末混合物を得、得られた粉末混合物を気流中で塩分解した後、600℃以上1000℃以下で、大気中又は不活性ガス中、10分以上24時間以下の焼成時間で焼成することを特徴とする粒子径が0.01μm以上0.1μm以下程度である微粒αアルミナの製造方法を提供するものである。

本発明の製造方法によれば、粒子同士のネッキングが少なく、高α化率で大きなBET比表面積の微粒αアルミナを得ることができる。
本発明の製造方法で使用されるアルミニウム塩としては、アルミニウム以外の金属成分を含まないものが用いられ、例えば硝酸アルミニウム、硝酸アンモニウムアルミニウムなどのアルミニウム硝酸塩、硫酸アルミニウム、アンモニウム明礬、炭酸アンモニウムアルミニウムなどのアルミニウム無機塩、蓚酸アルミニウム、酢酸アルミニウム、ステアリン酸アルミニウム、乳酸アルミニウム、ラウリン酸アルミニウムなどのアルミニウム有機塩などが挙げられるが、好ましくはアルミニウム無機塩、さらに好ましくはアルミニウム硝酸塩である。
アルミニウム塩が溶解した水溶液におけるアルミニウム塩の濃度は、アルミニウム換算で通常0.01mol/L以上飽和濃度以下である。この水溶液においてアルミニウム塩は完全に溶解していることが好ましく、このため、水溶液の水素イオン濃度pHは通常2以下であり、通常は0以上である。
種晶粒子としては、、例えばアルミナ、酸化鉄、酸化クロムなどの金属酸化物からなる粒子が用いられる。かかる種晶粒子としては粒子径が通常0.01μm以上0.5μm以下程度のものが用いられ、好ましくは0.05μm以上である。BET比表面積は好ましくは12m2/g以上、150m2/g以下程度、さらに好ましくは15m2/g以上である。種晶粒子としては、結晶構造がコランダム型であるものが好ましく用いられ、また結晶水のないものが好ましく用いられる。結晶構造がコランダム型で結晶水のない種晶粒子としては、例えばαアルミナ粒子、α酸化鉄粒子、α酸化クロム粒子などが挙げられる。得られる微粒αアルミナと同じ金属成分であることから、アルミナ粒子が好ましく用いられる。
水溶液における種晶粒子の含有量は、アルミニウム塩および種晶粒子の酸化物換算の合計含有量100重量部あたりの含有量Xが前記式(1)を満足する量であり、好ましくは式(2)
X ≧ 400 / S (2)
〔式中、Sは前記と同じ意味を示す。〕
を満足する。また、Xは実用的な量であれば問題ないが、好ましくは式(3)
X ≦ 7500 / S (3)
〔式中、Sは前記と同じ意味を示す。〕
を満足する。
アルミニウム塩の水溶液は、少なくとも焼成温度で揮発するか、消失する溶媒を含有していてもよい。かかる溶媒としては、例えばメタノール、エタノール、プロパノール、イソプロパノールなどのアルコールをはじめとする極性有機溶媒、四塩化炭素、ベンゼン、ヘキサンなどの非極性有機溶媒などの有機溶媒が挙げられる。
本発明の製造方法では、この水溶液に塩基を加えて、水溶液中のアルミニウム塩を加水分解する。塩基としては、例えばアンモニア、炭酸水素アンモニウム、炭酸アンモニウムなどのような金属成分を含まないものが用いられる。アンモニアを用いる場合には、ガス状で吹き込んで加えてもよいが、アンモニア水溶液として加えることが好ましい。アンモニア水溶液を用いる場合、その濃度は通常アンモニウム換算で0.01mol/L以上飽和濃度以下である。加水分解するには、通常、水素イオン濃度がpH3以上となるように塩基を加えればよい。
本発明の製造方法では、pH5以下の水素イオン濃度で加水分解する。pH5以下で加水分解するには、アルミニウム塩の水溶液の水素イオン濃度がpH5を超えないように塩基を加えればよく、例えば塩基の使用量を調整して、pH5以下の水素イオン濃度となる量の塩基を加えてもよいし、水素イオン計(pHメーター)を用いて水素イオン濃度を測定しながらpH5を超えないように塩基を加えてもよい。過剰に塩基を加えてpH5を超えたのでは、ネッキングしている粒子の多い微粒αアルミナが得られ易い。
加水分解は60℃以下で行なわれ、好ましくは50℃以下、さらに好ましくは45℃以下の温度で行なわれ、通常はアルミニウム塩水溶液の凍結温度以上、好ましくは0℃以上の温度で行なわれる。60℃を超える温度で加水分解したのでは、得られる微粒αアルミナが、ネッキングしている粒子の多いものとなり易い。
塩基を加えた後、60℃以下、好ましくは50℃以下、さらに好ましくは45℃以下、通常は凍結温度以上、好ましくは0℃以上の温度で、例えば1時間以上通常は72時間以下程度保持してもよい。
水溶液中のアルミニウム塩を加水分解することで、水およびアルミニウム加水分解物を含む加水分解混合物を得る。アルミニウム加水分解物は通常、水に不溶であるので、かかる加水分解混合物において、アルミニウム加水分解物はゾル状もしくはゲル状となっているか、あるいは沈殿物として沈殿している。
かくして水にアルミニウム加水分解物および種晶粒子が分散された水性混合物を得る。本発明の製造方法では、この水性混合物から水を留去する。
水性混合物から水を留去するには、通常の方法、例えば加熱による留去、凍結乾燥法、真空乾燥法などの通常の方法で留去することができる。水を留去させる際の温度は通常100℃以下である。
かくして水性混合物から水を除去することで、アルミニウム加水分解物および種晶粒子を含む粉末混合物を得ることができる。
かくして得られた粉末混合物には、アルミニウム塩を塩基で加水分解したときに副生する塩が含まれているが、この塩は、粉末混合物を気流下で加熱することで塩分解する。
塩分解は例えば、ロータリ炉、ローラーハース炉のように粉末混合物を炉内に連続的に投入しながら加熱し塩分解して、塩分解後のサンプルを連続的に取り出す連続式の焼成炉であってもよいし、管状電気炉、箱型電気炉のように回分式で粉末混合物を入れて加熱して塩分解する回分式焼成炉であってもよい。加熱は例えば、電熱、遠赤外線、マイクロ波などにより行われる。
塩分解の温度は、アルミニウム加水分解物がα化しないような温度、例えば600℃以下が好ましい。塩分解時間は粉末混合物中の塩が分解し、粉末混合物中から塩が除去される時間であればよく、用いる混合粉末の種類、量、焼成炉の形式、焼成温度によって異なるが、例えば、10分以上24時間以下程度である。気流下で塩分解するには焼成炉内に窒素ガス、アルゴンガスなどの不活性ガスを吹き込みつつ、排出口から炉内のガスを排出しながら加熱すればよい。
粉末混合物を炉内に連続的に供給して塩分解する連続式焼成炉を用いる場合は、水蒸気などが発生するため、式(4)
Figure 0004251125
〔式中、xはアルミニウム加水分解物の投入量(g/秒)を、V2は室温における大気圧換算の不活性ガスの吹込み量(m3/秒)を、Pは炉内圧力(Pa)を、Aは排出口の開口面積(m2)を、nは粉末混合物1gを塩分解したときに生ずるガスの発生量(mol/g)を、Rは気体定数(=8.31Pa・m3/mol/K)を、Tは塩分解温度(K)を、T0は室温(K)をそれぞれ示し、ρは排出口から排出されるガスの線速度(m/秒)を示す。〕
を満足するように焼成炉に不活性ガスを吹き込みながら塩分解することが好ましい。
塩分解したのち焼成する。焼成温度はα化率の高い微粒αアルミナが容易に得られる点で600℃以上、好ましくは700℃以上であり、粒子同士のネッキングがより少ない点で1000℃以下、好ましくは950℃以下である。
焼成は、大気中で行なわれてもよいし、窒素ガス、アルゴンガスなどの不活性ガス中で行なわれてもよい。また雰囲気中の水蒸気分圧を低く維持しながら焼成してもよい。
焼成は、例えば管状電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、シャフト炉、反射炉、ロータリー炉、ローラーハース炉などの通常の焼成炉を用いて行なうことができる。焼成は回分式で行なってもよいし、連続式で行なってもよい。また静置式で行なってもよいし、流動式で行ってもよい。
焼成時間はアルミニウム加水分解物がα化して高α化率の微粒αアルミナが得られるに十分な時間であればよく、用いるアルミニウム化合物の種類、量、焼成炉の形式、焼成温度、焼成雰囲気によって異なるが、例えば10分以上24時間以下程度である。
かくして得られる微粒αアルミナは、粒子径が0.01μm以上0.1μm以下程度であり、高いα化率であると共に大きなBET比表面積を示し、例えばα化率90%以上、好ましくは95%以上で、BET比表面積は13m2/g以上150m2/g以下、好ましくは15m2/g以上100m2/g以下である。
得られた微粒αアルミナは、粉砕されてもよい。微粒αアルミナを粉砕するには、例えば振動ミル、ボールミル、ジェットミルなどの媒体粉砕機を用いることができる。また、得られた微粒αアルミナは分級してもよい。
かくして得られたαアルミナは、例えばαアルミナ焼結体を製造するための原材料として有用である。αアルミナ焼結体は、例えば切削工具、バイオセラミクス、防弾板などの高強度を要求されるものが挙げられる。ウェハーハンドラーなどの半導体製造用装置部品、酸素センサーなどの電子部品も挙げられる。ナトリウムランプ、メタルハライドランプなどの透光管も挙げられる。排ガスなどの気体に含まれる固形分除去、アルミニウム溶湯の濾過、ビールなどの食品の濾過等に用いられるセラミクスフィルターも挙げられる。セラミクスフィルターとしては、燃料電池において水素を選択的に透過させたり、石油精製時に生じるガス成分、一酸化炭素、二酸化炭素、窒素、酸素などを選択的に透過させるための選択透過フィルターも挙げられ、これらの選択透過フィルターはその表面に触媒成分を担持させる触媒担体として用いてもよい。
得られた微粒αアルミナを原材料の一つとして用いて、化粧品の添加剤、ブレーキライニングの添加剤、触媒担体として使用され、また導電性焼結体、熱伝導性焼結体などの材料として使用される。
得られた微粒αアルミナは、粉末のままで、通常のαアルミナ粉末と同様に、塗布型磁気メディアの塗布層に添加されてヘッドクリーニング性、耐磨耗性を向上させるための添加剤として用いることができる。トナーとして用いることもできる。樹脂に添加するフィラーとして用いることもできる。また、研磨材として用いることもでき、例えば水などの溶媒に分散させたスラリーとし、半導体CMP研磨、ハードディスク基板などの研磨などに用いることができるし、テープ表面にコーティングして研磨テープとして、ハードディスク、磁気ヘッドなどの精密研磨などに用いることができる。
以下、実施例によって本発明をより詳細に説明するが、本発明はこれら実施例によって限定されるものではない。
なお、各実施例で得た微粒αアルミナのα化率は、粉末X線回折装置を用いて得た微粒αアルミナの回折スペクトルから、2θ=25.6°の位置に現れるアルミナα相(012面)のピーク高さ(I25.6)と、2θ=46°の位置に現れるγ相、η相、χ相、κ相、θ相およびδ相のピーク高さ(I46)とから、式(5)
α化率= I25.6 / (I25.6 + I46 )×100(%)・・・(5)
により算出した。
BET比表面積は、窒素吸着法により求めた。
平均一次粒子径は、微粒αアルミナの透過電子顕微鏡写真に写った任意の粒子20個以上について、個々の一次粒子の定方向最大径を測定し、測定値の数平均値として求めた。
ネック率は、微粒αアルミナの透過電子顕微鏡写真に写った任意の粒子20個以上について、ネッキングして隣の粒子と繋がっている粒子の割合として求めた。
種晶(αアルミナ)の粉砕度は、そのα相(116)面のX線回折ピークの半価幅(H(116))と、粉砕前の種晶(αアルミナ)のα相(116)面のX線回折ピークの半価幅(H0(116))とから、式(6)
粉砕度 = H(116) / H0(116)・・・(6)
により求めた。
実施例1
〔種晶スラリーの製造〕
アルミニウムイソプロポキシドを加水分解して得られた水酸化アルミニウムを仮焼して、主結晶相がθ相であり、α相を3重量%含む中間アルミナを得、この中間アルミナをジェットミルにて粉砕して、嵩密度0.21g/cm3の粉末を得た。
炉内が露点−15℃〔水蒸気分圧165Pa)の乾燥空気で満たされた雰囲気炉に上記で得た粉末を連続的に投入しながら、平均滞留時間3時間で連続的に取り出して、最高温度1170℃にて焼成して、BET比表面積14m2/gのαアルミナ粒子を得た。
このαアルミナ粒子100質量部あたり1質量部の粉砕助剤(プロピレングリコール)を加え、粉砕媒体として直径15mmのアルミナビーズを加えて振動ミルにて12時間粉砕して、BET比表面積16.6m2/g、粉砕度1.10の種晶(αアルミナ粒子)を得た。
このαアルミナ粒子(粒子径は約0.1μm)37.5gを硝酸アルミニウム水溶液(pH=2)150gに添加し分散させた後、アルミナビーズ(直径2mm)700gと共に、1Lのポリ容器に充填し、ボールミルにて24時間分散処理を行ったのち、濾過操作によりアルミナビーズを除去し、種晶スラリーを得た。上記と同様にして種晶スラリーを得る操作を繰り返し行い、得られた種晶スラリーを合わせて保管した。
〔アルミニウム加水分解物の製造〕
硝酸アルミニウム水和物〔Al(NO3)3・9H2O〕(関西触媒化学製、1級、粉末状)750.26g(2モル)を純水1555.7gに溶解させ、1M/1Lの硝酸アルミニウム水溶液を得た。この硝酸アルミニウム水溶液に上記で得た種晶スラリー218.6g(αアルミナ粒子43.4gを含む)を添加し、室温(約25℃)で撹拌しながらマイクロロータリーポンプを用いて25%アンモニア水〔和光純薬工業製、特級〕345.9g(アンモニア86.5g)を約32g/分の供給速度で添加した。添加終了時には、加水分解生成物が析出したスラリーとなっており、そのpHは3.9であった。室温(約25℃)でこのスラリーを数十分間放置した。この水性混合物はゼリー化した。これを60℃の恒温槽で1日間乾燥し、アルミナ製乳鉢を用いて粉砕し、粉末状の混合物を得た。この混合物には、金属成分の酸化物換算で100質量部当たり30質量部の種晶粒子が含まれている。なお、この粉末混合物1gを390℃に加熱すると34.7×10-3のガス成分が生ずる。
〔塩分解〕
温度(T0)が25℃の実験室内で、SUS304L製で開口面積(A)38.5cm2の排出口を備えた長さ225cm、内径212cmで内容積79.4Lのロータリーキルン(高砂工業製)を使用し、投入口から上記で得た粉末混合物を20g/分で投入しながら取出口から塩分解後の混合物を連続的に取り出して塩分解を行った。ロータリーキルン内は予め窒素ガスで置換して用いた。取出口における炉内温度は390℃であった。炉内圧力(P)は大気圧(0.1MPa)で使用し、窒素ガスの吹込み量(V2)は25℃換算で10L/分(1.67×10-43/秒)とした。排出口から排出されるガスの線速度(ρ)は2.8m/秒であった。キルンの回転速度は2回転/分とした。
〔焼成〕
塩分解後の混合物をアルミナ製るつぼに入れ、箱型電気炉を用いて920℃で3時間焼成を行って微粒αアルミナを得た。この微粒αアルミナの評価結果を第1表に示す。
実施例2
〔種晶スラリの作成〕
実施例1と同様に作成した種晶スラリを4000rpmで40分間、遠心分離処理し、上澄み液を取り出して、BET比表面積38.1m2/gで、粉砕度1.38、固形分濃度が3.3%の分級種晶スラリを作成した。
〔アルミニウム加水分解物の作製ならびに塩分解、焼成〕
硝酸アルミニウム水和物〔Al(NO3)3・9H2O〕(関西触媒化学製、1級、粉末状)375.13g(2モル)を純水777.87gに溶解させ、1M/1Lの硝酸アルミニウム水溶液を得た。硝酸アルミニウム水溶液に、上記で得た分級種晶スラリー171.7g〔αアルミナ粒子5.67g〕を添加し、室温で攪拌しながらマイクロロータリーポンプにて25%アンモニア水(和光純薬工業社製、特級)161.7g(アンモニア(NH3)として40.42g)を32g/分の速度で添加した。添加終了後の混合物の水素イオン濃度はpH4.0であった。この混合物を室温で放置した後、60℃で乾燥させ、乳鉢で粉砕して、アルミニウム加水分解物、種晶粒子および硝酸アンモニウムの粉末混合物を得た。この粉末混合物には、金属成分の酸化物換算で100質量部あたり10質量部の種晶(αアルミナ粒子)が含まれている。
〔塩分解および焼成〕
実施例1で得た粉末混合物に代えて上記で得た粉末混合物を用いた以外は実施例1と同様に操作して塩分解し、焼成温度を900℃とした以外は実施例1と同様に操作して焼成し、微粒αアルミナを得た。この微粒αアルミナの評価結果を第1表に示す。
比較例1
実施例1と同様に操作して得た硝酸アルミニウム水溶液に、実施例1で得た種晶スラリー56.67g〔αアルミナ粒子11.33g〕を添加し、室温で攪拌しながらマイクロロータリーポンプにて25%アンモニア水(和光純薬工業社製、特級)340.5g(アンモニア(NH3)として10g)を32g/分の速度で添加した。添加終了後の混合物の水素イオン濃度はpH3.8であった。この混合物を室温で放置した後、60℃で乾燥させ、乳鉢で粉砕して、アルミニウム加水分解物と硝酸アンモニウムとの粉末混合物を得た。この粉末混合物には、金属成分の酸化物換算で100質量部あたり10質量部の種晶(αアルミナ粒子)が含まれている。
〔塩分解および焼成〕
実施例1で得た粉末混合物に代えて上記で得た粉末混合物を用いた以外は実施例1と同様に操作して塩分解し、焼成温度を900℃とした以外は実施例1と同様に操作して焼成し、微粒αアルミナを得た。この微粒αアルミナの評価結果を第1表に示す。
第 1 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━
α化率 BET比表面積 粒径 ネック率
(%) (m2/g) (nm) (%)
───────────────────────────
実施例1 98 16.9 57 8
実施例2 98 18.8 74 17
比較例1 98 15 90 31
━━━━━━━━━━━━━━━━━━━━━━━━━━━

Claims (2)

  1. アルミニウム塩が溶解され、アルミナ、酸化鉄又は酸化クロムからなる種晶粒子を含み、アルミニウム塩および種晶粒子の酸化物換算の合計含有量100重量部あたりの種晶粒子の含有量X(重量部)が式(1)
    X ≧ 350 / S (1)
    〔式中、Sは種晶粒子のBET比表面積(m2/g)を示す。〕
    を満足する水溶液に、60℃以下にて、該水溶液の水素イオン濃度がpH5を超えないように塩基を加えて該水溶液中のアルミニウム塩を加水分解して、水にアルミニウム加水分解物および種晶粒子が分散された水性混合物を得、得られた水性混合物から水を留去してアルミニウム加水分解物および種晶粒子を含む粉末混合物を得、得られた粉末混合物を気流中で塩分解した後、600℃以上1000℃以下で、大気中又は不活性ガス中、10分以上24時間以下の焼成時間で焼成することを特徴とする粒子径が0.01μm以上0.1μm以下である微粒αアルミナの製造方法。
  2. 水性混合物における水の含有量がアルミニウム加水分解物および種晶粒子の合計含有量100重量部あたり150重量部以上1000重量部以下である請求項1に記載の製造方法。
JP2004256682A 2004-03-16 2004-09-03 微粒αアルミナの製造方法 Expired - Fee Related JP4251125B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004256682A JP4251125B2 (ja) 2004-03-16 2004-09-03 微粒αアルミナの製造方法
TW094107252A TW200540116A (en) 2004-03-16 2005-03-10 Method for producing an α-alumina powder
FR0502469A FR2869029B1 (fr) 2004-03-16 2005-03-14 Procede de production d'une poudre d'alpha-alumine
CNA2005100545930A CN1669933A (zh) 2004-03-16 2005-03-14 制备α-氧化铝粉末的方法
US11/079,163 US20050214201A1 (en) 2004-03-16 2005-03-14 Method for producing an alpha-alumina powder
DE102005011607A DE102005011607A1 (de) 2004-03-16 2005-03-14 Verfahren zur Herstellung eines Alpha-Aluminiumoxidpulvers
KR1020050021028A KR20060043612A (ko) 2004-03-16 2005-03-14 α-알루미나 분말의 제조 방법
US12/348,137 US20090123363A1 (en) 2004-03-16 2009-01-02 Method for producing an alpha-alumina powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004074113 2004-03-16
JP2004233087 2004-08-10
JP2004256682A JP4251125B2 (ja) 2004-03-16 2004-09-03 微粒αアルミナの製造方法

Publications (2)

Publication Number Publication Date
JP2006076800A JP2006076800A (ja) 2006-03-23
JP4251125B2 true JP4251125B2 (ja) 2009-04-08

Family

ID=36156572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256682A Expired - Fee Related JP4251125B2 (ja) 2004-03-16 2004-09-03 微粒αアルミナの製造方法

Country Status (1)

Country Link
JP (1) JP4251125B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100982B2 (ja) * 2004-06-15 2012-12-19 住友化学株式会社 微粒αアルミナの製造方法
JP5086529B2 (ja) * 2005-02-24 2012-11-28 住友化学株式会社 微粒αアルミナの製造方法

Also Published As

Publication number Publication date
JP2006076800A (ja) 2006-03-23

Similar Documents

Publication Publication Date Title
TWI408104B (zh) 微細α-氧化鋁粒子之製造方法
US8021451B2 (en) Fine α-alumina particle
JP2006523178A (ja) ナノ多孔質超微細アルファ−アルミナ粉末及び該粉末を調製するゾル−ゲル法
CN1332883C (zh) 锻烧矾土与其生产方法以及利用其制得的细α-矾土粉末
KR20060043612A (ko) α-알루미나 분말의 제조 방법
US7078010B2 (en) Method for producing α-alumina powder
JP4595383B2 (ja) 微粒αアルミナの製造法
JP2007055888A (ja) 微粒αアルミナ
US7307033B2 (en) Method for producing α-alumina particulate
JP4366939B2 (ja) アルミナ焼成物の製造方法
JP4552454B2 (ja) 微粒αアルミナの製造方法
JP2008156146A (ja) αアルミナスラリー
TW200422258A (en) Method for producing α-alumina powder
JP4572576B2 (ja) 微粒αアルミナの製造方法
JP4251124B2 (ja) 微粒αアルミナの製造方法
US20060073093A1 (en) Method for producing an alpha-alumina powder
JP4251125B2 (ja) 微粒αアルミナの製造方法
JP5086529B2 (ja) 微粒αアルミナの製造方法
JP4442214B2 (ja) 微粒αアルミナの製造方法
JP4386046B2 (ja) 微粒αアルミナの製造方法
JP4534524B2 (ja) 微粒αアルミナの製造方法
JP5100982B2 (ja) 微粒αアルミナの製造方法
JP4720182B2 (ja) 高い研磨速度を示す微粒αアルミナの製造方法
JP2006069858A (ja) 気体分離用多孔質セラミックス成形体製造用αアルミナ粉末
JP2005314211A (ja) 微粒αアルミナの製造方法

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees