JP4248181B2 - 自動変速機の制御装置及びその制御ロジック作成方法 - Google Patents

自動変速機の制御装置及びその制御ロジック作成方法 Download PDF

Info

Publication number
JP4248181B2
JP4248181B2 JP2002018560A JP2002018560A JP4248181B2 JP 4248181 B2 JP4248181 B2 JP 4248181B2 JP 2002018560 A JP2002018560 A JP 2002018560A JP 2002018560 A JP2002018560 A JP 2002018560A JP 4248181 B2 JP4248181 B2 JP 4248181B2
Authority
JP
Japan
Prior art keywords
command signal
hierarchy
compensation means
input
shift command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002018560A
Other languages
English (en)
Other versions
JP2003222233A (ja
Inventor
隆明 戸倉
克己 河野
則己 浅原
良一 日比野
博幸 西澤
正敬 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2002018560A priority Critical patent/JP4248181B2/ja
Publication of JP2003222233A publication Critical patent/JP2003222233A/ja
Application granted granted Critical
Publication of JP4248181B2 publication Critical patent/JP4248181B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動変速機の制御装置及びその制御ロジック作成方法に関し、特に変速指令信号を補償するための制御装置及び制御ロジック作成方法に関する。
【0002】
【従来の技術】
従来より自動車等の変速機として、自動変速機が広く利用されている。この自動変速機では、エンジン等の原動機の駆動軸を入力としてトルクコンバータのタービンを回転させ、タービン軸に連結された遊星歯車装置により所定の変速比に変速して出力軸に伝達する。そして、この遊星歯車装置の運動を規定するためにタービン軸と出力軸の間には、複数のクラッチまたはブレーキの摩擦係合装置が設けられており、これらの摩擦係合装置のうち、どの摩擦係合装置を係合するかで変速比を切り換える。
【0003】
さらに最近では、変速比を連続的に変更できる無段変速機も自動変速機として利用されてきている。この無段変速機では、ベルト式においては、原動機側のプライマリプーリと車輪側のセカンダリプーリとにVベルトが掛け回され、プライマリプーリ及びセカンダリプーリの溝幅を変更することで変速比を連続的に変更している。また、原動機側の入力ディスクと車輪側の出力ディスクとの間に挟持されたパワーローラの傾転角を変更することで変速比を連続的に変更するトロイダル式無段変速機も実用化されている。
【0004】
これらの自動変速機の変速機構を駆動するための駆動力については、一般的に油圧アクチュエータからの油圧によって発生させる。そして、油圧アクチュエータを駆動するための電流については、変速指令信号が入力される駆動回路から供給される。したがって、変速指令信号によって変速比が制御されるまでの流れとしては以下のようになる。まず変速指令信号が駆動回路に入力され、駆動回路では変速指令信号値に応じた値の電流を出力する。次に、駆動回路からの電流が油圧アクチュエータに供給され、油圧アクチュエータではその電流値に応じた値の油圧を発生させる。次に、油圧アクチュエータからの油圧が変速機構に供給され、変速機構がその油圧によって駆動されることで変速動作を行い、変速比が制御される。
【0005】
このように自動変速機の変速制御においては、変速指令信号が入力されてから変速比が制御されるまでに様々な制御要素が存在している。そして、これらの制御要素の入出力特性が、例えば温度特性等の様々な外乱が要因となって変動するので、同一の変速指令値を入力しても変速制御における実際の変速機構からの変速動作出力が変動し、目標値から外れる場合がある。したがって目標値通りに変速動作出力を制御するためには、その入出力特性の変動を考慮して変速指令信号を補償してやる必要がある。
【0006】
従来の自動変速機の制御装置において変速指令信号を補償する場合は、すべての制御要素を1つにまとめた変速指令信号−変速動作出力特性を考え、この変速指令信号−変速動作出力特性が様々な外乱が要因となって変動した場合の変動量を補償することで、変速指令信号を補償している。これによって、変速制御時に実際の変速機構からの変速動作出力が目標値から外れるのを抑えている。
【0007】
【発明が解決しようとする課題】
先述したように自動変速機の変速制御においては、変速指令信号が入力されてから変速比が制御されるまでに様々な制御要素が存在している。そして、各制御要素ごとに入出力特性の変動を引き起こす要因も異なってくる。したがって、すべての制御要素を1つにまとめた変速指令信号−変速動作出力特性が変動する要因も様々であり、制御要素が増えるほど入出力特性の変動の要因も多岐に渡ってくる。従来の自動変速機の制御装置のように、すべての制御要素を1つにまとめて変速指令信号−変速動作出力の特性変動を補償する場合は、すべての入出力特性の変動要因を考慮して変速指令信号を補償するために、入出力特性の変動要因の数だけ次元を追加した制御マップをあらかじめ作成しておかなければならない。したがって、制御マップの作成工数が入出力特性の変動要因の数に対して指数的に増大してしまい、変速指令信号を補償するための制御マップの作成に多大な時間を要するという課題があった。
【0008】
本発明は上記課題に鑑みてなされたものであり、変速指令信号を補償するための制御マップの作成時間を大幅に短縮できる自動変速機の制御装置及びその制御ロジック作成方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
このような目的を達成するために、第1の本発明に係る自動変速機の制御装置は、入力される変速指令信号に応じた駆動電流を出力する回路制御要素と、前記回路制御要素からの駆動電流が入力され、該駆動電流に応じた駆動力を出力するアクチュエータ制御要素と、前記アクチュエータ制御要素からの駆動力が入力され、該駆動力によって変速動作を行う機構制御要素と、変速指令信号−変速動作出力特性に影響を与える変動要因パラメータの値に基づいて前記変速指令信号を補償する指令信号補償手段と、を有する自動変速機の制御装置において、前記指令信号補償手段は、変速指令信号−変速動作出力特性を前記制御要素の入出力間を境界とする複数の入出力特性に階層化した場合の各階層ごとに対応して設けられ、前記変速指令信号を補償する階層補償手段を有し、前記変速指令信号は、各階層補償手段により順次補償されてから前記回路制御要素に入力され、前記階層補償手段の各々は、該階層補償手段に対応した階層の入出力特性に影響を与える変動要因パラメータの値のみに基づいて前記変速指令信号を補償することを特徴とする。
【0010】
このように、変速指令信号−変速動作出力特性を制御要素の入出力間を境界とする複数の入出力特性に階層化し、変速指令信号を補償する階層補償手段を各階層ごとに有し、階層補償手段の各々は、その階層補償手段に対応した階層の入出力特性に影響を与える変動要因パラメータの値のみに基づいて前記変速指令信号を補償するので、各階層において変速指令信号を補償する際に、その階層の入出力特性に影響を与える変動要因パラメータのみを考慮すればよく、補償量を求めるための変動要因パラメータの次元数を減らすことができる。したがって、制御マップの作成工数を指数的に減らすことができ、制御マップの作成時間を大幅に短縮することができる。さらに、制御要素の変更、交換があった場合でも、変更、交換した制御要素のみの制御マップを入れ換えればよいので、制御マップの作成時間を大幅に短縮することができる。
【0011】
第2の本発明に係る自動変速機の制御装置は、第1の本発明に記載の装置において、前記階層補償手段は、前記変速指令信号をフィードフォワード補償するフィードフォワード補償手段であることを特徴とする。
【0012】
第3の本発明に係る自動変速機の制御装置は、第1の本発明に記載の装置において、前記階層補償手段は、前記変速動作出力をフィードバックして前記変速指令信号を補償するフィードバック補償手段であることを特徴とする。
【0013】
第4の本発明に係る自動変速機の制御装置は、第1〜3の本発明のいずれかに記載の装置において、前記階層補償手段の各々は、該階層補償手段に対応した階層の入出力間の非線型特性を補償することを特徴とする。
【0014】
第5の本発明に係る自動変速機の制御装置は、第4の本発明に記載の装置において、各階層の入出力間の非線型特性が補償された後の変速動作出力を線形フィードバックして前記変速指令信号を補償する線形フィードバック補償手段をさらに有することを特徴とする。
【0015】
このように、変速指令信号−変速動作出力特性の非線型特性が線形に補償されているので、フィードバック補償器は非線型補償器を用いる必要がなく線形補償器でよい。したがって、簡単な構成で精度のよいフィードバック制御を行うことができる。
【0016】
第6の本発明に係る自動変速機の制御装置は、第1〜5の本発明のいずれかに記載の装置において、前記階層補償手段の各々は、該階層補償手段に対応した階層の入出力間の動特性を補償することを特徴とする。
【0017】
第7の本発明に係る自動変速機の制御装置は、第1〜6の本発明のいずれかに記載の装置において、各階層についての階層補償手段は変速指令信号側の階層から変速動作出力側の階層へと順に作成され、変動要因パラメータのみを考慮した演算対象階層の入出力特性がこの変動要因パラメータを変化させた場合の変速指令信号−演算対象階層出力特性と演算対象階層より変速指令信号側の階層についての階層補償手段とに基づいて求められ、この演算対象階層の入出力特性に基づいて演算対象階層についての階層補償手段が作成されることを特徴とする。
【0018】
このように、変速指令信号側の階層から順次変動要因パラメータを考慮した入出力特性を把握した上で、各階層の変動要因パラメータを考慮した入出力特性を求めているので、ある対象階層の変動要因パラメータを考慮した入出力特性を求める際に、その対象階層より変速指令信号側の階層の入出力特性の影響を考慮することができる。したがって、各階層の変動要因パラメータを考慮した入出力特性を精度よく求めることができる。
【0019】
第8の本発明に係る自動変速機の制御装置は、第1〜7の本発明のいずれかに記載の装置において、前記指令信号補償手段は、変速指令信号−変速動作出力特性を、前記回路制御要素の変速指令信号−駆動電流特性、前記アクチュエータ制御要素の駆動電流−駆動力特性及び前記機構制御要素の駆動力−変速動作出力特性に階層化した場合の各階層ごとに前記階層補償手段を有することを特徴とする。
【0020】
第9の本発明に係る自動変速機の制御装置は、第1〜8の本発明のいずれかに記載の装置において、前記機構制御要素は、係合/解放/滑りの係合状態を選択可能な摩擦係合装置であり、前記変速動作出力は、前記摩擦係合装置の伝達トルクまたは滑り相対速度であることを特徴とする。
【0021】
第10の本発明に係る自動変速機の制御装置は、第1〜8の本発明のいずれかに記載の装置において、前記機構制御要素は、前記アクチュエータ制御要素からの駆動力に基づいて自動変速機の変速比を連続的に変化させ、前記変速動作出力は、自動変速機の変速比であることを特徴とする。
【0022】
第11の本発明に係る自動変速機の制御ロジック作成方法は、入力される変速指令信号に応じた駆動電流を出力する回路制御要素と、前記回路制御要素からの駆動電流が入力され、該駆動電流に応じた駆動力を出力するアクチュエータ制御要素と、前記アクチュエータ制御要素からの駆動力が入力され、該駆動力によって変速動作を行う機構制御要素と、を有し、変速指令信号−変速動作出力特性に影響を与える変動要因パラメータの値に基づいて前記変速指令信号を補償する自動変速機の制御装置の制御ロジックを作成する方法において、 前記変速指令信号を補償する階層補償手段を、変速指令信号−変速動作出力特性を前記制御要素の入出力間を境界とする複数の入出力特性に階層化した場合の各階層ごとに作成し、前記変速指令信号は、各階層補償手段により順次補償されてから前記回路制御要素に入力され、前記階層補償手段の各々は、該階層補償手段に対応した階層の入出力特性に影響を与える変動要因パラメータの値のみに基づいて前記変速指令信号を補償するように作成されることを特徴とする。
【0023】
第12の本発明に係る自動変速機の制御ロジック作成方法は、第11の本発明に記載の方法において、前記階層補償手段は、前記変速指令信号をフィードフォワード補償するフィードフォワード補償手段であることを特徴とする。
【0024】
第13の本発明に係る自動変速機の制御ロジック作成方法は、第11の本発明に記載の方法において、前記階層補償手段は、前記変速動作出力をフィードバックして前記変速指令信号を補償するフィードバック補償手段であることを特徴とする。
【0025】
第14の本発明に係る自動変速機の制御ロジック作成方法は、第11〜13の本発明のいずれかに記載の方法において、前記階層補償手段の各々は、該階層補償手段に対応した階層の入出力間の非線型特性を補償することを特徴とする。
【0026】
第15の本発明に係る自動変速機の制御ロジック作成方法は、第14の本発明に記載の方法において、各階層の入出力間の非線型特性が補償された後の変速動作出力を線形フィードバックして前記変速指令信号をさらに補償することを特徴とする。
【0027】
第16の本発明に係る自動変速機の制御ロジック作成方法は、第11〜15の本発明のいずれかに記載の方法において、前記階層補償手段の各々は、該階層補償手段に対応した階層の入出力間の動特性を補償することを特徴とする。
【0028】
第17の本発明に係る自動変速機の制御ロジック作成方法は、第11〜16の本発明のいずれかに記載の方法において、各階層についての階層補償手段を変速指令信号側の階層から変速動作出力側の階層へと順に作成し、変動要因パラメータのみを考慮した演算対象階層の入出力特性をこの変動要因パラメータを変化させた場合の変速指令信号−演算対象階層出力特性と演算対象階層より変速指令信号側の階層についての階層補償手段とに基づいて求め、この演算対象階層の入出力特性に基づいて演算対象階層についての階層補償手段を作成することを特徴とする。
【0029】
第18の本発明に係る自動変速機の制御ロジック作成方法は、第11〜17の本発明のいずれかに記載の方法において、変速指令信号−変速動作特性を、前記回路制御要素の変速指令信号−駆動電流特性、前記アクチュエータ制御要素の駆動電流−駆動力特性及び前記機構制御要素の駆動力−変速動作出力特性に階層化した場合の各階層ごとに前記階層補償手段を作成することを特徴とする。
【0030】
第19の本発明に係る自動変速機の制御ロジック作成方法は、第11〜18の本発明のいずれかに記載の方法において、前記機構制御要素は、係合/解放/滑りの係合状態を選択可能な摩擦係合装置であり、前記変速動作出力は、前記摩擦係合装置の伝達トルクまたは滑り相対速度であることを特徴とする。
【0031】
第20の本発明に係る自動変速機の制御ロジック作成方法は、第11〜18の本発明のいずれかに記載の方法において、前記機構制御要素は、前記アクチュエータ制御要素からの駆動力に基づいて自動変速機の変速比を連続的に変化させ、前記変速動作出力は、自動変速機の変速比であることを特徴とする。
【0032】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)を、図面に従って説明する。
【0033】
(1)第1実施形態
図1は、本発明の第1実施形態に係る自動変速機の制御装置の構成を示すブロック図であり、係合させるクラッチ、ブレーキ等の摩擦係合装置を切り換えることで変速動作を行う自動変速機の変速動作を制御する場合に本発明を適用した図である。
【0034】
コントロールユニット10内で演算された変速指令信号が、回路制御要素としてのECU駆動回路12に入力される。ECU駆動回路12は、この変速指令信号値に応じた値の駆動電流を出力する。そして、ECU駆動回路12からの駆動電流がアクチュエータ制御要素としての油圧回路14に入力され、油圧回路14はこの駆動電流値に応じた値の駆動力としての油圧力を出力する。そして、油圧回路14からの油圧力が機構制御要素としてのクラッチ系16に入力され、クラッチ系16ではこの圧力値に基づいて変速動作出力としてのクラッチ、ブレーキ伝達トルクまたは滑り相対速度が制御される。
【0035】
なお、図示していないがクラッチ系16における摩擦係合装置としてのクラッチ、ブレーキは、係合/解放/滑りの係合状態を選択可能であり、係合させるクラッチ、ブレーキを切り換えることによって自動変速機の変速動作を行う。そして、変速動作の途中においてクラッチ、ブレーキ伝達トルクまたは滑り相対速度が所定値に制御される。また、図示していないが油圧回路14は、ソレノイド電流値に応じた値の圧力を出力する比例圧力制御弁を備えており、この比例圧力制御弁からの圧力によってクラッチ、ブレーキの締結力が制御される。
【0036】
このように自動変速機の変速制御においては、変速指令信号が入力されてからクラッチ、ブレーキ伝達トルクまたは滑り相対速度が制御されるまでに様々な制御要素が存在しており、これらの制御要素の入出力特性が、様々な変動要因パラメータの変動が原因となって変動する。本実施形態におけるそれぞれの制御要素についての変動要因パラメータの一例を以下に挙げる。ECU駆動回路12については、ソレノイドの発熱が原因でソレノイドの内部抵抗が変動するためにECU駆動回路12の入出力特性である変速指令信号−駆動電流特性が変動する。油圧回路14については、油圧回路14内における油温の変動が原因で油の粘性が変動するために油圧回路14の入出力特性である駆動電流−圧力特性が変動する。クラッチ系16については、クラッチ、ブレーキの動摩擦係数の変動が原因でクラッチ系16の入出力特性である圧力−伝達トルク特性が変動する。このように各制御要素の入出力特性が変動した場合は、同一の変速指令信号を入力してもクラッチ、ブレーキ伝達トルクまたは滑り相対速度が目標値から外れる場合がある。
【0037】
そこで、コントロールユニット10内に設けられた指令信号補償手段18によって制御要素の入出力特性の外乱による変動分をフィードフォワード補償する。変速指令信号は、指令信号補償手段18によってフィードフォワード補償されてからECU駆動回路12に入力されることにより、クラッチ、ブレーキ伝達トルクまたは滑り相対速度が目標値から外れるのを抑えている。
【0038】
ここで、従来技術の課題について再度図12を用いて詳細に説明する。従来技術における指令信号補償手段18は、ECU駆動回路12、油圧回路14及びクラッチ系16の制御要素を1つにまとめた変速指令信号−伝達トルク特性の変動をフィードフォワード補償する。そのために、指令信号補償手段18には変速指令信号−伝達トルク特性に影響を与える変動要因パラメータが入力される。図12では説明の便宜上、変動要因パラメータの一例としてソレノイド温度、油圧回路14内における油温度及びクラッチ、ブレーキの動摩擦係数を示す検出信号が指令信号補償手段18に入力される場合について示している。このようにすべての制御要素を1つにまとめて変速指令信号−伝達トルク特性の変動を補償しようとすると、入出力特性に影響を与える変動要因パラメータの数だけ次元を追加した制御マップをあらかじめ作成して指令信号補償手段18内に記憶しておかなければならない。すなわち図12の例では、ソレノイド温度、油圧回路14内における油温度及びクラッチ、ブレーキの動摩擦係数の3次元を考慮して変速指令信号の補償量を求めるための制御マップをあらかじめ作成して指令信号補償手段18内に記憶しておかなければならない。そして、変速指令信号−伝達トルク特性に影響を与える他の変動要因パラメータも考慮するのならば、さらにその変動要因パラメータの次元を追加した制御マップを作成しなければならない。このように変速指令信号の補償量を求めるための制御マップの作成工数が、変速指令信号−伝達トルク特性に影響を与える変動要因パラメータの数に対して指数的に増大してしまい、変速指令信号を補償するための制御マップの作成に多大な時間を要するという課題があった。
【0039】
本実施形態においては、変速指令信号−伝達トルク特性を、ECU駆動回路12の変速指令信号−駆動電流特性、油圧回路14の駆動電流−圧力特性及びクラッチ系16の圧力−伝達トルク特性に階層化して考える。すなわち、指令信号補償手段18内には、ECU駆動回路12の変速指令信号−駆動電流特性の変動を補償するための階層補償手段としてのECU駆動回路補償モデル20、油圧回路14の駆動電流−圧力特性の変動を補償するための階層補償手段としての油圧回路補償モデル22及びクラッチ系16の圧力−伝達トルク特性の変動を補償するための階層補償手段としてのクラッチ系補償モデル24が直列して備えられている。そして本実施形態では、変速指令信号−伝達トルク特性に影響を与える各変動要因パラメータの中のあるパラメータを考えた場合に、そのパラメータの変動によって入出力特性が変動する階層の補償モデルのみにそのパラメータを入力し、その補償モデル内ではそのパラメータ−補償量の制御マップをあらかじめ記憶させておく。その一例として図1を用いて説明すると、ソレノイド温度はECU駆動回路12の変速指令信号−駆動電流特性のみの変動要因となるので、ソレノイド温度を示す検出信号がECU駆動回路補償モデル20のみに入力され、ソレノイド温度−ECU駆動回路補償量特性の制御マップがECU駆動回路補償モデル20内にあらかじめ記憶される。同様にして、油圧回路14内における油温度は油圧回路14の駆動電流−圧力特性のみの変動要因となるので、油圧回路14内における油温度を示す検出信号が油圧回路補償モデル22のみに入力され、油圧回路油温度−油圧回路補償量特性の制御マップが油圧回路補償モデル22内にあらかじめ記憶される。そして、クラッチ、ブレーキの動摩擦係数はクラッチ系16の圧力−伝達トルク特性のみの変動要因となるので、クラッチ、ブレーキの動摩擦係数を示す検出信号がクラッチ系補償モデル24のみに入力され、動摩擦係数−クラッチ系補償量特性の制御マップがクラッチ系補償モデル24内にあらかじめ記憶される。
【0040】
図1において補償前の変速指令信号は、まずクラッチ系補償モデル24に入力される。クラッチ系補償モデル24においては、クラッチ、ブレーキの動摩擦係数の変動によるクラッチ系16の圧力−伝達トルク特性の変動を補償するために、クラッチ、ブレーキの動摩擦係数からクラッチ系補償量を演算し、変速指令信号はその補償量だけフィードフォワード補償されて出力される。クラッチ系補償モデル24から出力された変速指令信号は、次に油圧回路補償モデル22に入力される。油圧回路補償モデル22においては、油圧回路14内における油温度の変動による油圧回路14の駆動電流−圧力特性の変動を補償するために、油圧回路14内における油温度から油圧回路補償量を演算し、変速指令信号はその補償量だけフィードフォワード補償されて出力される。油圧回路補償モデル22から出力された変速指令信号は、次にECU駆動回路補償モデル20に入力される。ECU駆動回路補償モデル20においては、ソレノイド温度によるECU駆動回路12の変速指令信号−駆動電流特性の変動を補償するために、ソレノイド温度からECU駆動回路補償量を演算し、変速指令信号はその補償量だけフィードフォワード補償されて出力される。以上のようにしてフィードフォワード補償された変速指令信号がECU駆動回路12に入力される。
【0041】
ECU駆動回路補償モデル20、油圧回路補償モデル22及びクラッチ系補償モデル24には、具体的には入出力間の非線型特性及び動特性を補償するための逆特性モデルが記憶される。その一例としてECU駆動回路補償モデル20の場合について説明する。ソレノイド温度の変動によってECU駆動回路12の変速指令信号−駆動電流特性の定常特性が図2の上図に示すように非線型になるため、ECU駆動回路補償モデル20内では図2の下図に示すように補償後の変速指令信号−駆動電流特性の定常特性が線形になるように、ソレノイド温度−ECU駆動回路補償量特性の非線型特性補償用制御マップを作成する。図2において、例えば変速指令信号レベルx、ソレノイド温度T2のときは補償量はy0となる。さらに、ソレノイド温度の変動によってECU駆動回路12の変速指令信号−駆動電流特性の動特性が図3の上図に示すように変動するため、ECU駆動回路補償モデル20内では図3の下図に示すように、ソレノイド温度−ECU駆動回路補償量特性の動特性補償用制御マップを作成する。ただし図3においては、変速指令信号の振幅レベルがxのときの特性を示し、周波数が0Hz(定常特性)のときの補償量がy0となっている。なお、油圧回路補償モデル22及びクラッチ系補償モデル24の場合についてもECU駆動回路補償モデル20の場合と同様である。
【0042】
次に、ECU駆動回路12の変速指令信号−駆動電流特性、油圧回路14の駆動電流−圧力特性及びクラッチ系16の圧力−伝達トルク特性を求め、ECU駆動回路補償モデル20、油圧回路補償モデル22及びクラッチ系補償モデル24を求める方法について図4に示すフローチャートを用いて説明する。
【0043】
まずステップ1においては、ECU駆動回路12の変速指令信号−駆動電流特性の定常特性及び動特性を、特性把握用信号をECU駆動回路12に入力して実験的に求める。その際に、変速指令信号−駆動電流特性は、ソレノイド温度の変動によって変動するので、ソレノイド温度を変化させていった場合の特性把握用信号−駆動電流特性の定常特性及び動特性を求める。そして、この定常特性及び動特性を用いてソレノイド温度−ECU駆動回路補償量特性の非線型特性補償用制御マップ及び動特性補償用制御マップを作成してECU駆動回路補償モデル20内に記憶させる。
【0044】
次にステップ2においては、駆動電流−圧力特性の定常特性及び動特性を実験的に求める。その場合に特性把握用信号は、ECU駆動回路補償モデル20を介してECU駆動回路12に入力される。特性把握用信号−圧力特性は、油圧回路14内における油温度の変動によって変動するので、油圧回路14内における油温度を変化させていった場合の特性把握用信号−圧力特性の定常特性及び動特性を求める。そして、その際のソレノイド温度も同時に測定しECU駆動回路補償モデル20に入力する。ここで、特性把握用信号−圧力特性は油圧回路14内における油温度だけでなくソレノイド温度の変動によっても変動するため、ステップ1において求めたECU駆動回路補償モデル20を用いてソレノイド温度の影響による変動分を補償する。このようにして油圧回路14内における油温度の変動のみを考慮した特性把握用信号−圧力特性の定常特性及び動特性を求めることができる。そして、この定常特性及び動特性を用いて油圧回路油温度−油圧回路補償量特性の非線型特性補償用制御マップ及び動特性補償用制御マップを作成して油圧回路補償モデル22内に記憶させる。
【0045】
次にステップ3においては、変速指令信号−伝達トルク特性の定常特性及び動特性を実験的に求める。その場合に特性把握用信号は、ECU駆動回路補償モデル20及び油圧回路補償モデル22を介してECU駆動回路12に入力される。特性把握用信号−伝達トルク特性は、クラッチ、ブレーキの動摩擦係数の変動によって変動するので、クラッチ、ブレーキの動摩擦係数を変化させていった場合の特性把握用信号−伝達トルク特性の定常特性及び動特性を求める。そして、その際のソレノイド温度及び油圧回路14内における油温度も同時に測定しECU駆動回路補償モデル20及び油圧回路補償モデル22にそれぞれ入力する。ここで、特性把握用信号−伝達トルク特性はクラッチ、ブレーキの動摩擦係数だけでなくソレノイド温度及び油圧回路14内における油温度の変動によっても変動するため、ステップ1において求めたECU駆動回路補償モデル20及びステップ2において求めた油圧回路補償モデル22を用いてソレノイド温度及び油圧回路14内における油温度の影響による変動分をそれぞれ補償する。このようにしてクラッチ、ブレーキの動摩擦係数の変動のみを考慮した特性把握用信号−伝達トルク特性の定常特性及び動特性を求めることができる。そして、この定常特性及び動特性を用いて動摩擦係数−クラッチ系補償量特性の非線型特性補償用制御マップ及び動特性補償用制御マップを作成してクラッチ系補償モデル24内に記憶させる。以上のようにして、ECU駆動回路補償モデル20、油圧回路補償モデル22及びクラッチ系補償モデル24が求められる。
【0046】
本実施形態においては、変速指令信号−伝達トルク特性を、ECU駆動回路12の変速指令信号−駆動電流特性、油圧回路14の駆動電流−圧力特性及びクラッチ系16の圧力−伝達トルク特性に階層化し、変速指令信号−伝達トルク特性に影響を与える各変動要因パラメータの中のあるパラメータを考えた場合に、そのパラメータの変動によって入出力特性が変動する階層の補償モデルのみにそのパラメータを入力し、その補償モデル内ではそのパラメータ−補償量の制御マップをあらかじめ記憶させておく。したがって、各階層の補償モデル内では、変速指令信号を補償する際にその階層における入出力特性に影響を与える変動要因パラメータのみを考慮すればよく、補償量を求めるための変動要因パラメータの次元数を減らすことができる。したがって、制御マップの作成工数を指数的に減らすことができ、制御マップの作成時間を大幅に短縮することができる。特に自動変速機の制御装置においては、変速指令信号−伝達トルク特性に影響を与える変動要因パラメータの数が非常に多いので、本実施形態の構成は非常に有効である。さらに、制御要素の変更、交換があった場合でも、変更、交換した制御要素のみの特性を把握して制御マップを入れ換えればよいので、制御マップの入れ換えが非常に容易となる。
【0047】
そして本実施形態においては、各階層の変動要因パラメータを考慮した入出力特性を求める場合に、対象階層より変速指令信号側の階層の補償モデルを介して特性把握信号を入力し、対象階層より変速指令信号側の階層の入出力特性の変動要因パラメータによる影響を補償している。例えば油圧回路14における油温度の変動を考慮した駆動電流−圧力特性を求める場合には、ECU駆動回路補償モデル20を介して特性把握用信号をECU駆動回路12に入力してECU駆動回路12の変速指令信号−駆動電流特性のソレノイド温度による影響をECU駆動回路補償モデル20によって補償している。ここで、ある対象階層の変動要因パラメータを考慮した入出力特性を求める際に、その対象階層への入力は、対象階層より変速指令信号側の階層の入出力特性の影響(例えば周波数減衰特性等)を受けるので、対象階層の入出力特性の把握を精度よく行えない場合がある。しかし本実施形態のように、変速指令信号側の階層から順次変動要因パラメータを考慮した入出力特性を把握した上で、各階層の変動要因パラメータを考慮した入出力特性を求めているので、ある対象階層の変動要因パラメータを考慮した入出力特性を求める際に、その対象階層より変速指令信号側の階層の入出力特性の影響を考慮することができる。したがって、各階層の変動要因パラメータを考慮した入出力特性を精度よく求めることができる。
【0048】
さらに本実施形態においては、図5または図6のブロック図に示すように伝達トルクまたは滑り相対速度を検出して変速指令信号にフィードバックするループを形成してもよい。図5または図6において、伝達トルクまたは滑り相対速度を示す検出信号は線形フィードバック補償器26に入力され、線形フィードバック補償器26からの出力信号が比較器28に入力される。比較器28は、変速指令信号と線形フィードバック補償器26の出力信号との差を出力して、その出力信号がクラッチ系補償モデル24に入力される。このように線形フィードバック補償器26及び比較器28で線形フィードバック補償手段32を形成している。また、図6においては、変速指令信号が線形フィードバック補償器26に入力される。
【0049】
図5または図6の構成においては、変速指令信号−伝達トルク特性の非線型特性が、ECU駆動回路補償モデル20、油圧回路補償モデル22及びクラッチ系補償モデル24によって線形に補償されているので、フィードバック補償器として非線型補償器を用いる必要がなく線形補償器でよい。したがって、簡単な構成で精度のよいフィードバック制御を行うことができる。
【0050】
本実施形態においては、ECU駆動回路補償モデル20、油圧回路補償モデル22及びクラッチ系補償モデル24によって変速指令信号をフィードフォワード補償する場合について説明したが、本発明の指令信号補償手段18による補償はフィードフォワード補償に限られるものではなく、図7のブロック図に示すように、各階層ごとにフィードバック補償してもよい。
【0051】
次に図7における指令信号補償手段18の構成について説明する。クラッチ系16の出力である伝達トルクまたは滑り速度を示す検出信号が階層補償手段としてのクラッチ系フィードバック補償器42に入力され、クラッチ系フィードバック補償器42からの出力信号が比較器48に入力される。比較器48は、変速指令信号とクラッチ系フィードバック補償器42の出力信号との差を出力する。油圧回路14の出力である圧力を示す検出信号が階層補償手段としての油圧回路フィードバック補償器40に入力され、油圧回路フィードバック補償器40からの出力信号が比較器46に入力される。比較器46は、比較器48の出力信号と油圧回路フィードバック補償器40の出力信号との差を出力する。ECU駆動回路12の出力である駆動電流を示す検出信号が階層補償手段としての駆動回路フィードバック補償器38に入力され、駆動回路フィードバック補償器38からの出力信号が比較器44に入力される。比較器44は、比較器46の出力信号と駆動回路フィードバック補償器38の出力信号との差を出力し、その出力信号がECU駆動回路12に入力される。
【0052】
駆動回路フィードバック補償器38は、駆動電流の目標値と検出値の偏差dzをフィードバック補償する。その場合に、図8に示すようにECU駆動回路12の変速指令信号−駆動電流特性の非線型特性及び動特性を考慮して補償量を設定する。ここで、ソレノイド温度は変速指令信号−駆動電流特性の変動要因パラメータとなるので、ソレノイド温度を示す検出信号が駆動回路フィードバック補償器38に入力される。ソレノイド温度T2のときの非線型特性を考慮した補償量dy0は、図8の上図に示すように偏差dz及びソレノイド温度を考慮した変速指令信号−駆動電流特性の定常特性から求められる。さらに動特性も考慮した補償量は図8の下図に示す図3の下図と同様の特性から求められる。
【0053】
油圧回路フィードバック補償器40は、圧力の目標値と検出値との偏差をフィードバック補償する。その場合に、油圧回路14の駆動電流−圧力特性の非線型特性及び動特性を駆動回路フィードバック補償器38と同様の方法で補償する。ここで、油圧回路14における油温度は駆動電流−圧力特性の変動要因パラメータとなるので、油圧回路14における油温度を示す検出信号が油圧回路フィードバック補償器40に入力される。そして、クラッチ系フィードバック補償器42は、伝達トルクの目標値と検出値との偏差をフィードバック補償する。その場合に、クラッチ系16の圧力−伝達トルク特性の非線型特性及び動特性を駆動回路フィードバック補償器38と同様の方法で補償する。ここで、クラッチ、ブレーキの動摩擦係数は圧力−伝達トルク特性の変動要因パラメータとなるので、クラッチ、ブレーキの動摩擦係数を示す検出信号がクラッチ系フィードバック補償器42に入力される。
【0054】
図7に示す各階層ごとにフィードバック補償する構成においても、図1に示すフィードフォワード補償する構成と同様の効果が得られる。また、各階層ごとにフィードバック補償する構成は、図7に示す構成に限るものではなく、例えば図9に示すように、クラッチ系フィードバック補償器42が比較器48の出力に設けられ、油圧回路フィードバック補償器40が比較器46の出力に設けられ、駆動回路フィードバック補償器38が比較器44の出力に設けられる構成であってもよい。さらに、例えば図10に示す構成のように、フィードフォワード補償とフィードバック補償の両方を組み合わせて用いてもよく、フィードフォワード補償とフィードバック補償の両方を用いることで、より精度よく非線型特性及び動特性を補償することができる。
【0055】
なお、本実施形態においては説明の便宜上、ECU駆動回路補償モデル20にソレノイド温度、油圧回路補償モデル22に油圧回路14内における油温度及びクラッチ系補償モデル24にクラッチ、ブレーキの動摩擦係数が入力される場合について説明したが、各制御要素の入出力特性の変動要因パラメータはこれに限るものではなく、実際には、入出力特性の複数の変動要因パラメータが各制御要素補償モデルのそれぞれに入力される。そして、本実施形態では変速指令信号−伝達トルク特性を変速指令信号−駆動電流特性、駆動電流−圧力特性及び圧力−伝達トルク特性に階層化した場合について説明したが、例えば変速指令信号−駆動電流特性及び駆動電流−伝達トルク特性に階層化する等、変速指令信号−伝達トルク特性を複数の入出力特性に階層化さえすれば従来と比較して制御マップの作成工数を削減できる。さらに、本発明の適用範囲は本実施形態のような直列に接続された制御要素に限るものではなく、並列に接続された制御要素を有していても適用可能である。また、指令信号補償手段18内の各補償モデル及び各フィードバック補償器による変速指令信号の最終的な補償順序についてはいかなる順序であってもよい。
【0056】
(2)第2実施形態
図11は、本発明の第2実施形態に係る自動変速機の制御装置の構成を示すブロック図であり、油圧回路からの油圧に基づいて変速比を連続的に変化させる無段変速機の変速動作を制御する場合に本発明を適用した図である。本実施形態においては油圧回路14からの圧力は、プーリ系34に入力される。プーリ系34では油圧回路14からの圧力値に基づいて変速比が制御される。そして、クラッチ系補償モデル24の代わりにプーリ系補償モデル36が設けられ、入力トルクがプーリ系補償モデル36のみに入力され、入力トルク−プーリ系補償量特性の制御マップがプーリ系補償モデル36内にあらかじめ記憶される。なお、図示していないがプーリ系34は、プライマリプーリとセカンダリプーリとにVベルトが掛け回され、油圧回路14からの圧力によってプライマリプーリ及びセカンダリプーリの溝幅を変化させることで変速比を連続的に変化させる。他の構成は第1実施形態と同様のため省略する。
【0057】
無段変速機の変速比を制御する場合においてもクラッチ、ブレーキ等の摩擦係合装置の滑り相対速度を制御する場合と同様に、各階層の補償モデル内では、変速指令信号を補償する際にその階層における入出力特性の変動要因パラメータのみを考慮でき、補償量を求めるための変動要因パラメータの次元数を減らすことができる。したがって、制御マップの作成工数を指数的に減らすことができ、制御マップの作成時間を大幅に短縮することができる。さらに、制御要素の変更、交換があった場合でも、変更、交換した制御要素のみの制御マップを入れ換えればよいので、制御マップの入れ換えが非常に容易である。
【0058】
本実施形態においても図5または図6に示す構成と同様に変速比を検出して変速指令信号に線形フィードバックするループを形成してもよいし、図7または図9に示す構成と同様に各階層ごとにフィードバック補償してもよいし、フィードフォワード補償とフィードバック補償の両方を組み合わせてもよい。また、本実施形態においては、無段変速機をベルト式の場合について説明したが、ベルト式無段変速機をトロイダル式無段変速機に置き換えても制御可能である。
【0059】
【発明の効果】
以上説明したように、本発明によれば、各階層において変速指令信号を補償する際に、その階層の入出力特性の変動要因パラメータのみを考慮すればよく、補償量を求めるための変動要因パラメータの次元数を減らすことができる。したがって、制御マップの作成工数を指数的に減らすことができ、制御マップの作成時間を大幅に短縮することができる。さらに、制御要素の変更、交換があった場合でも、変更、交換した制御要素のみの制御マップを入れ換えればよいので、制御マップの作成時間を大幅に短縮することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態に係る自動変速機の制御装置の構成を示すブロック図である。
【図2】 本発明の第1実施形態におけるECU駆動回路の非線型特性の補償を説明する図である。
【図3】 本発明の第1実施形態におけるECU駆動回路の動特性の補償を説明する図である。
【図4】 本発明の第1実施形態におけるECU駆動回路、油圧回路及びクラッチ系の入出力特性を求める方法を説明するフローチャートである。
【図5】 本発明の第1実施形態に係る自動変速機の制御装置の別の構成を示すブロック図である。
【図6】 本発明の第1実施形態に係る自動変速機の制御装置の別の構成を示すブロック図である。
【図7】 本発明の第1実施形態に係る自動変速機の制御装置の別の構成を示すブロック図である。
【図8】 本発明の第1実施形態の別の構成におけるECU駆動回路のフィードバック補償を説明する図である。
【図9】 本発明の第1実施形態に係る自動変速機の制御装置の別の構成を示すブロック図である。
【図10】 本発明の第1実施形態に係る自動変速機の制御装置の別の構成を示すブロック図である。
【図11】 本発明の第2実施形態に係る自動変速機の制御装置の構成を示すブロック図である。
【図12】 従来の自動変速機の制御装置の構成を示すブロック図である。
【符号の説明】
10 コントロールユニット、12 ECU駆動回路、14 油圧回路、16クラッチ系、18 指令信号補償手段、20 ECU駆動回路補償モデル、22 油圧回路補償モデル、24 クラッチ系補償モデル、26 線形フィードバック補償器、28 比較器、32 線形フィードバック補償手段、34 プーリ系、36 プーリ系補償モデル、38 駆動回路フィードバック補償器、40 油圧回路フィードバック補償器、42 クラッチ系フィードバック補償器。

Claims (20)

  1. 入力される変速指令信号に応じた駆動電流を出力する回路制御要素と、
    前記回路制御要素からの駆動電流が入力され、該駆動電流に応じた駆動力を出力するアクチュエータ制御要素と、
    前記アクチュエータ制御要素からの駆動力が入力され、該駆動力によって変速動作を行う機構制御要素と、
    変速指令信号−変速動作出力特性に影響を与える変動要因パラメータの値に基づいて前記変速指令信号を補償する指令信号補償手段と、
    を有する自動変速機の制御装置において、
    前記指令信号補償手段は、変速指令信号−変速動作出力特性を前記制御要素の入出力間を境界とする複数の入出力特性に階層化した場合の各階層ごとに対応して設けられ、前記変速指令信号を補償する階層補償手段を有し、
    前記変速指令信号は、各階層補償手段により順次補償されてから前記回路制御要素に入力され、
    前記階層補償手段の各々は、該階層補償手段に対応した階層の入出力特性に影響を与える変動要因パラメータの値のみに基づいて前記変速指令信号を補償することを特徴とする自動変速機の制御装置。
  2. 請求項1に記載の装置において、
    前記階層補償手段は、前記変速指令信号をフィードフォワード補償するフィードフォワード補償手段であることを特徴とする自動変速機の制御装置。
  3. 請求項1に記載の装置において、
    前記階層補償手段は、前記変速動作出力をフィードバックして前記変速指令信号を補償するフィードバック補償手段であることを特徴とする自動変速機の制御装置。
  4. 請求項1〜3のいずれかに記載の装置において、
    前記階層補償手段の各々は、該階層補償手段に対応した階層の入出力間の非線型特性を補償することを特徴とする自動変速機の制御装置。
  5. 請求項4に記載の装置において、
    各階層の入出力間の非線型特性が補償された後の変速動作出力を線形フィードバックして前記変速指令信号を補償する線形フィードバック補償手段をさらに有することを特徴とする自動変速機の制御装置。
  6. 請求項1〜5のいずれかに記載の装置において、
    前記階層補償手段の各々は、該階層補償手段に対応した階層の入出力間の動特性を補償することを特徴とする自動変速機の制御装置。
  7. 請求項1〜6のいずれかに記載の装置において、
    各階層についての階層補償手段は変速指令信号側の階層から変速動作出力側の階層へと順に作成され、
    変動要因パラメータのみを考慮した演算対象階層の入出力特性がこの変動要因パラメータを変化させた場合の変速指令信号−演算対象階層出力特性と演算対象階層より変速指令信号側の階層についての階層補償手段とに基づいて求められ、
    この演算対象階層の入出力特性に基づいて演算対象階層についての階層補償手段が作成されることを特徴とする自動変速機の制御装置。
  8. 請求項1〜7のいずれかに記載の装置において、
    前記指令信号補償手段は、変速指令信号−変速動作出力特性を、前記回路制御要素の変速指令信号−駆動電流特性、前記アクチュエータ制御要素の駆動電流−駆動力特性及び前記機構制御要素の駆動力−変速動作出力特性に階層化した場合の各階層ごとに前記階層補償手段を有することを特徴とする自動変速機の制御装置。
  9. 請求項1〜8のいずれかに記載の装置において、
    前記機構制御要素は、係合/解放/滑りの係合状態を選択可能な摩擦係合装置であり、
    前記変速動作出力は、前記摩擦係合装置の伝達トルクまたは滑り相対速度であることを特徴とする自動変速機の制御装置。
  10. 請求項1〜8のいずれかに記載の装置において、
    前記機構制御要素は、前記アクチュエータ制御要素からの駆動力に基づいて自動変速機の変速比を連続的に変化させ、
    前記変速動作出力は、自動変速機の変速比であることを特徴とする自動変速機の制御装置。
  11. 入力される変速指令信号に応じた駆動電流を出力する回路制御要素と、
    前記回路制御要素からの駆動電流が入力され、該駆動電流に応じた駆動力を出力するアクチュエータ制御要素と、
    前記アクチュエータ制御要素からの駆動力が入力され、該駆動力によって変速動作を行う機構制御要素と、
    を有し、
    変速指令信号−変速動作出力特性に影響を与える変動要因パラメータの値に基づいて前記変速指令信号を補償する自動変速機の制御装置の制御ロジックを作成する方法において、
    前記変速指令信号を補償する階層補償手段を、変速指令信号−変速動作出力特性を前記制御要素の入出力間を境界とする複数の入出力特性に階層化した場合の各階層ごとに作成し、
    前記変速指令信号は、各階層補償手段により順次補償されてから前記回路制御要素に入力され、
    前記階層補償手段の各々は、該階層補償手段に対応した階層の入出力特性に影響を与える変動要因パラメータの値のみに基づいて前記変速指令信号を補償するように作成されることを特徴とする自動変速機の制御ロジック作成方法。
  12. 請求項11に記載の方法において、
    前記階層補償手段は、前記変速指令信号をフィードフォワード補償するフィードフォワード補償手段であることを特徴とする自動変速機の制御ロジック作成方法。
  13. 請求項11に記載の方法において、
    前記階層補償手段は、前記変速動作出力をフィードバックして前記変速指令信号を補償するフィードバック補償手段であることを特徴とする自動変速機の制御ロジック作成方法。
  14. 請求項11〜13のいずれかに記載の方法において、
    前記階層補償手段の各々は、該階層補償手段に対応した階層の入出力間の非線型特性を補償することを特徴とする自動変速機の制御ロジック作成方法。
  15. 請求項14に記載の方法において、
    各階層の入出力間の非線型特性が補償された後の変速動作出力を線形フィードバックして前記変速指令信号をさらに補償することを特徴とする自動変速機の制御ロジック作成方法。
  16. 請求項11〜15のいずれかに記載の方法において、
    前記階層補償手段の各々は、該階層補償手段に対応した階層の入出力間の動特性を補償することを特徴とする自動変速機の制御ロジック作成方法。
  17. 請求項11〜16のいずれかに記載の方法において、
    各階層についての階層補償手段を変速指令信号側の階層から変速動作出力側の階層へと順に作成し、
    変動要因パラメータのみを考慮した演算対象階層の入出力特性をこの変動要因パラメータを変化させた場合の変速指令信号−演算対象階層出力特性と演算対象階層より変速指令信号側の階層についての階層補償手段とに基づいて求め、
    この演算対象階層の入出力特性に基づいて演算対象階層についての階層補償手段を作成することを特徴とする自動変速機の制御ロジック作成方法。
  18. 請求項11〜17のいずれかに記載の方法において、
    変速指令信号−変速動作特性を、前記回路制御要素の変速指令信号−駆動電流特性、前記アクチュエータ制御要素の駆動電流−駆動力特性及び前記機構制御要素の駆動力−変速動作出力特性に階層化した場合の各階層ごとに前記階層補償手段を作成することを特徴とする自動変速機の制御ロジック作成方法。
  19. 請求項11〜18のいずれかに記載の方法において、
    前記機構制御要素は、係合/解放/滑りの係合状態を選択可能な摩擦係合装置であり、
    前記変速動作出力は、前記摩擦係合装置の伝達トルクまたは滑り相対速度であることを特徴とする自動変速機の制御ロジック作成方法。
  20. 請求項11〜18のいずれかに記載の方法において、
    前記機構制御要素は、前記アクチュエータ制御要素からの駆動力に基づいて自動変速機の変速比を連続的に変化させ、
    前記変速動作出力は、自動変速機の変速比であることを特徴とする自動変速機の制御ロジック作成方法。
JP2002018560A 2002-01-28 2002-01-28 自動変速機の制御装置及びその制御ロジック作成方法 Expired - Fee Related JP4248181B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002018560A JP4248181B2 (ja) 2002-01-28 2002-01-28 自動変速機の制御装置及びその制御ロジック作成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002018560A JP4248181B2 (ja) 2002-01-28 2002-01-28 自動変速機の制御装置及びその制御ロジック作成方法

Publications (2)

Publication Number Publication Date
JP2003222233A JP2003222233A (ja) 2003-08-08
JP4248181B2 true JP4248181B2 (ja) 2009-04-02

Family

ID=27742981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002018560A Expired - Fee Related JP4248181B2 (ja) 2002-01-28 2002-01-28 自動変速機の制御装置及びその制御ロジック作成方法

Country Status (1)

Country Link
JP (1) JP4248181B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2354837C (en) * 2000-08-11 2005-01-04 Honda Giken Kogyo Kabushiki Kaisha Simulator for automatic vehicle transmission controllers
JP4824471B2 (ja) * 2006-05-26 2011-11-30 株式会社豊田中央研究所 自動変速機のクラッチ油圧指令値生成方法およびその装置
JP5589531B2 (ja) * 2010-04-23 2014-09-17 トヨタ自動車株式会社 車両用油圧制御装置
CN114811028B (zh) * 2022-03-17 2024-05-17 潍柴动力股份有限公司 车辆换挡控制方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
JP2003222233A (ja) 2003-08-08

Similar Documents

Publication Publication Date Title
EP0492199B1 (en) Automatic transmission gearshift control having feedforward response of clutch and its hydraulic actuation
US8038076B2 (en) System and method for dynamic solenoid response adjust control
CN108779846B (zh) 无级变速器的控制装置及无级变速器的控制方法
US20050278102A1 (en) Hydraulic controller and method of controlling same
CN103161929A (zh) 在升挡期间提供转矩缺口填补的离合器转矩轨道校正
JP4524131B2 (ja) ベルト式無段変速機の変速制御装置
JP4034148B2 (ja) ベルト式無段変速機
KR102142842B1 (ko) 리니어 솔레노이드의 제어 장치
US20060219509A1 (en) System and method for controlling engagement of a clutch
JP2000506954A (ja) 自動無段変速機の制御装置
EP2289755A2 (en) Automatic transmission control apparatus
US6101440A (en) Controller for an automatic motor vehicle transmission
JP2004293652A (ja) 無段変速機を含む駆動機構の制御装置
US5189611A (en) Temperature compensation technique for a continuously variable transmission control system
JP4248181B2 (ja) 自動変速機の制御装置及びその制御ロジック作成方法
JP3607640B2 (ja) 変速機の油圧制御装置
WO1999058882A1 (fr) Procede permettant de regler la vitesse de changement de vitesses des transmissions a changement de vitesse continu a courroie metallique
JP4124625B2 (ja) 無段変速機の制御装置
JP6805657B2 (ja) 無段変速機及び無段変速機の制御方法
EP3431824A1 (en) Control device for continuously variable transmission and control method for continuously variable transmission
EP3431823A1 (en) Control device for continuously variable transmission and control method for continuously variable transmission
US6262556B1 (en) Force motor current control for an electronically controlled automatic transmission
JP4165258B2 (ja) 油圧ポンプの吐出圧マップ書換方法
CN110056649B (zh) 变速器控制
JP5617563B2 (ja) アクチュエータの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Effective date: 20071221

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090113

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120123

LAPS Cancellation because of no payment of annual fees