JP4240882B2 - Resin composition for printing ink and method for producing the same - Google Patents

Resin composition for printing ink and method for producing the same Download PDF

Info

Publication number
JP4240882B2
JP4240882B2 JP2001396542A JP2001396542A JP4240882B2 JP 4240882 B2 JP4240882 B2 JP 4240882B2 JP 2001396542 A JP2001396542 A JP 2001396542A JP 2001396542 A JP2001396542 A JP 2001396542A JP 4240882 B2 JP4240882 B2 JP 4240882B2
Authority
JP
Japan
Prior art keywords
solvent
resin composition
resin
printing ink
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001396542A
Other languages
Japanese (ja)
Other versions
JP2002317137A (en
Inventor
秀明 光井
勇雄 小野寺
博則 村本
英敏 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2001396542A priority Critical patent/JP4240882B2/en
Priority to PCT/JP2002/000908 priority patent/WO2002064690A1/en
Priority to KR1020027013831A priority patent/KR20020093916A/en
Priority to CN02800317A priority patent/CN1457351A/en
Publication of JP2002317137A publication Critical patent/JP2002317137A/en
Application granted granted Critical
Publication of JP4240882B2 publication Critical patent/JP4240882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/023On to modified polymers, e.g. chlorinated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、印刷インキ用樹脂組成物及びその製造方法に関する。さらに詳しくは各種プラスチックフィルム、プラスチックシートまたは合成樹脂成型物用の被覆用として有用な、しかも全くトルエン等の芳香族系溶剤を含有しない印刷インキ用樹脂組成物及びその製造方法に関する。
【0002】
【従来の技術】
印刷インキの原料である塩素化ポリオレフィンは、トルエン等の芳香族溶剤以外には溶解しづらい。また、塩素化ポリオレフィンは、ウレタン樹脂との相溶性に乏しく、塩素化ポリオレフィンの良溶剤であるトルエンが存在しない系では、ほとんど相溶しない。さらに、印刷インキにおいて、乾燥性や、バインダー樹脂の溶解性に優れるという理由から、塩素化ポリオレフィンや、塩素化ポリオレフィンをウレタン変性した樹脂を用いた印刷インキには、トルエン等の芳香族溶剤が好んで使用されている。
【0003】
近年、作業環境問題が大きく取り上げられるようになり、印刷インキに多く使用されている芳香族溶剤の削減が叫ばれている。特に、食品包装用フィルムの印刷物に関しては、印刷インキに残留する溶剤にも注目され、トルエン等の芳香族溶剤量低減が強く望まれている。また、トルエンを使用したものは、高温安定性に問題があることから、高温安定性の良好なノントルエン型印刷インキ用樹脂の開発が急務である。
【0004】
そこで、基材フィルムを選ばない汎用性の高い印刷インキ用樹脂として、塩素化ポリオレフィンのウレタン変性物が提案されている(特開平1−252606、特開平4−4148、特開平11−61024号公報、等)。しかし、これらは、ウレタン変性する際、鎖伸長剤としてアミン系樹脂を使用し、塩素化樹脂を反応するためか、経時的に色数が上昇する。その結果、インキに使用する場合、色調変化が大きく、場合により配合を変更しなければならない等の問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、トルエン等の芳香族系溶剤を全く使用しない、溶液性状、高温安定性が良好で、かつ、ウレタン樹脂、ポリアミド樹脂、ニトロセルロース等のインキ用樹脂との相溶性に優れる印刷インキ用樹脂組成物及びその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、鋭意検討した結果、重量平均分子量が3000〜50000かつ塩素含有率が10〜50wt%の酸化処理塩素化ポリオレフィンにエチレン性不飽和結合を有するアクリル系単量体を反応させたグラフト共重合体と、極性溶剤と脂環式溶剤の混合溶剤を含む印刷インキ用樹脂組成物により、上記問題点を解決するに至った。
【0007】
【発明の実施の形態】
本発明に用いられる酸化処理塩素化ポリオレフィンは、ポリオレフィン系基材フィルムに対し付着性を付与するための成分であり、塩素化ポリオレフィンを酸化して得られたものである。
【0008】
酸化処理塩素化ポリオレフィンは、通常の塩素化反応で、容易に得られる。例えば、α−オレフィン共重合体をクロロホルム等の塩素系溶剤に溶解した後、紫外線を照射しながら、あるいは、有機過酸化物の存在下、ガス状の塩素及び空気、酸素、オゾンより選ばれた少なくとも1種以上を同時に吹き込むことにより得られる。酸化処理塩素化ポリオレフィンには、水酸基、カルボキシル基、過酸等が形成されるため、各種の高分子反応を行うことができる。従って、エチレン性不飽和結合を有するアクリル系単量体との反応が可能である。
【0009】
酸化の進行は、赤外分光光度計で測定した1730cm-1付近の吸収が増大することで判断できる。又、酸化の程度は、下式の尺度によって測定した官能基指数により確認できる。酸化処理塩素化ポリオレフィンと単量体との反応性が改善されるため、該官能基指数は5〜30%が好ましい。より好ましくは10〜25%である。
【式】
(1730cm-1 の吸光度/1460cm-1 の吸光度)×100= 官能基指数(%)
【0010】
酸化処理塩素化ポリオレフィンの原料ポリオレフィンには、結晶性ポリプロピレン、非晶質ポリプロピレン、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、エチレン−プロピレン−α−オレフィン共重合体などが使用できる。
【0011】
酸化処理塩素化ポリオレフィンは、塩素含有率が10〜50wt%のものが使用でき、好ましくは15〜40wt%である。塩素含有率が、10wt%より低いと酢酸エチル、酢酸ブチル等のエステル系溶剤、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式溶剤などの、芳香族系溶剤以外の溶剤への溶解性に劣り、塩素含有率が50wt%を超えるとポリプロピレン系基材フィルムとの付着性が劣る。尚、本発明における塩素含有率は、JIS−K7229に基づいて測定した値である。
【0012】
また、酸化処理塩素化ポリオレフィンは、重量平均分子量が、3000〜50000のものが使用できる。重量平均分子量が3000未満であると、樹脂の凝集力が弱く基材への付着性が劣り、50000を超えると、他樹脂との相溶性が悪くなり好ましくない。尚、本発明における重量平均分子量は、ポリスチレン樹脂を標準として、ゲルパーミエーションクロマトグラフィー(GPC)によって測定した値である。
【0013】
酸化処理塩素化ポリオレフィンは、通常トルエン溶液で扱われるが、本発明ではトルエンは一切使用しない。クロロホルム溶媒中で塩素化して得た、酸化処理塩素化ポリオレフィンのクロロホルム溶液は、安定剤(エポキシ化合物等)を添加した後、スクリューシャフト部に脱溶剤用吸引部を備えた、ベント付き押出機に供給して固形化する。固形化の方法は、公知の方法で、例えば、押出機の吹出口部分に水中カットペレタイザーを備えたベント付押出機、ベント付き押出機及びストランド状の樹脂をカットするペレタイザー等を使用して実施できる。
【0014】
塩素化樹脂には、安定剤としてエポキシ化合物が添加される。エポキシ化合物は、特に限定されないが、塩素化樹脂と相溶するものが好ましい。エポキシ当量が100から500程度のもので、一分子当たり1個以上のエポキシ基を有する化合物が例示できる。例えば、天然の不飽和基を有する植物油を、過酢酸などの過酸でエポキシ化したエポキシ化大豆油やエポキシ化アマニ油。また、オレイン酸、トール油脂肪酸、大豆油脂肪酸等の不飽和脂肪酸をエポキシ化したエポキシ化脂肪酸エステル類。エポキシ化テトラヒドロフタレートに代表されるエポキシ化脂環化合物。ビスフェノールAや多価アルコールとエピクロルヒドリンを縮合した、例えば、ビスフェノールAグリシジルエーテル、エチレングリコールグリシジルエーテル、プロピレングリコールグリシジルエーテル、グリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等が例示される。また、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、sec-ブチルフェニルグリシジルエーテル、tert-ブチルフェニルグリシジルエーテル、フェノールポリエチレンオキサイドグリシジルエーテル等に代表される、モノエポキシ化合物類が例示される。また、ポリ塩化ビニル樹脂の安定剤として使用されている、ステアリン酸カルシウム、ステアリン酸鉛等の金属石鹸類、ジブチル錫ジラウレート、ジブチルマレート等の有機金属化合物類、ハイドロタルサイト類化合物も使用でき、これらを単独でも、併用することもできる。安定剤は、酸化処理塩素化ポリオレフィンに対して、1〜5重量%(固形分換算)添加するのが好ましい。
【0015】
本発明では、上記の方法によって得られた酸化処理塩素化ポリオレフィンに、極性溶剤の存在下で、重合開始剤を用いて、エチレン性不飽和結合を有するアクリル系単量体を反応させ、グラフト共重合体を得る。
【0016】
本発明に用いる極性溶剤としては、エステル系溶剤又はケトン系溶剤が挙げられる。エステル系溶剤としては、酢酸エチル、酢酸ブチル等をあげることができる。ケトン系溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等をあげることができる。これらは、単独でも複数組み合わせて用いてもよい。反応時における、極性溶剤の量は、酸化処理塩素化ポリオレフィンの固形分濃度が、40〜80重量%の範囲とすることが好ましい。この範囲を外れると、エチレン性不飽和結合を有するアクリル系単量体のグラフト効率が低くなり、溶液性状が悪くなるという欠点がある。
【0017】
また本発明では、上記極性溶剤に、30wt%以下の範囲で脂環式溶剤を混合した混合溶剤を用いて反応を行っても良い。脂環式溶剤としては、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、エチルシクロペンタン、p-メンタン等をあげることができる。混合溶剤中、脂環式溶剤が30wt%を超えると、エチレン性不飽和結合を有するアクリル系単量体のグラフト効率が低くなり、溶液性状が悪いのみならず、併用するウレタン等の他樹脂との相溶性も悪くなり、好ましくない。
【0018】
反応に用いる重合開始剤は、公知のものの中から、適宜選択することができるが、有機過酸化物が好ましい。例えば、ベンゾイルパーオキサイド、ジアルキルパーオキサイド、ケトンパーオキサイド、パーオキシエステル、ジアシルパーオキサイド等が挙げられる。また、反応温度は、常温〜溶剤の沸点以下の範囲で実施でき、反応時間は1〜10時間が適当である。
【0019】
本発明で使用されるエチレン性不飽和結合を有するアクリル系単量体とは、一分子中に1個のエチレン性不飽和結合を有するアクリル系単量体で、例えば、グリシジルアクリレート、グリシジルメタアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタアクリレート、アクリル酸又はメタクリル酸等が挙げられる。これらは単独でも、複数併用してもよい。
【0020】
本発明において、酸化処理塩素化ポリオレフィンに対する、エチレン性不飽和結合を有するアクリル系単量体の割合は、1〜50wt%の範囲が好ましい。1wt%未満では、上記溶剤に対してのウレタン樹脂等の他樹脂と相溶性が悪い。50wt%を超えると、上記溶剤に対しての溶解性が悪くなくなるばかりでなく、不溶性のホモポリマーを生成し、場合により析出するため、印刷インキ用樹脂として好ましくない。
【0021】
本発明の印刷インキ用樹脂組成物は、上記の方法で得られたグラフト重合体に、さらに脂環式溶剤を配合したものである。脂環式溶剤としては、前記したものを用いることができる。本発明のインキ用樹脂組成物は、脂環式溶剤が、全溶剤分に対して10〜90wt%の割合になるよう配合するのが好ましい。脂環式溶剤が、10wt%未満又は90wt%を超えると、溶液性状が不良となり好ましくない。
【0022】
本発明の印刷インキ用樹脂組成物は、インキ製造時のハンドリングの点で、樹脂固形分濃度が30〜70wt%が好ましい。本発明の印刷インキ用樹脂組成物は、そのままインキとして用いても良いが、本発明の効果を阻害しない範囲で、ポリウレタン樹脂、ポリアミド樹脂、ポリエステルポリオール、セルロースアセテートブチレート、硝化綿等の樹脂、顔料、溶剤、その他の添加剤を加えて用いても良い。
【0023】
【作用】
本発明の特徴とするところは、酸化処理塩素化ポリオレフィンとエチレン性不飽和結合を有するアクリル系単量体を反応させる時の溶剤に、極性溶剤、又は極性溶剤と脂環式溶剤の混合溶剤を使用することによって、ウレタン樹脂、ポリエステル樹脂、ニトロセルロース等のインキ用樹脂との相溶性に優れ、かつ高温安定性の良好なインキ用樹脂組成物を得ることが出来るという点である。
【0024】
また、酸化処理塩素化ポリオレフィンと、ウレタン樹脂、ポリアミド樹脂、ニトロセルロース等との相溶性を上げるためには、酸化処理塩素化ポリオレフィンにエチレン性不飽和結合を有するアクリル系単量体を導入させ、樹脂の極性を上げることが重要と考えられる。さらに、極性溶剤、又は極性溶剤と脂環式溶剤の混合溶剤の存在下において、酸化処理塩素化ポリオレフィンとエチレン性不飽和結合を有するアクリル系単量体をグラフト重合して得られたグラフト共重合体を脂環式溶剤に溶解することも、各樹脂との相溶性を上げる一因となっていると思われる。
【0025】
【実施例】
次に本発明を実施例により更に詳細に説明するが、本発明はこれに限定されるものではない。
【0026】
(試作例−1)
160℃における溶融粘度が約4000 mPa・s であるアイソタクチックポリプロピレン300gを、グラスライニングされた反応釜に投入した。5Lのクロロホルムを加え、2kg/cmの圧力下、紫外線を照射しながら塩素ガス及び酸素ガスを吹き込み、官能基指数が20%、塩素含有率が32wt%まで塩素化した。反応終了後、安定剤としてエポキシ化合物(エポサイザーW-100EL、大日本インキ化学工業(株)製)を18g添加し、スクリューシャフト部に脱溶剤用吸引部を備えたベント付き押出機(二軸押出機 KZW40-34MG、(株)テクノベル製)に供給して、脱溶剤し、固形化した。得られた酸化処理塩素化ポリプロピレンの重量平均分子量は11000であった。
【0027】
(試作例−2)
160℃における溶融粘度が約4200 mPa・s であるアイソタクチックポリプロピレン300gをグラスライニングされた反応釜に投入し、5Lのクロロホルムを加え、2kg/cm2の圧力下、紫外線を照射しながら塩素ガス及び酸素ガスを吹き込み、官能基指数が23%、塩素含有率が39wt%まで塩素化した。反応終了後、安定剤としてエポキシ化合物(エピオールSB、日本油脂(株)製)を18g添加し、試作例1と同様にして、脱溶剤し、固形化した。得られた酸化処理塩素化ポリプロピレンの重量平均分子量は18000であった。
【0028】
(試作例−3)
160℃における溶融粘度が約4200 mPa・s であるアイソタクチックポリプロピレン300gをグラスライニングされた反応釜に投入し、5Lのクロロホルムを加え、2kg/cm2の圧力下、紫外線を照射しながら塩素ガス及び酸素ガスを吹き込み、官能基指数が18%、塩素含有率が68wt%まで塩素化した。反応終了後、安定剤としてエポキシ化合物(エピオールSB、日本油脂(株)製)を18g添加し、試作例1と同様にして、脱溶剤し、固形化した。得られた酸化処理塩素化ポリプロピレンの重量平均分子量は10000であった。
【0029】
(実施例−1)
撹拌機、温度計、還流冷却器及び窒素ガス導入管を備えた4口フラスコに、試作例−1で得た酸化処理塩素化ポリプロピレン380gと酢酸エチル200gを仕込み、70℃で加温溶解した。次に、ベンゾイルパーオキサイド(以下、BPOと略)3.8gを添加し、10分間保持した後、2−ヒドロキシエチルメタアクリレート(以下、2−HEMAと略)20gを3時間かけて添加した。その後、70℃に保持したまま、後反応を3時間実施し、グラフト共重合体溶液を得た。さらに、メチルシクロヘキサン(以下、MCHと略)を200g添加して、固形分濃度50wt%の樹脂組成物とした。
【0030】
(実施例−2)
実施例−1で用いた反応器に、試作例−2で得た酸化処理塩素化ポリプロピレン400g、MCH40g、酢酸エチル360gを仕込み、70℃で加温溶解した。次に、BPO3.8gを添加し、10分間保持した後、2−HEMA20gを3時間かけて添加した。その後、70℃に保持したまま、後反応を3時間実施し、グラフト共重合体溶液を得た。さらに、MCHを20g添加して、固形分濃度50wt%の樹脂組成物とした。
【0031】
(実施例−3)
実施例−1で用いた反応器に、試作例−2で得た酸化処理塩素化ポリプロピレン320g、MCH20g、酢酸エチル150gを仕込み、70℃で加温溶解した。次に、BPO3.8gを添加し、10分間保持した後、2−HEMA80gを3時間かけて添加した。その後70℃に保持したまま、後反応を3時間実施し、グラフト共重合体溶液を得た。さらに、MCHを230g添加し、固形分濃度50wt%の樹脂組成物とした。
【0032】
(実施例−4)
実施例−1で用いた反応器に、試作例−2で得た酸化処理塩素化ポリプロピレン380g、MCH20g、酢酸エチル150gを仕込み、70℃で加温溶解した。次に、BPO3.8gを添加し、10分間保持した後、グリシジルメタアクリレート(以下、GMAと略)20gを3時間かけて添加した。その後70℃に保持したまま、後反応を3時間実施し、グラフト共重合体溶液を得た。さらに、MCHを230g添加し、固形分濃度50wt%の樹脂組成物とした。
【0033】
(実施例−5)
実施例−1で用いた反応器に、試作例−1で得た酸化処理塩素化ポリプロピレン400g、エチルシクロヘキサン(以下、ECHと略)40g、酢酸エチル200gを仕込み、70℃で加温溶解した。次に、BPO3.8gを添加し、10分間保持した後、2−HEMA20gを3時間かけて添加した。その後70℃に保持したまま、後反応を3時間実施し、グラフト共重合体溶液を得た。さらに、ECHを180g添加し、固形分濃度50wt%の樹脂組成物とした。
【0034】
(比較例−1)
実施例−1で用いた反応器に、試作例−1で得た酸化処理塩素化ポリプロピレン380g、MCH400gを仕込み、70℃で加温溶解した。次に、BPO3.8gを添加し、10分間保持した後、2−HEMA20gを3時間かけて添加した。その後、70℃に保持したまま、後反応を3時間実施し、グラフト共重合体溶液を得た。得られたグラフト共重合体溶液の固形分濃度は50wt%であり、これを樹脂組成物とした。
【0035】
(比較例−2)
実施例−1で用いた反応器に、試作例−2で得た酸化処理塩素化ポリプロピレン380g、酢酸エチル400gを仕込み、70℃で加温溶解した。次に、BPO3.8gを添加し、10分間保持した後、2−HEMA20gを3時間かけて添加した。その後、70℃に保持したまま、後反応を3時間実施し、グラフト共重合体溶液を得た。得られたグラフト共重合体溶液の固形分濃度は50wt%であり、これを樹脂組成物とした。
【0036】
(比較例−3)
実施例−1で用いた反応器に、試作例−3で得た酸化処理塩素化ポリプロピレン380g、MCH200g、酢酸エチル200gを仕込み、70℃で加温溶解した。次に、BPO3.8gを添加し、10分間保持した後、2−HEMA20gを3時間かけて添加した。その後、70℃に保持したまま、後反応を3時間実施し、グラフト共重合体溶液を得た。得られたグラフト共重合体溶液の固形分濃度は50wt%であり、これを樹脂組成物とした。
【0037】
(比較例−4)
実施例−1で用いた反応器に、試作例−1で得た酸化処理塩素化ポリプロピレン400g、MCH200g及び酢酸エチル200gを仕込み、70℃で加温溶解し、固形分50wt%の酸化処理塩素化ポリプロピレン溶液を得た。これを樹脂組成物とした。
【0038】
(比較例−5)
実施例−1で用いた反応器に、試作例−2で得た酸化処理塩素化ポリプロピレン400g、MCH47g、酢酸エチル267gを仕込み、60℃で加温溶解した。その後、2,2,4-トリメチルヘキサンジオールとアジピン酸を縮重合して得られた水酸基価が112KOHmg/gのポリエステルポリオール71g、イソホロンジイソシアネート31gを添加し、8時間反応させた。次に、イソホロンジアミン6g、MCH85g、イソプロピルアルコール(以下、IPAと略)101gを添加し、撹拌下40℃で2時間反応させた。得られたウレタン変性した酸化処理塩素化ポリプロピレン溶液の固形分濃度は50wt%であり、これを樹脂組成物とした。
【0039】
実施例1〜5、比較例1〜4に使用した原材料、反応条件を表1に示した。
【0040】
【表1】

Figure 0004240882
【0041】
次に、各実施例で得られた樹脂組成物つについて、以下の試験を行った。
【0042】
・高温安定性
実施例1〜5、比較例1〜5で得られた樹脂組成物について、製造直後と50℃で1ヶ月保管した後の色数(ガードナー色数)の経時変化を調査した。その結果を表2に示す。
【0043】
・相溶性試験
実施例1〜5、比較例1〜5で得られた樹脂組成物と、インキ用ウレタン樹脂(サンプレンIB-422、三洋化成工業(株))またはポリエステル樹脂(デスモフェン670、住友バイウレタン(株))とを、固形分重量比1/9で混合し、酢酸エチルで、全樹脂濃度30wt%に調整した。得られた混合樹脂溶液の状態を目視にて判定した。結果を表2に示す。表中、評価基準は、◎:クリヤー(分離無し)、×:不良(沈殿あり)、である。
【0044】
【表2】
表2 高温安定性及び相溶性試験結果
Figure 0004240882
【0045】
・接着性試験
相溶性試験に用いた、混合樹脂溶液(30wt%溶液)を用いて、下記の材料を混合し、ペイントシェイカーで練肉して、白色印刷インキを調整した。
混合溶液 40部
顔料(チタン白) 30部
酢酸エチル 20部
IPA 15部
得られた白色印刷インキを、#10マイヤーバーで、延伸ポリプロピレンフィルム(OPP)、ポリエステルフィルム(PET)、ナイロンフィルム(NY)に塗工した。塗工面にセロファンテープを貼り付け、これを急速に剥がしたときの塗工面の状態を観察した。結果を表3に示す。表中、◎:極めて良好、〇:良好、△:やや不良、×:不良、である。
【0046】
【表3】
表3 接着性試験結果
Figure 0004240882
【0047】
【発明の効果】
表2、3の結果より、本発明の印刷インキ用樹脂組成物は、高温安定性に優れ、かつインキ用ウレタン樹脂又はポリエステル樹脂との相溶性にも優れている。また、OPP、PET、NYといった各種フィルムに対して、優れた接着性を有することから、産業上有用であることが分かる。
さらに、本発明の印刷インキ用樹脂組成物は、製造工程においても、全くトルエン等の芳香族系溶剤を使用しないので、環境的にも優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition for printing ink and a method for producing the same. More specifically, the present invention relates to a resin composition for printing ink which is useful for coating various plastic films, plastic sheets or synthetic resin moldings and which does not contain an aromatic solvent such as toluene at all and a method for producing the same.
[0002]
[Prior art]
Chlorinated polyolefin, which is a raw material for printing ink, is difficult to dissolve except for aromatic solvents such as toluene. Moreover, chlorinated polyolefin has poor compatibility with urethane resin, and is hardly compatible in a system in which toluene, which is a good solvent for chlorinated polyolefin, does not exist. Furthermore, aromatic inks such as toluene are preferred for printing inks that use chlorinated polyolefins or urethane-modified resins of chlorinated polyolefins because of their excellent drying properties and binder resin solubility. Used.
[0003]
In recent years, work environment problems have become a major issue, and the reduction of aromatic solvents often used in printing inks has been screamed. In particular, with respect to printed matter of food packaging films, attention is also paid to the solvent remaining in the printing ink, and a reduction in the amount of aromatic solvents such as toluene is strongly desired. Moreover, since the thing using toluene has a problem in high temperature stability, development of the resin for non-toluene type | mold printing inks with favorable high temperature stability is urgent.
[0004]
Accordingly, urethane-modified products of chlorinated polyolefins have been proposed as highly versatile printing ink resins that do not require a base film (Japanese Patent Laid-Open Nos. 1-2252606, 4-4148, and 11-61024). ,etc). However, when these are urethane-modified, an amine resin is used as a chain extender to react with a chlorinated resin, or the number of colors increases with time. As a result, when used in ink, there are problems such as a large change in color tone and the necessity to change the composition depending on the case.
[0005]
[Problems to be solved by the invention]
The present invention is for printing inks that do not use any aromatic solvent such as toluene, have good solution properties and high-temperature stability, and have excellent compatibility with ink resins such as urethane resins, polyamide resins, and nitrocellulose. It aims at providing a resin composition and its manufacturing method.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors reacted an acrylic monomer having an ethylenically unsaturated bond with an oxidation-treated chlorinated polyolefin having a weight average molecular weight of 3000 to 50000 and a chlorine content of 10 to 50 wt%. The above-mentioned problems have been solved by a resin composition for printing ink containing a graft copolymer and a mixed solvent of a polar solvent and an alicyclic solvent.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The oxidation-treated chlorinated polyolefin used in the present invention is a component for imparting adhesion to a polyolefin-based substrate film, and is obtained by oxidizing a chlorinated polyolefin.
[0008]
Oxidized chlorinated polyolefin can be easily obtained by a normal chlorination reaction. For example, an α-olefin copolymer was dissolved in a chlorine-based solvent such as chloroform and then selected from gaseous chlorine, air, oxygen, and ozone while irradiating ultraviolet light or in the presence of an organic peroxide. It can be obtained by blowing at least one of them at the same time. Since hydroxyl group, carboxyl group, peracid and the like are formed in the oxidation-treated chlorinated polyolefin, various polymer reactions can be performed. Accordingly, reaction with an acrylic monomer having an ethylenically unsaturated bond is possible.
[0009]
The progress of oxidation can be determined by an increase in absorption near 1730 cm −1 measured with an infrared spectrophotometer. Further, the degree of oxidation can be confirmed by a functional group index measured by the following scale. Since the reactivity between the oxidized chlorinated polyolefin and the monomer is improved, the functional group index is preferably 5 to 30%. More preferably, it is 10 to 25%.
【formula】
(1730 cm Absorbance / 1460 cm absorbance -1 -1) × 100 = functional group index (%)
[0010]
As the raw material polyolefin of the oxidation-treated chlorinated polyolefin, crystalline polypropylene, amorphous polypropylene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-propylene-α-olefin copolymer, etc. can be used. .
[0011]
As the oxidatively treated chlorinated polyolefin, those having a chlorine content of 10 to 50 wt% can be used, preferably 15 to 40 wt%. When the chlorine content is lower than 10 wt%, aromatic solvents such as ester solvents such as ethyl acetate and butyl acetate, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and alicyclic solvents such as cyclohexane, methylcyclohexane and ethylcyclohexane If the chlorine content exceeds 50 wt%, the adhesion to the polypropylene base film is poor. In addition, the chlorine content rate in this invention is the value measured based on JIS-K7229.
[0012]
In addition, as the oxidation-treated chlorinated polyolefin, those having a weight average molecular weight of 3000 to 50000 can be used. If the weight average molecular weight is less than 3000, the cohesive strength of the resin is weak and the adhesion to the substrate is poor, and if it exceeds 50000, the compatibility with other resins is unfavorable. The weight average molecular weight in the present invention is a value measured by gel permeation chromatography (GPC) using polystyrene resin as a standard.
[0013]
Oxidized chlorinated polyolefin is usually treated with a toluene solution, but no toluene is used in the present invention. Chloroform solution of oxidized chlorinated polyolefin obtained by chlorination in chloroform solvent was added to a vented extruder equipped with a solvent removal suction part on the screw shaft after adding a stabilizer (epoxy compound, etc.). Supply and solidify. The solidification method is a known method, for example, using a vented extruder equipped with an underwater cut pelletizer at the outlet of the extruder, a vented extruder, and a pelletizer that cuts strand-like resin. it can.
[0014]
An epoxy compound is added to the chlorinated resin as a stabilizer. The epoxy compound is not particularly limited but is preferably compatible with the chlorinated resin. A compound having an epoxy equivalent of about 100 to 500 and having one or more epoxy groups per molecule can be exemplified. For example, epoxidized soybean oil or epoxidized linseed oil obtained by epoxidizing a vegetable oil having a natural unsaturated group with a peracid such as peracetic acid. Epoxidized fatty acid esters obtained by epoxidizing unsaturated fatty acids such as oleic acid, tall oil fatty acid, soybean oil fatty acid and the like. Epoxidized alicyclic compounds represented by epoxidized tetrahydrophthalate. For example, bisphenol A glycidyl ether, ethylene glycol glycidyl ether, propylene glycol glycidyl ether, glycerol polyglycidyl ether, sorbitol polyglycidyl ether and the like obtained by condensing bisphenol A or polyhydric alcohol and epichlorohydrin are exemplified. Also represented by butyl glycidyl ether, 2-ethylhexyl glycidyl ether, decyl glycidyl ether, stearyl glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, sec-butylphenyl glycidyl ether, tert-butylphenyl glycidyl ether, phenol polyethylene oxide glycidyl ether, etc. And monoepoxy compounds are exemplified. Further, metal soaps such as calcium stearate and lead stearate, organometallic compounds such as dibutyltin dilaurate and dibutylmalate, hydrotalcite compounds which are used as stabilizers for polyvinyl chloride resins can be used. These can be used alone or in combination. The stabilizer is preferably added in an amount of 1 to 5% by weight (in terms of solid content) with respect to the oxidized chlorinated polyolefin.
[0015]
In the present invention, the oxidation-treated chlorinated polyolefin obtained by the above method is reacted with an acrylic monomer having an ethylenically unsaturated bond using a polymerization initiator in the presence of a polar solvent, thereby graft copolymer. A polymer is obtained.
[0016]
Examples of the polar solvent used in the present invention include ester solvents and ketone solvents. Examples of the ester solvent include ethyl acetate and butyl acetate. Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and the like. These may be used alone or in combination. The amount of the polar solvent during the reaction is preferably such that the solid content concentration of the oxidized chlorinated polyolefin is in the range of 40 to 80% by weight. Outside this range, the graft efficiency of the acrylic monomer having an ethylenically unsaturated bond is lowered, and the solution properties are disadvantageous.
[0017]
Moreover, in this invention, you may react using the mixed solvent which mixed the alicyclic solvent in the range of 30 wt% or less with the said polar solvent. Examples of the alicyclic solvent include cyclohexane, methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, cyclopentane, methylcyclopentane, ethylcyclopentane, and p-menthane. If the alicyclic solvent exceeds 30 wt% in the mixed solvent, the graft efficiency of the acrylic monomer having an ethylenically unsaturated bond is lowered, not only the solution properties are bad, but also other resins such as urethane to be used in combination. The compatibility of is also unfavorable.
[0018]
The polymerization initiator used for the reaction can be appropriately selected from known ones, but an organic peroxide is preferable. For example, benzoyl peroxide, dialkyl peroxide, ketone peroxide, peroxy ester, diacyl peroxide and the like can be mentioned. Moreover, reaction temperature can be implemented in the range below normal temperature-the boiling point of a solvent, and 1-10 hours are suitable for reaction time.
[0019]
The acrylic monomer having an ethylenically unsaturated bond used in the present invention is an acrylic monomer having one ethylenically unsaturated bond in one molecule, such as glycidyl acrylate or glycidyl methacrylate. , 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, acrylic acid or methacrylic acid. These may be used alone or in combination.
[0020]
In the present invention, the ratio of the acrylic monomer having an ethylenically unsaturated bond to the oxidized chlorinated polyolefin is preferably in the range of 1 to 50 wt%. If it is less than 1 wt%, the compatibility with other resins such as urethane resin in the solvent is poor. If it exceeds 50 wt%, not only does the solubility in the above-mentioned solvent worsen, but an insoluble homopolymer is produced and sometimes precipitated, which is not preferable as a resin for printing ink.
[0021]
The resin composition for printing ink of the present invention is obtained by further blending an alicyclic solvent with the graft polymer obtained by the above method. As the alicyclic solvent, those described above can be used. The ink resin composition of the present invention is preferably blended so that the alicyclic solvent is in a proportion of 10 to 90 wt% with respect to the total solvent content. If the alicyclic solvent is less than 10 wt% or more than 90 wt%, the solution properties are poor, which is not preferable.
[0022]
The resin composition for printing ink of the present invention preferably has a resin solid content concentration of 30 to 70 wt% from the viewpoint of handling during ink production. The resin composition for printing ink of the present invention may be used as an ink as it is, but within a range not inhibiting the effect of the present invention, a resin such as polyurethane resin, polyamide resin, polyester polyol, cellulose acetate butyrate, nitrified cotton, You may add and use a pigment, a solvent, and another additive.
[0023]
[Action]
A feature of the present invention is that a polar solvent or a mixed solvent of a polar solvent and an alicyclic solvent is used as a solvent when reacting an oxidation-treated chlorinated polyolefin and an acrylic monomer having an ethylenically unsaturated bond. By using it, it is the point that it is excellent in compatibility with resin for inks, such as a urethane resin, a polyester resin, and nitrocellulose, and can obtain the resin composition for inks with favorable high temperature stability.
[0024]
In addition, in order to increase the compatibility between the oxidized chlorinated polyolefin and urethane resin, polyamide resin, nitrocellulose, etc., an acrylic monomer having an ethylenically unsaturated bond is introduced into the oxidized chlorinated polyolefin, It is considered important to increase the polarity of the resin. Further, graft copolymer obtained by graft polymerization of an oxidation-treated chlorinated polyolefin and an acrylic monomer having an ethylenically unsaturated bond in the presence of a polar solvent or a mixed solvent of a polar solvent and an alicyclic solvent. It seems that dissolving the coalescence in the alicyclic solvent also contributes to increasing the compatibility with each resin.
[0025]
【Example】
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to this.
[0026]
(Prototype example-1)
300 g of isotactic polypropylene having a melt viscosity of about 4000 mPa · s at 160 ° C. was charged into a glass-lined reaction kettle. 5 L of chloroform was added, and chlorine gas and oxygen gas were blown while irradiating ultraviolet rays under a pressure of 2 kg / cm 2 , and chlorinated to a functional group index of 20% and a chlorine content of 32 wt%. After completion of the reaction, 18 g of an epoxy compound (Eposizer W-100EL, manufactured by Dainippon Ink & Chemicals, Inc.) was added as a stabilizer, and an extruder equipped with a vent equipped with a suction part for solvent removal on the screw shaft part (biaxial extrusion) Machine KZW40-34MG, manufactured by Technobel Co., Ltd.) to remove the solvent and solidify. The obtained oxidized chlorinated polypropylene had a weight average molecular weight of 11,000.
[0027]
(Prototype example-2)
300 g of isotactic polypropylene having a melt viscosity at 160 ° C. of about 4200 mPa · s is put into a glass-lined reaction kettle, 5 L of chloroform is added, chlorine gas is irradiated with ultraviolet rays under a pressure of 2 kg / cm 2. Then, oxygen gas was blown in to chlorinate the functional group index to 23% and the chlorine content to 39 wt%. After completion of the reaction, 18 g of an epoxy compound (Epiol SB, manufactured by NOF Corporation) was added as a stabilizer, and the solvent was removed and solidified in the same manner as in Prototype Example 1. The obtained oxidized chlorinated polypropylene had a weight average molecular weight of 18,000.
[0028]
(Prototype example-3)
300 g of isotactic polypropylene having a melt viscosity at 160 ° C. of about 4200 mPa · s is put into a glass-lined reaction kettle, 5 L of chloroform is added, chlorine gas is irradiated with ultraviolet rays under a pressure of 2 kg / cm 2. Then, oxygen gas was blown in to chlorinate the functional group index to 18% and the chlorine content to 68 wt%. After completion of the reaction, 18 g of an epoxy compound (Epiol SB, manufactured by NOF Corporation) was added as a stabilizer, and the solvent was removed and solidified in the same manner as in Prototype Example 1. The resulting oxidized chlorinated polypropylene had a weight average molecular weight of 10,000.
[0029]
(Example-1)
To a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas introduction tube, 380 g of the oxidized chlorinated polypropylene obtained in Prototype Example-1 and 200 g of ethyl acetate were charged and heated and dissolved at 70 ° C. Next, 3.8 g of benzoyl peroxide (hereinafter abbreviated as BPO) was added and held for 10 minutes, and then 20 g of 2-hydroxyethyl methacrylate (hereinafter abbreviated as 2-HEMA) was added over 3 hours. Thereafter, the post reaction was carried out for 3 hours while maintaining the temperature at 70 ° C. to obtain a graft copolymer solution. Furthermore, 200 g of methylcyclohexane (hereinafter abbreviated as MCH) was added to obtain a resin composition having a solid content concentration of 50 wt%.
[0030]
(Example-2)
The reactor used in Example-1 was charged with 400 g of oxidized chlorinated polypropylene obtained in Prototype Example-2, 40 g of MCH, and 360 g of ethyl acetate, and dissolved by heating at 70 ° C. Next, 3.8 g of BPO was added and held for 10 minutes, and then 20 g of 2-HEMA was added over 3 hours. Thereafter, the post reaction was carried out for 3 hours while maintaining the temperature at 70 ° C. to obtain a graft copolymer solution. Furthermore, 20 g of MCH was added to obtain a resin composition having a solid content concentration of 50 wt%.
[0031]
(Example-3)
The reactor used in Example-1 was charged with 320 g of oxidized chlorinated polypropylene obtained in Prototype Example-2, 20 g of MCH, and 150 g of ethyl acetate, and dissolved by heating at 70 ° C. Next, 3.8 g of BPO was added and held for 10 minutes, and then 80 g of 2-HEMA was added over 3 hours. Thereafter, a post-reaction was carried out for 3 hours while maintaining the temperature at 70 ° C. to obtain a graft copolymer solution. Further, 230 g of MCH was added to obtain a resin composition having a solid content concentration of 50 wt%.
[0032]
(Example-4)
The reactor used in Example-1 was charged with 380 g of oxidized chlorinated polypropylene obtained in Prototype Example-2, 20 g of MCH, and 150 g of ethyl acetate, and dissolved by heating at 70 ° C. Next, 3.8 g of BPO was added and held for 10 minutes, and then 20 g of glycidyl methacrylate (hereinafter abbreviated as GMA) was added over 3 hours. Thereafter, a post-reaction was carried out for 3 hours while maintaining the temperature at 70 ° C. to obtain a graft copolymer solution. Further, 230 g of MCH was added to obtain a resin composition having a solid content concentration of 50 wt%.
[0033]
(Example-5)
The reactor used in Example-1 was charged with 400 g of the oxidized chlorinated polypropylene obtained in Prototype Example-1, 40 g of ethylcyclohexane (hereinafter abbreviated as ECH), and 200 g of ethyl acetate, and heated and dissolved at 70 ° C. Next, 3.8 g of BPO was added and held for 10 minutes, and then 20 g of 2-HEMA was added over 3 hours. Thereafter, a post-reaction was carried out for 3 hours while maintaining the temperature at 70 ° C. to obtain a graft copolymer solution. Further, 180 g of ECH was added to obtain a resin composition having a solid content concentration of 50 wt%.
[0034]
(Comparative Example-1)
The reactor used in Example-1 was charged with 380 g of oxidized chlorinated polypropylene obtained in Prototype Example-1 and 400 g of MCH, and heated and dissolved at 70 ° C. Next, 3.8 g of BPO was added and held for 10 minutes, and then 20 g of 2-HEMA was added over 3 hours. Thereafter, the post reaction was carried out for 3 hours while maintaining the temperature at 70 ° C. to obtain a graft copolymer solution. The obtained graft copolymer solution had a solid content concentration of 50 wt%, which was used as a resin composition.
[0035]
(Comparative Example-2)
The reactor used in Example-1 was charged with 380 g of the oxidized chlorinated polypropylene obtained in Prototype Example-2 and 400 g of ethyl acetate and dissolved by heating at 70 ° C. Next, 3.8 g of BPO was added and held for 10 minutes, and then 20 g of 2-HEMA was added over 3 hours. Thereafter, the post reaction was carried out for 3 hours while maintaining the temperature at 70 ° C. to obtain a graft copolymer solution. The obtained graft copolymer solution had a solid content concentration of 50 wt%, which was used as a resin composition.
[0036]
(Comparative Example-3)
The reactor used in Example-1 was charged with 380 g of oxidized chlorinated polypropylene obtained in Prototype Example-3, 200 g of MCH, and 200 g of ethyl acetate, and heated and dissolved at 70 ° C. Next, 3.8 g of BPO was added and held for 10 minutes, and then 20 g of 2-HEMA was added over 3 hours. Thereafter, the post reaction was carried out for 3 hours while maintaining the temperature at 70 ° C. to obtain a graft copolymer solution. The obtained graft copolymer solution had a solid content concentration of 50 wt%, which was used as a resin composition.
[0037]
(Comparative Example-4)
The reactor used in Example-1 was charged with 400 g of the oxidized chlorinated polypropylene obtained in Prototype Example-1, 200 g of MCH, and 200 g of ethyl acetate, dissolved by heating at 70 ° C., and oxidized chlorinated with a solid content of 50 wt%. A polypropylene solution was obtained. This was made into the resin composition.
[0038]
(Comparative Example-5)
The reactor used in Example-1 was charged with 400 g of the oxidized chlorinated polypropylene obtained in Prototype Example-2, 47 g of MCH, and 267 g of ethyl acetate and dissolved by heating at 60 ° C. Thereafter, 71 g of a polyester polyol having a hydroxyl value of 112 KOHmg / g obtained by condensation polymerization of 2,2,4-trimethylhexanediol and adipic acid and 31 g of isophorone diisocyanate were added and reacted for 8 hours. Next, 6 g of isophoronediamine, 85 g of MCH, and 101 g of isopropyl alcohol (hereinafter abbreviated as IPA) were added, and the mixture was reacted at 40 ° C. for 2 hours with stirring. The resulting urethane-modified oxidized chlorinated polypropylene solution had a solid content concentration of 50 wt%, and this was used as a resin composition.
[0039]
The raw materials and reaction conditions used in Examples 1 to 5 and Comparative Examples 1 to 4 are shown in Table 1.
[0040]
[Table 1]
Figure 0004240882
[0041]
Next, the following tests were conducted on the resin compositions obtained in each Example.
[0042]
-High temperature stability About the resin composition obtained in Examples 1-5 and Comparative Examples 1-5, the time-dependent change of the color number (Gardner color number) immediately after manufacture and after storing for 1 month at 50 degreeC was investigated. The results are shown in Table 2.
[0043]
Compatibility test Examples 1 to 5 and Comparative Examples 1 to 5 and the resin urethane composition (Samprene IB-422, Sanyo Chemical Industries) or polyester resin (Desmophen 670, Sumitomo Bai) Urethane Co., Ltd.) was mixed at a solid content weight ratio of 1/9, and the total resin concentration was adjusted to 30 wt% with ethyl acetate. The state of the obtained mixed resin solution was visually determined. The results are shown in Table 2. In the table, the evaluation criteria are ◎: Clear (no separation), ×: Poor (with precipitation).
[0044]
[Table 2]
Table 2 High temperature stability and compatibility test results
Figure 0004240882
[0045]
-Adhesion test Using the mixed resin solution (30 wt% solution) used in the compatibility test, the following materials were mixed and kneaded with a paint shaker to prepare a white printing ink.
Mixed solution 40 parts Pigment (titanium white) 30 parts Ethyl acetate 20 parts
15 parts of the IPA obtained was applied to a stretched polypropylene film (OPP), a polyester film (PET), and a nylon film (NY) with a # 10 Meyer bar. Cellophane tape was affixed to the coated surface, and the state of the coated surface was observed when the cellophane tape was rapidly removed. The results are shown in Table 3. In the table, ◎: extremely good, ◯: good, Δ: slightly bad, x: bad.
[0046]
[Table 3]
Table 3 Adhesion test results
Figure 0004240882
[0047]
【The invention's effect】
From the results of Tables 2 and 3, the resin composition for printing ink of the present invention is excellent in high temperature stability and excellent in compatibility with a urethane resin or polyester resin for ink. Moreover, since it has the outstanding adhesiveness with respect to various films, such as OPP, PET, and NY, it turns out that it is industrially useful.
Furthermore, since the resin composition for printing ink of the present invention does not use an aromatic solvent such as toluene at all even in the production process, it is environmentally superior.

Claims (3)

極性溶剤と30 wt %以下の脂環式溶剤との混合溶剤の存在下、重量平均分子量が3000〜50000かつ塩素含有率が10〜50wt%の酸化処理塩素化ポリオレフィンにエチレン性不飽和結合を有するアクリル系単量体を反応させて得られたグラフト共重合体に、さらに脂環式溶剤を混合することを特徴とする印刷インキ用樹脂組成物の製造方法。 In the presence of a mixed solvent of a polar solvent and 30 wt % or less of an alicyclic solvent, the oxidation-treated chlorinated polyolefin having a weight average molecular weight of 3000 to 50000 and a chlorine content of 10 to 50 wt% has an ethylenically unsaturated bond. A method for producing a resin composition for printing ink, further comprising mixing an alicyclic solvent with a graft copolymer obtained by reacting an acrylic monomer. 脂環式溶剤を全溶剤分に対して10〜90wt%の範囲になるよう混合する請求項1記載の印刷インキ用樹脂組成物の製造方法。 The manufacturing method of the resin composition for printing inks of Claim 1 which mixes an alicyclic solvent so that it may become the range of 10-90 wt% with respect to the total solvent content. 酸化処理塩素化ポリオレフィンに対するエチレン性不飽和結合を有するアクリル系単量体の割合が1〜50wt%である請求項1又は2記載の印刷インキ用樹脂組成物の製造方法。 The method for producing a resin composition for printing ink according to claim 1 or 2, wherein the ratio of the acrylic monomer having an ethylenically unsaturated bond to the oxidized chlorinated polyolefin is 1 to 50 wt%.
JP2001396542A 2001-02-16 2001-12-27 Resin composition for printing ink and method for producing the same Expired - Fee Related JP4240882B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001396542A JP4240882B2 (en) 2001-02-16 2001-12-27 Resin composition for printing ink and method for producing the same
PCT/JP2002/000908 WO2002064690A1 (en) 2001-02-16 2002-02-05 Resin composition for printing ink and process for producing the same
KR1020027013831A KR20020093916A (en) 2001-02-16 2002-02-05 Resin composition for printing ink and process for producing the same
CN02800317A CN1457351A (en) 2001-02-16 2002-02-05 Resin composition for printing ink and process for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001039974 2001-02-16
JP2001-39974 2001-02-16
JP2001396542A JP4240882B2 (en) 2001-02-16 2001-12-27 Resin composition for printing ink and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002317137A JP2002317137A (en) 2002-10-31
JP4240882B2 true JP4240882B2 (en) 2009-03-18

Family

ID=26609529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001396542A Expired - Fee Related JP4240882B2 (en) 2001-02-16 2001-12-27 Resin composition for printing ink and method for producing the same

Country Status (4)

Country Link
JP (1) JP4240882B2 (en)
KR (1) KR20020093916A (en)
CN (1) CN1457351A (en)
WO (1) WO2002064690A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL209142B1 (en) 2003-02-18 2011-07-29 Fujikura Kasei Kk Acrylic-modified chlorinated polyolefin resin, process for producing the same, and coating composition containing the same for polyolefin material
CN102250512B (en) * 2011-01-19 2013-07-31 深圳市美丽华油墨涂料有限公司 Screen printing ink for polypropylene material
JP5703423B2 (en) * 2013-03-22 2015-04-22 日本製紙株式会社 Chlorinated polyolefin resin
EP3196218B1 (en) 2014-08-29 2020-05-27 Nippon Paper Industries Co., Ltd. Block copolymer and resin composition
JP6585350B2 (en) * 2015-01-19 2019-10-02 サカタインクス株式会社 Printing ink composition for shrink packaging and printed matter for shrink packaging
US11046844B2 (en) 2016-09-28 2021-06-29 Nippon Paper Industries Co., Ltd. Modified polyolefin resin
WO2018168753A1 (en) * 2017-03-17 2018-09-20 日本製紙株式会社 Chlorinated-polyolefin-based resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2813143B2 (en) * 1994-09-27 1998-10-22 日本製紙株式会社 Aqueous resin composition
JP2848588B2 (en) * 1996-09-11 1999-01-20 日本製紙株式会社 Resin composition
JP3328928B2 (en) * 1998-05-22 2002-09-30 日本製紙株式会社 Resin composition for printing ink and method for producing the same

Also Published As

Publication number Publication date
KR20020093916A (en) 2002-12-16
CN1457351A (en) 2003-11-19
WO2002064690A1 (en) 2002-08-22
JP2002317137A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
EP0247580B1 (en) Thermoplastic composition of crystalline polyolefin and ethylene-containing copolymer
JPH0588265B2 (en)
JP5484642B2 (en) Chlorinated polyolefin resin composition
JP6660517B1 (en) Method for producing chlorinated polyolefin resin
JP4240882B2 (en) Resin composition for printing ink and method for producing the same
WO2022173073A1 (en) Thermoplastic starch composition, method for preparing same, and uses thereof
KR100328378B1 (en) Highly stable chlorinated polyolefin composition
JP5703423B2 (en) Chlorinated polyolefin resin
JP3106096B2 (en) Polyvinyl alcohol-based thermoplastic copolymer and method for producing the same
JP2000086877A (en) Plasticized polylactic acid composition
JP3318925B2 (en) Binder resin composition and its production method and use
WO2018128111A1 (en) Modified polyolefin resin
JP3328928B2 (en) Resin composition for printing ink and method for producing the same
JP3898636B2 (en) Binder resin composition, production method and use thereof
JP2610566B2 (en) Coating resin composition for polyolefin molding and method for producing the same
JPH059298A (en) Polyolefin copolymer grafted with polycaprolactone and preparation thereof
JP3045498B2 (en) Binder resin composition and method for producing the same
JP3965697B2 (en) Chlorinated polyolefin binder resin composition with good solvent resistance
JP2001114961A (en) Binder resin composition and its preparation method
JP2000007979A (en) Coating resin composition for polyolefin and its production
JP2001064396A (en) Coating resin composition for polyolefinic resin
EP1065245A1 (en) Binder resin composition and process for the production thereof
WO2024053489A1 (en) (meta)acrylate-modified polyolefin resin
JP2005112953A (en) Polyolefin for use in polyurethane resin-adhering polyolefin resin composition, and this polyolefin-containing, polyurethane resin-adhering polyolefin resin composition
KR20140125347A (en) Polymer composition containing oxidation-modifiable chlorinated propylene and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4240882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees