WO2018128111A1 - Modified polyolefin resin - Google Patents

Modified polyolefin resin Download PDF

Info

Publication number
WO2018128111A1
WO2018128111A1 PCT/JP2017/046355 JP2017046355W WO2018128111A1 WO 2018128111 A1 WO2018128111 A1 WO 2018128111A1 JP 2017046355 W JP2017046355 W JP 2017046355W WO 2018128111 A1 WO2018128111 A1 WO 2018128111A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
polyolefin resin
modified polyolefin
weight
modified
Prior art date
Application number
PCT/JP2017/046355
Other languages
French (fr)
Japanese (ja)
Inventor
勝 神埜
由生 ▲高▼田
早川 潤一
実 矢田
高本 直輔
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2018560369A priority Critical patent/JP6943882B2/en
Priority to TW106146640A priority patent/TWI762549B/en
Publication of WO2018128111A1 publication Critical patent/WO2018128111A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/06Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Definitions

  • the present invention relates to a modified polyolefin resin.
  • Polyolefin base materials such as polypropylene are widely used for plastic molded parts, various films for food packaging materials and the like because they have excellent performance and are inexpensive. At that time, the surface of the polyolefin substrate is printed or painted for the purpose of surface protection or improvement of aesthetics.
  • the polyolefin base material is a nonpolar base material and has low surface free energy and further has crystallinity, there is a problem that ink and paint are difficult to adhere. Therefore, a technique for improving the adhesion to a polyolefin base material by adding a chlorinated polyolefin resin to ink or paint during printing or painting is widely used.
  • an object of the present invention is to provide a modified polyolefin resin having excellent chipping resistance.
  • a polyolefin resin or a modified product thereof is a copolymer in which a polymer having a predetermined (meth) acrylic acid ester unit and having a glass transition temperature of 0 ° C. or less is grafted. It has been found that the above-mentioned problems can be solved by a certain modified polyolefin resin. That is, the present invention provides the following.
  • Component (A) Polyolefin resin or modified product thereof
  • Component (B) Containing structural unit (i) derived from (meth) acrylic acid ester represented by the following general formula (I), glass transition temperature
  • a modified polyolefin resin which is a copolymer grafted with a polymer having (Tg) of 0 ° C. or lower.
  • [5] The modified polyolefin resin according to any one of [1] to [4], wherein the component (B) has a weight average molecular weight of 1,000 or more and 100,000 or less.
  • [6] The modified polyolefin resin according to any one of [1] to [5], wherein the hydroxyl value of the component (B) is from 5 mgKOH / g to 560 mgKOH / g.
  • [7] Any one of [1] to [6], wherein the weight ratio of component (A) to component (B) (component (A) / component (B)) is 20/80 or more and 80/20 or less.
  • a dispersion composition comprising the modified polyolefin resin according to any one of [1] to [8] and a dispersion medium.
  • a primer comprising the modified polyolefin resin according to any one of [1] to [8] or the dispersion composition according to [9].
  • Component (A) Polyolefin resin or modified product thereof
  • Component (B) Containing structural unit (i) derived from (meth) acrylic acid ester represented by the following general formula (I), glass transition temperature
  • a method for producing a modified polyolefin resin comprising a step of graft polymerization of a polymer having (Tg) of 0 ° C. or lower.
  • CH 2 C (R 1 ) COOR 2 (I) (In Formula (I), R 1 represents a hydrogen atom or methyl, R 2 represents a group represented by —C n H 2n + 1 , and n represents an integer of 1 to 18)
  • a modified polyolefin resin excellent in chipping resistance can be provided.
  • (meth) acrylic acid includes methacrylic acid and acrylic acid
  • (meth) acrylate includes methacrylate and acrylate.
  • the modified polyolefin resin of the present invention comprises a component (A): a polyolefin resin or a modified product thereof, a component (B): a structural unit derived from a (meth) acrylic acid ester represented by the general formula (I) (i) ) And a glass transition temperature (Tg) of 0 ° C. or lower is grafted.
  • Component (A) is a polyolefin resin or a modified product of a polyolefin resin.
  • Component (A) is a polyolefin resin or a modified product of a polyolefin resin.
  • Polyolefin resin The polyolefin resin as the component (A) is an olefin polymer.
  • the polyolefin resin as the component (A) is preferably a polyolefin resin produced using a Ziegler-Natta catalyst or a metallocene catalyst as a polymerization catalyst, more preferably a Ziegler-Natta catalyst or a metallocene catalyst as a polymerization catalyst.
  • metallocene catalysts can be used. Specific examples of the metallocene catalyst include a catalyst obtained by combining the components (1) and (2) described below, and (3) as necessary, and the components (1) and (2) described below. In addition, a catalyst obtained by combining (3) if necessary is preferable.
  • Component (1) a metallocene complex that is a transition metal compound of Groups 4 to 6 in the periodic table having at least one conjugated five-membered ring ligand.
  • -Component (2) ion-exchangeable layered silicate.
  • -Component (3) organoaluminum compound.
  • a polyolefin resin synthesized using a metallocene catalyst is preferable as the component (A) because it has a narrow molecular weight distribution, excellent random copolymerizability, a narrow composition distribution, and a wide range of comonomers that can be copolymerized.
  • the structure of the polyolefin resin as the component (A) is not particularly limited, and may be any of an isotactic structure, an atactic structure, a syndiotactic structure and the like that can be taken by a normal polymer compound.
  • a polyolefin resin having an isotactic structure polymerized using a metallocene catalyst is preferable as the component (A).
  • Modified polyolefin resin Component (A) may be a modified polyolefin resin.
  • Examples and preferred examples of the polyolefin resin in the modified polyolefin resin include the above item [1-1-1. As already described in [Polyolefin Resin].
  • the type of modification is not particularly limited, and examples thereof include known modifications such as chlorination; epoxidation; hydroxylation; anhydrous carboxylic oxidation; carboxylic oxidation;
  • the modified polyolefin resin can be obtained by modifying the polyolefin resin using a known method.
  • the modified product of the polyolefin resin as the component (A) is preferably a chlorinated polyolefin resin. A method for chlorinating a polyolefin resin will be described later.
  • the chlorine content of the chlorinated polyolefin resin as the component (A) is preferably 15% by weight or more, more preferably 20% by weight or more.
  • the modified polyolefin resin is excellent in dispersibility in alcohols such as ethanol and isopropanol.
  • the upper limit of the chlorine content in the chlorinated polyolefin resin as the component (A) is preferably 40% by weight or less, more preferably 35% by weight or less.
  • the chlorine content is 40% by weight or less, the modified polyolefin resin is excellent in adhesion to a polyolefin substrate.
  • the modified product as the component (A) may be an acid-modified product obtained by modifying a polyolefin resin with an acid.
  • the acid for modification is not particularly limited, and examples thereof include ⁇ , ⁇ -unsaturated carboxylic acids and ⁇ , ⁇ -unsaturated carboxylic acid derivatives (eg, maleic acid, maleic anhydride, fumaric acid, citraconic acid, Citraconic anhydride, mesaconic acid, itaconic acid, itaconic anhydride, aconitic acid, aconitic anhydride, hymic anhydride, (meth) acrylic acid), and acid anhydrides of ⁇ , ⁇ -unsaturated carboxylic acids are preferred, Maleic anhydride is more preferred.
  • Component (A) is preferably a chlorinated polyolefin resin or an acid-modified chlorinated polyolefin resin.
  • the weight average molecular weight (Mw) of the component (A) is preferably 5,000 or more. When the weight average molecular weight is 5,000 or more, the cohesive strength of the resin is sufficient and the adhesion to the substrate is excellent.
  • the upper limit of the weight average molecular weight of component (A) is preferably 150,000 or less. When the weight average molecular weight is 150,000 or less, the compatibility with other resins contained in the paint or ink is good, and the adhesion to the substrate is good.
  • the weight average molecular weight can be obtained from a standard polystyrene calibration curve by gel permeation chromatography (GPC).
  • a component (B) contains the structural unit (i) derived from the (meth) acrylic acid ester represented by general formula (I).
  • CH 2 C (R 1 ) COOR 2 (I)
  • the structural unit derived from a certain monomer is a structural unit obtained when a certain monomer is used for the polymerization reaction.
  • the structural unit (i) preferably has 4 or more carbon atoms, preferably 12 or less.
  • the structural unit (i) preferably has 4 to 12 carbon atoms.
  • the chipping resistance of the modified polyolefin resin can be further improved.
  • the number of carbon atoms of the structural unit (i) is usually the same as the number of carbon atoms of the (meth) acrylic acid ester represented by the general formula (I), which is derived from the structural unit (i).
  • the structural unit (i) contained in the component (B) may be a single type or two or more types.
  • Component (B) may contain a structural unit other than the structural unit (i).
  • the structural unit other than the structural unit (i) that may be contained in the component (B) include a structural unit derived from ⁇ , ⁇ -unsaturated carboxylic acid (eg, a structure derived from (meth) acrylic acid). Units) and structural units derived from ⁇ , ⁇ -unsaturated carboxylic acid esters other than the structural unit (i) (eg, (meth) acrylic acid alkyl esters, (meth) acrylic acid hydroxyalkyl esters).
  • Component (B) has a glass transition temperature (Tg) of 0 ° C. or lower, preferably ⁇ 20 ° C. or lower, more preferably ⁇ 25 ° C. or lower, and further preferably ⁇ 30 ° C. or lower.
  • Tg glass transition temperature
  • Tg is usually ⁇ 70 ° C. or higher, preferably ⁇ 65 ° C. or higher, more preferably ⁇ 60 ° C. or higher.
  • the glass transition temperature (Tg) is obtained by using the value of each glass transition temperature when each monomer unit constituting the component (B) is a homopolymer and the weight ratio of each monomer unit in the component (B). It can be calculated by the following FOX equation.
  • the Tg of each homopolymer may be Tg listed in the Polymer Handbook (Wiley-Interscience Publication, 4th Edition, 1999) and product data.
  • the weight ratio of each monomer unit in component (B) is usually the same as the weight ratio (blending ratio) of each monomer with respect to the total monomer weight used in producing the polymer of component (B). To do.
  • component (B) and composed of n kinds of monomer units U 1 ⁇ U n, monomer units U 1 ⁇ U Tg 1 ⁇ each glass transition temperature of the homopolymer of the n Tg n and then, each of the weight fraction of monomer units U 1 ⁇ U n and W 1 ⁇ W n.
  • the 1 the sum of proportions by weight of monomer units U 1 ⁇ U n.
  • the glass transition temperature of component (B) As the glass transition temperature of component (B), the glass transition temperature measured for the polymer of component (B) as a raw material before grafting to component (A) may be used.
  • the glass transition temperature of the component (B) as a raw material can be measured using, for example, a differential scanning calorimeter (eg, “DSC6200R thermal analysis system”, supplied from Seiko Instruments Inc.).
  • the glass transition temperature of the component (B) according to the present invention is the value of each glass transition temperature when each monomer unit constituting the component (B) is a homopolymer and each unit in the component (B). It is a value calculated by the FOX equation using the weight ratio of the monomer unit.
  • Weight average molecular weight of component (B) Although there is no limitation in particular in the weight average molecular weight (Mw) of a component (B), Preferably it is 1,000 or more, More preferably, it is 3,000 or more, Preferably it is 100,000 or less, More preferably 20,000 or less.
  • the weight average molecular weight of component (B) is preferably 1,000 to 100,000, more preferably 3,000 to 20,000.
  • the weight average molecular weight of the component (B) usually coincides with the weight average molecular weight measured for the polymer of the component (B) as a raw material before being grafted to the component (A).
  • the hydroxyl value of component (B) is not particularly limited, but is preferably 5 mgKOH / g or more, preferably 560 mgKOH / g or less, more preferably 280 mgKOH / g or less, and even more preferably 168 mgKOH / g or less. It is.
  • the component (B) has a hydroxyl value of 5 mgKOH / g or more, when the modified polyolefin resin is combined with other components to form a composition (for example, a coating composition), the compatibility with the other components is good. It becomes.
  • the modified polyolefin resin has an appropriate polarity, so when the modified polyolefin resin is combined with other components to form a composition, The compatibility with the component is improved.
  • the hydroxyl value of component (B) is preferably 5 to 560 mgKOH / g, more preferably 5 to 280 mgKOH / g, and still more preferably 5 to 168 mgKOH / g.
  • Hydroxyl value X B component (B), component (B) n type (n is an integer of 1 or more) is composed of monomer units U 1 ⁇ U n of the monomer unit U 1 ⁇ U n hydroxyl value of a homopolymer of each set to X 1 ⁇ X n (mgKOH / g), the weight ratio of the monomer units U 1 ⁇ U n in component (B), respectively and Y 1 ⁇ Y n (where monomer The sum of the weight ratios of the body units U 1 to U n is 1.) and the following formula.
  • X B X 1 Y 1 + X 2 Y 2 +... X n Y n
  • the hydroxyl value of component (B) in the examples is also a value calculated by the above method.
  • the modified polyolefin resin of the present invention is a copolymer in which the component (B) is grafted to the component (A): polyolefin resin or a modified product thereof.
  • the modified polyolefin resin of the present invention may be a copolymer in which the component (B) is grafted to the component (A), and after the graft polymerization reaction for grafting the component (B) to the component (A). Further, it may be a copolymer modified with a modifying agent (for example, with chlorine and / or acid), or a copolymer not modified with a modifying agent after the graft polymerization reaction.
  • a modifying agent for example, with chlorine and / or acid
  • the polymer of component (B) is grafted to component (A).
  • the modified polyolefin resin of the present invention may be a resin produced by grafting a polymer of the component (B) as a raw material to the component (A) as a raw material by a graft polymerization reaction.
  • a resin produced by grafting a monomer for constituting the polymer (block) of the component (B) to the component (A) sequentially or simultaneously by a graft polymerization reaction may be used.
  • the modified polyolefin resin of the present invention may be a chlorinated graft modified polyolefin resin, an acid modified graft modified polyolefin resin, or an acid modified and chlorinated graft modified polyolefin resin.
  • the modified polyolefin resin of the present invention is preferably a chlorinated resin.
  • “Chlorinated resins” include resins in which component (A) is chlorinated, resins in which component (B) is chlorinated, and resins in which components (A) and (B) are chlorinated.
  • the modified polyolefin resin of the present invention is more preferably a chlorinated resin in which the component (A) is chlorinated.
  • the weight average molecular weight of the modified polyolefin resin of the present invention is not particularly limited, but is preferably 10,000 or more, more preferably 30,000 or more, preferably 200,000 or less, more preferably 150,000 or less. Adhesion is improved when the weight average molecular weight of the modified polyolefin resin is 10,000 or more. Further, when the weight average molecular weight of the modified polyolefin resin is 200,000 or less, when the modified polyolefin resin is combined with other components to form a composition, the compatibility with the other components becomes good.
  • the weight average molecular weight of the modified polyolefin resin of the present invention is preferably 10,000 to 200,000, and more preferably 30,000 to 150,000.
  • component (B) Although there is no limitation in particular in the content rate of the component (B) in the modified polyolefin resin of this invention, Preferably it is 20 weight% or more, More preferably, it is 30 weight% or more, More preferably, it is 50 weight% or more. is there. The upper limit is preferably 80% by weight or less.
  • the content of the component (B) in the modified polyolefin resin means the weight ratio of the component (B) grafted to the component (A) to the modified polyolefin resin.
  • the weight ratio (%) of the component (B) part to the modified polyolefin resin usually coincides with the blending ratio (%) of the component (B) graft-polymerized to the component (A) when producing the modified polyolefin resin ( However, the total of the blending weight of component (A) and the blending weight of component (B) is 100%.
  • the weight ratio of component (A) to component (B) in the modified polyolefin resin of the present invention is not particularly limited, but is preferably 20/80 or more, more preferably 30/70 or more, and still more preferably. It is 50/50 or more, preferably 80/20 or less.
  • the weight ratio of component (A) to component (B) in the modified polyolefin resin of the present invention is preferably 20/80 or more and 80/20 or less.
  • the production method of the modified polyolefin resin of the present invention is derived, for example, from component (A): polyolefin resin or a modified product thereof, component (B): (meth) acrylic acid ester represented by the above general formula (I) And a step of graft polymerizing a polymer containing the structural unit (i) and having a glass transition temperature (Tg) of 0 ° C. or lower.
  • R 1 represents a hydrogen atom or methyl
  • R 2 represents a group represented by —C n H 2n + 1
  • n represents an integer of 1 to 18.
  • Component (A) and Component (B) are the items [1.
  • the component (B) as a raw material represented by the general formula (I) ( A method of graft copolymerizing a polymer containing a structural unit (i) derived from a (meth) acrylic acid ester and having a glass transition temperature (Tg) of 0 ° C.
  • component (A) as a raw material
  • component (B) And a method of graft copolymerizing a (meth) acrylic acid ester represented by the above general formula (I), which is a raw material for constituting the polymer.
  • a (meth) acrylic acid ester represented by the above general formula (I) is graft copolymerized with the component (A) as a raw material
  • the (meth) acrylic acid ester represented by the above general formula (I) You may add sequentially to the component (A) as a raw material, or may be added at once. Moreover, you may add monomers other than the (meth) acrylic acid ester represented by the said general formula (I) to the component (A) as a raw material.
  • the conditions for graft polymerization are not particularly limited, and may be a known method such as a melting method or a solution method.
  • the melting method is advantageous in that the operation is simple and the reaction can be performed in a short time.
  • the solution method is used, a uniform graft polymer can be obtained with few side reactions.
  • component (A) is heated and melted (heated and melted) in the presence of a radical reaction initiator to react with the component (B).
  • Component (B) may be in the form of a monomer before polymerization or in the form of a polymer after polymerization.
  • the temperature for heating and melting may be not lower than the melting point of component (A), and preferably not lower than the melting point of component (A) and not higher than 300 ° C.
  • equipment such as a Banbury mixer, a kneader, and an extruder can be used.
  • the component (A) is dissolved in an organic solvent and then reacted with the component (B) by heating and stirring in the presence of a radical reaction initiator.
  • Component (B) may be in the form of a monomer before polymerization or in the form of a polymer after polymerization.
  • the organic solvent an aromatic hydrocarbon solvent such as toluene or xylene is preferably used.
  • the temperature during the reaction is preferably 100 to 180 ° C.
  • an organic peroxide type compound or an azonitrile is mentioned.
  • the organic peroxide compounds include di-tert-butyl peroxide, dicumyl peroxide, tert-butyl cumyl peroxide, benzoyl peroxide, dilauryl peroxide, 2,5-dimethyl-2,5- Di (tert-butylperoxy) hexane, cumene hydroperoxide, tert-butyl hydroperoxide, 1,1-bis (tert-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (tert -Butylperoxy) -cyclohexane, cyclohexanone peroxide, tert-butylperoxybenzoate, tert-butylperoxyisobutyrate, tert-butylper
  • the component (A) may be graft-polymerized as a composition containing an optional stabilizer in addition to the component (A).
  • optional stabilizers for example, epoxy compounds; metal soaps such as calcium stearate and lead stearate, which are used as stabilizers for polyvinyl chloride resins; organometallic compounds such as dibutyltin dilaurate and dibutylmalate Hydrotalcite compounds.
  • the epoxy compound is not particularly limited, but an epoxy compound that is compatible with a resin that has been modified such as chlorination is preferable. Examples of the epoxy compound include compounds having an epoxy equivalent of about 100 to 500 and having one or more epoxy groups per molecule.
  • epoxy compounds include vegetable oils having natural unsaturated groups.
  • Epoxidized vegetable oil obtained by epoxidizing with peracid such as peracetic acid (epoxidized soybean oil, epoxidized linseed oil, etc.); epoxidized unsaturated fatty acid such as oleic acid, tall oil fatty acid, soybean oil fatty acid, etc.
  • Epoxidized fatty acid esters Epoxidized alicyclic compounds such as epoxidized tetrahydrophthalate; obtained by condensing bisphenol A or polyhydric alcohol and epichlorohydrin, for example, bisphenol A glycidyl ether, ethylene glycol glycidyl ether, propylene glycol glycidyl Ether, glyce Ethers such as allyl polyglycidyl ether and sorbitol polyglycidyl ether; and butyl glycidyl ether, 2-ethylhexyl glycidyl ether, decyl glycidyl ether, stearyl glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, sec-butylphenyl glycidyl ether, and monoepoxy compounds represented by tert-butylphenyl glycidyl
  • One type of stabilizer may be used alone, or a combination of two or more types may be used.
  • the weight ratio of the stabilizer to the component (A) is preferably 1 to 20% by weight (in terms of solid content).
  • the method for producing the modified polyolefin resin of the present invention may include an optional step in addition to the above-described steps.
  • the optional step include a step of graft-polymerizing the component (B) to the component (A) to obtain a graft-modified polyolefin-based resin, and further modifying the graft-modified polyolefin-based resin.
  • the type of modification is not particularly limited, and examples thereof include known modifications such as chlorination; epoxidation; hydroxylation; anhydrous carboxylic oxidation; carboxylic oxidation; These modifications can be performed by known methods.
  • the production method of the present invention may include a step of chlorinating the resin at any stage of the production.
  • the polyolefin resin is chlorinated.
  • a production method for obtaining a modified polyolefin resin which is a chlorinated resin for example, a method of grafting component (B) onto component (A) and then chlorinating, a method of chlorinating polyolefin resin and component (A) And a method of grafting component (B) onto component (A) after obtaining chlorinated polyolefin resin as.
  • the chlorination method may be a known method and is not particularly limited. Examples thereof include a method in which chlorine is blown after the resin is dissolved in a chlorination solvent such as chloroform and chlorine is introduced. More specifically, the chlorination is carried out by dispersing or dissolving the resin in a medium such as water, carbon tetrachloride, or chloroform, and applying pressure or atmospheric pressure in the presence of a catalyst or under irradiation with ultraviolet light at 50 to 140 ° C. This can be done by blowing chlorine gas in the temperature range.
  • the chlorinated solvent used can be usually distilled off under reduced pressure or replaced with another organic solvent.
  • the chlorine content of the chlorinated polyolefin resin as the component (A) is preferably 15% by weight or more, more preferably 20% by weight. That's it.
  • the resulting modified polyolefin resin is excellent in dispersibility in alcohols such as ethanol and isopropanol.
  • the upper limit of the chlorine content in the chlorinated polyolefin resin as the component (A) is preferably 40% by weight or less, more preferably 35% by weight or less.
  • the chlorine content is 40% by weight or less, the resulting modified polyolefin resin is excellent in adhesion to a polyolefin substrate.
  • the modified polyolefin resin of the present invention may constitute a modified polyolefin resin composition together with other optional components.
  • the optional component include a stabilizer for suppressing the release of chlorine.
  • Stabilizers are not particularly limited.
  • epoxy compounds epoxy compounds; metal soaps such as calcium stearate and lead stearate used as stabilizers for polyvinyl chloride resins; organic metals such as dibutyltin dilaurate and dibutylmalate Compounds: Hydrotalcite compounds are exemplified, and an epoxy compound is preferable.
  • an epoxy compound is not specifically limited, For example, said [2.
  • the modified polyolefin resin composition may be in the form of a dispersion composition containing a modified polyolefin resin and a dispersion medium.
  • the “dispersion medium” includes a solvent capable of dissolving the modified polyolefin resin
  • the “dispersion composition” may be a solution of the modified polyolefin resin composition.
  • dispersion medium examples include aromatic hydrocarbons such as toluene and xylene; alicyclic hydrocarbons such as cyclohexane and methylcyclohexane; aliphatic hydrocarbons such as hexane, heptane, and octane; acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • Ketones such as methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate; alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol; ethylene glycol, Examples include glycols such as ethyl cellosolve and butyl cellosolve; water and the like.
  • the dispersion medium may be a single type or a combination of two or more types.
  • modified polyolefin resin of the present invention can be used as a metal and / or resin adhesive, primer, paint binder and ink binder.
  • the modified polyolefin resin of the present invention has good adhesion and excellent chipping resistance, and is therefore useful as a binder for automobile paint and a primer for automobile painting.
  • Part and % mean “part by weight” and “% by weight”, respectively, unless otherwise specified.
  • the following operations were performed in a normal temperature and normal pressure atmosphere unless otherwise specified.
  • Polyolefin Resin A biaxial extrusion in which a propylene random copolymer (propylene unit content: 80% by weight, ethylene unit content 20% by weight) produced using a metallocene catalyst as a polymerization catalyst is set at a barrel temperature of 400 ° C. It was supplied to a machine for thermal degradation to obtain a polypropylene resin (A5) having a weight average molecular weight of 2,000.
  • Chlorinated Polyolefin Resin 100 parts by weight of the polypropylene resin (A1) obtained in Production Example A1 was charged into a glass-lined reaction kettle. Chloroform was added thereto, and chlorine gas and oxygen gas were blown in while irradiating ultraviolet rays under a pressure of 2 kg / cm 2 , and chlorinated until the chlorine content became 32 wt%. After completion of the reaction, 6 parts by weight of an epoxy compound (Eposizer W-100EL, manufactured by Dainippon Ink & Chemicals, Inc.) is added as a stabilizer and supplied to a vented extruder equipped with a solvent removal suction part on the screw shaft part. Then, the solvent was removed and solidified to obtain a chlorinated polypropylene resin (A1CL1) having a weight average molecular weight of 5000, which is a chlorinated polyolefin resin.
  • an epoxy compound Eposizer W-100EL, manufactured by Dainippon Ink & Chemicals, Inc.
  • Chlorinated Polyolefin Resin Chlorinated Polypropylene resin (A5CL2) having a weight average molecular weight of 2,000 as in Production Example CL1, except that the polypropylene resin (A5) obtained in Production Example A5 was used. Got.
  • Acid-Modified Polyolefin Resin 100 parts by weight of the polypropylene resin (A3) obtained in Production Example A3 is placed in a three-necked flask equipped with a stirrer, a dropping funnel, and a monomer reflux condenser tube, and 180 ° C. Completely dissolved in an oil bath. After replacing the flask with nitrogen for about 10 minutes, 4 parts by weight of maleic anhydride was added over about 5 minutes while stirring, and then 0.4 parts by weight of di-tert-butyl peroxide was added to 1 part of heptane. It melt
  • a polyolefin resin (A3M1) was obtained.
  • Example 1 (Production of acrylic polymer (B1)) After adding 2.8 parts by weight of a peroxyester peroxide (Nyper BMT-K40, manufactured by NOF Corporation) to 233 parts of toluene heated to 85 ° C. in a nitrogen atmosphere, the examples in Table 2 100 parts by weight of each acrylic monomer was added at the blending ratio described in 1 and reacted at 85 ° C. for 6 hours or longer, then cooled and cooled with an acrylic polymer having a glass transition temperature of ⁇ 66 ° C. A coalescence (B1) was obtained.
  • a peroxyester peroxide Neyper BMT-K40, manufactured by NOF Corporation
  • Example 2 An acrylic polymer having a glass transition temperature of ⁇ 33 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added in the mixing ratio described in Example 2 in Table 2. Combined (B2) was obtained. Instead of 80 parts of chlorinated polypropylene resin (A1CL1), 50 parts of acid-modified chlorinated polypropylene resin (A2M2CL1) obtained in Production Example MCL1 was used, and acrylic polymer (B1) was used in place of 20 parts. A toluene dispersion containing the modified polyolefin resin (C2) was obtained in the same manner as in Example 1 except that 50 parts of the coalescence (B2) was used.
  • a toluene dispersion containing the modified polyolefin resin (C2) was obtained in the same manner as in Example 1 except that 50 parts of the coalescence (B2) was used.
  • Acrylic polymer having a glass transition temperature of ⁇ 1 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added in the mixing ratio described in Example 3 in Table 2. Combined (B3) was obtained. Instead of 80 parts of chlorinated polypropylene resin (A1CL1), 20 parts of acid-modified chlorinated polypropylene resin (A1M2CL2) obtained in Production Example MCL2 was used, and acrylic polymer (B1) instead of 20 parts. A toluene dispersion containing the modified polyolefin resin (C3) was obtained in the same manner as in Example 1 except that 80 parts of the combined (B3) was used.
  • Acrylic polymer having a glass transition temperature of ⁇ 46 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Example 5 in Table 2. Combined (B5) was obtained. Instead of 80 parts of chlorinated polypropylene resin (A1CL1), 60 parts of acid-modified chlorinated polypropylene resin (A4M1CL4) obtained in Production Example MCL4 was used, and acrylic polymer (B1) instead of 20 parts. A toluene dispersion containing the modified polyolefin resin (C5) was obtained in the same manner as in Example 1 except that 40 parts of the coalesced (B5) was used.
  • Example 6 An acrylic polymer having a glass transition temperature of -43 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Example 6 in Table 2. Combined (B6) was obtained.
  • the chlorinated polypropylene resin (A4CL3) obtained in Production Example CL3 was used instead of the chlorinated polypropylene resin (A1CL1), and the acrylic polymer (B6) was used instead of the acrylic polymer (B1).
  • a toluene dispersion containing a modified polyolefin resin (C6) was obtained.
  • Example 7 An acrylic polymer having a glass transition temperature of ⁇ 60 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Example 7 in Table 2. Combined (B7) was obtained.
  • Modified polyolefin resin in the same manner as in Example 1 except that 60 parts of chlorinated polypropylene resin (A1CL1) was used and 40 parts of acrylic polymer (B7) was used instead of 20 parts of acrylic polymer (B1). A toluene dispersion containing (C7) was obtained.
  • Example 8 An acrylic polymer having a glass transition temperature of ⁇ 66 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Example 8 in Table 2. Combined (B8) was obtained. Instead of 80 parts of the chlorinated polypropylene resin (A1CL1), 70 parts of the chlorinated polypropylene resin (A5CL2) obtained in Production Example CL2 was used, and an acrylic polymer (B1) instead of 20 parts. B8) A toluene dispersion containing the modified polyolefin resin (C8) was obtained in the same manner as in Example 1 except that 30 parts were used.
  • Acrylic polymer having a glass transition temperature of ⁇ 24 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Example 9 in Table 2. Combined (B9) was obtained.
  • a toluene dispersion containing C8) was obtained.
  • Example 10 An acrylic polymer having a glass transition temperature of ⁇ 66 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Example 10 in Table 2. Combined (B10) was obtained. Instead of 80 parts of chlorinated polypropylene resin (A1CL1), 60 parts of acid-modified polypropylene resin (A3M1) obtained in Production Example M1 was used, and acrylic polymer (B10) instead of 20 parts of acrylic polymer (B1). ) A toluene dispersion containing the modified polyolefin resin (C10) was obtained in the same manner as in Example 1 except that 40 parts were used.
  • a toluene dispersion containing the modified polyolefin resin (C10) was obtained in the same manner as in Example 1 except that 40 parts were used.
  • Tg Glass transition temperature
  • ⁇ Hydroxyl value of component (B) (acrylic polymer) (mgKOH / g)>
  • the hydroxyl value in the case where each monomer used in producing the polymer of the component (B) that has been identified is a homopolymer, and the blending ratio of each monomer used in producing the component (B) And calculated by the method described above.
  • ⁇ Paint stability> The toluene dispersions of the modified polypropylene resins obtained in Examples and Comparative Examples were blended with toluene to prepare a toluene dispersion having a solid content of 20%. 15 parts by weight of the prepared toluene dispersion (solid content 20 wt%) is added to 90 parts by weight of urethane resin (manufactured by Hitachi Chemical Co., Ltd., solid content 30 wt%), and the mixture is stirred for 10 minutes with a shaker and allowed to stand at room temperature for 1 day. The solution properties after placement were observed, and the paint stability (compatibility of the compounded resin) was visually judged from the separated state of the solution.
  • ⁇ Chip resistance test> The painted plate is cooled in a low-temperature room cooled to -20 ° C, and the test plate is fixed vertically to the test plate mounting part of the stepping stone testing machine (Suga Test Instruments Co., Ltd., JA-400 type) at an angle of 90 ° from the horizontal. Then, 100 g of No. 7 crushed stone was sprayed for 5 seconds at an air pressure of 5 kgf / cm 2 to scratch the test plate. After that, the painted plate is washed with water and dried, and the cellophane adhesive tape is adhered to the coated surface, peeled off with one end of the tape, and the paint film lifted by chipping is removed, and the degree of peeling scratches is evaluated according to the following criteria. did.
  • the evaluation of peeling scratches was performed within a frame of 70 mm length x 70 mm width of the impacted part.
  • the peeled area ratio per evaluation area is 0.0% or more and less than 0.7%.
  • the peeled area ratio per evaluation area is 0.7% or more and less than 1.2%.
  • the peeled area ratio per evaluation area is 1.2% or more and less than 3.5%.
  • D Inferior.
  • the peeled area ratio per evaluation area is 3.5% or more.
  • the modified polyolefin resin of the example is superior in chipping resistance as compared with Comparative Example 1. Moreover, it turns out that the modified polyolefin resin of an Example has no problem in the adhesiveness to the polypropylene which is a nonpolar base material, and stability when it is set as a resin dispersion liquid or a coating material.

Abstract

Provided is a modified polyolefin resin having excellent chipping resistance. The modified polyolefin resin is a copolymer in which component (B) is grafted to component (A), wherein the component (A) is a polyolefin resin or a modified product thereof, and the component (B) is a polymer which includes a structural unit (i) derived from (meth)acrylic acid ester and represented by general formula (I) below, and has a glass transition temperature (Tg) of 0°C or lower. (I) CH2=C(R1)COOR2 (in formula (I), R1 represents a hydrogen atom or methyl, R2 represents a group represented by -CnH2n+1, and n represents an integer of 1-18.)

Description

変性ポリオレフィン系樹脂Modified polyolefin resin
 本発明は、変性ポリオレフィン系樹脂に関する。 The present invention relates to a modified polyolefin resin.
 ポリプロピレン等のポリオレフィン基材は、優れた性能を持ち安価であるため、プラスチック成型部品や、食品包装材の各種フィルム等に広く用いられている。その際、表面保護や美観の改善を目的として、ポリオレフィン基材の表面に印刷や塗装が施される。
 しかしながら、ポリオレフィン基材は非極性基材であり、表面自由エネルギーが低く、更には結晶性を有するため、インキや塗料が付着しにくいという問題がある。そのため、印刷や塗装等の際に、塩素化ポリオレフィン樹脂をインキや塗料に添加することで、ポリオレフィン基材への付着性を向上させる手法が広く用いられている。
Polyolefin base materials such as polypropylene are widely used for plastic molded parts, various films for food packaging materials and the like because they have excellent performance and are inexpensive. At that time, the surface of the polyolefin substrate is printed or painted for the purpose of surface protection or improvement of aesthetics.
However, since the polyolefin base material is a nonpolar base material and has low surface free energy and further has crystallinity, there is a problem that ink and paint are difficult to adhere. Therefore, a technique for improving the adhesion to a polyolefin base material by adding a chlorinated polyolefin resin to ink or paint during printing or painting is widely used.
 自動車外板部に付属する部材、家電製品等の部材としても、その様なポリオレフィン基材等のプラスチック成型品が多く使用されている。通常、上塗り塗膜と成型品との付着性を向上させるために、塩素化ポリオレフィン樹脂等を含有するプライマーが、上塗り塗装がされる前にあらかじめプラスチック成形品に塗装される。
 その様な中で近年、自動車外板部の塗装においては、プラスチック成型品を自動車外板部と一体化させたのちに、塗装を行う方法が提案されている(特許文献1)。この様な塗装方法では、塗装ラインを一元化できるため、使用塗料量の低減、ひいてはコストの低減が期待される。
Such plastic molded products such as polyolefin base materials are often used as members attached to the outer panel of automobiles and members of household electrical appliances. Usually, in order to improve the adhesion between the top coat film and the molded product, a primer containing a chlorinated polyolefin resin or the like is applied to the plastic molded product in advance before the top coat is applied.
Under such circumstances, in recent years, a method of painting a plastic molded product after integrating the plastic molded product with the automobile outer plate has been proposed (Patent Document 1). In such a coating method, since the coating line can be unified, a reduction in the amount of paint used and, in turn, a reduction in cost is expected.
特開2012-213692号公報JP 2012-213692 A
 しかしながら特許文献1の塗装方法では、プライマーをプラスチック成型品のみならず金属である自動車外板部にも塗装する。そのため、自動車外板部に一定の厚さの塗膜を形成させようとした場合には、プライマー層の分だけ上塗り層が減少することとなり、且つプライマー層は跳ね石による塗膜剥がれへの耐性(耐チッピング性)が劣るために、塗装部分全体の耐チッピング性が低下するという問題がある。
 そこで本発明においては、耐チッピング性に優れた変性ポリオレフィン系樹脂を提供することを目的とする。
However, in the coating method of Patent Document 1, the primer is applied not only to a plastic molded product but also to an automobile outer plate that is a metal. Therefore, when trying to form a coating film with a certain thickness on the automobile outer plate, the overcoat layer will be reduced by the amount of the primer layer, and the primer layer is resistant to peeling of the coating film by the leapstone. Since the (chipping resistance) is inferior, there is a problem that the chipping resistance of the entire coated portion is lowered.
Accordingly, an object of the present invention is to provide a modified polyolefin resin having excellent chipping resistance.
 本発明者らは、鋭意研究した結果、ポリオレフィン樹脂又はその変性物に、所定の(メタ)アクリル酸エステル単位を含みガラス転移温度が0℃以下である重合体がグラフトされている共重合体である変性ポリオレフィン系樹脂により、上記課題が解決されることを見出した。すなわち、本発明は以下を提供する。 As a result of diligent research, the present inventors have found that a polyolefin resin or a modified product thereof is a copolymer in which a polymer having a predetermined (meth) acrylic acid ester unit and having a glass transition temperature of 0 ° C. or less is grafted. It has been found that the above-mentioned problems can be solved by a certain modified polyolefin resin. That is, the present invention provides the following.
 [1] 成分(A):ポリオレフィン樹脂又はその変性物に、成分(B):下記一般式(I)で表される(メタ)アクリル酸エステルに由来する構成単位(i)を含みガラス転移温度(Tg)が0℃以下である重合体がグラフトされている共重合体である、変性ポリオレフィン系樹脂。
 CH=C(R)COOR・・・(I)
(式(I)中、Rは水素原子又はメチルを表し、Rは-C2n+1で表される基を表し、nは1~18の整数を表す。)
 [2] 構成単位(i)の炭素原子数が、4~12である、[1]に記載の変性ポリオレフィン系樹脂。
 [3] 成分(B)における構成単位(i)の含有率が、40重量%以上100重量%以下である、[2]に記載の変性ポリオレフィン系樹脂。
 [4] 成分(A)が、塩素化ポリオレフィン樹脂である、[1]~[3]のいずれか1つに記載の変性ポリオレフィン系樹脂。
 [5] 成分(B)の重量平均分子量が、1,000以上100,000以下である、[1]~[4]のいずれか1つに記載の変性ポリオレフィン系樹脂。
 [6] 成分(B)の水酸基価が、5mgKOH/g以上560mgKOH/g以下である、[1]~[5]のいずれか1つに記載の変性ポリオレフィン系樹脂。
 [7] 成分(A)の成分(B)に対する重量比率(成分(A)/成分(B))が20/80以上80/20以下である、[1]~[6]のいずれか1つに記載の変性ポリオレフィン系樹脂。
 [8] 重量平均分子量が10,000以上200,000以下である、[1]~[7]のいずれか1つに記載の変性ポリオレフィン系樹脂。
 [9] [1]~[8]のいずれか1つに記載の変性ポリオレフィン系樹脂と分散媒とを含む、分散組成物。
 [10] [1]~[8]のいずれか1つに記載の変性ポリオレフィン系樹脂又は[9]に記載の分散組成物を含む、プライマー。
 [11] 成分(A):ポリオレフィン樹脂又はその変性物に、成分(B):下記一般式(I)で表される(メタ)アクリル酸エステルに由来する構成単位(i)を含みガラス転移温度(Tg)が0℃以下である重合体をグラフト重合する工程を含む、変性ポリオレフィン系樹脂の製造方法。
 CH=C(R)COOR・・・(I)
(式(I)中、Rは水素原子又はメチルを表し、Rは-C2n+1で表される基を表し、nは1~18の整数を表す。)
[1] Component (A): Polyolefin resin or modified product thereof, Component (B): Containing structural unit (i) derived from (meth) acrylic acid ester represented by the following general formula (I), glass transition temperature A modified polyolefin resin, which is a copolymer grafted with a polymer having (Tg) of 0 ° C. or lower.
CH 2 = C (R 1 ) COOR 2 (I)
(In Formula (I), R 1 represents a hydrogen atom or methyl, R 2 represents a group represented by —C n H 2n + 1 , and n represents an integer of 1 to 18)
[2] The modified polyolefin resin according to [1], wherein the structural unit (i) has 4 to 12 carbon atoms.
[3] The modified polyolefin resin according to [2], wherein the content of the structural unit (i) in the component (B) is 40% by weight or more and 100% by weight or less.
[4] The modified polyolefin resin according to any one of [1] to [3], wherein the component (A) is a chlorinated polyolefin resin.
[5] The modified polyolefin resin according to any one of [1] to [4], wherein the component (B) has a weight average molecular weight of 1,000 or more and 100,000 or less.
[6] The modified polyolefin resin according to any one of [1] to [5], wherein the hydroxyl value of the component (B) is from 5 mgKOH / g to 560 mgKOH / g.
[7] Any one of [1] to [6], wherein the weight ratio of component (A) to component (B) (component (A) / component (B)) is 20/80 or more and 80/20 or less. The modified polyolefin resin described in 1.
[8] The modified polyolefin resin according to any one of [1] to [7], which has a weight average molecular weight of 10,000 or more and 200,000 or less.
[9] A dispersion composition comprising the modified polyolefin resin according to any one of [1] to [8] and a dispersion medium.
[10] A primer comprising the modified polyolefin resin according to any one of [1] to [8] or the dispersion composition according to [9].
[11] Component (A): Polyolefin resin or modified product thereof, Component (B): Containing structural unit (i) derived from (meth) acrylic acid ester represented by the following general formula (I), glass transition temperature A method for producing a modified polyolefin resin, comprising a step of graft polymerization of a polymer having (Tg) of 0 ° C. or lower.
CH 2 = C (R 1 ) COOR 2 (I)
(In Formula (I), R 1 represents a hydrogen atom or methyl, R 2 represents a group represented by —C n H 2n + 1 , and n represents an integer of 1 to 18)
 本発明によれば、耐チッピング性に優れた変性ポリオレフィン系樹脂を提供することができる。 According to the present invention, a modified polyolefin resin excellent in chipping resistance can be provided.
 本明細書において、「(メタ)アクリル酸」には、メタクリル酸及びアクリル酸が包含され、「(メタ)アクリレート」には、メタクリレート及びアクリレートが包含される。 In this specification, “(meth) acrylic acid” includes methacrylic acid and acrylic acid, and “(meth) acrylate” includes methacrylate and acrylate.
[1.変性ポリオレフィン系樹脂]
 本発明の変性ポリオレフィン系樹脂は、成分(A):ポリオレフィン樹脂又はその変性物に、成分(B):上記一般式(I)で表される(メタ)アクリル酸エステルに由来する構成単位(i)を含みガラス転移温度(Tg)が0℃以下である重合体がグラフトされている共重合体である。
[1. Modified polyolefin resin]
The modified polyolefin resin of the present invention comprises a component (A): a polyolefin resin or a modified product thereof, a component (B): a structural unit derived from a (meth) acrylic acid ester represented by the general formula (I) (i) ) And a glass transition temperature (Tg) of 0 ° C. or lower is grafted.
[1-1.成分(A)]
 成分(A)は、ポリオレフィン樹脂又はポリオレフィン樹脂の変性物である。
[1-1-1.ポリオレフィン樹脂]
 成分(A)としてのポリオレフィン樹脂は、オレフィンの重合体である。成分(A)としてのポリオレフィン樹脂としては、好ましくは重合触媒としてチーグラー・ナッタ触媒又はメタロセン触媒を用いて製造したポリオレフィン樹脂であり、より好ましくは、重合触媒としてチーグラー・ナッタ触媒又はメタロセン触媒を用いて製造された、ポリプロピレン、又は、プロピレン及びα-オレフィン(例、エチレン、ブテン、3-メチル-1-ブテン、3-メチル-1-ヘプテン)を共重合して得られたポリオレフィン樹脂である。なお、プロピレン及びα-オレフィンをランダム共重合して得られたポリオレフィン樹脂を、プロピレン系ランダム共重合体ということがある。プロピレン系ランダム共重合体として、例えば、エチレン-プロピレン共重合体、プロピレン-ブテン共重合体、エチレン-プロピレン-ジエン共重合物、エチレン-プロピレン-ブテン共重合体が挙げられる。ポリオレフィン樹脂は、更に好ましくは、重合触媒としてメタロセン触媒を用いて製造された、ポリプロピレン又はプロピレン系ランダム共重合体であり、特に好ましくは、重合触媒としてメタロセン触媒を用いて製造された、ポリプロピレン、エチレン-プロピレン共重合体、プロピレン-ブテン共重合体、又はエチレン-プロピレン-ブテン共重合体である。これらの樹脂は、1種単独であってもよいし、複数の樹脂の組み合わせであってもよい。
[1-1. Ingredient (A)]
Component (A) is a polyolefin resin or a modified product of a polyolefin resin.
[1-1-1. Polyolefin resin]
The polyolefin resin as the component (A) is an olefin polymer. The polyolefin resin as the component (A) is preferably a polyolefin resin produced using a Ziegler-Natta catalyst or a metallocene catalyst as a polymerization catalyst, more preferably a Ziegler-Natta catalyst or a metallocene catalyst as a polymerization catalyst. Polypropylene or a polyolefin resin obtained by copolymerization of propylene and α-olefin (eg, ethylene, butene, 3-methyl-1-butene, 3-methyl-1-heptene), which is produced. A polyolefin resin obtained by random copolymerization of propylene and α-olefin is sometimes referred to as a propylene random copolymer. Examples of the propylene random copolymer include an ethylene-propylene copolymer, a propylene-butene copolymer, an ethylene-propylene-diene copolymer, and an ethylene-propylene-butene copolymer. The polyolefin resin is more preferably a polypropylene or propylene random copolymer produced using a metallocene catalyst as a polymerization catalyst, and particularly preferably polypropylene, ethylene produced using a metallocene catalyst as a polymerization catalyst. -Propylene copolymer, propylene-butene copolymer, or ethylene-propylene-butene copolymer. These resins may be used alone or in combination with a plurality of resins.
 前述のメタロセン触媒としては、公知のものが使用できる。メタロセン触媒として、具体的には例えば、以下に述べる成分(1)及び(2)、更に必要に応じて(3)を組み合わせて得られる触媒が挙げられ、以下に述べる成分(1)及び(2)、更に必要に応じて(3)を組み合わせて得られる触媒が好ましい。
・成分(1);共役五員環配位子を少なくとも一個有する周期律表4~6族の遷移金属化合物であるメタロセン錯体。
・成分(2);イオン交換性層状ケイ酸塩。
・成分(3);有機アルミニウム化合物。
Known metallocene catalysts can be used. Specific examples of the metallocene catalyst include a catalyst obtained by combining the components (1) and (2) described below, and (3) as necessary, and the components (1) and (2) described below. In addition, a catalyst obtained by combining (3) if necessary is preferable.
Component (1): a metallocene complex that is a transition metal compound of Groups 4 to 6 in the periodic table having at least one conjugated five-membered ring ligand.
-Component (2); ion-exchangeable layered silicate.
-Component (3); organoaluminum compound.
 メタロセン触媒を用いて合成したポリオレフィン樹脂は、分子量分布が狭い、ランダム共重合性に優れ組成分布が狭い、共重合しうるコモノマーの範囲が広いといった特徴があるので、成分(A)として好ましい。 A polyolefin resin synthesized using a metallocene catalyst is preferable as the component (A) because it has a narrow molecular weight distribution, excellent random copolymerizability, a narrow composition distribution, and a wide range of comonomers that can be copolymerized.
 成分(A)としてのポリオレフィン樹脂の構造は、特に限定されず、通常の高分子化合物が取り得るアイソタクチック構造、アタクチック構造、シンジオタクチック構造等のいずれであってもよい。ポリオレフィン基材への付着性、特に低温乾燥での付着性を考慮すると、成分(A)として、メタロセン触媒を用いて重合されたアイソタクチック構造のポリオレフィン樹脂が好ましい。 The structure of the polyolefin resin as the component (A) is not particularly limited, and may be any of an isotactic structure, an atactic structure, a syndiotactic structure and the like that can be taken by a normal polymer compound. In view of adhesion to a polyolefin substrate, particularly adhesion at low temperature, a polyolefin resin having an isotactic structure polymerized using a metallocene catalyst is preferable as the component (A).
 成分(A)としてのポリオレフィン樹脂の成分組成は、特に限定されるものではないが、成分(A)のプロピレン成分は、好ましくは60モル%以上、より好ましくは、70モル%以上、更に好ましくは80モル%以上であることが好ましい。成分(A)のプロピレン成分が60モル%以上である場合、プロピレン基材に対する付着性(接着性)がより良好となる。 The component composition of the polyolefin resin as the component (A) is not particularly limited, but the propylene component of the component (A) is preferably 60 mol% or more, more preferably 70 mol% or more, and still more preferably. It is preferable that it is 80 mol% or more. When the propylene component of the component (A) is 60 mol% or more, the adhesion (adhesiveness) to the propylene substrate becomes better.
[1-1-2.ポリオレフィン樹脂の変性物]
 成分(A)は、ポリオレフィン樹脂の変性物であってもよい。ポリオレフィン樹脂の変性物における、ポリオレフィン樹脂の例及び好ましい例は、上記項目[1-1-1.ポリオレフィン樹脂]において既に説明したとおりである。
 変性の種類は特に限定されず、例えば、塩素化;エポキシ化;ヒドロキシル化;無水カルボン酸化;カルボン酸化;等の公知の変性が挙げられる。ポリオレフィン樹脂の変性物は、ポリオレフィン樹脂を公知の方法を用いて変性することにより得ることができる。成分(A)としてのポリオレフィン樹脂の変性物は、塩素化ポリオレフィン樹脂であることが好ましい。ポリオレフィン樹脂の塩素化方法については、後述する。
[1-1-2. Modified polyolefin resin]
Component (A) may be a modified polyolefin resin. Examples and preferred examples of the polyolefin resin in the modified polyolefin resin include the above item [1-1-1. As already described in [Polyolefin Resin].
The type of modification is not particularly limited, and examples thereof include known modifications such as chlorination; epoxidation; hydroxylation; anhydrous carboxylic oxidation; carboxylic oxidation; The modified polyolefin resin can be obtained by modifying the polyolefin resin using a known method. The modified product of the polyolefin resin as the component (A) is preferably a chlorinated polyolefin resin. A method for chlorinating a polyolefin resin will be described later.
 成分(A)が塩素化ポリオレフィン樹脂である場合、成分(A)としての塩素化ポリオレフィン樹脂の塩素含有率は好ましくは15重量%以上であり、より好ましくは20重量%以上である。塩素含有率が15重量%以上であると、変性ポリオレフィン系樹脂が、エタノール、イソプロパノールなどのアルコール類への分散性に優れる。成分(A)としての塩素化ポリオレフィン樹脂における塩素含有率の上限は、好ましくは40重量%以下であり、より好ましくは35重量%以下である。塩素含有率が40重量%以下であると、変性ポリオレフィン系樹脂が、ポリオレフィン系基材への付着性に優れる。
 なお、樹脂の塩素含有率は、JIS-K7229に基づいて測定することができる。
 また、本発明の変性ポリオレフィン系樹脂における、成分(A)の塩素含有率は、成分(B)によりグラフトされる前の、原料としての成分(A)の塩素含有率と通常一致する。
When the component (A) is a chlorinated polyolefin resin, the chlorine content of the chlorinated polyolefin resin as the component (A) is preferably 15% by weight or more, more preferably 20% by weight or more. When the chlorine content is 15% by weight or more, the modified polyolefin resin is excellent in dispersibility in alcohols such as ethanol and isopropanol. The upper limit of the chlorine content in the chlorinated polyolefin resin as the component (A) is preferably 40% by weight or less, more preferably 35% by weight or less. When the chlorine content is 40% by weight or less, the modified polyolefin resin is excellent in adhesion to a polyolefin substrate.
The chlorine content of the resin can be measured based on JIS-K7229.
In addition, the chlorine content of component (A) in the modified polyolefin resin of the present invention usually coincides with the chlorine content of component (A) as a raw material before grafting with component (B).
 成分(A)としての変性物は、ポリオレフィン樹脂が酸により変性されている酸変性物であってもよい。変性するための酸としては、特に限定されないが、例えば、α,β-不飽和カルボン酸及びα,β-不飽和カルボン酸の誘導体(例、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、無水シトラコン酸、メサコン酸、イタコン酸、無水イタコン酸、アコニット酸、無水アコニット酸、無水ハイミック酸、(メタ)アクリル酸)が挙げられ、α,β-不飽和カルボン酸の酸無水物が好ましく、無水マレイン酸がより好ましい。
 ポリオレフィン樹脂を酸により変性する方法としては、公知の方法を使用することができ、例えば、ポリオレフィン樹脂を溶融し、変性するための酸及びラジカル反応開始剤を添加して酸変性ポリオレフィン樹脂を得る方法が挙げられる。反応装置には特に限定がなく、例えば、押出機を用いて変性反応を行ってもよい。
The modified product as the component (A) may be an acid-modified product obtained by modifying a polyolefin resin with an acid. The acid for modification is not particularly limited, and examples thereof include α, β-unsaturated carboxylic acids and α, β-unsaturated carboxylic acid derivatives (eg, maleic acid, maleic anhydride, fumaric acid, citraconic acid, Citraconic anhydride, mesaconic acid, itaconic acid, itaconic anhydride, aconitic acid, aconitic anhydride, hymic anhydride, (meth) acrylic acid), and acid anhydrides of α, β-unsaturated carboxylic acids are preferred, Maleic anhydride is more preferred.
As a method for modifying the polyolefin resin with an acid, a known method can be used. For example, a method for obtaining an acid-modified polyolefin resin by melting the polyolefin resin and adding an acid and a radical reaction initiator for modification. Is mentioned. The reaction apparatus is not particularly limited, and for example, the modification reaction may be performed using an extruder.
 成分(A)としての変性物は、ポリオレフィン樹脂が複数種の変性材料により変性されている変性物であってもよい。したがって、成分(A)としての変性物は、塩素化ポリオレフィン樹脂を酸(例えば、α,β-不飽和カルボン酸又はα,β-不飽和カルボン酸の誘導体)により変性して得られる酸変性塩素化ポリオレフィン樹脂であってもよい。 The modified product as the component (A) may be a modified product in which the polyolefin resin is modified with a plurality of modified materials. Therefore, the modified product as component (A) is an acid-modified chlorine obtained by modifying a chlorinated polyolefin resin with an acid (for example, α, β-unsaturated carboxylic acid or a derivative of α, β-unsaturated carboxylic acid). Polyolefin resin may be used.
 成分(A)は、好ましくは、塩素化ポリオレフィン樹脂又は酸変性塩素化ポリオレフィン樹脂である。 Component (A) is preferably a chlorinated polyolefin resin or an acid-modified chlorinated polyolefin resin.
[1-1-3.成分(A)の重量平均分子量]
 成分(A)の重量平均分子量(Mw)は、好ましくは5,000以上である。重量平均分子量が5,000以上であると、樹脂の凝集力が十分であり基材への付着性に優れる。成分(A)の重量平均分子量の上限は好ましくは150,000以下である。重量平均分子量が150,000以下であると、塗料又はインキ中に含まれる他樹脂との相溶性が良好であり、基材への付着性が良好である。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレン検量線から求め得る。
 成分(A)の重量平均分子量は、好ましくは5,000~150,000である。
 ここで、成分(A)の重量平均分子量は、成分(B)がグラフトされる前の、原料としての成分(A)について測定された重量平均分子量と通常一致する。
[1-1-3. Weight average molecular weight of component (A)]
The weight average molecular weight (Mw) of the component (A) is preferably 5,000 or more. When the weight average molecular weight is 5,000 or more, the cohesive strength of the resin is sufficient and the adhesion to the substrate is excellent. The upper limit of the weight average molecular weight of component (A) is preferably 150,000 or less. When the weight average molecular weight is 150,000 or less, the compatibility with other resins contained in the paint or ink is good, and the adhesion to the substrate is good. The weight average molecular weight can be obtained from a standard polystyrene calibration curve by gel permeation chromatography (GPC).
The weight average molecular weight of component (A) is preferably 5,000 to 150,000.
Here, the weight average molecular weight of the component (A) usually coincides with the weight average molecular weight measured for the component (A) as a raw material before the component (B) is grafted.
[1-2.成分(B)]
 成分(B)は、一般式(I)で表される(メタ)アクリル酸エステルに由来する構成単位(i)を含み且つガラス転移温度(Tg)が0℃以下である重合体である。
[1-2. Ingredient (B)]
The component (B) is a polymer containing the structural unit (i) derived from the (meth) acrylic acid ester represented by the general formula (I) and having a glass transition temperature (Tg) of 0 ° C. or lower.
[1-2-1.構成単位(i)]
 成分(B)は、一般式(I)で表される(メタ)アクリル酸エステルに由来する構成単位(i)を含む。
 CH=C(R)COOR・・・(I)
[1-2-1. Structural unit (i)]
A component (B) contains the structural unit (i) derived from the (meth) acrylic acid ester represented by general formula (I).
CH 2 = C (R 1 ) COOR 2 (I)
 一般式(I)中、Rは水素原子又はメチルを表し、Rは-C2n+1で表される基を表し、nは1~18の整数を表す。
 -C2n+1で表される基としては、直鎖アルキル基であっても、分岐アルキル基であってもよい。
In general formula (I), R 1 represents a hydrogen atom or methyl, R 2 represents a group represented by —C n H 2n + 1 , and n represents an integer of 1 to 18.
The group represented by —C n H 2n + 1 may be a linear alkyl group or a branched alkyl group.
 ここで、ある単量体に由来する構成単位とは、ある単量体を重合反応に使用した場合に得られる構造単位である。 Here, the structural unit derived from a certain monomer is a structural unit obtained when a certain monomer is used for the polymerization reaction.
 構成単位(i)は、好ましくは炭素原子数が4以上であり、好ましくは12以下である。構成単位(i)は、好ましくは炭素原子数が4~12である。これにより、変性ポリオレフィン系樹脂の耐チッピング性がより優れたものとなり得る。ここで、構成単位(i)の炭素原子数は、通常、構成単位(i)の由来である、一般式(I)で表される(メタ)アクリル酸エステルの炭素原子数と同じである。 The structural unit (i) preferably has 4 or more carbon atoms, preferably 12 or less. The structural unit (i) preferably has 4 to 12 carbon atoms. Thereby, the chipping resistance of the modified polyolefin resin can be further improved. Here, the number of carbon atoms of the structural unit (i) is usually the same as the number of carbon atoms of the (meth) acrylic acid ester represented by the general formula (I), which is derived from the structural unit (i).
 成分(B)が、炭素原子数が4~12である構成単位(i)(以下、構成単位(i4-12)ともいう。)を含む場合、成分(B)における構成単位(i4-12)の含有率は、好ましくは40重量%以上であり、より好ましくは60重量%以上であり、好ましくは100重量%以下である。これにより、変性ポリオレフィン系樹脂を他の成分と組み合わせて組成物(例えば、塗料組成物)とした場合に、他の成分との相溶性が良好となる。 In the case where the component (B) includes the structural unit (i) having 4 to 12 carbon atoms (hereinafter also referred to as the structural unit (i 4-12 )), the structural unit (i 4- The content of 12 ) is preferably 40% by weight or more, more preferably 60% by weight or more, and preferably 100% by weight or less. Thereby, when the modified polyolefin resin is combined with other components to form a composition (for example, a coating composition), the compatibility with the other components is improved.
 成分(B)における構成単位(i4-12)の含有率(%)は、成分(B)の重合体を製造する際に使用する全単量体重量に対する、一般式(I)で表される(メタ)アクリル酸エステルであって炭素原子数が4~12である単量体の重量百分率に通常一致する。 The content (%) of the structural unit (i 4-12 ) in the component (B) is represented by the general formula (I) with respect to the total monomer weight used in producing the polymer of the component (B). This usually corresponds to the weight percentage of the (meth) acrylic acid ester having 4 to 12 carbon atoms.
 成分(B)に含まれる構成単位(i)は、1種単独であってもよく、2種以上であってもよい。 The structural unit (i) contained in the component (B) may be a single type or two or more types.
 成分(B)は、構成単位(i)以外の構成単位が含まれていてもよい。成分(B)に含まれていてもよい構成単位(i)以外の構成単位としては、例えば、α,β-不飽和カルボン酸に由来する構成単位(例、(メタ)アクリル酸に由来する構成単位)、及び構成単位(i)以外の、α,β-不飽和カルボン酸エステルに由来する構成単位(例、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシアルキルエステル)が挙げられる。 Component (B) may contain a structural unit other than the structural unit (i). Examples of the structural unit other than the structural unit (i) that may be contained in the component (B) include a structural unit derived from α, β-unsaturated carboxylic acid (eg, a structure derived from (meth) acrylic acid). Units) and structural units derived from α, β-unsaturated carboxylic acid esters other than the structural unit (i) (eg, (meth) acrylic acid alkyl esters, (meth) acrylic acid hydroxyalkyl esters).
[1-2-2.成分(B)のガラス転移温度]
 成分(B)は、ガラス転移温度(Tg)が0℃以下であり、好ましくは-20℃以下であり、より好ましくは-25℃以下であり、更に好ましくは-30℃以下である。Tgが0℃を超える場合、変性ポリオレフィン系樹脂の柔軟性が低下するため、耐チッピング性が劣る。Tgは、通常-70℃以上であり、好ましくは-65℃以上であり、より好ましくは-60℃以上である。
[1-2-2. Glass transition temperature of component (B)]
Component (B) has a glass transition temperature (Tg) of 0 ° C. or lower, preferably −20 ° C. or lower, more preferably −25 ° C. or lower, and further preferably −30 ° C. or lower. When Tg exceeds 0 ° C., the flexibility of the modified polyolefin-based resin is lowered, so that the chipping resistance is inferior. Tg is usually −70 ° C. or higher, preferably −65 ° C. or higher, more preferably −60 ° C. or higher.
 ガラス転移温度(Tg)は、成分(B)を構成する各単量体単位をホモポリマーとした場合の各ガラス転移温度の値及び成分(B)における各単量体単位の重量割合を用いて下記FOX式により算出し得る。各ホモポリマーのTgは、ポリマーハンドブック(Wiley-Interscience Publication、4th Edition, 1999)及び製品データに掲載されているTgを用い得る。
 成分(B)における各単量体単位の重量割合は、成分(B)の重合体を製造する際に使用する全単量体重量に対する、各単量体の重量割合(配合比率)と通常一致する。
The glass transition temperature (Tg) is obtained by using the value of each glass transition temperature when each monomer unit constituting the component (B) is a homopolymer and the weight ratio of each monomer unit in the component (B). It can be calculated by the following FOX equation. The Tg of each homopolymer may be Tg listed in the Polymer Handbook (Wiley-Interscience Publication, 4th Edition, 1999) and product data.
The weight ratio of each monomer unit in component (B) is usually the same as the weight ratio (blending ratio) of each monomer with respect to the total monomer weight used in producing the polymer of component (B). To do.
<FOX式> 1/Tg=W/Tg+W/Tg+W/Tg+・・・W/Tg <FOX formula> 1 / Tg = W 1 / Tg 1 + W 2 / Tg 2 + W 3 / Tg 3 + ··· W n / Tg n
 上記式において、成分(B)がn種の単量体単位U~Uにより構成されるとし、単量体単位U~Uのホモポリマーにおけるガラス転移温度をそれぞれTg~Tgとし、単量体単位U~Uの重量割合をそれぞれW~Wとする。ただし、単量体単位U~Uの重量割合の合計を1とする。 In the above formula, component (B) and composed of n kinds of monomer units U 1 ~ U n, monomer units U 1 ~ U Tg 1 ~ each glass transition temperature of the homopolymer of the n Tg n and then, each of the weight fraction of monomer units U 1 ~ U n and W 1 ~ W n. However, the 1 the sum of proportions by weight of monomer units U 1 ~ U n.
 成分(B)のガラス転移温度として、成分(A)にグラフトされる前の、原料としての成分(B)の重合体について測定されたガラス転移温度を用いてよい。原料としての成分(B)のガラス転移温度は、例えば、示差走査熱量計(例、「DSC6200R 熱分析システム」、セイコーインスツル株式会社より供給)を用いて、測定し得る。
 好ましくは、本発明に係る成分(B)のガラス転移温度は、成分(B)を構成する各単量体単位をホモポリマーとした場合の各ガラス転移温度の値及び成分(B)における各単量体単位の重量割合を用いて上記FOX式により算出した値である。
As the glass transition temperature of component (B), the glass transition temperature measured for the polymer of component (B) as a raw material before grafting to component (A) may be used. The glass transition temperature of the component (B) as a raw material can be measured using, for example, a differential scanning calorimeter (eg, “DSC6200R thermal analysis system”, supplied from Seiko Instruments Inc.).
Preferably, the glass transition temperature of the component (B) according to the present invention is the value of each glass transition temperature when each monomer unit constituting the component (B) is a homopolymer and each unit in the component (B). It is a value calculated by the FOX equation using the weight ratio of the monomer unit.
[1-2-3.成分(B)の重量平均分子量]
 成分(B)の重量平均分子量(Mw)には特に限定はないが、好ましくは1,000以上であり、より好ましくは3,000以上であり、好ましくは100,000以下であり、より好ましくは20,000以下である。
 成分(B)の重量平均分子量は、好ましくは1,000~100,000であり、より好ましくは3,000~20,000である。
 ここで、成分(B)の重量平均分子量は、成分(A)にグラフトされる前の、原料としての成分(B)の重合体について測定された重量平均分子量と通常一致する。
[1-2-3. Weight average molecular weight of component (B)]
Although there is no limitation in particular in the weight average molecular weight (Mw) of a component (B), Preferably it is 1,000 or more, More preferably, it is 3,000 or more, Preferably it is 100,000 or less, More preferably 20,000 or less.
The weight average molecular weight of component (B) is preferably 1,000 to 100,000, more preferably 3,000 to 20,000.
Here, the weight average molecular weight of the component (B) usually coincides with the weight average molecular weight measured for the polymer of the component (B) as a raw material before being grafted to the component (A).
[1-2-4.成分(B)の水酸基価]
 成分(B)の水酸基価には特に限定がないが、好ましくは5mgKOH/g以上であり、好ましくは560mgKOH/g以下であり、より好ましくは280mgKOH/g以下であり、更に好ましくは168mgKOH/g以下である。
 成分(B)の水酸基価が5mgKOH/g以上であると、変性ポリオレフィン系樹脂を他の成分と組み合わせて組成物(例えば、塗料組成物)とした場合に、他の成分との相溶性が良好となる。成分(B)の水酸基価が560mgKOH/g以下であると、変性ポリオレフィン系樹脂の極性の大きさが適度であるため、変性ポリオレフィン系樹脂を他の成分と組み合わせて組成物とした場合に、他の成分との相溶性が良好となる。
 成分(B)の水酸基価は、好ましくは5~560mgKOH/gであり、より好ましくは5~280mgKOH/gであり、更に好ましくは5~168mgKOH/gである。
[1-2-4. Hydroxyl value of component (B)]
The hydroxyl value of component (B) is not particularly limited, but is preferably 5 mgKOH / g or more, preferably 560 mgKOH / g or less, more preferably 280 mgKOH / g or less, and even more preferably 168 mgKOH / g or less. It is.
When the component (B) has a hydroxyl value of 5 mgKOH / g or more, when the modified polyolefin resin is combined with other components to form a composition (for example, a coating composition), the compatibility with the other components is good. It becomes. When the hydroxyl value of the component (B) is 560 mgKOH / g or less, the modified polyolefin resin has an appropriate polarity, so when the modified polyolefin resin is combined with other components to form a composition, The compatibility with the component is improved.
The hydroxyl value of component (B) is preferably 5 to 560 mgKOH / g, more preferably 5 to 280 mgKOH / g, and still more preferably 5 to 168 mgKOH / g.
 成分(B)の水酸基価Xは、成分(B)がn種(nは1以上の整数)の単量体単位U~Uにより構成され、単量体単位U~Uのホモポリマーにおける水酸基価をそれぞれX~X(mgKOH/g)とし、成分(B)における単量体単位U~Uの重量割合をそれぞれY~Yとする(ただし、単量体単位U~Uの重量割合の合計を1とする。)と、下記の式から算出される。
 X=X+X+・・・X
 実施例における成分(B)の水酸基価も、上記方法により算出された値である。
Hydroxyl value X B component (B), component (B) n type (n is an integer of 1 or more) is composed of monomer units U 1 ~ U n of the monomer unit U 1 ~ U n hydroxyl value of a homopolymer of each set to X 1 ~ X n (mgKOH / g), the weight ratio of the monomer units U 1 ~ U n in component (B), respectively and Y 1 ~ Y n (where monomer The sum of the weight ratios of the body units U 1 to U n is 1.) and the following formula.
X B = X 1 Y 1 + X 2 Y 2 +... X n Y n
The hydroxyl value of component (B) in the examples is also a value calculated by the above method.
[1-3.変性ポリオレフィン系樹脂]
 本発明の変性ポリオレフィン系樹脂は、上記成分(A):ポリオレフィン樹脂又はその変性物に、上記成分(B)がグラフトされている共重合体である。
 本発明の変性ポリオレフィン系樹脂は、成分(A)に成分(B)がグラフトされている共重合体であってよく、成分(A)に成分(B)をグラフトするためのグラフト重合反応の後、更に、変性剤により(例えば塩素及び/又は酸により)変性された共重合体であってもよく、グラフト重合反応の後、更に変性剤により変性されていない共重合体であってもよい。
 本発明の変性ポリオレフィン系樹脂は、成分(A)に、成分(B)の重合体がグラフトされている。本発明の変性ポリオレフィン系樹脂は、原料としての成分(A)に、原料としての成分(B)の重合体をグラフト重合反応によりグラフトすることにより製造された樹脂であってもよく、原料としての成分(A)に、成分(B)の重合体(ブロック)を構成するための単量体を、逐次又は同時にグラフト重合反応によりグラフトすることにより製造された樹脂であってもよい。
 本発明の変性ポリオレフィン系樹脂は、塩素化されているグラフト変性ポリオレフィン系樹脂、酸変性されているグラフト変性ポリオレフィン系樹脂、又は酸変性及び塩素化されているグラフト変性ポリオレフィン系樹脂であり得る。
[1-3. Modified polyolefin resin]
The modified polyolefin resin of the present invention is a copolymer in which the component (B) is grafted to the component (A): polyolefin resin or a modified product thereof.
The modified polyolefin resin of the present invention may be a copolymer in which the component (B) is grafted to the component (A), and after the graft polymerization reaction for grafting the component (B) to the component (A). Further, it may be a copolymer modified with a modifying agent (for example, with chlorine and / or acid), or a copolymer not modified with a modifying agent after the graft polymerization reaction.
In the modified polyolefin resin of the present invention, the polymer of component (B) is grafted to component (A). The modified polyolefin resin of the present invention may be a resin produced by grafting a polymer of the component (B) as a raw material to the component (A) as a raw material by a graft polymerization reaction. A resin produced by grafting a monomer for constituting the polymer (block) of the component (B) to the component (A) sequentially or simultaneously by a graft polymerization reaction may be used.
The modified polyolefin resin of the present invention may be a chlorinated graft modified polyolefin resin, an acid modified graft modified polyolefin resin, or an acid modified and chlorinated graft modified polyolefin resin.
 本発明の変性ポリオレフィン系樹脂は、好ましくは塩素化樹脂である。「塩素化樹脂」には、成分(A)が塩素化されている樹脂、成分(B)が塩素化されている樹脂、成分(A)及び(B)が塩素化されている樹脂が包含される。本発明の変性ポリオレフィン系樹脂は、より好ましくは成分(A)が塩素化されている、塩素化樹脂である。 The modified polyolefin resin of the present invention is preferably a chlorinated resin. “Chlorinated resins” include resins in which component (A) is chlorinated, resins in which component (B) is chlorinated, and resins in which components (A) and (B) are chlorinated. The The modified polyolefin resin of the present invention is more preferably a chlorinated resin in which the component (A) is chlorinated.
 変性ポリオレフィン系樹脂が、塩素化樹脂である場合、変性ポリオレフィン系樹脂の塩素含有率は好ましくは10重量%以上であり、より好ましくは15重量%以上である。変性ポリオレフィン系樹脂における塩素含有率の上限は、好ましくは35重量%以下であり、より好ましくは30重量%以下である。
 変性ポリオレフィン系樹脂の塩素含有率が本範囲にあることで、変性ポリオレフィン系樹脂の極性が増し、また変性ポリオレフィン系樹脂が、塩素原子同士の立体反発のため直鎖構造を示し易くなると推測され、そのため高極性溶媒(例、アルコール類)への分散性に優れると推測される。
When the modified polyolefin resin is a chlorinated resin, the chlorine content of the modified polyolefin resin is preferably 10% by weight or more, more preferably 15% by weight or more. The upper limit of the chlorine content in the modified polyolefin resin is preferably 35% by weight or less, more preferably 30% by weight or less.
It is estimated that the chlorine content of the modified polyolefin resin is within this range, the polarity of the modified polyolefin resin increases, and the modified polyolefin resin is likely to exhibit a linear structure due to steric repulsion between chlorine atoms, Therefore, it is estimated that it is excellent in dispersibility in highly polar solvents (eg, alcohols).
[1-3-1.変性ポリオレフィン系樹脂の重量平均分子量]
 本発明の変性ポリオレフィン系樹脂の重量平均分子量には特に限定がないが、好ましくは10,000以上であり、より好ましくは30,000以上であり、好ましくは200,000以下であり、より好ましくは150,000以下である。
 変性ポリオレフィン系樹脂の重量平均分子量が10,000以上であることにより、付着性が向上する。また変性ポリオレフィン系樹脂の重量平均分子量が200,000以下であると、変性ポリオレフィン系樹脂を他の成分と組み合わせて組成物とした場合に、他の成分との相溶性が良好となる。
 本発明の変性ポリオレフィン系樹脂の重量平均分子量は、好ましくは10,000~200,000であり、より好ましくは、30,000~150,000である。
[1-3-1. Weight average molecular weight of modified polyolefin resin]
The weight average molecular weight of the modified polyolefin resin of the present invention is not particularly limited, but is preferably 10,000 or more, more preferably 30,000 or more, preferably 200,000 or less, more preferably 150,000 or less.
Adhesion is improved when the weight average molecular weight of the modified polyolefin resin is 10,000 or more. Further, when the weight average molecular weight of the modified polyolefin resin is 200,000 or less, when the modified polyolefin resin is combined with other components to form a composition, the compatibility with the other components becomes good.
The weight average molecular weight of the modified polyolefin resin of the present invention is preferably 10,000 to 200,000, and more preferably 30,000 to 150,000.
[1-3-2.成分(B)の含有率]
 本発明の変性ポリオレフィン系樹脂における成分(B)の含有率にはとくに限定がないが、好ましくは20重量%以上であり、より好ましくは30重量%以上であり、更に好ましくは50重量%以上である。上限は、好ましくは80重量%以下である。
 変性ポリオレフィン系樹脂における成分(B)の含有率とは、成分(A)にグラフトされている成分(B)部分の、変性ポリオレフィン系樹脂に対する重量比率を意味する。
 成分(B)部分の変性ポリオレフィン系樹脂に対する重量比率(%)は、変性ポリオレフィン系樹脂を製造するに際して、成分(A)にグラフト重合させる成分(B)の配合率(%)と通常一致する(ただし、成分(A)の配合重量及び成分(B)の配合重量の合計を100%とする。)。
[1-3-2. Content of component (B)]
Although there is no limitation in particular in the content rate of the component (B) in the modified polyolefin resin of this invention, Preferably it is 20 weight% or more, More preferably, it is 30 weight% or more, More preferably, it is 50 weight% or more. is there. The upper limit is preferably 80% by weight or less.
The content of the component (B) in the modified polyolefin resin means the weight ratio of the component (B) grafted to the component (A) to the modified polyolefin resin.
The weight ratio (%) of the component (B) part to the modified polyolefin resin usually coincides with the blending ratio (%) of the component (B) graft-polymerized to the component (A) when producing the modified polyolefin resin ( However, the total of the blending weight of component (A) and the blending weight of component (B) is 100%.)
[1-3-3.成分(A)/成分(B)]
 本発明の変性ポリオレフィン系樹脂における成分(A)の成分(B)に対する重量比率には特に限定がないが、好ましくは20/80以上であり、より好ましくは30/70以上であり、更に好ましくは50/50以上であり、好ましくは80/20以下である。
 本発明の変性ポリオレフィン系樹脂における成分(A)の成分(B)に対する重量比率は、好ましくは20/80以上80/20以下である。
[1-3-3. Ingredient (A) / Ingredient (B)]
The weight ratio of component (A) to component (B) in the modified polyolefin resin of the present invention is not particularly limited, but is preferably 20/80 or more, more preferably 30/70 or more, and still more preferably. It is 50/50 or more, preferably 80/20 or less.
The weight ratio of component (A) to component (B) in the modified polyolefin resin of the present invention is preferably 20/80 or more and 80/20 or less.
[2.変性ポリオレフィン系樹脂の製造方法]
 本発明の変性ポリオレフィン系樹脂の製造方法は、例えば、成分(A):ポリオレフィン樹脂又はその変性物に、成分(B):上記一般式(I)で表される(メタ)アクリル酸エステルに由来する構成単位(i)を含みガラス転移温度(Tg)が0℃以下である重合体をグラフト重合する工程を含む。但し、式(I)中、Rは水素原子又はメチルを表し、Rは-C2n+1で表される基を表し、nは1~18の整数を表す。
 成分(A)及び成分(B)は、項目[1.変性ポリオレフィン系樹脂]でそれぞれ説明された成分(A)及び成分(B)と同様である。
 成分(B)を成分(A)にグラフト共重合により導入する方法としては、例えば、原料としての成分(A)に、原料としての成分(B):上記一般式(I)で表される(メタ)アクリル酸エステルに由来する構成単位(i)を含みガラス転移温度(Tg)が0℃以下である重合体を、グラフト共重合させる方法、原料としての成分(A)に、成分(B)の重合体を構成するための原料である、上記一般式(I)で表される(メタ)アクリル酸エステルをグラフト共重合する方法が挙げられる。
 原料としての成分(A)に、上記一般式(I)で表される(メタ)アクリル酸エステルをグラフト共重合する場合、上記一般式(I)で表される(メタ)アクリル酸エステルを、原料としての成分(A)に逐次添加しても、一度に添加してもよい。また、上記一般式(I)で表される(メタ)アクリル酸エステル以外の単量体を、原料としての成分(A)に添加してもよい。
[2. Method for producing modified polyolefin resin]
The production method of the modified polyolefin resin of the present invention is derived, for example, from component (A): polyolefin resin or a modified product thereof, component (B): (meth) acrylic acid ester represented by the above general formula (I) And a step of graft polymerizing a polymer containing the structural unit (i) and having a glass transition temperature (Tg) of 0 ° C. or lower. In formula (I), R 1 represents a hydrogen atom or methyl, R 2 represents a group represented by —C n H 2n + 1 , and n represents an integer of 1 to 18.
Component (A) and Component (B) are the items [1. The same as the component (A) and the component (B) respectively described in the modified polyolefin resin].
As a method of introducing the component (B) into the component (A) by graft copolymerization, for example, the component (A) as a raw material, the component (B) as a raw material: represented by the general formula (I) ( A method of graft copolymerizing a polymer containing a structural unit (i) derived from a (meth) acrylic acid ester and having a glass transition temperature (Tg) of 0 ° C. or lower, and component (A) as a raw material, component (B) And a method of graft copolymerizing a (meth) acrylic acid ester represented by the above general formula (I), which is a raw material for constituting the polymer.
When the (meth) acrylic acid ester represented by the above general formula (I) is graft copolymerized with the component (A) as a raw material, the (meth) acrylic acid ester represented by the above general formula (I) You may add sequentially to the component (A) as a raw material, or may be added at once. Moreover, you may add monomers other than the (meth) acrylic acid ester represented by the said general formula (I) to the component (A) as a raw material.
 グラフト重合の条件は特に限定はなく、例えば、溶融法、溶液法などの公知の方法に従ってよい。溶融法による場合、操作が簡単である上、短時間で反応できるという利点がある。溶液法による場合、副反応が少なく均一なグラフト重合物を得ることができる。 The conditions for graft polymerization are not particularly limited, and may be a known method such as a melting method or a solution method. The melting method is advantageous in that the operation is simple and the reaction can be performed in a short time. When the solution method is used, a uniform graft polymer can be obtained with few side reactions.
 溶融法による場合には、ラジカル反応開始剤の存在下で成分(A)を加熱融解(加熱溶融)して成分(B)と反応させる。成分(B)は、重合前のモノマーの形態であっても、重合後の重合体の形態であってもよい。加熱融解の温度は、成分(A)の融点以上であればよく、成分(A)の融点以上300℃以下であることが好ましい。加熱融解の際には、バンバリーミキサー、ニーダー、押し出し機などの機器を使用することができる。 In the case of the melting method, the component (A) is heated and melted (heated and melted) in the presence of a radical reaction initiator to react with the component (B). Component (B) may be in the form of a monomer before polymerization or in the form of a polymer after polymerization. The temperature for heating and melting may be not lower than the melting point of component (A), and preferably not lower than the melting point of component (A) and not higher than 300 ° C. In the case of heating and melting, equipment such as a Banbury mixer, a kneader, and an extruder can be used.
 溶液法による場合には、成分(A)を有機溶剤に溶解させた後、ラジカル反応開始剤の存在下に成分(B)と加熱撹拌して反応させる。成分(B)は、重合前のモノマーの形態であっても、重合後の重合体の形態であってもよい。
 有機溶剤としては、トルエン、キシレンなどの芳香族炭化水素溶剤を用いることが好ましい。反応の際の温度は、100~180℃であることが好ましい。
In the case of the solution method, the component (A) is dissolved in an organic solvent and then reacted with the component (B) by heating and stirring in the presence of a radical reaction initiator. Component (B) may be in the form of a monomer before polymerization or in the form of a polymer after polymerization.
As the organic solvent, an aromatic hydrocarbon solvent such as toluene or xylene is preferably used. The temperature during the reaction is preferably 100 to 180 ° C.
 溶融法及び溶液法の際用いるラジカル反応開始剤としては、特に限定されないが、例えば、有機過酸化物系化合物又はアゾニトリル類が挙げられる。有機過酸化物系化合物としては、例えば、ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、ジラウリルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルペルオキシ)ヘキサン、クメンハイドロパーオキサイド、tert-ブチルハイドロパーオキサイド、1,1-ビス(tert-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)-シクロヘキサン、シクロヘキサノンパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシイソブチレート、tert-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシイソプロピルカーボネート、クミルパーオキシオクトエートなどが挙げられ、ラジカル重合を行う温度に応じて適切な半減期温度を有するものを選択してよい。 Although it does not specifically limit as a radical reaction initiator used in the case of a melting method and a solution method, For example, an organic peroxide type compound or an azonitrile is mentioned. Examples of the organic peroxide compounds include di-tert-butyl peroxide, dicumyl peroxide, tert-butyl cumyl peroxide, benzoyl peroxide, dilauryl peroxide, 2,5-dimethyl-2,5- Di (tert-butylperoxy) hexane, cumene hydroperoxide, tert-butyl hydroperoxide, 1,1-bis (tert-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (tert -Butylperoxy) -cyclohexane, cyclohexanone peroxide, tert-butylperoxybenzoate, tert-butylperoxyisobutyrate, tert-butylperoxy-3,5,5-trimethylhexanoate, tert-butyl 2-ethyl hexanoate, tert- butylperoxy isopropyl carbonate, cumylperoxy octoate, and the like, may be selected to have an appropriate half-life temperature in accordance with temperature at which the radical polymerization.
 本発明の変性ポリオレフィン系樹脂の製造方法において、成分(A)は、成分(A)の他に任意の安定剤を含む組成物の形態としてグラフト重合されてもよい。
 任意の安定剤としては、例えば、エポキシ化合物;ポリ塩化ビニル樹脂の安定剤として使用されている、ステアリン酸カルシウム、ステアリン酸鉛等の金属石鹸類;ジブチル錫ジラウレート、ジブチルマレート等の有機金属化合物類;ハイドロタルサイト類化合物が挙げられる。エポキシ化合物は、特に限定されないが、塩素化などの変性を行った樹脂と相溶することができるエポキシ化合物が好ましい。エポキシ化合物としては、エポキシ等量が100から500程度で、一分子あたり1個以上のエポキシ基を有する化合物が例示され得、そのようなエポキシ化合物としては、例えば、天然の不飽和基を有する植物油を、過酢酸などの過酸でエポキシ化して得られるエポキシ化植物油(エポキシ化大豆油、エポキシ化アマニ油など);オレイン酸、トール油脂肪酸、大豆油脂肪酸等の、不飽和脂肪酸をエポキシ化したエポキシ化脂肪酸エステル類;エポキシ化テトラヒドロフタレートなどのエポキシ化脂環式化合物;ビスフェノールA又は多価アルコールとエピクロルヒドリンとを縮合して得られる、例えば、ビスフェノールAグリシジルエーテル、エチレングリコールグリシジルエーテル、プロピレングリコールグリシジルエーテル、グリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等のエーテル類;及び、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、sec-ブチルフェニルグリシジルエーテル、tert-ブチルフェニルグリシジルエーテル、フェノールポリエチレンオキサイドグリシジルエーテル等に代表される、モノエポキシ化合物類;が挙げられる。安定剤は、1種単独でもよいし、2種以上の組み合わせであってもよい。成分(A)が安定剤を含む組成物の形態でグラフト重合される場合、安定剤の成分(A)に対する重量比率は、1~20重量%(固形分換算)であることが好ましい。
In the method for producing a modified polyolefin resin of the present invention, the component (A) may be graft-polymerized as a composition containing an optional stabilizer in addition to the component (A).
As optional stabilizers, for example, epoxy compounds; metal soaps such as calcium stearate and lead stearate, which are used as stabilizers for polyvinyl chloride resins; organometallic compounds such as dibutyltin dilaurate and dibutylmalate Hydrotalcite compounds. The epoxy compound is not particularly limited, but an epoxy compound that is compatible with a resin that has been modified such as chlorination is preferable. Examples of the epoxy compound include compounds having an epoxy equivalent of about 100 to 500 and having one or more epoxy groups per molecule. Examples of such epoxy compounds include vegetable oils having natural unsaturated groups. Epoxidized vegetable oil obtained by epoxidizing with peracid such as peracetic acid (epoxidized soybean oil, epoxidized linseed oil, etc.); epoxidized unsaturated fatty acid such as oleic acid, tall oil fatty acid, soybean oil fatty acid, etc. Epoxidized fatty acid esters; Epoxidized alicyclic compounds such as epoxidized tetrahydrophthalate; obtained by condensing bisphenol A or polyhydric alcohol and epichlorohydrin, for example, bisphenol A glycidyl ether, ethylene glycol glycidyl ether, propylene glycol glycidyl Ether, glyce Ethers such as allyl polyglycidyl ether and sorbitol polyglycidyl ether; and butyl glycidyl ether, 2-ethylhexyl glycidyl ether, decyl glycidyl ether, stearyl glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, sec-butylphenyl glycidyl ether, and monoepoxy compounds represented by tert-butylphenyl glycidyl ether, phenol polyethylene oxide glycidyl ether and the like. One type of stabilizer may be used alone, or a combination of two or more types may be used. When the component (A) is graft-polymerized in the form of a composition containing a stabilizer, the weight ratio of the stabilizer to the component (A) is preferably 1 to 20% by weight (in terms of solid content).
 本発明の変性ポリオレフィン系樹脂の製造方法は、上述の工程の他に、任意の工程を含んでいてもよい。
 任意の工程としては、例えば、成分(A)に成分(B)をグラフト重合してグラフト変性ポリオレフィン系樹脂を得た後、さらにグラフト変性ポリオレフィン系樹脂を変性する工程が挙げられる。変性の種類は特に限定されず、例えば、塩素化;エポキシ化;ヒドロキシル化;無水カルボン酸化;カルボン酸化;等の公知の変性が挙げられる。
 これらの変性は、公知の方法により行うことができる。
 例えば、変性ポリオレフィン系樹脂が、塩素化樹脂である場合、本発明の製造方法は、その製造の何れかの段階において樹脂を塩素化する工程を含んでいてもよく、例えば、ポリオレフィン樹脂を塩素化する工程、ポリオレフィン樹脂に成分(B)をグラフト重合した後に得られるグラフト変性ポリオレフィン系樹脂を塩素化する工程を含んでいてもよい。
 したがって、塩素化樹脂である変性ポリオレフィン系樹脂を得るための製造方法としては、例えば、成分(B)を成分(A)にグラフトした後に塩素化する方法、ポリオレフィン樹脂を塩素化して成分(A)としての塩素化ポリオレフィン樹脂を得た後に、成分(B)を成分(A)にグラフトする方法が挙げられる。
The method for producing the modified polyolefin resin of the present invention may include an optional step in addition to the above-described steps.
Examples of the optional step include a step of graft-polymerizing the component (B) to the component (A) to obtain a graft-modified polyolefin-based resin, and further modifying the graft-modified polyolefin-based resin. The type of modification is not particularly limited, and examples thereof include known modifications such as chlorination; epoxidation; hydroxylation; anhydrous carboxylic oxidation; carboxylic oxidation;
These modifications can be performed by known methods.
For example, when the modified polyolefin resin is a chlorinated resin, the production method of the present invention may include a step of chlorinating the resin at any stage of the production. For example, the polyolefin resin is chlorinated. And a step of chlorinating the graft-modified polyolefin resin obtained after graft polymerization of the component (B) onto the polyolefin resin.
Therefore, as a production method for obtaining a modified polyolefin resin which is a chlorinated resin, for example, a method of grafting component (B) onto component (A) and then chlorinating, a method of chlorinating polyolefin resin and component (A) And a method of grafting component (B) onto component (A) after obtaining chlorinated polyolefin resin as.
 塩素化の方法としては、公知の方法を用いることができ特に限定されないが、例えば樹脂をクロロホルムなどの塩素化溶媒に溶解した後に塩素ガスを吹き込み、塩素を導入する方法等を挙げることができる。更に具体的には、塩素化は、樹脂を水、四塩化炭素、又はクロロホルム等の媒体に分散又は溶解し、触媒の存在下又は紫外線の照射下において加圧又は常圧下に50~140℃の温度範囲で塩素ガスを吹き込むことにより行うことができる。 The chlorination method may be a known method and is not particularly limited. Examples thereof include a method in which chlorine is blown after the resin is dissolved in a chlorination solvent such as chloroform and chlorine is introduced. More specifically, the chlorination is carried out by dispersing or dissolving the resin in a medium such as water, carbon tetrachloride, or chloroform, and applying pressure or atmospheric pressure in the presence of a catalyst or under irradiation with ultraviolet light at 50 to 140 ° C. This can be done by blowing chlorine gas in the temperature range.
 塩素化樹脂の製造の際に塩素化溶媒が使用された場合、使用された塩素化溶媒は、通常、減圧などにより留去され得、あるいは別の有機溶剤で置換され得る。 When a chlorinated solvent is used in the production of the chlorinated resin, the chlorinated solvent used can be usually distilled off under reduced pressure or replaced with another organic solvent.
 ポリオレフィン樹脂を塩素化して成分(A)としての塩素化ポリオレフィン樹脂を得る場合、成分(A)としての塩素化ポリオレフィン樹脂の塩素含有率は好ましくは15重量%以上であり、より好ましくは20重量%以上である。塩素含有率が15重量%以上であると、得られる変性ポリオレフィン系樹脂が、エタノール、イソプロパノールなどのアルコール類への分散性に優れる。成分(A)としての塩素化ポリオレフィン樹脂における塩素含有率の上限は、好ましくは40重量%以下であり、より好ましくは35重量%以下である。塩素含有率が40重量%以下であると、得られる変性ポリオレフィン系樹脂が、ポリオレフィン系基材への付着性に優れる。 When the chlorinated polyolefin resin as the component (A) is obtained by chlorinating the polyolefin resin, the chlorine content of the chlorinated polyolefin resin as the component (A) is preferably 15% by weight or more, more preferably 20% by weight. That's it. When the chlorine content is 15% by weight or more, the resulting modified polyolefin resin is excellent in dispersibility in alcohols such as ethanol and isopropanol. The upper limit of the chlorine content in the chlorinated polyolefin resin as the component (A) is preferably 40% by weight or less, more preferably 35% by weight or less. When the chlorine content is 40% by weight or less, the resulting modified polyolefin resin is excellent in adhesion to a polyolefin substrate.
[3.変性ポリオレフィン系樹脂組成物]
 本発明の変性ポリオレフィン系樹脂は、他の任意の成分と共に、変性ポリオレフィン系樹脂組成物を構成してよい。任意の成分としては、例えば塩素の離脱を抑制するための安定剤が挙げられる。安定化剤は特に限定されないが、例えば、エポキシ化合物;ポリ塩化ビニル樹脂の安定剤として使用されている、ステアリン酸カルシウム、ステアリン酸鉛等の金属石鹸類;ジブチル錫ジラウレート、ジブチルマレート等の有機金属化合物類;ハイドロタルサイト類化合物が挙げられ、好ましくはエポキシ化合物である。エポキシ化合物は特に限定されないが、例えば、上記[2.変性ポリオレフィン系樹脂の製造方法]において、成分(A)の組成物が含み得る任意の安定剤として例示されたエポキシ化合物が挙げられ、塩素により変性されている変性ポリオレフィン樹脂と相溶するエポキシ化合物が好ましい。安定化剤として、これらのうち1種のみを用いてもよく、2種以上を併用してもよい。
 また、例えば、変性ポリオレフィン系樹脂組成物は、変性ポリオレフィン系樹脂及び分散媒を含む、分散組成物の形態であってもよい。なお、本明細書において、「分散媒」には、変性ポリオレフィン系樹脂を溶解し得る溶媒が含まれ、「分散組成物」は、変性ポリオレフィン系樹脂組成物の溶液であってもよい。
[3. Modified polyolefin resin composition]
The modified polyolefin resin of the present invention may constitute a modified polyolefin resin composition together with other optional components. Examples of the optional component include a stabilizer for suppressing the release of chlorine. Stabilizers are not particularly limited. For example, epoxy compounds; metal soaps such as calcium stearate and lead stearate used as stabilizers for polyvinyl chloride resins; organic metals such as dibutyltin dilaurate and dibutylmalate Compounds: Hydrotalcite compounds are exemplified, and an epoxy compound is preferable. Although an epoxy compound is not specifically limited, For example, said [2. In the method for producing a modified polyolefin resin], an epoxy compound exemplified as an optional stabilizer that the composition of component (A) can contain is exemplified, and an epoxy compound compatible with a modified polyolefin resin modified with chlorine is used. preferable. As a stabilizer, only 1 type may be used among these and 2 or more types may be used together.
In addition, for example, the modified polyolefin resin composition may be in the form of a dispersion composition containing a modified polyolefin resin and a dispersion medium. In the present specification, the “dispersion medium” includes a solvent capable of dissolving the modified polyolefin resin, and the “dispersion composition” may be a solution of the modified polyolefin resin composition.
 分散媒としては、例えば、トルエン、キシレン等の芳香族炭化水素;シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素;ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル等のエステル;メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール等のアルコール;エチレングリコール、エチルセロソルブ、ブチルセロソルブ等のグリコール;水等が挙げられる。
 分散媒は、1種単独であっても、2種以上の組み合わせであってもよい。
Examples of the dispersion medium include aromatic hydrocarbons such as toluene and xylene; alicyclic hydrocarbons such as cyclohexane and methylcyclohexane; aliphatic hydrocarbons such as hexane, heptane, and octane; acetone, methyl ethyl ketone, and methyl isobutyl ketone. Ketones; esters such as methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate; alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol; ethylene glycol, Examples include glycols such as ethyl cellosolve and butyl cellosolve; water and the like.
The dispersion medium may be a single type or a combination of two or more types.
[4.変性ポリオレフィン系樹脂の用途]
 本発明の変性ポリオレフィン系樹脂は、金属及び/又は樹脂用の接着剤、プライマー、塗料用バインダー及びインキ用バインダーとして用いることができる。特に本発明の変性ポリオレフィン系樹脂は、付着性が良好であり耐チッピング性に優れているので、自動車塗料用バインダー、自動車塗装用プライマーとして有用である。
[4. Use of modified polyolefin resin]
The modified polyolefin resin of the present invention can be used as a metal and / or resin adhesive, primer, paint binder and ink binder. In particular, the modified polyolefin resin of the present invention has good adhesion and excellent chipping resistance, and is therefore useful as a binder for automobile paint and a primer for automobile painting.
 次に本発明を実施例及び比較例により詳細に説明するが、本発明はこれらに限定されるものではない。「部」及び「%」は、別に断らない限り、それぞれ「重量部」及び「重量%」を意味する。以下の操作は、別に断らない限り、常温常圧大気中にて行った。 Next, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited thereto. “Part” and “%” mean “part by weight” and “% by weight”, respectively, unless otherwise specified. The following operations were performed in a normal temperature and normal pressure atmosphere unless otherwise specified.
<製造例A1>ポリオレフィン樹脂
 メタロセン触媒を重合触媒として製造したプロピレン系ランダム共重合体(プロピレン単位含有量:80重量%、エチレン単位含有量20重量%)をバレル温度350℃に設定した二軸押出機に供給して熱減成を行い、重量平均分子量5,000のポリプロピレン系樹脂(A1)を得た。
<Production Example A1> Polyolefin resin Twin-screw extrusion in which a propylene-based random copolymer (propylene unit content: 80% by weight, ethylene unit content 20% by weight) produced using a metallocene catalyst as a polymerization catalyst is set at a barrel temperature of 350 ° C. It was supplied to a machine for thermal degradation to obtain a polypropylene resin (A1) having a weight average molecular weight of 5,000.
<製造例A2>ポリオレフィン樹脂
 メタロセン触媒を重合触媒として製造したプロピレン系ランダム共重合体(プロピレン単位含有量:90重量%、エチレン単位含有量10重量%)を用いた以外は製造例A1と同様にして、重量平均分子量111,000のポリプロピレン系樹脂(A2)を得た。
<Production Example A2> Polyolefin Resin Same as Production Example A1 except that a propylene random copolymer (propylene unit content: 90% by weight, ethylene unit content 10% by weight) produced using a metallocene catalyst as a polymerization catalyst was used. Thus, a polypropylene resin (A2) having a weight average molecular weight of 111,000 was obtained.
<製造例A3>ポリオレフィン樹脂
 メタロセン触媒を重合触媒として製造したプロピレン系ランダム共重合体(プロピレン単位含有量:94重量%、エチレン単位含有量6重量%)を用いた以外は製造例A1と同様にして、重量平均分子量100,000のポリプロピレン系樹脂(A3)を得た。
<Production Example A3> Polyolefin Resin Similar to Production Example A1 except that a propylene random copolymer (propylene unit content: 94% by weight, ethylene unit content 6% by weight) produced using a metallocene catalyst as a polymerization catalyst was used. Thus, a polypropylene resin (A3) having a weight average molecular weight of 100,000 was obtained.
<製造例A4>ポリオレフィン樹脂
 メタロセン触媒を重合触媒として製造したプロピレン系ランダム共重合体(プロピレン単位含有量:90重量%、エチレン単位含有量5重量%、ブテン単位含有量5重量%)を用いた以外は製造例A1と同様にして、重量平均分子量45,000のポリプロピレン系樹脂(A4)を得た。
<Production Example A4> Polyolefin resin A propylene random copolymer produced using a metallocene catalyst as a polymerization catalyst (propylene unit content: 90 wt%, ethylene unit content 5 wt%, butene unit content 5 wt%) was used. Except for the above, a polypropylene resin (A4) having a weight average molecular weight of 45,000 was obtained in the same manner as in Production Example A1.
<製造例A5>ポリオレフィン樹脂
 メタロセン触媒を重合触媒として製造したプロピレン系ランダム共重合体(プロピレン単位含有量:80重量%、エチレン単位含有量20重量%)をバレル温度400℃に設定した二軸押出機に供給して熱減成を行い、重量平均分子量2,000のポリプロピレン系樹脂(A5)を得た。
<Production Example A5> Polyolefin Resin A biaxial extrusion in which a propylene random copolymer (propylene unit content: 80% by weight, ethylene unit content 20% by weight) produced using a metallocene catalyst as a polymerization catalyst is set at a barrel temperature of 400 ° C. It was supplied to a machine for thermal degradation to obtain a polypropylene resin (A5) having a weight average molecular weight of 2,000.
<製造例CL1>塩素化ポリオレフィン樹脂
 製造例A1で得られたポリプロピレン系樹脂(A1)100重量部を、グラスライニングされた反応釜に投入した。これにクロロホルムを加え、2kg/cmの圧力下、紫外線を照射しながら塩素ガス及び酸素ガスを吹き込み、塩素含有率が32wt%となるまで塩素化した。反応終了後、安定剤としてエポキシ化合物(エポサイザーW-100EL、大日本インキ化学工業(株)製)を6重量部添加し、スクリューシャフト部に脱溶剤用吸引部を備えたベント付き押出機に供給して、脱溶剤し、固形化し、塩素化ポリオレフィン樹脂である、重量平均分子量5000の塩素化ポリプロピレン系樹脂(A1CL1)を得た。
<Production Example CL1> Chlorinated Polyolefin Resin 100 parts by weight of the polypropylene resin (A1) obtained in Production Example A1 was charged into a glass-lined reaction kettle. Chloroform was added thereto, and chlorine gas and oxygen gas were blown in while irradiating ultraviolet rays under a pressure of 2 kg / cm 2 , and chlorinated until the chlorine content became 32 wt%. After completion of the reaction, 6 parts by weight of an epoxy compound (Eposizer W-100EL, manufactured by Dainippon Ink & Chemicals, Inc.) is added as a stabilizer and supplied to a vented extruder equipped with a solvent removal suction part on the screw shaft part. Then, the solvent was removed and solidified to obtain a chlorinated polypropylene resin (A1CL1) having a weight average molecular weight of 5000, which is a chlorinated polyolefin resin.
<製造例CL2>塩素化ポリオレフィン樹脂
 製造例A5で得られたポリプロピレン系樹脂(A5)を用いた以外は、製造例CL1と同様にして重量平均分子量2,000の塩素化ポリプロピレン系樹脂(A5CL2)を得た。
<Production Example CL2> Chlorinated Polyolefin Resin Chlorinated polypropylene resin (A5CL2) having a weight average molecular weight of 2,000 as in Production Example CL1, except that the polypropylene resin (A5) obtained in Production Example A5 was used. Got.
<製造例CL3>塩素化ポリオレフィン樹脂
 製造例A4で得られたポリプロピレン系樹脂(A4)を用いた以外は製造例CL1と同様にして、重量平均分子量50,000の塩素化ポリプロピレン系樹脂(A4CL3)を得た。
<Production Example CL3> Chlorinated Polyolefin Resin Chlorinated polypropylene resin (A4CL3) having a weight average molecular weight of 50,000 in the same manner as in Production Example CL1 except that the polypropylene resin (A4) obtained in Production Example A4 was used. Got.
<製造例M1>酸変性ポリオレフィン樹脂
 製造例A3で得られたポリプロピレン系樹脂(A3)100重量部を、攪拌機、滴下ロート、及びモノマー還流用の冷却管を取り付けた三口フラスコ中に入れ、180℃の油浴中で完全に溶解した。フラスコ内の窒素置換を約10分間行った後、撹拌を行いながら無水マレイン酸4重量部を約5分間かけて投入し、次にジ-tert-ブチルパーオキサイド0.4重量部をヘプタン1重量部に溶解し、滴下ロートより約30分かけて投入した。その後、系内を180℃に保ち、更に1時間反応を継続した後、アスピレーターでフラスコ内を減圧しながら約1時間かけて未反応の無水マレイン酸を取り除き、重量平均分子量105,000の酸変性ポリオレフィン樹脂(A3M1)を得た。
<Production Example M1> Acid-Modified Polyolefin Resin 100 parts by weight of the polypropylene resin (A3) obtained in Production Example A3 is placed in a three-necked flask equipped with a stirrer, a dropping funnel, and a monomer reflux condenser tube, and 180 ° C. Completely dissolved in an oil bath. After replacing the flask with nitrogen for about 10 minutes, 4 parts by weight of maleic anhydride was added over about 5 minutes while stirring, and then 0.4 parts by weight of di-tert-butyl peroxide was added to 1 part of heptane. It melt | dissolved in the part and it injected | thrown-in over about 30 minutes from the dropping funnel. Thereafter, the inside of the system was kept at 180 ° C., and the reaction was further continued for 1 hour. Then, the unreacted maleic anhydride was removed over about 1 hour while reducing the pressure in the flask with an aspirator, and the acid modification with a weight average molecular weight of 105,000 was performed. A polyolefin resin (A3M1) was obtained.
<製造例MCL1>酸変性塩素化ポリオレフィン樹脂
(酸変性)
 製造例A2で得られたポリプロピレン系樹脂(A2)100重量部と、無水マレイン酸4重量部、ジ-t-ブチルパーオキサイド2重量部とを均一に混合し、二軸押出機(L/D=60、φ=15mm、第1バレル~第14バレル)に供給した。滞留時間が10分、回転数200rpm、バレル温度が100℃(第1、2バレル)、200℃(第3~8バレル、90℃(第9、10バレル)、110℃(第11~14バレル)の条件で反応を行い、減圧処理を行うことで未反応の無水マレイン酸を除去し、無水マレイン酸変性ポリプロピレン系樹脂(A2M2)を得た。
<Production Example MCL1> Acid-modified chlorinated polyolefin resin (acid-modified)
100 parts by weight of the polypropylene resin (A2) obtained in Production Example A2, 4 parts by weight of maleic anhydride and 2 parts by weight of di-t-butyl peroxide were uniformly mixed, and a twin-screw extruder (L / D = 60, φ = 15 mm, 1st barrel to 14th barrel). Residence time 10 minutes, rotation speed 200 rpm, barrel temperature 100 ° C (first and second barrels), 200 ° C (third to eighth barrels, 90 ° C (9th and 10th barrels), 110 ° C (11th to 14th barrels) The reaction was carried out under the conditions of), and unreacted maleic anhydride was removed by performing a reduced pressure treatment to obtain a maleic anhydride-modified polypropylene resin (A2M2).
(塩素化)
 得られた無水マレイン酸変性ポリプロピレン系樹脂(A2M2)100重量部を、グラスライニングされた反応釜に投入した。これにクロロホルムを加え、2kg/cmの圧力下、紫外線を照射しながら塩素ガス及び酸素ガスを吹き込み、塩素含有率が32wt%となるまで塩素化した。反応終了後、安定剤としてエポキシ化合物(エポサイザーW-100EL、大日本インキ化学工業(株)製)を6重量部添加し、スクリューシャフト部に脱溶剤用吸引部を備えたベント付き押出機に供給して、脱溶剤し、固形化し、塩素化ポリオレフィン樹脂である、重量平均分子量143,000の酸変性塩素化ポリプロピレン系樹脂(A2M2CL1)を得た。
(Chlorination)
100 parts by weight of the obtained maleic anhydride-modified polypropylene resin (A2M2) was put into a glass-lined reaction kettle. Chloroform was added thereto, and chlorine gas and oxygen gas were blown in while irradiating ultraviolet rays under a pressure of 2 kg / cm 2 , and chlorinated until the chlorine content became 32 wt%. After completion of the reaction, 6 parts by weight of an epoxy compound (Eposizer W-100EL, manufactured by Dainippon Ink & Chemicals, Inc.) is added as a stabilizer and supplied to a vented extruder equipped with a solvent removal suction part on the screw shaft part. Then, the solvent was removed and solidified to obtain an acid-modified chlorinated polypropylene resin (A2M2CL1) having a weight average molecular weight of 143,000, which is a chlorinated polyolefin resin.
<製造例MCL2>酸変性塩素化ポリオレフィン樹脂
 製造例A1で得られたポリプロピレン系樹脂A1を用いた以外は、製造例MCL1と同様にして、重量平均分子量5,000の酸変性塩素化ポリプロピレン系樹脂(A1M2CL2)を得た。
<Production Example MCL2> Acid-Modified Chlorinated Polyolefin Resin An acid-modified chlorinated polypropylene resin having a weight average molecular weight of 5,000 in the same manner as in Production Example MCL1, except that the polypropylene resin A1 obtained in Production Example A1 was used. (A1M2CL2) was obtained.
<製造例MCL3>酸変性塩素化ポリオレフィン樹脂
 製造例A3で得られたポリプロピレン系樹脂A3を用いた以外は、製造例MCL1と同様にして、重量平均分子量110,000の酸変性塩素化ポリプロピレン系樹脂(A3M2CL3)を得た。
<Production Example MCL3> Acid-Modified Chlorinated Polyolefin Resin An acid-modified chlorinated polypropylene resin having a weight average molecular weight of 110,000 in the same manner as in Production Example MCL1 except that the polypropylene resin A3 obtained in Production Example A3 was used. (A3M2CL3) was obtained.
<製造例MCL4>酸変性塩素化ポリオレフィン樹脂
 製造例A4で得られたポリプロピレン系樹脂A4を用いた以外は、製造例M1と同様の方法で酸変性ポリオレフィン系樹脂(A4M1)を得た。次いで、得られた酸変性ポリオレフィン系樹脂(A4M1)を用いた以外は、製造例CL1と同様にして塩素化を行い、重量平均分子量75,000の酸変性塩素化ポリプロピレン系樹脂(A4M1CL4)を得た。
<Production Example MCL4> Acid-Modified Chlorinated Polyolefin Resin An acid-modified polyolefin resin (A4M1) was obtained in the same manner as in Production Example M1, except that the polypropylene resin A4 obtained in Production Example A4 was used. Next, chlorination was carried out in the same manner as in Production Example CL1 except that the obtained acid-modified polyolefin resin (A4M1) was used to obtain an acid-modified chlorinated polypropylene resin (A4M1CL4) having a weight average molecular weight of 75,000. It was.
<実施例1>
(アクリル重合体(B1)の製造)
 窒素雰囲気下で85℃に加温したトルエン233部に、パーオキシエステル系過酸化物(ナイパーBMT-K40、日本油脂(株)製)2.8重量部を加えた後、表2の実施例1に記載の配合比にて各アクリルモノマーを、各アクリルモノマーの合計で100重量部添加し、85℃にて6時間以上反応を行った後、冷却し、ガラス転移温度-66℃のアクリル重合体(B1)を得た。
<Example 1>
(Production of acrylic polymer (B1))
After adding 2.8 parts by weight of a peroxyester peroxide (Nyper BMT-K40, manufactured by NOF Corporation) to 233 parts of toluene heated to 85 ° C. in a nitrogen atmosphere, the examples in Table 2 100 parts by weight of each acrylic monomer was added at the blending ratio described in 1 and reacted at 85 ° C. for 6 hours or longer, then cooled and cooled with an acrylic polymer having a glass transition temperature of −66 ° C. A coalescence (B1) was obtained.
(変性ポリオレフィン系樹脂の製造)
 製造例CL1で得られた成分(A)としての塩素化ポリプロピレン系樹脂(A1CL1)80部と成分(B)としてのアクリル重合体(B1)20部とを、窒素雰囲気下で70℃に加温したトルエン233部に加えた後、70℃にて4時間反応を行い、冷却した後に、安定剤としてエポキシ化合物(エポサイザーW-100EL、大日本インキ化学工業(株)製)を1重量部添加し、変性ポリオレフィン系樹脂(C1)を含むトルエン分散液を得た。
(Manufacture of modified polyolefin resin)
80 parts of chlorinated polypropylene resin (A1CL1) as component (A) obtained in Production Example CL1 and 20 parts of acrylic polymer (B1) as component (B) were heated to 70 ° C. in a nitrogen atmosphere. After being added to 233 parts of toluene, reacted at 70 ° C. for 4 hours, cooled, and then added 1 part by weight of an epoxy compound (Eposizer W-100EL, manufactured by Dainippon Ink & Chemicals, Inc.) as a stabilizer. Then, a toluene dispersion containing the modified polyolefin resin (C1) was obtained.
<実施例2>
 表2の実施例2に記載の配合比にて各アクリルモノマーを添加した以外は、実施例1に記載のアクリル重合体(B1)の製造と同様にして、ガラス転移温度-33℃のアクリル重合体(B2)を得た。
 塩素化ポリプロピレン系樹脂(A1CL1)80部の代わりに、製造例MCL1で得られた酸変性塩素化ポリプロピレン系樹脂(A2M2CL1)50部を用い、またアクリル重合体(B1)20部の代わりにアクリル重合体(B2)50部を用いた以外は実施例1と同様にして、変性ポリオレフィン系樹脂(C2)を含むトルエン分散液を得た。
<Example 2>
An acrylic polymer having a glass transition temperature of −33 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added in the mixing ratio described in Example 2 in Table 2. Combined (B2) was obtained.
Instead of 80 parts of chlorinated polypropylene resin (A1CL1), 50 parts of acid-modified chlorinated polypropylene resin (A2M2CL1) obtained in Production Example MCL1 was used, and acrylic polymer (B1) was used in place of 20 parts. A toluene dispersion containing the modified polyolefin resin (C2) was obtained in the same manner as in Example 1 except that 50 parts of the coalescence (B2) was used.
<実施例3>
 表2の実施例3に記載の配合比にて各アクリルモノマーを添加した以外は、実施例1に記載のアクリル重合体(B1)の製造と同様にして、ガラス転移温度-1℃のアクリル重合体(B3)を得た。
 塩素化ポリプロピレン系樹脂(A1CL1)80部の代わりに、製造例MCL2で得られた酸変性塩素化ポリプロピレン系樹脂(A1M2CL2)20部を用い、またアクリル重合体(B1)20部の代わりにアクリル重合体(B3)80部を用いた以外は実施例1と同様にして、変性ポリオレフィン系樹脂(C3)を含むトルエン分散液を得た。
<Example 3>
Acrylic polymer having a glass transition temperature of −1 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added in the mixing ratio described in Example 3 in Table 2. Combined (B3) was obtained.
Instead of 80 parts of chlorinated polypropylene resin (A1CL1), 20 parts of acid-modified chlorinated polypropylene resin (A1M2CL2) obtained in Production Example MCL2 was used, and acrylic polymer (B1) instead of 20 parts. A toluene dispersion containing the modified polyolefin resin (C3) was obtained in the same manner as in Example 1 except that 80 parts of the combined (B3) was used.
<実施例4>
 表2の実施例4に記載の配合比にて各アクリルモノマーを添加した以外は、実施例1に記載のアクリル重合体(B1)の製造と同様にして、ガラス転移温度-55℃のアクリル重合体(B4)を得た。
 塩素化ポリプロピレン系樹脂(A1CL1)80部の代わりに、製造例MCL3で得られた酸変性塩素化ポリプロピレン系樹脂(A3M2CL3)70部を用い、またアクリル重合体(B1)20部の代わりにアクリル重合体(B4)30部を用いた以外は実施例1と同様にして、変性ポリオレフィン系樹脂(C4)を含むトルエン分散液を得た。
<Example 4>
An acrylic polymer having a glass transition temperature of −55 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Example 4 in Table 2. Combined (B4) was obtained.
Instead of 80 parts of chlorinated polypropylene resin (A1CL1), 70 parts of acid-modified chlorinated polypropylene resin (A3M2CL3) obtained in Production Example MCL3 was used, and acrylic polymer (B1) was used in place of 20 parts. A toluene dispersion containing the modified polyolefin resin (C4) was obtained in the same manner as in Example 1 except that 30 parts of the coalescence (B4) was used.
<実施例5>
 表2の実施例5に記載の配合比にて各アクリルモノマーを添加した以外は、実施例1に記載のアクリル重合体(B1)の製造と同様にして、ガラス転移温度-46℃のアクリル重合体(B5)を得た。
 塩素化ポリプロピレン系樹脂(A1CL1)80部の代わりに、製造例MCL4で得られた酸変性塩素化ポリプロピレン系樹脂(A4M1CL4)60部を用い、またアクリル重合体(B1)20部の代わりにアクリル重合体(B5)40部を用いた以外は実施例1と同様にして、変性ポリオレフィン系樹脂(C5)を含むトルエン分散液を得た。
<Example 5>
Acrylic polymer having a glass transition temperature of −46 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Example 5 in Table 2. Combined (B5) was obtained.
Instead of 80 parts of chlorinated polypropylene resin (A1CL1), 60 parts of acid-modified chlorinated polypropylene resin (A4M1CL4) obtained in Production Example MCL4 was used, and acrylic polymer (B1) instead of 20 parts. A toluene dispersion containing the modified polyolefin resin (C5) was obtained in the same manner as in Example 1 except that 40 parts of the coalesced (B5) was used.
<実施例6>
 表2の実施例6に記載の配合比にて各アクリルモノマーを添加した以外は、実施例1に記載のアクリル重合体(B1)の製造と同様にして、ガラス転移温度-43℃のアクリル重合体(B6)を得た。
 塩素化ポリプロピレン系樹脂(A1CL1)の代わりに、製造例CL3で得られた塩素化ポリプロピレン系樹脂(A4CL3)を用い、またアクリル重合体(B1)の代わりにアクリル重合体(B6)を用いた以外は実施例1と同様にして、変性ポリオレフィン系樹脂(C6)を含むトルエン分散液を得た。
<Example 6>
An acrylic polymer having a glass transition temperature of -43 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Example 6 in Table 2. Combined (B6) was obtained.
The chlorinated polypropylene resin (A4CL3) obtained in Production Example CL3 was used instead of the chlorinated polypropylene resin (A1CL1), and the acrylic polymer (B6) was used instead of the acrylic polymer (B1). In the same manner as in Example 1, a toluene dispersion containing a modified polyolefin resin (C6) was obtained.
<実施例7>
 表2の実施例7に記載の配合比にて各アクリルモノマーを添加した以外は、実施例1に記載のアクリル重合体(B1)の製造と同様にして、ガラス転移温度-60℃のアクリル重合体(B7)を得た。
 塩素化ポリプロピレン系樹脂(A1CL1)60部を用い、またアクリル重合体(B1)20部の代わりにアクリル重合体(B7)40部を用いた以外は実施例1と同様にして、変性ポリオレフィン系樹脂(C7)を含むトルエン分散液を得た。
<Example 7>
An acrylic polymer having a glass transition temperature of −60 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Example 7 in Table 2. Combined (B7) was obtained.
Modified polyolefin resin in the same manner as in Example 1 except that 60 parts of chlorinated polypropylene resin (A1CL1) was used and 40 parts of acrylic polymer (B7) was used instead of 20 parts of acrylic polymer (B1). A toluene dispersion containing (C7) was obtained.
<実施例8>
 表2の実施例8に記載の配合比にて各アクリルモノマーを添加した以外は、実施例1に記載のアクリル重合体(B1)の製造と同様にして、ガラス転移温度-66℃のアクリル重合体(B8)を得た。
 塩素化ポリプロピレン系樹脂(A1CL1)80部の代わりに、製造例CL2で得られた塩素化ポリプロピレン系樹脂(A5CL2)70部を用い、またアクリル重合体(B1)20部の代わりにアクリル重合体(B8)30部を用いた以外は実施例1と同様にして、変性ポリオレフィン系樹脂(C8)を含むトルエン分散液を得た。
<Example 8>
An acrylic polymer having a glass transition temperature of −66 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Example 8 in Table 2. Combined (B8) was obtained.
Instead of 80 parts of the chlorinated polypropylene resin (A1CL1), 70 parts of the chlorinated polypropylene resin (A5CL2) obtained in Production Example CL2 was used, and an acrylic polymer (B1) instead of 20 parts. B8) A toluene dispersion containing the modified polyolefin resin (C8) was obtained in the same manner as in Example 1 except that 30 parts were used.
<実施例9>
 表2の実施例9に記載の配合比にて各アクリルモノマーを添加した以外は、実施例1に記載のアクリル重合体(B1)の製造と同様にして、ガラス転移温度-24℃のアクリル重合体(B9)を得た。
 塩素化ポリプロピレン系樹脂(A1CL1)50部を用い、アクリル重合体(B1)20部の代わりにアクリル重合体(B9)50部を用いた以外は実施例1と同様にして、変性ポリオレフィン系樹脂(C8)を含むトルエン分散液を得た。
<Example 9>
Acrylic polymer having a glass transition temperature of −24 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Example 9 in Table 2. Combined (B9) was obtained.
A modified polyolefin resin (Example 1) except that 50 parts of chlorinated polypropylene resin (A1CL1) was used and 50 parts of acrylic polymer (B9) was used instead of 20 parts of acrylic polymer (B1). A toluene dispersion containing C8) was obtained.
<実施例10>
 表2の実施例10に記載の配合比にて各アクリルモノマーを添加した以外は、実施例1に記載のアクリル重合体(B1)の製造と同様にして、ガラス転移温度-66℃のアクリル重合体(B10)を得た。
 塩素化ポリプロピレン系樹脂(A1CL1)80部の代わりに、製造例M1で得られた酸変性ポリプロピレン系樹脂(A3M1)60部を用い、アクリル重合体(B1)20部の代わりにアクリル重合体(B10)40部を用いた以外は実施例1と同様にして、変性ポリオレフィン系樹脂(C10)を含むトルエン分散液を得た。
<Example 10>
An acrylic polymer having a glass transition temperature of −66 ° C. was prepared in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Example 10 in Table 2. Combined (B10) was obtained.
Instead of 80 parts of chlorinated polypropylene resin (A1CL1), 60 parts of acid-modified polypropylene resin (A3M1) obtained in Production Example M1 was used, and acrylic polymer (B10) instead of 20 parts of acrylic polymer (B1). ) A toluene dispersion containing the modified polyolefin resin (C10) was obtained in the same manner as in Example 1 except that 40 parts were used.
<比較例1>
 表2の比較例1に記載の配合比にて各アクリルモノマーを添加した以外は、実施例1に記載のアクリル重合体(B1)の製造と同様にして、ガラス転移温度27℃のアクリル重合体(B11)を得た。
 塩素化ポリプロピレン系樹脂(A1CL1)80部の代わりに、製造例MCL3で得られた酸変性塩素化ポリプロピレン系樹脂(A3M2CL3)50部を用い、アクリル重合体(B1)20部の代わりにアクリル重合体(B11)50部を用いた以外は実施例1と同様にして、変性ポリオレフィン系樹脂(C10)を含むトルエン分散液を得た。
<Comparative Example 1>
An acrylic polymer having a glass transition temperature of 27 ° C., in the same manner as in the production of the acrylic polymer (B1) described in Example 1, except that each acrylic monomer was added at the blending ratio described in Comparative Example 1 in Table 2. (B11) was obtained.
Instead of 80 parts of chlorinated polypropylene resin (A1CL1), 50 parts of acid-modified chlorinated polypropylene resin (A3M2CL3) obtained in Production Example MCL3 was used, and acrylic polymer (B1) instead of 20 parts. (B11) A toluene dispersion containing a modified polyolefin resin (C10) was obtained in the same manner as in Example 1 except that 50 parts were used.
<評価>
 実施例及び比較例で得られた変性ポリオレフィン系樹脂について、下記の方法で評価した。結果を表3に示す。
<Evaluation>
The modified polyolefin resins obtained in Examples and Comparative Examples were evaluated by the following methods. The results are shown in Table 3.
<重量平均分子量(Mw)>
 GPCにより、下記条件に従い測定した。
 装置:HLC-8320GPC(東ソー株式会社より供給)
 カラム:TSK-gel G-6000 H×L,G-5000 H×L,G-4000 H×L,G-3000 H×L,G-2000 H×L(東ソー株式会社より供給)
 溶離液:THF
 流速:1mL/min
 温度:ポンプオーブン、カラムオーブン40℃
 注入量:100μL
 標準物質:ポリスチレン EasiCal PS-1(Agilent Technologyより供給)
<Weight average molecular weight (Mw)>
It measured by GPC according to the following conditions.
Equipment: HLC-8320GPC (supplied by Tosoh Corporation)
Column: TSK-gel G-6000 H × L, G-5000 H × L, G-4000 H × L, G-3000 H × L, G-2000 H × L (supplied by Tosoh Corporation)
Eluent: THF
Flow rate: 1 mL / min
Temperature: Pump oven, column oven 40 ° C
Injection volume: 100 μL
Reference material: Polystyrene EasiCal PS-1 (supplied by Agilent Technology)
<ガラス転移温度(Tg)>
 判明している成分(B)の重合体を製造するに際して使用した各単量体をホモポリマーとした場合の各ガラス転移温度、及び成分(B)を製造するに際して使用した各単量体の配合比率を用いて、上述のFOX式により算出した。
<Glass transition temperature (Tg)>
Each glass transition temperature when each monomer used in producing the polymer of component (B) that has been identified is a homopolymer, and the blend of each monomer used in producing component (B) Using the ratio, the above-mentioned FOX equation was used for calculation.
<成分(B)(アクリル重合体)の水酸基価(mgKOH/g)>
 判明している成分(B)の重合体を製造するに際して使用した各単量体をホモポリマーとした場合の水酸基価、及び成分(B)を製造するに際して使用した各単量体の配合比率を用いて、上述の方法により算出した。
<Hydroxyl value of component (B) (acrylic polymer) (mgKOH / g)>
The hydroxyl value in the case where each monomer used in producing the polymer of the component (B) that has been identified is a homopolymer, and the blending ratio of each monomer used in producing the component (B) And calculated by the method described above.
<樹脂分散液の安定性>
 実施例及び比較例で得られた変性ポリオレフィン系樹脂を含むトルエン分散液について、製造直後、及び製造直後から1週間経過した後の性状を目視にて下記基準により評価した。良であれば、使用可能である。
 最良:製造直後及び1週間経過後のいずれも、分散液の分離がみられず、良好な溶液性状である。
 良:1週間経過後、分散液の分離が目視で確認できる、もしくは分散液に濁りが生じているが、製造直後の分散液は分離が見られない。
 不良:製造直後及び1週間経過後のいずれも、分散液の分離が見られる。
<Stability of resin dispersion>
About the toluene dispersion liquid containing the modified polyolefin resin obtained in Examples and Comparative Examples, the properties immediately after production and after one week from immediately after production were visually evaluated according to the following criteria. If it is good, it can be used.
Best: No separation of the dispersion was observed immediately after production and after 1 week, and the solution properties were good.
Good: After one week, the separation of the dispersion can be confirmed visually, or the dispersion is turbid, but no separation is observed in the dispersion immediately after production.
Defect: Separation of the dispersion is observed immediately after production and after one week.
<塗料安定性>
 実施例及び比較例で得られた変性ポリプロピレン系樹脂のトルエン分散液をトルエンと配合して、固形分20%のトルエン分散液を調製した。ウレタン樹脂(日立化成工業製 固形分30wt%)90重量部中に、調製したトルエン分散液(固形分20wt%)15重量部を加え、振とう機にて10分間撹拌し、室温で1日静置した後の溶液性状を観察し、塗料安定性(配合樹脂の相溶性)を溶液の分離状態から目視で判断した。
 A:溶液の増粘、分離がみられず、良好な溶液性状である。
 B:溶液がやや増粘するものの、分離等がみられない。
 C:成分の分離はないものの、溶液中に微粒子が確認される。
 D:成分の分離が目視で確認できる。
<Paint stability>
The toluene dispersions of the modified polypropylene resins obtained in Examples and Comparative Examples were blended with toluene to prepare a toluene dispersion having a solid content of 20%. 15 parts by weight of the prepared toluene dispersion (solid content 20 wt%) is added to 90 parts by weight of urethane resin (manufactured by Hitachi Chemical Co., Ltd., solid content 30 wt%), and the mixture is stirred for 10 minutes with a shaker and allowed to stand at room temperature for 1 day. The solution properties after placement were observed, and the paint stability (compatibility of the compounded resin) was visually judged from the separated state of the solution.
A: Thickening and separation of the solution are not observed, and the solution property is good.
B: Although the solution is slightly thickened, no separation or the like is observed.
C: Although there is no separation of components, fine particles are confirmed in the solution.
D: Separation of components can be visually confirmed.
<試験片の作製>
 実施例及び比較例で得られた分散液を固形分濃度30重量%に調整し、ポリプロピレン基材に塗装し、80℃で5分間乾燥した後、二液ウレタン塗料を塗装し、80℃で30分乾燥し、試験片(塗装板)を作製した後に各試験を行った。
<Preparation of test piece>
The dispersions obtained in the examples and comparative examples were adjusted to a solid content concentration of 30% by weight, coated on a polypropylene base material, dried at 80 ° C. for 5 minutes, and then coated with a two-component urethane paint, and 30 at 80 ° C. Each test was performed after partial drying and preparing a test piece (painted plate).
<付着性試験>
 塗装板の塗膜に1mm間隔で素地に達する線状の刻みを縦横に入れて、100個の区画(碁盤目)を作り、その上にセロハン粘着テープを密着させて180°方向に引き剥がした。セロハン粘着テープを密着させて引き剥がす操作を同一の100個の区画につき10回行い、付着性(接着性)を以下に示す基準で評価した。剥離した塗膜の区画が50個以下であれば、実用上問題はない。
(付着性の評価基準)
 A:塗膜の剥離がない。
 B:剥離した塗膜の区画が1個以上10個以下である。
 C:剥離した塗膜の区画が10個より多く50個以下である。
 D:剥離した塗膜の区画が50個より多い。
<Adhesion test>
Line coatings that reach the substrate at 1 mm intervals are placed vertically and horizontally on the paint film on the painted plate to create 100 sections (cross-cut), and cellophane adhesive tape is adhered onto it and peeled off in the 180 ° direction. . The operation of bringing the cellophane adhesive tape into close contact and peeling off was performed 10 times for the same 100 sections, and the adhesion (adhesiveness) was evaluated according to the following criteria. If there are 50 or less sections of the peeled coating film, there is no practical problem.
(Adhesion evaluation criteria)
A: There is no peeling of the coating film.
B: There are 1 or more and 10 or less sections of the peeled coating film.
C: The division of the peeled coating film is more than 10 and 50 or less.
D: There are more than 50 sections of the peeled coating film.
<耐ガソホール性試験>
 塗装板をレギュラーガソリン/エタノール=9/1(v/v)に120分浸漬し塗膜の状態を観察し、耐ガソホール性を以下に示す基準で評価した。塗膜表面に剥離が生じていなければ、実用上問題はない。
(耐ガソホール性の評価基準)
 A:塗膜表面に変化がない。
 B:塗膜表面にわずかに変化がみられるが剥離はみられない。
 C:塗膜表面に変化がみられるが剥離は生じていない。
 D:塗膜表面に剥離が生じている。
<Gasohole resistance test>
The coated plate was immersed in regular gasoline / ethanol = 9/1 (v / v) for 120 minutes, the state of the coating film was observed, and the gasohol resistance was evaluated according to the following criteria. If peeling does not occur on the coating film surface, there is no practical problem.
(Evaluation criteria for gasohol resistance)
A: There is no change in the coating film surface.
B: A slight change is observed on the surface of the coating film, but no peeling is observed.
C: A change is observed on the surface of the coating film, but no peeling occurs.
D: Peeling has occurred on the coating film surface.
<耐チッピング試験>
 -20℃に冷却した低温室内で塗装板を冷却し、飛石試験機(スガ試験機株式会社、JA-400型)の試験板装着部に水平から角度90°になるよう試験板を垂直に固定し、5kgf/cmの空気圧で7号砕石100gを5秒間で吹き付け、試験板に傷を付けた。その後、塗装板を水洗、乾燥させ、塗面にセロハン粘着テープを密着させ、テープの一端を持って引き剥がし、チッピングにより浮き上がった塗膜を除去して、はがれ傷の程度を下記の基準で評価した。はがれ傷の評価は、被衝撃部の縦70mm×横70mmの枠内で行った。
 A:最も良好。評価面積当たりの剥離面積率0.0%以上0.7%未満。
 B:良好。評価面積当たりの剥離面積率0.7%以上1.2%未満。
 C:劣る。評価面積当たりの剥離面積率1.2%以上3.5%未満。
 D:最も劣る。評価面積当たりの剥離面積率3.5%以上。
<Chip resistance test>
The painted plate is cooled in a low-temperature room cooled to -20 ° C, and the test plate is fixed vertically to the test plate mounting part of the stepping stone testing machine (Suga Test Instruments Co., Ltd., JA-400 type) at an angle of 90 ° from the horizontal. Then, 100 g of No. 7 crushed stone was sprayed for 5 seconds at an air pressure of 5 kgf / cm 2 to scratch the test plate. After that, the painted plate is washed with water and dried, and the cellophane adhesive tape is adhered to the coated surface, peeled off with one end of the tape, and the paint film lifted by chipping is removed, and the degree of peeling scratches is evaluated according to the following criteria. did. The evaluation of peeling scratches was performed within a frame of 70 mm length x 70 mm width of the impacted part.
A: The best. The peeled area ratio per evaluation area is 0.0% or more and less than 0.7%.
B: Good. The peeled area ratio per evaluation area is 0.7% or more and less than 1.2%.
C: Inferior. The peeled area ratio per evaluation area is 1.2% or more and less than 3.5%.
D: Inferior. The peeled area ratio per evaluation area is 3.5% or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の項目「樹脂骨格」中、「P」はプロピレン、「E」はエチレン、「B」ブタジエンを表す。 In the item “resin skeleton” in Table 1, “P” represents propylene, “E” represents ethylene, and “B” butadiene.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2中、「2EHA」はアクリル酸2-エチルヘキシル、「HEA」はアクリル酸2-ヒドロキシエチル、「BA」はアクリル酸ブチル、「INA」はアクリル酸イソノニル、「AA」はアクリル酸、「LMA」はメタクリル酸ラウリル、「LA」はアクリル酸ラウリル、「HEMA」はメタクリル酸2-ヒドロキシエチル、「EA」はアクリル酸エチルをそれぞれ表す。
 C4-12の割合とは、炭素原子数が4~12であり一般式(I)で表される(メタ)アクリル酸エステルの、配合した単量体の全重量に対する重量百分率(%)である。
In Table 2, “2EHA” is 2-ethylhexyl acrylate, “HEA” is 2-hydroxyethyl acrylate, “BA” is butyl acrylate, “INA” is isononyl acrylate, “AA” is acrylic acid, “LMA” "" Represents lauryl methacrylate, "LA" represents lauryl acrylate, "HEMA" represents 2-hydroxyethyl methacrylate, and "EA" represents ethyl acrylate.
The ratio of C 4-12 is the weight percentage (%) of the (meth) acrylic acid ester having 4 to 12 carbon atoms and represented by the general formula (I) with respect to the total weight of the blended monomers. is there.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3によれば、実施例の変性ポリオレフィン系樹脂は、比較例1と比較して、耐チッピング性に優れていることがわかる。また、実施例の変性ポリオレフィン系樹脂は、非極性基材であるポリプロピレンへの付着性及び樹脂分散液又は塗料とした場合の安定性に問題がないことがわかる。 According to Table 3, it can be seen that the modified polyolefin resin of the example is superior in chipping resistance as compared with Comparative Example 1. Moreover, it turns out that the modified polyolefin resin of an Example has no problem in the adhesiveness to the polypropylene which is a nonpolar base material, and stability when it is set as a resin dispersion liquid or a coating material.

Claims (11)

  1.  成分(A):ポリオレフィン樹脂又はその変性物に、成分(B):下記一般式(I)で表される(メタ)アクリル酸エステルに由来する構成単位(i)を含みガラス転移温度(Tg)が0℃以下である重合体がグラフトされている共重合体である、変性ポリオレフィン系樹脂。
     CH=C(R)COOR・・・(I)
    (式(I)中、Rは水素原子又はメチルを表し、Rは-C2n+1で表される基を表し、nは1~18の整数を表す。)
    Component (A): Polyolefin resin or modified product thereof, Component (B): Containing structural unit (i) derived from (meth) acrylic acid ester represented by the following general formula (I), glass transition temperature (Tg) A modified polyolefin resin, which is a copolymer grafted with a polymer having a temperature of 0 ° C. or lower.
    CH 2 = C (R 1 ) COOR 2 (I)
    (In Formula (I), R 1 represents a hydrogen atom or methyl, R 2 represents a group represented by —C n H 2n + 1 , and n represents an integer of 1 to 18)
  2.  構成単位(i)の炭素原子数が、4~12である、請求項1に記載の変性ポリオレフィン系樹脂。 The modified polyolefin resin according to claim 1, wherein the structural unit (i) has 4 to 12 carbon atoms.
  3.  成分(B)における構成単位(i)の含有率が、40重量%以上100重量%以下である、請求項2に記載の変性ポリオレフィン系樹脂。 The modified polyolefin resin according to claim 2, wherein the content of the structural unit (i) in the component (B) is 40% by weight or more and 100% by weight or less.
  4.  成分(A)が、塩素化ポリオレフィン樹脂である、請求項1~3のいずれか1項に記載の変性ポリオレフィン系樹脂。 The modified polyolefin resin according to any one of claims 1 to 3, wherein the component (A) is a chlorinated polyolefin resin.
  5.  成分(B)の重量平均分子量が、1,000以上100,000以下である、請求項1~4のいずれか1項に記載の変性ポリオレフィン系樹脂。 The modified polyolefin resin according to any one of claims 1 to 4, wherein the component (B) has a weight average molecular weight of 1,000 or more and 100,000 or less.
  6.  成分(B)の水酸基価が、5mgKOH/g以上560mgKOH/g以下である、請求項1~5のいずれか1項に記載の変性ポリオレフィン系樹脂。 The modified polyolefin resin according to any one of claims 1 to 5, wherein the hydroxyl value of the component (B) is 5 mgKOH / g or more and 560 mgKOH / g or less.
  7.  成分(A)の成分(B)に対する重量比率(成分(A)/成分(B))が20/80以上80/20以下である、請求項1~6のいずれか1項に記載の変性ポリオレフィン系樹脂。 The modified polyolefin according to any one of claims 1 to 6, wherein the weight ratio of component (A) to component (B) (component (A) / component (B)) is 20/80 or more and 80/20 or less. Resin.
  8.  重量平均分子量が10,000以上200,000以下である、請求項1~7のいずれか1項に記載の変性ポリオレフィン系樹脂。 The modified polyolefin resin according to any one of claims 1 to 7, having a weight average molecular weight of 10,000 or more and 200,000 or less.
  9.  請求項1~8のいずれか1項に記載の変性ポリオレフィン系樹脂と分散媒とを含む、分散組成物。 A dispersion composition comprising the modified polyolefin resin according to any one of claims 1 to 8 and a dispersion medium.
  10.  請求項1~8のいずれか1項に記載の変性ポリオレフィン系樹脂又は請求項9に記載の分散組成物を含む、プライマー。 A primer comprising the modified polyolefin resin according to any one of claims 1 to 8 or the dispersion composition according to claim 9.
  11.  成分(A):ポリオレフィン樹脂又はその変性物に、成分(B):下記一般式(I)で表される(メタ)アクリル酸エステルに由来する構成単位(i)を含みガラス転移温度(Tg)が0℃以下である重合体をグラフト重合する工程を含む、変性ポリオレフィン系樹脂の製造方法。
     CH=C(R)COOR・・・(I)
    (式(I)中、Rは水素原子又はメチルを表し、Rは-C2n+1で表される基を表し、nは1~18の整数を表す。)
    Component (A): Polyolefin resin or modified product thereof, Component (B): Containing structural unit (i) derived from (meth) acrylic acid ester represented by the following general formula (I), glass transition temperature (Tg) A process for producing a modified polyolefin resin, comprising a step of graft polymerization of a polymer having a temperature of 0 ° C. or lower.
    CH 2 = C (R 1 ) COOR 2 (I)
    (In Formula (I), R 1 represents a hydrogen atom or methyl, R 2 represents a group represented by —C n H 2n + 1 , and n represents an integer of 1 to 18)
PCT/JP2017/046355 2017-01-05 2017-12-25 Modified polyolefin resin WO2018128111A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018560369A JP6943882B2 (en) 2017-01-05 2017-12-25 Modified polyolefin resin
TW106146640A TWI762549B (en) 2017-01-05 2017-12-29 Modified polyolefin resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-000449 2017-01-05
JP2017000449 2017-01-05

Publications (1)

Publication Number Publication Date
WO2018128111A1 true WO2018128111A1 (en) 2018-07-12

Family

ID=62789506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046355 WO2018128111A1 (en) 2017-01-05 2017-12-25 Modified polyolefin resin

Country Status (3)

Country Link
JP (1) JP6943882B2 (en)
TW (1) TWI762549B (en)
WO (1) WO2018128111A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209080A1 (en) * 2019-04-11 2020-10-15 東洋紡株式会社 Aqueous resin composition
CN113429679A (en) * 2021-07-20 2021-09-24 汕头市三马塑胶制品有限公司 Novel green environment-friendly high-melt-strength polypropylene and preparation method thereof
JP7058808B1 (en) * 2020-06-10 2022-04-22 日本製紙株式会社 Dispersion composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173113A (en) * 1982-04-05 1983-10-12 Dainippon Ink & Chem Inc Coating resin composition
JPH10158447A (en) * 1996-11-28 1998-06-16 Honda Motor Co Ltd Primer composition for polyolefin
JP2002338877A (en) * 2001-05-22 2002-11-27 Nippon Paper Industries Co Ltd Primer composition for polyolefin resin
JP2009040920A (en) * 2007-08-09 2009-02-26 Seiko Pmc Corp Modified polyolefin resin aqueous dispersion composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242595B2 (en) * 1997-04-30 2001-12-25 トヨタ自動車株式会社 Aqueous primer coating composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173113A (en) * 1982-04-05 1983-10-12 Dainippon Ink & Chem Inc Coating resin composition
JPH10158447A (en) * 1996-11-28 1998-06-16 Honda Motor Co Ltd Primer composition for polyolefin
JP2002338877A (en) * 2001-05-22 2002-11-27 Nippon Paper Industries Co Ltd Primer composition for polyolefin resin
JP2009040920A (en) * 2007-08-09 2009-02-26 Seiko Pmc Corp Modified polyolefin resin aqueous dispersion composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209080A1 (en) * 2019-04-11 2020-10-15 東洋紡株式会社 Aqueous resin composition
CN113748167A (en) * 2019-04-11 2021-12-03 东洋纺株式会社 Aqueous resin composition
CN113748167B (en) * 2019-04-11 2023-05-26 东洋纺株式会社 Aqueous resin composition
JP7058808B1 (en) * 2020-06-10 2022-04-22 日本製紙株式会社 Dispersion composition
CN113429679A (en) * 2021-07-20 2021-09-24 汕头市三马塑胶制品有限公司 Novel green environment-friendly high-melt-strength polypropylene and preparation method thereof

Also Published As

Publication number Publication date
JPWO2018128111A1 (en) 2019-11-07
JP6943882B2 (en) 2021-10-06
TWI762549B (en) 2022-05-01
TW201831587A (en) 2018-09-01

Similar Documents

Publication Publication Date Title
CN108699178B (en) Modified polyolefin resin
JP7368245B2 (en) Chlorinated polyolefin resin and its manufacturing method
JP6943882B2 (en) Modified polyolefin resin
JP7322207B2 (en) Chlorinated polyolefin resin composition
US11046844B2 (en) Modified polyolefin resin
US11518838B2 (en) Modified polyolefin resin composition and method for producing the same
JP3898636B2 (en) Binder resin composition, production method and use thereof
US6555621B1 (en) Binder resin composition and process for the production thereof
JP4473500B2 (en) Binder resin composition and use thereof
JP3045498B2 (en) Binder resin composition and method for producing the same
JP2000007979A (en) Coating resin composition for polyolefin and its production
JP7219751B2 (en) resin composition
JP7150550B2 (en) Resin composition and its use
JP2001114961A (en) Binder resin composition and its preparation method
WO2020213528A1 (en) Modified polyolefin resin composition
JP2006282928A (en) Coating composition for polyolefin resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018560369

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890564

Country of ref document: EP

Kind code of ref document: A1