WO2022173073A1 - Thermoplastic starch composition, method for preparing same, and uses thereof - Google Patents

Thermoplastic starch composition, method for preparing same, and uses thereof Download PDF

Info

Publication number
WO2022173073A1
WO2022173073A1 PCT/KR2021/004405 KR2021004405W WO2022173073A1 WO 2022173073 A1 WO2022173073 A1 WO 2022173073A1 KR 2021004405 W KR2021004405 W KR 2021004405W WO 2022173073 A1 WO2022173073 A1 WO 2022173073A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
acid
anhydride
poly
copolymer
Prior art date
Application number
PCT/KR2021/004405
Other languages
French (fr)
Korean (ko)
Inventor
허성화
함충현
김학준
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Priority to CN202180021491.6A priority Critical patent/CN115315477A/en
Publication of WO2022173073A1 publication Critical patent/WO2022173073A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters

Definitions

  • the present invention relates to a thermoplastic starch composition and the like, and more particularly, to a thermoplastic starch composition that can be added as a component of a biodegradable composition for producing a biodegradable film to provide excellent mechanical strength and improved hygroscopicity to a biodegradable film, and the It relates to a manufacturing method and uses thereof.
  • Plastics are light, easy to process, mass-produced, and have excellent durability, chemical resistance, and mechanical properties, so they have been used as an essential material in real life.
  • plastic waste, particularly disposable waste has emerged as a major cause of environmental pollution
  • biodegradable resins is spotlighted as an eco-friendly resin because carbon dioxide emissions are relatively low when biodegradable film is produced using biodegradable resin compared to when plastic film is produced using petroleum.
  • biodegradable resin is an infinite resource that can be produced continuously, there is no concern about resource depletion compared to petroleum-based resin, so the use of products using it is greatly expanded every year.
  • the biodegradable film is a biodegradable composition in which starch is mixed with a vinyl polymer or polylactic acid (PLA), butylene adipate-terephthalate copolymer [Poly (butylene adipate-co-terephtalate), PBAT], etc. It is manufactured by extruding a biodegradable composition in which a biopolyester-based biodegradable polymer and starch are mixed.
  • PVA polylactic acid
  • PBAT butylene adipate-terephthalate copolymer
  • PBAT butylene adipate-co-terephtalate
  • the amount of starch added is limited due to the deterioration of hydrophilicity and processability peculiar to starch.
  • a biodegradable film prepared from a biodegradable composition in which starch is mixed with a vinyl polymer has a problem of poor biodegradability.
  • the biodegradable film prepared from the biodegradable composition mixed with the bio-polyester-based biodegradable polymer and starch is expensive, as well as the mechanical strength is weak compared to conventional plastic products, so it is easily torn and has high hygroscopicity. In this case, it is subject to various restrictions such as stickiness.
  • thermoplasticity In order to provide thermoplasticity to starch while improving the above problems, a method using glycerin, sorbitol, and glucose together with water as a plasticizer of starch (USP 3,949,145, EP 32802A1) has been proposed.
  • a method of manufacturing starch into thermoplastic starch by a separate apparatus and process and compounding it with a biodegradable resin Korea Patent Registration No. 10-0339789
  • an aliphatic polyester resin with excellent biodegradability and starch As main components and a method of manufacturing by adding a starch plasticizer, etc.
  • the present invention has been derived under the prior technical background, and an object of the present invention is a thermoplastic starch that can be added as a component of a biodegradable composition for producing a biodegradable film to provide excellent mechanical strength and improved hygroscopicity to the biodegradable film To provide a composition and a method for preparing the same.
  • Another object of the present invention is to provide a biodegradable composition for use in film molding as the use of the thermoplastic starch composition.
  • Another object of the present invention is to provide a biodegradable film as a use of the thermoplastic starch composition.
  • an embodiment of the present invention provides a thermoplastic starch composition
  • a thermoplastic starch composition comprising a starch, a plasticizer, a compatibilizer, a biodegradable polymer, and a reaction initiator.
  • the starch and the biodegradable polymer exist in a chemically bonded state by a graft reaction mediated by a compatibilizer.
  • the type of starch which is one component of the thermoplastic starch composition, is not particularly limited, and for example, corn starch, waxy corn starch, potato starch, sweet potato starch, wheat starch, rice starch, tapioca starch, and sago starch. ), sorghum starch or high amylose starch, and preferably corn starch in consideration of film formability, film properties, or economic feasibility, which will be described later.
  • the plasticizer which is one component of the thermoplastic starch composition, is a component for improving the processability of starch or biodegradable polymer, and may be selected from various known biodegradable or eco-friendly components.
  • the plasticizer is polyhydric alcohol, triethyl citrate, acetyl triethyl citrate, tributyl citrate, acetyl tributyl citrate, It may be selected from glycerin diacetate, etc., and in consideration of the mechanical strength or hygroscopicity of the film to be described later, it is preferably composed of one or more polyhydric alcohols selected from sorbitol, ethylene glycol, glycerin, or pentaerythritol, More preferably, it is glycerin.
  • a compatibilizer which is one component of the thermoplastic starch composition, is a component for improving miscibility between the starch and the biodegradable polymer.
  • the compatibilizer is a reactive compatibilizer capable of forming an ester bond by reacting with a hydroxyl group (-OH) present in starch and a hydroxyl group (-OH) present in a biodegradable resin.
  • unsaturated dicarboxylic acid, unsaturated dicarboxylic acid anhydride, styrene-unsaturated dicarboxylic acid copolymer, or styrene-unsaturated dicarboxylic acid anhydride copolymer may be composed of at least one selected from the group consisting of.
  • the compatibilizer is preferably a first compatibilizer selected from unsaturated dicarboxylic acid or anhydrous unsaturated dicarboxylic acid in consideration of mechanical strength or hygroscopicity of the film, which will be described later, and a styrene-unsaturated dicarboxylic acid copolymer. copolymers or combinations of second compatibilizing agents selected from styrene-anhydride unsaturated dicarboxylic acid copolymers.
  • the compatibilizer when the compatibilizer is composed of a combination of the first compatibilizer and the second compatibilizer, the starch and biodegradable polymer constituting the thermoplastic starch composition are chemically synthesized by a graft reaction mediated by the first compatibilizing agent or the second compatibilizing agent. exists in a bound state.
  • the first compatibilizing agent is, for example, maleic acid, fumaric acid, acetylenedicarboxylic acid, glutaconic acid, 2-decenedioic acid acid), Traumatic acid, Muconic acid, Glutinic acid, Citraconic acid, Mesaconic acid, Itaconic acid, maleic anhydride (Maleic anhydride), Fumaric anhydride, Acetylenedicarboxylic anhydride, Glutaconic anhydride, 2-Decenedioic anhydride, Traumatic anhydride ( Traumatic anhydride), muconic anhydride, Glutinic anhydride, Citraconic anhydride, Mesaconic anhydride, or Itaconic anhydride
  • Maleic anhydride is preferable in consideration of compatibility with other components constituting the thermoplastic starch composition and mechanical strength or hygroscopicity of the film to be described later.
  • the second compatibilizing agent is, for example, a styrene-maleic acid copolymer [Poly (Styrene-co-Maleic acid)], a styrene-fumaric acid copolymer [Poly (Styrene-co-Fumaric acid)], styrene-acetylenedi Carboxylic acid copolymer [Poly(Styrene-co-Acetylenedicarboxylic acid)], styrene-glutaconic acid copolymer [Poly(Styrene-co-Glutaconic acid)], styrene-2-decenedioic acid copolymer [Poly(Styrene) -co-2-Decenedioic acid)], styrene-traumatic acid copolymer [Poly(Styrene-co-Traumatic acid)], styrene-muconic acid copolymer
  • the weight average molecular weight of the second compatibilizer is not particularly limited, but is preferably 3,000 to 300,000 g/mol, and is preferably 3,000 to 300,000 g/mol in consideration of miscibility with other components, and harmony of mechanical strength and hygroscopicity of the film to be described later. More preferably -200,000 g/mol.
  • the reaction initiator which is a component of the thermoplastic starch composition, is a radical reaction initiator that easily generates radicals by heat, and may be selected from a variety of known materials, and a graft reaction mediated by a first compatibilizer or a second compatibilizer Considering the efficiency, it is preferable that it is a peroxide-based reaction initiator.
  • the peroxide-based reaction initiator is, for example, benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert-butyl peroxide (di-tert-) butyl peroxide, cumyl hydroperoxide, di-tert-butyl hydroperoxide, dibenzoyl peroxide, succinic peroxide, dilauryl peroxide Dilauryl peroxide, didecanoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane [2,5-dimethyl -2,5-di-(tert-butylperoxy)hexane], ⁇ -cumyl peroxy-neodecanoate, 1,1-dimethyl-3-hydroxybutyl peroxy-2-ethyl Hexanoate (1-1-dimethyl-3-hydroxybutyl peroxy-2-ethy
  • a biodegradable polymer which is one component of the thermoplastic starch composition, may be decomposed by bacteria or living organisms and may be selected from a variety of known polymers having a hydroxyl group (-OH) inside or at the terminal.
  • the biodegradable polymer is, for example, polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polyvinyl alcohol, polybutylene succinate (Polybutylene succinate, PBS) ), polyhydroxyalkanoate (PHA), butylene succinate-adipate copolymer [Poly (butylene succinate-co-adipate), PBSA], butylene adipate-butylene terephthalate copolymer [Poly (butylene adipate-co-bytylene terephtalate), PBABT] or butylene adipate-terephthalate copolymer [Poly (butylene adipate-co-terephtalate
  • thermoplastic starch composition according to an embodiment of the present invention may be selected within a generally acceptable range in consideration of various parameters such as miscibility, extrudability, reaction efficiency, and the like.
  • the thermoplastic starch composition according to an embodiment of the present invention comprises 60 to 90 wt% of starch, 3 to 30 wt% of a plasticizer, 0.1 to 5 wt% of a compatibilizer, 2 to 25 wt% of a biodegradable polymer, and It may contain 0.01 to 0.8% by weight of the reaction initiator.
  • thermoplastic starch composition in consideration of the miscibility of the components, the mechanical strength or hygroscopicity of the film, which will be described later, preferably 70 to 85% by weight of starch and 5 plasticizers based on the total weight. ⁇ 20% by weight, compatibilizer 0.2 ⁇ 4% by weight, biodegradable polymer 5 ⁇ 20% by weight and may contain 0.05 ⁇ 0.4% by weight of the reaction initiator.
  • the thermoplastic starch composition according to a preferred embodiment of the present invention may include starch, a plasticizer, a first compatibilizer, a second compatibilizer, a biodegradable polymer, and a reaction initiator.
  • thermoplastic starch composition contains 60 to 90% by weight of starch, 3 to 30% by weight of a plasticizer, 0.05 to 2% by weight of the first compatibilizer, and 0.05 to 3% by weight of the second compatibilizing agent, based on the total weight. , 2 to 25% by weight of the biodegradable polymer and 0.01 to 0.8% by weight of the reaction initiator.
  • thermoplastic starch composition according to a preferred embodiment of the present invention contains 70 to 85% by weight of starch, 5 to 20% by weight of a plasticizer based on the total weight, in consideration of the miscibility of the components and the mechanical strength or hygroscopicity of the film to be described later.
  • Weight%, the first compatibilizer 0.15 to 1.5% by weight, the second compatibilizer 0.05 to 2.5% by weight, biodegradable polymer 5 to 20% by weight and 0.05 to 0.4% by weight of the reaction initiator may be included.
  • an example of the present invention comprises the steps of obtaining a first mixture by mixing starch and a plasticizer; adding a compatibilizer and a reaction initiator to the first mixture and mixing while heating to obtain a second mixture; adding and mixing a biodegradable polymer to the second mixture to obtain a third mixture; and inducing a chemical bond between the starch and the biodegradable polymer mediated by the graft reaction of the compatibilizer while extruding the third mixture at a temperature of 160°C to 220°C.
  • a preferred embodiment of the present invention comprises the steps of obtaining a first mixture by mixing starch and a plasticizer; adding a first compatibilizer, a second compatibilizer and a reaction initiator to the first mixture and mixing with heating to obtain a second mixture; adding and mixing a biodegradable polymer to the second mixture to obtain a third mixture; and inducing a chemical bond between the starch and the biodegradable polymer mediated by the graft reaction of the first compatibilizer or the second compatibilizer while extruding the third mixture at a temperature of 160 to 220° C.
  • thermoplastic starch composition It provides a manufacturing method of The specific types and amounts of starch, plasticizers, compatibilizers (including first and second compatibilizers), reaction initiators, and biodegradable resins used as components in the method for preparing the thermoplastic starch composition according to the present invention are as described above. see
  • the grafting reaction temperature may be preferably selected in the range of 170 to 205°C in consideration of the reaction efficiency.
  • an embodiment of the present invention provides a biodegradable composition for film molding comprising the above-described thermoplastic starch composition and a biodegradable polymer in a weight ratio of 1:9 to 5:5.
  • the weight ratio of the thermoplastic starch composition and the biodegradable polymer is preferably 2:8 to 4:6 in consideration of the film formability, mechanical strength or hygroscopicity of the film, which will be described later. do.
  • the biodegradable composition for film molding comprises the steps of mixing a thermoplastic starch composition and a biodegradable polymer in a weight ratio of 1:9 to 5:5 to obtain a fourth mixture, and 150 to 200 of the fourth mixture It can be prepared by the step of extruding at a temperature condition of °C.
  • an example of the present invention provides a biodegradable film prepared by extruding a biodegradable composition for film molding into a film form.
  • the biodegradable film according to an embodiment of the present invention exhibits high tensile strength, elongation and tear strength, and at the same time exhibits low water absorption. Therefore, the disposable bag, the disposable packaging material, the mulching film, etc. made of the biodegradable film according to an embodiment of the present invention are excellent in mechanical strength and durability.
  • thermoplastic starch composition according to the present invention exists in a state in which starch and a biodegradable polymer are chemically bonded by a graft reaction mediated by a compatibilizer.
  • a biodegradable film can be prepared, and the prepared biodegradable film has excellent mechanical strength and low hygroscopicity. Therefore, the biodegradable film prepared using the thermoplastic starch composition according to the present invention as a basic raw material can be used in various fields such as disposable bags, disposable packaging materials, and mulching films.
  • thermoplastic starch composition obtained in Preparation Example 1 (referred to as 'Starch-g-PBAT'), a thermoplastic starch composition obtained in Comparative Preparation Example 2 (referred to as 'Ref. TPS'), and a comparison of Examples of the present invention; It is the result of FT-IR analysis using the biodegradable composition for film molding (referred to as 'Ref. Compound') obtained in Preparation Example 2 as a sample.
  • thermogravimetric analysis (TGA) analysis result of the thermoplastic starch composition (referred to as 'Ref. TPS') obtained in Comparative Preparation Example 2 of Examples of the present invention
  • FIG. 3 is Preparation Example of Examples of the present invention.
  • TGA thermogravimetric analysis
  • thermogravimetric analysis (TGA) analysis result of the biodegradable composition for film molding (referred to as 'Ref. Compound') obtained in Comparative Preparation Example 2 among Examples of the present invention
  • FIG. 5 is an Example of the present invention.
  • TGA thermogravimetric analysis
  • thermoplastic starch composition Preparation of thermoplastic starch composition, biodegradable composition for film molding, and biodegradable film
  • PBAT Poly (butylene adipate-co-terephthalate)
  • PBAT Poly (butylene adipate-co-terephthalate)
  • the third mixture was put into a twin-screw extruder and extruded under the conditions of a barrel temperature of 185 to 190° C., a screw rotation speed of 300 rpm, and a feed rate of 20 rpm.
  • the extrudate of the third mixture was pelletized to obtain a thermoplastic starch composition in pellet form.
  • thermoplastic starch composition 33.3 parts by weight of the thermoplastic starch composition and 66.7 parts by weight of PBAT [Poly(butylene adipate-co-terephthalate)] were uniformly mixed to obtain a fourth mixture.
  • the fourth mixture is put into the twin-screw extruder and extruded under the conditions of a barrel temperature of 175 to 180 °C, a screw rotation speed of 400 to 410 rpm, and a raw material supply speed of 110 to 120 rpm, and then the extrudate is cooled with water, pelletized, and about 60 °C was dried to obtain a biodegradable composition for film molding in the form of pellets.
  • PBAT Poly(butylene adipate-co-terephthalate)
  • the biodegradable composition for film molding was put into a film extrusion molding machine and molded under the conditions of a molding temperature of 150 to 160° C. and a raw material supply rate of 700 to 800 rpm to prepare a biodegradable film.
  • thermoplastic starch composition a styrene-maleic anhydride copolymer having a weight average molecular weight of 9,000 g/mol was used instead of a styrene-maleic anhydride copolymer having a weight average molecular weight of 5,500 g/mol.
  • a thermoplastic starch composition, a biodegradable composition for film molding, and a biodegradable film were prepared.
  • thermoplastic starch composition a styrene-maleic anhydride copolymer having a weight average molecular weight of 27,000 g/mol was used instead of a styrene-maleic anhydride copolymer having a weight average molecular weight of 5,500 g/mol.
  • a thermoplastic starch composition, a biodegradable composition for film molding, and a biodegradable film were prepared.
  • Thermoplastic starch under the same conditions and in the same manner as in Preparation Example 1, except that the amount of styrene-maleic anhydride copolymer (weight average molecular weight: 5,500 g/mol) was changed to 0.1 parts by weight instead of 0.5 parts by weight in the second mixture preparation step.
  • a composition, a biodegradable composition for forming a film, and a biodegradable film were prepared.
  • Thermoplastic starch in the same manner and under the same conditions as in Preparation Example 1, except that in the second mixture preparation step, the input amount of the styrene-maleic anhydride copolymer (weight average molecular weight 5,500 g/mol) was changed to 0.3 parts by weight instead of 0.5 parts by weight.
  • a composition, a biodegradable composition for forming a film, and a biodegradable film were prepared.
  • Thermoplastic starch under the same conditions and in the same manner as in Preparation Example 1, except that the amount of styrene-maleic anhydride copolymer (weight average molecular weight: 5,500 g/mol) was changed to 0.7 parts by weight instead of 0.5 parts by weight in the second mixture preparation step.
  • a composition, a biodegradable composition for forming a film, and a biodegradable film were prepared.
  • thermoplastic starch composition 85 parts by weight of corn starch and 15 parts by weight of glycerin were added to a mixer and mixed while heating to obtain a first mixture. Thereafter, the first mixture was put into a twin-screw extruder and extruded under the conditions of a barrel temperature of 185 to 190° C., a screw rotation speed of 300 rpm, and a raw material supply rate of 20 rpm. Thereafter, the extrudate of the first mixture was pelletized to pelletize the extrudate to obtain a thermoplastic starch composition in pellet form.
  • thermoplastic starch composition 30 parts by weight of the thermoplastic starch composition and 70 parts by weight of PBAT [Poly(butylene adipate-co-terephthalate)] were uniformly mixed to obtain a second mixture.
  • the second mixture is put into the twin-screw extruder and extruded under the conditions of a barrel temperature of 175-180 °C, a screw rotation speed of 400-410 rpm, and a raw material supply speed of 110-120 rpm, and then the extrudate is cooled with water, pelletized, and about 60 °C was dried to obtain a biodegradable composition for film molding in the form of pellets.
  • PBAT Poly(butylene adipate-co-terephthalate)
  • the biodegradable composition for film molding was put into a film extrusion molding machine and molded under the conditions of a molding temperature of 150 to 160° C. and a raw material supply rate of 700 to 800 rpm to prepare a biodegradable film.
  • the second mixture was introduced into a twin-screw extruder and extruded under conditions of a barrel temperature of 185 to 190° C., a screw rotation speed of 300 rpm, and a raw material feed rate of 20 rpm to induce chemical bonding between corn starch and maleic anhydride. Thereafter, the extrudate of the second mixture was pelletized to obtain a thermoplastic starch composition in pellet form.
  • thermoplastic starch composition 30 parts by weight of the thermoplastic starch composition and 70 parts by weight of PBAT [Poly(butylene adipate-co-terephthalate)] were uniformly mixed to obtain a third mixture.
  • the third mixture is put into the twin-screw extruder and extruded under the conditions of a barrel temperature of 175 to 180 ° C, a screw rotation speed of 400 to 410 rpm, and a raw material supply rate of 110 to 120 rpm, and then the extrudate is cooled with water, pelletized, and about 60 ° C. was dried to obtain a biodegradable composition for film molding in the form of pellets.
  • the biodegradable composition for film molding was put into a film extrusion molding machine and molded under the conditions of a molding temperature of 150 to 160° C. and a raw material supply rate of 700 to 800 rpm to prepare a biodegradable film.
  • a mixer 85 parts by weight of corn starch and 15 parts by weight of glycerin were added to a mixer and mixed to obtain a first mixture. Then, 0.5 parts by weight of maleic anhydride in 100 parts by weight of the first mixture, and 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane [2,5-dimethyl-2,5- di(tert-butylperoxy)hexane] 0.1 parts by weight was added and mixed while heating to obtain a second mixture. Then, 11.11 parts by weight of a biodegradable polymer PBAT [Poly (butylene adipate-co-terephthalate)] was added to 100 parts by weight of the second mixture and uniformly mixed to obtain a third mixture.
  • PBAT Poly (butylene adipate-co-terephthalate)
  • the third mixture is put into a twin-screw extruder and extruded under the conditions of a barrel temperature of 185 to 190°C, a screw rotation speed of 300 rpm, and a raw material supply speed of 20 rpm. was induced. Thereafter, the extrudate of the third mixture was pelletized to obtain a thermoplastic starch composition in pellet form.
  • thermoplastic starch composition 33.3 parts by weight of the thermoplastic starch composition and 66.7 parts by weight of PBAT [Poly(butylene adipate-co-terephthalate)] were uniformly mixed to obtain a fourth mixture.
  • the fourth mixture is put into the twin-screw extruder and extruded under the conditions of a barrel temperature of 175 to 180 °C, a screw rotation speed of 400 to 410 rpm, and a raw material supply speed of 110 to 120 rpm, and then the extrudate is cooled with water, pelletized, and about 60 °C was dried to obtain a biodegradable composition for film molding in the form of pellets.
  • PBAT Poly(butylene adipate-co-terephthalate)
  • the biodegradable composition for film molding was put into a film extrusion molding machine and molded under the conditions of a molding temperature of 150 to 160° C. and a raw material supply rate of 700 to 800 rpm to prepare a biodegradable film.
  • PBAT Poly (butylene adipate-co-terephthalate)
  • PBAT Poly (butylene adipate-co-terephthalate)
  • the third mixture was put into a twin-screw extruder and extruded under the conditions of a barrel temperature of 185 to 190° C., a screw rotation speed of 300 rpm, and a feed rate of 20 rpm.
  • the extrudate of the third mixture was pelletized to obtain a thermoplastic starch composition in pellet form.
  • thermoplastic starch composition 33.3 parts by weight of the thermoplastic starch composition and 66.7 parts by weight of PBAT [Poly(butylene adipate-co-terephthalate)] were uniformly mixed to obtain a fourth mixture.
  • the fourth mixture is put into the twin-screw extruder and extruded under the conditions of a barrel temperature of 175 to 180 °C, a screw rotation speed of 400 to 410 rpm, and a raw material supply speed of 110 to 120 rpm, and then the extrudate is cooled with water, pelletized, and about 60 °C was dried to obtain a biodegradable composition for film molding in the form of pellets.
  • PBAT Poly(butylene adipate-co-terephthalate)
  • the biodegradable composition for film molding was put into a film extrusion molding machine and molded under the conditions of a molding temperature of 150 to 160° C. and a raw material supply rate of 700 to 800 rpm to prepare a biodegradable film.
  • a mixer 85 parts by weight of corn starch and 15 parts by weight of glycerin were added to a mixer and mixed to obtain a first mixture. Then, 0.5 parts by weight of maleic anhydride and 0.5 parts by weight of a styrene-maleic anhydride copolymer (weight average molecular weight 27,000 g/mol) were added to 100 parts by weight of the first mixture and mixed with heating to obtain a second mixture. Then, 11.11 parts by weight of a biodegradable polymer PBAT [Poly (butylene adipate-co-terephthalate)] was added to 100 parts by weight of the second mixture and uniformly mixed to obtain a third mixture.
  • PBAT Poly (butylene adipate-co-terephthalate)
  • the third mixture was put into a twin-screw extruder and extruded under the conditions of a barrel temperature of 185 to 190° C., a screw rotation speed of 300 rpm, and a raw material supply speed of 20 rpm. Thereafter, the extrudate of the third mixture was pelletized to obtain a thermoplastic starch composition in pellet form.
  • thermoplastic starch composition 33.3 parts by weight of the thermoplastic starch composition and 66.7 parts by weight of PBAT [Poly(butylene adipate-co-terephthalate)] were uniformly mixed to obtain a fourth mixture.
  • the fourth mixture is put into the twin-screw extruder and extruded under the conditions of a barrel temperature of 175 to 180 °C, a screw rotation speed of 400 to 410 rpm, and a raw material supply speed of 110 to 120 rpm, and then the extrudate is cooled with water, pelletized, and about 60 °C was dried to obtain a biodegradable composition for film molding in the form of pellets.
  • PBAT Poly(butylene adipate-co-terephthalate)
  • the biodegradable composition for film molding was put into a film extrusion molding machine and molded under the conditions of a molding temperature of 150 to 160° C. and a raw material supply rate of 700 to 800 rpm to prepare a biodegradable film.
  • thermoplastic starch composition Analysis of physical properties of thermoplastic starch composition, biodegradable composition for film molding, and biodegradable film
  • thermoplastic starch composition obtained in Preparation Example 1 (referred to as 'Starch-g-PBAT'), the thermoplastic starch composition obtained in Comparative Preparation Example 2 (referred to as 'Ref. TPS') and the film molding obtained in Comparative Preparation Example 2 FT-IR analysis was performed using the biodegradable composition (referred to as 'Ref. Compound') as a sample, and the results are shown in FIG. 1 .
  • the FT-IR analysis results of the thermoplastic starch composition (referred to as 'Starch-g-PBAT') obtained in Preparation Example 1 were compared with the thermoplastic starch composition obtained in Comparative Preparation Example 2 (referred to as 'Ref. TPS').
  • thermoplastic starch composition obtained in Preparation Example 1 (referred to as 'Starch-g-PBAT'), the biodegradable composition for film molding obtained in Preparation Example 1 (referred to as 'Starch-g-PBAT Compound'), Comparative Preparation Example 2
  • Thermogravimetric analysis (TGA) was performed using the thermoplastic starch composition (referred to as 'Ref. TPS') obtained in and the results are shown in FIGS. 2 to 5 .
  • 2 is a thermogravimetric analysis (TGA) analysis result of the thermoplastic starch composition (referred to as 'Ref. TPS') obtained in Comparative Preparation Example 2 of Examples of the present invention
  • FIG. 3 is Preparation Example of Examples of the present invention.
  • thermogravimetric analysis (TGA) analysis of the thermoplastic starch composition (referred to as 'Starch-g-PBAT') obtained in step 1.
  • 4 is a thermogravimetric analysis (TGA) analysis result of the biodegradable composition for film molding (referred to as 'Ref. Compound') obtained in Comparative Preparation Example 2 of the Examples of the present invention
  • FIG. 5 is the result of the present invention.
  • TGA thermogravimetric analysis
  • thermoplastic starch composition (referred to as 'Starch-g-PBAT') obtained in Preparation Example 1
  • a graft reaction mediated by maleic anhydride and a styrene-maleic anhydride copolymer was performed.
  • thermoplastic starch composition obtained in Preparation Example 1 ('Starch- g-PBAT'), the decomposition temperature of PBAT, a biodegradable polymer, was shifted to a lower side than 410 °C.
  • a specimen was prepared by cutting the biodegradable film to a width of 10 mm according to the KSS M1008 standard, and the film thickness was recorded using a thickness gauge.
  • Tensile strength, elongation, and tear strength of the prepared specimens were measured using an Instron Tensile testing machine.
  • Tensile test conditions were a distance between grips of 60 mm and a test speed of 500 mm/min.
  • a specimen was prepared by cutting the biodegradable film into a size of 10 cm ⁇ 5 cm. Thereafter, the specimen was placed in an oven and dried at 50° C. for about 16 hr, and the weight of the dried specimen was measured. Thereafter, the dried specimen was placed in a desiccator containing distilled water and stored for 5 days in a thermo-hygrostat at a temperature of 35° C. and a humidity of 80% to absorb moisture into the specimen. Thereafter, the moisture-absorbed specimen was taken out, weight was measured, and the moisture absorption rate was calculated by the following formula.
  • Table 1 summarizes the mechanical strength and moisture absorption measurement results of the biodegradable films prepared in Preparation Examples 1 to 8 and Comparative Preparation Examples 1 to 5.
  • the biodegradable films prepared in Preparation Examples 1 to 8 exhibited high tensile strength, elongation and tear strength, and at the same time exhibited low water absorption.
  • Comparative Preparation Example 3 when the styrene-maleic anhydride copolymer was excluded as a component of the thermoplastic starch composition, the water absorption rate of the biodegradable film was significantly increased.
  • Comparative Preparation Example 4 when tributyl citrate was used instead of glycerin as a plasticizer, which is a component of the thermoplastic starch composition, the moisture absorption rate was good, but the mechanical properties were overall poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

An example of the present invention provides a thermoplastic starch composition comprising starch, a plasticizer, a compatibilizer, a biodegradable polymer, and a reaction initiator. The thermoplastic starch composition according to the present invention exists in a state in which starch and a biodegradable polymer are chemically bonded by a graft reaction mediated by a compatibilizer. A biodegradable film can be produced when the biodegradable composition in which the thermoplastic starch composition and the biodegradable polymer are uniformly mixed is extruded, and the produced biodegradable film has excellent mechanical strength and low hygroscopicity. Accordingly, the biodegradable film produced by using the thermoplastic starch composition according to the present invention as a basic raw material may be used in various fields such as disposable bags, disposable packaging materials, mulching films, etc.

Description

열가소성 전분 조성물, 이의 제조방법 및 이의 용도Thermoplastic starch composition, preparation method thereof and use thereof
본 발명은 열가소성 전분 조성물 등에 관한 것으로서, 더 상세하게는 생분해성 필름 제조를 위한 생분해성 조성물의 구성성분으로 첨가되어 생분해성 필름에 우수한 기계적 강도 및 개선된 흡습성을 제공할 수 있는 열가소성 전분 조성물, 이의 제조방법 및 이의 용도 등에 관한 것이다.The present invention relates to a thermoplastic starch composition and the like, and more particularly, to a thermoplastic starch composition that can be added as a component of a biodegradable composition for producing a biodegradable film to provide excellent mechanical strength and improved hygroscopicity to a biodegradable film, and the It relates to a manufacturing method and uses thereof.
플라스틱은 가볍고 가공이 용이하며 대량 생산이 가능할 뿐 아니라 내구성, 내약품성 및 기계적 성질이 우수하여 실생활에 없어서는 안 될 중요한 소재로 활용되어 왔다. 그러나 전 세계적으로 환경오염에 대한 심각성이 고조되고, 플라스틱 폐기물, 특히 일회용 폐기물이 환경오염의 주원인으로 부각됨에 따라, 일회용품에 생분해성 수지의 적용 및 개발이 활발히 이루어지고 있다. 특히, 석유를 이용하여 플라스틱 필름을 제조하는 경우에 비해 생분해성 수지를 이용하여 생분해성 필름을 제조하는 경우 이산화탄소 배출량이 상대적으로 적어 생분해성 수지는 친환경 수지로서 각광받고 있다. 더욱이 생분해성 수지는 지속 생산 가능한 무한한 자원으로서 석유계 수지에 비해 자원 고갈의 염려가 없어 이를 활용한 제품의 사용 확대가 매년 큰 폭으로 이루어지고 있다.Plastics are light, easy to process, mass-produced, and have excellent durability, chemical resistance, and mechanical properties, so they have been used as an essential material in real life. However, as the severity of environmental pollution is increasing worldwide and plastic waste, particularly disposable waste, has emerged as a major cause of environmental pollution, the application and development of biodegradable resins to disposable products is being actively performed. In particular, biodegradable resin is spotlighted as an eco-friendly resin because carbon dioxide emissions are relatively low when biodegradable film is produced using biodegradable resin compared to when plastic film is produced using petroleum. Moreover, as biodegradable resin is an infinite resource that can be produced continuously, there is no concern about resource depletion compared to petroleum-based resin, so the use of products using it is greatly expanded every year.
일반적으로 생분해성 필름은 비닐 고분자에 전분을 혼합한 생분해성 조성물 또는 폴리라틱산(Polylactic acid, PLA), 부틸렌아디페이트-테레프탈레이트 공중합체[Poly(butylene adipate-co-terephtalate), PBAT] 등과 바이오폴리에스테르계 생분해성 고분자와 전분을 혼합한 생분해성 조성물을 압출하여 제조된다. 그러나, 전분을 적용한 생분해성 필름의 경우 전분 특유의 친수성 및 가공성 저하로 인해 전분의 첨가량이 제한을 받는다. 예를 들어, 비닐 고분자에 전분을 혼합한 생분해성 조성물로부터 제조된 생분해성 필름은 생분해능이 떨어지는 문제가 있다. 또한, 바이오폴리에스테르계 생분해성 고분자와 전분을 혼합한 생분해성 조성물로부터 제조된 생분해성 필름은 가격이 고가인 점은 물론, 기존 플라스틱 제품에 비해 기계적 강도가 약하여 쉽게 찢어지고 흡습성이 높아 장시간 사용하는 경우 끈적임이 발생하는 등 다양한 제약을 많이 받고 있다. In general, the biodegradable film is a biodegradable composition in which starch is mixed with a vinyl polymer or polylactic acid (PLA), butylene adipate-terephthalate copolymer [Poly (butylene adipate-co-terephtalate), PBAT], etc. It is manufactured by extruding a biodegradable composition in which a biopolyester-based biodegradable polymer and starch are mixed. However, in the case of a biodegradable film to which starch is applied, the amount of starch added is limited due to the deterioration of hydrophilicity and processability peculiar to starch. For example, a biodegradable film prepared from a biodegradable composition in which starch is mixed with a vinyl polymer has a problem of poor biodegradability. In addition, the biodegradable film prepared from the biodegradable composition mixed with the bio-polyester-based biodegradable polymer and starch is expensive, as well as the mechanical strength is weak compared to conventional plastic products, so it is easily torn and has high hygroscopicity. In this case, it is subject to various restrictions such as stickiness.
위와 같은 문제점을 개선하면서 전분에 열가소성을 부여하기 위하여, 전분의 가소제로 물과 함께 글리세린, 솔비톨, 글루코스를 사용하는 방법(USP 3,949,145, EP 32802A1) 등이 제안된 바 있다. 또한, 전분을 별도의 장치 및 과정에 의해 열가소성 전분으로 제조한 후 생분해성 수지와 컴파운딩하여 제조하는 방법(한국특허등록번호 10-0339789) 또는 생분해성이 우수한 지방족 폴리에스테르계 수지와 전분을 주성분으로 하고 전분 가소제 등을 첨가하여 제조하는 방법(한국특허등록번호 10-0465980)이 제안된 바 있다.In order to provide thermoplasticity to starch while improving the above problems, a method using glycerin, sorbitol, and glucose together with water as a plasticizer of starch (USP 3,949,145, EP 32802A1) has been proposed. In addition, a method of manufacturing starch into thermoplastic starch by a separate apparatus and process and compounding it with a biodegradable resin (Korea Patent Registration No. 10-0339789) or an aliphatic polyester resin with excellent biodegradability and starch as main components and a method of manufacturing by adding a starch plasticizer, etc. (Korea Patent Registration No. 10-0465980) has been proposed.
본 발명은 종래의 기술적 배경하에서 도출된 것으로서, 본 발명의 목적은 생분해성 필름 제조를 위한 생분해성 조성물의 구성성분으로 첨가되어 생분해성 필름에 우수한 기계적 강도 및 개선된 흡습성을 제공할 수 있는 열가소성 전분 조성물 및 이의 제조방법을 제공하는데에 있다.The present invention has been derived under the prior technical background, and an object of the present invention is a thermoplastic starch that can be added as a component of a biodegradable composition for producing a biodegradable film to provide excellent mechanical strength and improved hygroscopicity to the biodegradable film To provide a composition and a method for preparing the same.
또한, 본 발명의 목적은 상기 열가소성 전분 조성물의 용도로서, 필름 성형에 사용되는 생분해성 조성물을 제공하는데에 있다.Another object of the present invention is to provide a biodegradable composition for use in film molding as the use of the thermoplastic starch composition.
또한, 본 발명의 목적은 상기 열가소성 전분 조성물의 용도로서, 생분해성 필름을 제공하는데에 있다.Another object of the present invention is to provide a biodegradable film as a use of the thermoplastic starch composition.
상기 목적을 해결하기 위하여, 본 발명의 일 예는 전분, 가소제, 상용화제, 생분해성 고분자 및 반응 개시제를 포함하는 열가소성 전분 조성물을 제공한다. 본 발명의 일 예에 따른 열가소성 전분 조성물에서, 전분 및 생분해성 고분자는 상용화제를 매개로 한 그래프트 반응(Graft reaction)에 의해 화학적으로 결합된 상태로 존재한다.In order to solve the above object, an embodiment of the present invention provides a thermoplastic starch composition comprising a starch, a plasticizer, a compatibilizer, a biodegradable polymer, and a reaction initiator. In the thermoplastic starch composition according to an embodiment of the present invention, the starch and the biodegradable polymer exist in a chemically bonded state by a graft reaction mediated by a compatibilizer.
상기 열가소성 전분 조성물의 일 구성성분인 전분은 그 종류가 크게 제한되지 않으며, 예를 들어, 옥수수전분, 찰옥수수전분, 감자전분, 고구마전분, 밀전분, 쌀전분, 타피오카전분, 사고전분(sago starch), 소검전분(sorghum starch) 또는 고아밀로오스전분 등에서 선택될 수 있고, 후술하는 필름 성형성, 필름 물성 또는 경제성 등을 고려할 때 옥수수전분인 것이 바람직하다.The type of starch, which is one component of the thermoplastic starch composition, is not particularly limited, and for example, corn starch, waxy corn starch, potato starch, sweet potato starch, wheat starch, rice starch, tapioca starch, and sago starch. ), sorghum starch or high amylose starch, and preferably corn starch in consideration of film formability, film properties, or economic feasibility, which will be described later.
상기 열가소성 전분 조성물의 일 구성성분인 가소제는 전분이나 생분해성 고분자의 가공성을 향상시키기 위한 성분으로서, 생분해성 또는 친환경성을 가지는 공지의 다양한 성분들에서 선택될 수 있다. 예를 들어, 상기 가소제는 다가알코올, 트리에틸 사이트레이트(Triethyl citrate), 아세틸 트리에틸 사이트레이트(Atetyl triethyl citrate), 트리부틸 사이트레트(Tributyl citrate), 아세틸 트리부틸 사이트레이트(Acetyl tributyl citrate), 글리세린디아세테이트(Gylcerin diacetate) 등에서 선택될 수 있고, 후술하는 필름의 기계적 강도 또는 흡습성 등을 고려할 때 솔비톨, 에틸렌글리콜, 글리세린 또는 펜타에리쓰리톨에서 선택되는 1종 이상의 다가알코올로 구성되는 것이 바람직하고 글리세린인 것이 더 바람직하다.The plasticizer, which is one component of the thermoplastic starch composition, is a component for improving the processability of starch or biodegradable polymer, and may be selected from various known biodegradable or eco-friendly components. For example, the plasticizer is polyhydric alcohol, triethyl citrate, acetyl triethyl citrate, tributyl citrate, acetyl tributyl citrate, It may be selected from glycerin diacetate, etc., and in consideration of the mechanical strength or hygroscopicity of the film to be described later, it is preferably composed of one or more polyhydric alcohols selected from sorbitol, ethylene glycol, glycerin, or pentaerythritol, More preferably, it is glycerin.
상기 열가소성 전분 조성물의 일 구성성분인 상용화제(Compatibilizer)는 전분과 생분해성 고분자간의 혼화성(miscibility)을 개선하기 위한 성분이다. 본 발명에서 상기 상용화제는 전분에 존재하는 하이드록실기(-OH) 및 생분해성 수지에 존재하는 하이드록실기(-OH)와 반응하여 에스테르 결합을 형성할 수 있는 반응성 상용화제(Reactive compatibilizer)로서, 불포화 다이카르복실산, 무수 불포화 다이카르복실산, 스티렌-불포화 다이카르복실산 공중합체 또는 스티렌-무수 불포화 다이카르복실산 공중합체에서 선택되는 1종 이상으로 구성될 수 있다. 본 발명에서 상기 상용화제는 후술하는 필름의 기계적 강도 또는 흡습성 등을 고려할 때 바람직하게는 불포화 다이카르복실산 또는 무수 불포화 다이카르복실산에서 선택되는 제1상용화제 및 스티렌-불포화 다이카르복실산 공중합체 또는 스티렌-무수 불포화 다이카르복실산 공중합체에서 선택되는 제2상용화제의 조합으로 구성될 수 있다. 본 발명에서 상용화제가 제1상용화제 및 제2상용화제의 조합으로 구성될 때 열가소성 전분 조성물을 구성하는 전분 및 생분해성 고분자는 제1상용화제 또는 제2상용화제를 매개로 한 그래프트 반응에 의해 화학적으로 결합된 상태로 존재한다. 상기 제1상용화제는 예를 들어 말레산(Maleic acid), 푸마르산(Fumaric acid), 아세틸렌다이카르복실산(Acetylenedicarboxylic acid), 글루타콘산(Glutaconic acid), 2-데세네디오익산(2-Decenedioic acid), 트라우마틴산(Traumatic acid), 뮤콘산(Muconic acid), 글루틴산(Glutinic acid), 시트라콘산(Citraconic acid), 메사콘산(Mesaconic acid), 이타콘산(Itaconic acid), 무수말레산(Maleic anhydride), 무수푸마르산(Fumaric anhydride), 무수아세틸렌다이카르복실산(Acetylenedicarboxylic anhydride), 무수글루타콘산(Glutaconic anhydride), 무수2-데세네디오익산(2-Decenedioic anhydride), 무수트라우마틴산(Traumatic anhydride), 무수뮤콘산(Muconic anhydride), 무수글루틴산(Glutinic anhydride), 무수시트라콘산(Citraconic anhydride), 무수메사콘산(Mesaconic anhydride) 또는 무수이타콘산(Itaconic anhydride)에서 선택되는 1종 이상으로 구성될 수 있고, 열가소성 전분 조성물을 구성하는 다른 성분들과의 혼화성, 후술하는 필름의 기계적 강도 또는 흡습성 등을 고려할 때 무수말레산(Maleic anhydride)인 것이 바람직하다. 또한, 상기 제2상용화제는 예를 들어 스티렌-말레산 공중합체[Poly(Styrene-co-Maleic acid)], 스티렌-푸마르산 공중합체[Poly(Styrene-co-Fumaric acid)], 스티렌-아세틸렌다이카르복실산 공중합체[Poly(Styrene-co-Acetylenedicarboxylic acid)], 스티렌-글루타콘산 공중합체[Poly(Styrene-co-Glutaconic acid)], 스티렌-2-데세네디오익산 공중합체[Poly(Styrene-co-2-Decenedioic acid)], 스티렌-트라우마틴산 공중합체[Poly(Styrene-co-Traumatic acid)], 스티렌-뮤콘산 공중합체[Poly(Styrene-co-Muconic acid)], 스티렌-글루틴산 공중합체[Poly(Styrene-co-Glutinic acid)], 스티렌-시트라콘산 공중합체[Poly(Styrene-co-Citraconic acid)], 스티렌-메사콘산 공중합체[Poly(Styrene-co-Mesaconic acid)], 스티렌-이타콘산 공중합체[Poly(Styrene-co-Itaconic acid)], 스티렌-무수말레산 공중합체[Poly(Styrene-co-Maleic anhydride)], 스티렌-무수푸마르산 공중합체[Poly(Styrene-co-Fumaric anhydride)], 스티렌-무수아세틸렌다이카르복실산 공중합체[Poly(Styrene-co-Acetylenedicarboxylic anhydride)], 스티렌-무수글루타콘산 공중합체[Poly(Styrene-co-Glutaconic anhydride)], 스티렌-무수2-데세네디오익산 공중합체[Poly(Styrene-co-2-Decenedioic anhydride)], 스티렌-무수트라우마틴산 공중합체[Poly(Styrene-co-Traumatic anhydride)], 스티렌-무수뮤콘산 공중합체[Poly(Styrene-co-Muconic anhydride), 스티렌-무수글루틴산 공중합체[Poly(Styrene-co-Glutinic anhydride)], 스티렌-무수시트라콘산 공중합체[Poly(Styrene-co-Citraconic anhydride)], 스티렌-무수메사콘산 공중합체[Poly(Styrene-co-Mesaconic anhydride)] 또는 스티렌-무수이타콘산 공중합체[Poly(Styrene-co-Itaconic anhydride)]에서 선택되는 1종 이상으로 구성될 수 있고, 열가소성 전분 조성물을 구성하는 다른 성분들과의 혼화성, 후술하는 필름의 기계적 강도 또는 흡습성 등을 고려할 때 스티렌-무수말레산 공중합체[Poly(Styrene-co-Maleic anhydride)]인 것이 바람직하다. 또한, 상기 제2상용화제의 중량평균분자량은 크게 제한되지 않으나, 다른 성분들과의 혼화성, 후술하는 필름의 기계적 강도 및 흡습성의 조화 등을 고려할 때 3,000~300,000 g/mol 인 것이 바람직하고 4,000~200,000 g/mol인 것이 더 바람직하다.A compatibilizer, which is one component of the thermoplastic starch composition, is a component for improving miscibility between the starch and the biodegradable polymer. In the present invention, the compatibilizer is a reactive compatibilizer capable of forming an ester bond by reacting with a hydroxyl group (-OH) present in starch and a hydroxyl group (-OH) present in a biodegradable resin. , unsaturated dicarboxylic acid, unsaturated dicarboxylic acid anhydride, styrene-unsaturated dicarboxylic acid copolymer, or styrene-unsaturated dicarboxylic acid anhydride copolymer may be composed of at least one selected from the group consisting of. In the present invention, the compatibilizer is preferably a first compatibilizer selected from unsaturated dicarboxylic acid or anhydrous unsaturated dicarboxylic acid in consideration of mechanical strength or hygroscopicity of the film, which will be described later, and a styrene-unsaturated dicarboxylic acid copolymer. copolymers or combinations of second compatibilizing agents selected from styrene-anhydride unsaturated dicarboxylic acid copolymers. In the present invention, when the compatibilizer is composed of a combination of the first compatibilizer and the second compatibilizer, the starch and biodegradable polymer constituting the thermoplastic starch composition are chemically synthesized by a graft reaction mediated by the first compatibilizing agent or the second compatibilizing agent. exists in a bound state. The first compatibilizing agent is, for example, maleic acid, fumaric acid, acetylenedicarboxylic acid, glutaconic acid, 2-decenedioic acid acid), Traumatic acid, Muconic acid, Glutinic acid, Citraconic acid, Mesaconic acid, Itaconic acid, maleic anhydride (Maleic anhydride), Fumaric anhydride, Acetylenedicarboxylic anhydride, Glutaconic anhydride, 2-Decenedioic anhydride, Traumatic anhydride ( Traumatic anhydride), muconic anhydride, Glutinic anhydride, Citraconic anhydride, Mesaconic anhydride, or Itaconic anhydride Maleic anhydride is preferable in consideration of compatibility with other components constituting the thermoplastic starch composition and mechanical strength or hygroscopicity of the film to be described later. In addition, the second compatibilizing agent is, for example, a styrene-maleic acid copolymer [Poly (Styrene-co-Maleic acid)], a styrene-fumaric acid copolymer [Poly (Styrene-co-Fumaric acid)], styrene-acetylenedi Carboxylic acid copolymer [Poly(Styrene-co-Acetylenedicarboxylic acid)], styrene-glutaconic acid copolymer [Poly(Styrene-co-Glutaconic acid)], styrene-2-decenedioic acid copolymer [Poly(Styrene) -co-2-Decenedioic acid)], styrene-traumatic acid copolymer [Poly(Styrene-co-Traumatic acid)], styrene-muconic acid copolymer [Poly(Styrene-co-Muconic acid)], styrene-glutine Acid copolymer [Poly (Styrene-co-Glutinic acid)], styrene-citraconic acid copolymer [Poly (Styrene-co-Citraconic acid)], styrene-mesaconic acid copolymer [Poly (Styrene-co-Mesaconic acid) ], styrene-itaconic acid copolymer [Poly(Styrene-co-Itaconic acid)], styrene-maleic anhydride copolymer [Poly(Styrene-co-Maleic anhydride)], styrene-fumaric anhydride copolymer [Poly(Styrene-Itaconic acid)] co-Fumaric anhydride], styrene-acetylenedicarboxylic acid copolymer [Poly(Styrene-co-Acetylenedicarboxylic anhydride)], styrene-glutaconic anhydride copolymer [Poly(Styrene-co-Glutaconic anhydride)], styrene -Anhydrous 2-decenedioic acid copolymer [Poly(Styrene-co-2-Decenedioic anhydride)], styrene-traumatic anhydride copolymer [Poly(Styrene-co-Traumatic anhydride)], styrene-muconic anhydride copolymer [Poly(Styrene-co-Muconic anhydride), styrene-glutinic anhydride copolymer [Poly( Styrene-co-Glutinic anhydride], styrene-citraconic anhydride copolymer [Poly(Styrene-co-Citraconic anhydride)], styrene-mesaconic anhydride copolymer [Poly(Styrene-co-Mesaconic anhydride)] or styrene- It may be composed of one or more selected from itaconic anhydride copolymer [Poly (Styrene-co-Itaconic anhydride)], and miscibility with other components constituting the thermoplastic starch composition, mechanical strength or hygroscopicity of the film to be described later In consideration of the like, it is preferably a styrene-maleic anhydride copolymer [Poly (Styrene-co-Maleic anhydride)]. In addition, the weight average molecular weight of the second compatibilizer is not particularly limited, but is preferably 3,000 to 300,000 g/mol, and is preferably 3,000 to 300,000 g/mol in consideration of miscibility with other components, and harmony of mechanical strength and hygroscopicity of the film to be described later. More preferably -200,000 g/mol.
상기 열가소성 전분 조성물의 일 구성성분인 반응 개시제는 열에 의해 용이하게 라디칼을 생성하는 라디칼 반응 개시제로서, 공지된 다양한 물질에서 선택될 수 있고, 제1상용화제 또는 제2상용화제를 매개로 한 그래프트 반응 효율을 고려할 때 퍼옥사이드(Peroxide)계 반응 개시제인 것이 바람직하다. 상기 퍼옥사이드(Peroxide)계 반응 개시제는 예를 들어 벤조일 퍼옥사이드(benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), 디라우릴 퍼옥사이드(dilauryl peroxide), 디-터트-부틸 퍼옥사이드(di-tert-butyl peroxide), 큐밀 퍼옥사이드(cumyl hydroperoxide), 디-터트-부틸 히드로퍼옥사이드(di - tert -butyl hydroperoxide), 디벤조일 퍼옥사이드(dibenzoyl peroxide), 숙신산 퍼옥사이드(succinic peroxide), 디라우릴일 퍼옥사이드(dilauryl peroxide), 디데카노일 퍼옥사이드(didecanoyl peroxide), 디큐밀 퍼옥사이드(dicumyl peroxide), 2,5-디메틸-2,5-디(터트-부틸퍼옥시)헥산[2,5-dimethyl-2,5-di-(tert- butylperoxy)hexane], α-큐밀 퍼옥시-네오데카보네이트(α-cumyl peroxy-neodecanoate), 1,1-디메틸-3-하이드록시부틸 퍼옥시-2-에틸헥사노에이티트(1-1-dimethyl-3-hydroxybutyl peroxy-2- ethyl hexanoate), 터트-암밀 퍼옥시벤조에이트(tert-amyl peroxy-benzoate), 터트-부틸 퍼옥시피발레이트(tert-butyl peroxy-pivalate), 2,5-디하이드록시퍼옥시-2,5-디메틸헥산(2,5-dihydroperoxy-2,5 -dimethylhexane), 쿠멘 하이드로퍼옥사이드(cumene hydroperoxide) 또는 1,3-비스(터트-부틸퍼옥시이소프로필)벤젠[1,3-Bis(tert-butylperoxyisopropyl)benzene]에서 선택되는 1종 이상으로 구성될 수 있고, 그래프트 반응 효율을 고려할 때 2,5-디메틸-2,5-디(터트-부틸퍼옥시)헥산[2,5-dimethyl-2,5-di-(tert- butylperoxy)hexane] 또는 1,3-비스(터트-부틸퍼옥시이소프로필)벤젠[1,3-Bis(tert-butylperoxyisopropyl)benzene]에서 선택되는 것이 바람직하다.The reaction initiator, which is a component of the thermoplastic starch composition, is a radical reaction initiator that easily generates radicals by heat, and may be selected from a variety of known materials, and a graft reaction mediated by a first compatibilizer or a second compatibilizer Considering the efficiency, it is preferable that it is a peroxide-based reaction initiator. The peroxide-based reaction initiator is, for example, benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert-butyl peroxide (di-tert-) butyl peroxide, cumyl hydroperoxide, di-tert-butyl hydroperoxide, dibenzoyl peroxide, succinic peroxide, dilauryl peroxide Dilauryl peroxide, didecanoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane [2,5-dimethyl -2,5-di-(tert-butylperoxy)hexane], α-cumyl peroxy-neodecanoate, 1,1-dimethyl-3-hydroxybutyl peroxy-2-ethyl Hexanoate (1-1-dimethyl-3-hydroxybutyl peroxy-2-ethyl hexanoate), tert-amyl peroxy-benzoate, tert-butyl peroxypivalate (tert-butyl) peroxy-pivalate), 2,5-dihydroxyperoxy-2,5-dimethylhexane (2,5-dihydroperoxy-2,5-dimethylhexane), cumene hydroperoxide or 1,3-bis ( It may be composed of one or more selected from tert-butylperoxyisopropyl)benzene [1,3-Bis(tert-butylperoxyisopropyl)benzene], and 2,5-dimethyl-2,5- Di(tert-butylperoxy)hexane [2,5-dimethyl-2,5-di-(tert-butylperoxy)hexane] or 1,3-bis(tert-butylperoxy) It is preferably selected from isopropyl)benzene [1,3-Bis(tert-butylperoxyisopropyl)benzene].
상기 열가소성 전분 조성물의 일 구성성분인 생분해성 고분자(Biodegradable polymer)는 박테리아나 살아있는 유기체에 의해 분해될 수 있고 내부 또는 말단에 하이드록실기(-OH)를 가지는 공지의 다양한 고분자에서 선택될 수 있다. 상기 생분해성 고분자는 예들 들어 폴리라틱산(Polylactic acid, PLA), 폴리글리코릭산(Polyglycolic acid, PGA), 폴리카프로락톤(Polycaprolactone, PCL), 폴리비닐알코올, 폴리부틸렌석시네이트(Polybutylene succinate, PBS), 폴리하이드록시알카노에이트(Polyhydroxyalkanoate, PHA), 부틸렌석시네이트-아디페이트 공중합체[Poly(butylene succinate-co-adipate), PBSA], 부틸렌아디페이트-부틸렌테레프탈레이트 공중합체[Poly(butylene adipate-co-bytylene terephtalate), PBABT] 또는 부틸렌아디페이트-테레프탈레이트 공중합체[Poly(butylene adipate-co-terephtalate), PBAT]에서 선택되는 1종 이상으로 구성될 수 있고, 다른 성분들과의 혼화성, 후술하는 필름의 기계적 강도 또는 흡습성 등을 고려할 때 부틸렌아디페이트-테레프탈레이트 공중합체[Poly(butylene adipate-co-terephtalate), PBAT]인 것이 바람직하다.A biodegradable polymer, which is one component of the thermoplastic starch composition, may be decomposed by bacteria or living organisms and may be selected from a variety of known polymers having a hydroxyl group (-OH) inside or at the terminal. The biodegradable polymer is, for example, polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polyvinyl alcohol, polybutylene succinate (Polybutylene succinate, PBS) ), polyhydroxyalkanoate (PHA), butylene succinate-adipate copolymer [Poly (butylene succinate-co-adipate), PBSA], butylene adipate-butylene terephthalate copolymer [Poly (butylene adipate-co-bytylene terephtalate), PBABT] or butylene adipate-terephthalate copolymer [Poly (butylene adipate-co-terephtalate), PBAT] may be composed of at least one selected from, and other components It is preferable that the butylene adipate-terephthalate copolymer [Poly (butylene adipate-co-terephtalate), PBAT] is used in consideration of miscibility with and mechanical strength or hygroscopicity of the film to be described later.
본 발명의 일 예에 따른 열가소성 전분 조성물에서 구성성분들의 함량은 혼화성, 압출 용이성, 반응 효율성 등과 같은 다양한 파라미터들을 고려하여 일반적으로 허용되는 범위에서 선택될 수 있다. 구체적으로, 본 발명의 일 예에 따른 열가소성 전분 조성물은 전체 중량을 기준으로 전분 60~90 중량%, 가소제 3~30 중량%, 상용화제 0.1~5 중량%, 생분해성 고분자 2~25 중량% 및 반응 개시제 0.01~0.8 중량%를 포함할 수 있다. 또한, 본 발명의 일 예에 따른 열가소성 전분 조성물은 구성성분들의 성분들의 혼화성, 후술하는 필름의 기계적 강도 또는 흡습성 등을 고려할 때 바람직하게는 전체 중량을 기준으로 전분 70~85 중량%, 가소제 5~20 중량%, 상용화제 0.2~4 중량%, 생분해성 고분자 5~20 중량% 및 반응 개시제 0.05~0.4 중량%를 포함할 수 있다. 또한, 본 발명의 바람직한 일 예에 따른 열가소성 전분 조성물이 전분, 가소제, 제1상용화제, 제2상용화제, 생분해성 고분자 및 반응 개시제를 포함할 수 있다. 본 발명의 바람직한 일 예에 따른 열가소성 전분 조성물은 전체 중량을 기준으로 전분 60~90 중량%, 가소제 3~30 중량%, 제1상용화제 0.05~2 중량%, 제2상용화제 0.05~3 중량%, 생분해성 고분자 2~25 중량% 및 반응 개시제 0.01~0.8 중량%를 포함할 수 있다. 또한, 본 발명의 바람직한 일 예에 따른 열가소성 전분 조성물은 구성성분들의 성분들의 혼화성, 후술하는 필름의 기계적 강도 또는 흡습성 등을 고려할 때 전체 중량을 기준으로 전분 70~85 중량%, 가소제 5~20 중량%, 제1상용화제 0.15~1.5 중량%, 제2상용화제 0.05~2.5 중량%, 생분해성 고분자 5~20 중량% 및 반응 개시제 0.05~0.4 중량%를 포함할 수 있다.The content of the components in the thermoplastic starch composition according to an embodiment of the present invention may be selected within a generally acceptable range in consideration of various parameters such as miscibility, extrudability, reaction efficiency, and the like. Specifically, the thermoplastic starch composition according to an embodiment of the present invention comprises 60 to 90 wt% of starch, 3 to 30 wt% of a plasticizer, 0.1 to 5 wt% of a compatibilizer, 2 to 25 wt% of a biodegradable polymer, and It may contain 0.01 to 0.8% by weight of the reaction initiator. In addition, in the thermoplastic starch composition according to an embodiment of the present invention, in consideration of the miscibility of the components, the mechanical strength or hygroscopicity of the film, which will be described later, preferably 70 to 85% by weight of starch and 5 plasticizers based on the total weight. ~20% by weight, compatibilizer 0.2 ~ 4% by weight, biodegradable polymer 5 ~ 20% by weight and may contain 0.05 ~ 0.4% by weight of the reaction initiator. In addition, the thermoplastic starch composition according to a preferred embodiment of the present invention may include starch, a plasticizer, a first compatibilizer, a second compatibilizer, a biodegradable polymer, and a reaction initiator. The thermoplastic starch composition according to a preferred embodiment of the present invention contains 60 to 90% by weight of starch, 3 to 30% by weight of a plasticizer, 0.05 to 2% by weight of the first compatibilizer, and 0.05 to 3% by weight of the second compatibilizing agent, based on the total weight. , 2 to 25% by weight of the biodegradable polymer and 0.01 to 0.8% by weight of the reaction initiator. In addition, the thermoplastic starch composition according to a preferred embodiment of the present invention contains 70 to 85% by weight of starch, 5 to 20% by weight of a plasticizer based on the total weight, in consideration of the miscibility of the components and the mechanical strength or hygroscopicity of the film to be described later. Weight%, the first compatibilizer 0.15 to 1.5% by weight, the second compatibilizer 0.05 to 2.5% by weight, biodegradable polymer 5 to 20% by weight and 0.05 to 0.4% by weight of the reaction initiator may be included.
상기 목적을 해결하기 위하여, 본 발명의 일 예는 전분 및 가소제를 혼합하여 제1혼합물을 수득하는 단계; 상기 제1혼합물에 상용화제 및 반응 개시제를 첨가하고 가열하면서 혼합하여 제2혼합물을 수득하는 단계; 상기 제2혼합물에 생분해성 고분자를 첨가하고 혼합하여 제3혼합물을 수득하는 단계; 및 상기 제3혼합물을 160~220℃의 온도 조건에서 압출하면서 상용화제의 그래프트 반응에 의해 매개되는 전분과 생분해성 고분자간의 화학적 결합을 유도하는 단계를 포함하는 열가소성 전분 조성물의 제조방법을 제공한다. 또한, 본 발명의 바람직한 일 예는 전분 및 가소제를 혼합하여 제1혼합물을 수득하는 단계; 상기 제1혼합물에 제1상용화제, 제2상용화제 및 반응 개시제를 첨가하고 가열하면서 혼합하여 제2혼합물을 수득하는 단계; 상기 제2혼합물에 생분해성 고분자를 첨가하고 혼합하여 제3혼합물을 수득하는 단계; 및 상기 제3혼합물을 160~220℃의 온도 조건에서 압출하면서 제1상용화제 또는 제2상용화제의 그래프트 반응에 의해 매개되는 전분과 생분해성 고분자간의 화학적 결합을 유도하는 단계를 포함하는 열가소성 전분 조성물의 제조방법을 제공한다. 본 발명에 따른 열가소성 전분 조성물의 제조방법에서 구성성분으로 사용되는 전분, 가소제, 상용화제(제1상용화제 및 제2상용화제 포함), 반응 개시제, 생분해성 수지의 구체적인 종류 및 첨가량은 전술한 내용을 참조한다.In order to solve the above object, an example of the present invention comprises the steps of obtaining a first mixture by mixing starch and a plasticizer; adding a compatibilizer and a reaction initiator to the first mixture and mixing while heating to obtain a second mixture; adding and mixing a biodegradable polymer to the second mixture to obtain a third mixture; and inducing a chemical bond between the starch and the biodegradable polymer mediated by the graft reaction of the compatibilizer while extruding the third mixture at a temperature of 160°C to 220°C. In addition, a preferred embodiment of the present invention comprises the steps of obtaining a first mixture by mixing starch and a plasticizer; adding a first compatibilizer, a second compatibilizer and a reaction initiator to the first mixture and mixing with heating to obtain a second mixture; adding and mixing a biodegradable polymer to the second mixture to obtain a third mixture; and inducing a chemical bond between the starch and the biodegradable polymer mediated by the graft reaction of the first compatibilizer or the second compatibilizer while extruding the third mixture at a temperature of 160 to 220° C. It provides a manufacturing method of The specific types and amounts of starch, plasticizers, compatibilizers (including first and second compatibilizers), reaction initiators, and biodegradable resins used as components in the method for preparing the thermoplastic starch composition according to the present invention are as described above. see
본 발명에 따른 열가소성 전분 조성물의 제조방법 중 전분과 생분해성 고분자간의 화학적 결합을 유도하는 단계에서 그래프트 반응 온도는 반응 효율을 고려할 때 바람직하게는 170~205℃의 범위에서 선택될 수 있다.In the step of inducing a chemical bond between the starch and the biodegradable polymer in the method for preparing the thermoplastic starch composition according to the present invention, the grafting reaction temperature may be preferably selected in the range of 170 to 205°C in consideration of the reaction efficiency.
상기 목적을 해결하기 위하여, 본 발명의 일 예는 전술한 열가소성 전분 조성물 및 생분해성 고분자를 1:9 내지 5:5의 중량비로 포함하는 필름 성형용 생분해성 조성물을 제공한다. 본 발명의 일 예에 따른 필름 성형용 생분해성 조성물에서 열가소성 전분 조성물 및 생분해성 고분자의 중량비는 후술하는 필름 성형성, 필름의 기계적 강도 또는 흡습성 등을 고려할 때 2:8 내지 4:6인 것이 바람직하다. 본 발명의 일 예에 따른 필름 성형용 생분해성 조성물은 열가소성 전분 조성물 및 생분해성 고분자를 1:9 내지 5:5의 중량비로 혼합하여 제4혼합물을 수득하는 단계 및 상기 제4혼합물을 150~200℃의 온도 조건에서 압출하는 단계에 의해 제조될 수 있다.In order to solve the above object, an embodiment of the present invention provides a biodegradable composition for film molding comprising the above-described thermoplastic starch composition and a biodegradable polymer in a weight ratio of 1:9 to 5:5. In the biodegradable composition for film molding according to an embodiment of the present invention, the weight ratio of the thermoplastic starch composition and the biodegradable polymer is preferably 2:8 to 4:6 in consideration of the film formability, mechanical strength or hygroscopicity of the film, which will be described later. do. The biodegradable composition for film molding according to an embodiment of the present invention comprises the steps of mixing a thermoplastic starch composition and a biodegradable polymer in a weight ratio of 1:9 to 5:5 to obtain a fourth mixture, and 150 to 200 of the fourth mixture It can be prepared by the step of extruding at a temperature condition of °C.
상기 목적을 해결하기 위하여, 본 발명의 일 예는 필름 성형용 생분해성 조성물을 필름 형태로 압출성형하여 제조한 생분해성 필름을 제공한다. 본 발명의 일 예에 따른 생분해성 필름은 높은 인장강도, 신율 및 인열강도를 나타내고 동시에 낮은 수분 흡수율을 나타낸다. 따라서, 본 발명의 일 예에 따른 생분해성 필름으로 제조한 일회용 백, 일회용 포장재, 멀칭 필름 등은 기계적 강도 및 내구성이 우수하다.In order to solve the above object, an example of the present invention provides a biodegradable film prepared by extruding a biodegradable composition for film molding into a film form. The biodegradable film according to an embodiment of the present invention exhibits high tensile strength, elongation and tear strength, and at the same time exhibits low water absorption. Therefore, the disposable bag, the disposable packaging material, the mulching film, etc. made of the biodegradable film according to an embodiment of the present invention are excellent in mechanical strength and durability.
본 발명에 따른 열가소성 전분 조성물은 전분 및 생분해성 고분자가 상용화제를 매개로 한 그래프트 반응에 의해 화학적으로 결합된 상태로 존재한다. 상기 열가소성 전분 조성물과 생분해성 고분자가 균일하게 혼합된 생분해성 조성물을 압출하면 생분해성 필름의 제조가 가능하고, 제조된 생분해성 필름은 우수한 기계적 강도 및 낮은 흡습성을 가진다. 따라서, 본 발명에 따른 열가소성 전분 조성물을 기초 원료로 하여 제조된 생분해성 필름은 일회용 백, 일회용 포장재, 멀칭 필름 등 다양한 분야에 이용될 수 있다.The thermoplastic starch composition according to the present invention exists in a state in which starch and a biodegradable polymer are chemically bonded by a graft reaction mediated by a compatibilizer. When the biodegradable composition in which the thermoplastic starch composition and the biodegradable polymer are uniformly mixed is extruded, a biodegradable film can be prepared, and the prepared biodegradable film has excellent mechanical strength and low hygroscopicity. Therefore, the biodegradable film prepared using the thermoplastic starch composition according to the present invention as a basic raw material can be used in various fields such as disposable bags, disposable packaging materials, and mulching films.
도 1은 본 발명의 실시예 중 제조예 1에서 수득한 열가소성 전분 조성물('Starch-g-PBAT'라함), 비교제조예 2에서 수득한 열가소성 전분 조성물('Ref. TPS'라 함) 및 비교제조예 2에서 수득한 필름 성형용 생분해성 조성물('Ref. Compound'라 함)을 시료로 하여 FT-IR 분석을 실시한 결과이다.1 shows a thermoplastic starch composition obtained in Preparation Example 1 (referred to as 'Starch-g-PBAT'), a thermoplastic starch composition obtained in Comparative Preparation Example 2 (referred to as 'Ref. TPS'), and a comparison of Examples of the present invention; It is the result of FT-IR analysis using the biodegradable composition for film molding (referred to as 'Ref. Compound') obtained in Preparation Example 2 as a sample.
도 2는 본 발명의 실시예 중 비교제조예 2에서 수득한 열가소성 전분 조성물('Ref. TPS'라 함)의 열중량 분석(TGA) 분석 결과이고, 도 3은 본 발명의 실시예 중 제조예 1에서 수득한 열가소성 전분 조성물('Starch-g-PBAT'라 함)의 열중량 분석(TGA) 분석 결과이다.2 is a thermogravimetric analysis (TGA) analysis result of the thermoplastic starch composition (referred to as 'Ref. TPS') obtained in Comparative Preparation Example 2 of Examples of the present invention, and FIG. 3 is Preparation Example of Examples of the present invention. These are the results of thermogravimetric analysis (TGA) analysis of the thermoplastic starch composition (referred to as 'Starch-g-PBAT') obtained in step 1.
도 4는 본 발명의 실시예 중 비교제조예 2에서 수득한 필름 성형용 생분해성 조성물('Ref. Compound'라 함)의 열중량 분석(TGA) 분석 결과이고, 도 5는 본 발명의 실시예 중 제조예 1에서 수득한 필름 성형용 생분해성 조성물('Starch-g-PBAT Compound'라 함)의 열중량 분석(TGA) 분석 결과이다.4 is a thermogravimetric analysis (TGA) analysis result of the biodegradable composition for film molding (referred to as 'Ref. Compound') obtained in Comparative Preparation Example 2 among Examples of the present invention, and FIG. 5 is an Example of the present invention. These are the results of thermogravimetric analysis (TGA) analysis of the biodegradable composition for film molding (referred to as 'Starch-g-PBAT Compound') obtained in Preparation Example 1.
이하, 본 발명을 실시예를 통하여 구체적으로 설명한다. 다만 하기 실시예는 본 발명의 기술적 특징을 명확하게 예시하기 위한 것일 뿐, 본 발명의 보호범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are only for clearly illustrating the technical features of the present invention, and do not limit the protection scope of the present invention.
1. 열가소성 전분 조성물, 필름 성형용 생분해성 조성물 및 생분해성 필름의 제조1. Preparation of thermoplastic starch composition, biodegradable composition for film molding, and biodegradable film
제조예 1.Preparation Example 1.
옥수수전분 85 중량부 및 글리세린 15 중량부를 믹서에 투입하고 혼합하여 제1혼합물을 수득하였다. 이후, 제1혼합물 100 중량부에 무수말레산 0.5 중량부, 스티렌-무수말레산 공중합체[Poly(Styrene-co-Maleic Anhydride); 중량평균분자량 5,500 g/mol] 0.5 중량부 및 반응 개시제인 2,5-디메틸-2,5-디(터트-부틸퍼옥시)헥산[2,5-dimethyl-2,5-di(tert-butylperoxy)hexane] 0.1 중량부를 투입하고 가열하면서 혼합하여 제2혼합물을 수득하였다. 이후, 제2혼합물 100 중량부에 생분해성 고분자인 PBAT[Poly(butylene adipate-co-terephthalate)] 11.11 중량부를 투입하고 균일하게 혼합하여 제3혼합물을 수득하였다. 이후, 제3혼합물을 이축압출기에 투입하고 배럴 온도 185~190℃, 스크루 회전 속도 300 rpm, 원료 공급 속도 20 rpm의 조건에서 압출하여 무수말레산 및 스티렌-무수말레산 공중합체를 매개로 한 옥수수 전분과 생분해성 고분자간의 화학적 결합을 유도하였다. 이후, 제3혼합물의 압출물을 펠렛화하여 펠렛 형태의 열가소성 전분 조성물을 수득하였다.85 parts by weight of corn starch and 15 parts by weight of glycerin were added to a mixer and mixed to obtain a first mixture. Then, 0.5 parts by weight of maleic anhydride, styrene-maleic anhydride copolymer [Poly (Styrene-co-Maleic Anhydride); weight average molecular weight of 5,500 g/mol] 0.5 parts by weight and 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane [2,5-dimethyl-2,5-di(tert-butylperoxy) as a reaction initiator ) hexane] 0.1 parts by weight was added and mixed while heating to obtain a second mixture. Then, 11.11 parts by weight of a biodegradable polymer PBAT [Poly (butylene adipate-co-terephthalate)] was added to 100 parts by weight of the second mixture and uniformly mixed to obtain a third mixture. Thereafter, the third mixture was put into a twin-screw extruder and extruded under the conditions of a barrel temperature of 185 to 190° C., a screw rotation speed of 300 rpm, and a feed rate of 20 rpm. Corn using maleic anhydride and a styrene-maleic anhydride copolymer A chemical bond was induced between the starch and the biodegradable polymer. Thereafter, the extrudate of the third mixture was pelletized to obtain a thermoplastic starch composition in pellet form.
이후, 열가소성 전분 조성물 33.3 중량부 및 PBAT[Poly(butylene adipate-co-terephthalate)] 66.7 중량부를 균일하게 혼합하여 제4혼합물을 수득하였다. 이후, 제4혼합물을 이축압출기에 투입하고 배럴 온도 175~180℃, 스크루 회전 속도 400~410 rpm, 원료 공급 속도 110~120 rpm의 조건에서 압출한 후 압출물을 수냉하고 펠렛화하고 약 60℃에서 건조하여 펠렛 형태의 필름 성형용 생분해성 조성물을 수득하였다. 이후, 필름 성형용 생분해성 조성물을 필름 압출 성형기에 투입하고 성형 온도 150~160℃ 및 원료 공급 속도 700~800 rpm의 조건으로 성형하여 생분해성 필름을 제조하였다.Then, 33.3 parts by weight of the thermoplastic starch composition and 66.7 parts by weight of PBAT [Poly(butylene adipate-co-terephthalate)] were uniformly mixed to obtain a fourth mixture. After that, the fourth mixture is put into the twin-screw extruder and extruded under the conditions of a barrel temperature of 175 to 180 ℃, a screw rotation speed of 400 to 410 rpm, and a raw material supply speed of 110 to 120 rpm, and then the extrudate is cooled with water, pelletized, and about 60 ℃ was dried to obtain a biodegradable composition for film molding in the form of pellets. Thereafter, the biodegradable composition for film molding was put into a film extrusion molding machine and molded under the conditions of a molding temperature of 150 to 160° C. and a raw material supply rate of 700 to 800 rpm to prepare a biodegradable film.
제조예 2.Preparation Example 2.
중량평균분자량이 5,500 g/mol인 스티렌-무수말레산 공중합체 대신 중량평균분자량이 9,000 g/mol인 스티렌-무수말레산 공중합체를 사용한 점을 제외하고는 제조예 1과 동일한 조건 및 동일한 방법으로 열가소성 전분 조성물, 필름 성형용 생분해성 조성물 및 생분해성 필름을 제조하였다.The same conditions and methods as in Preparation Example 1 were used except that a styrene-maleic anhydride copolymer having a weight average molecular weight of 9,000 g/mol was used instead of a styrene-maleic anhydride copolymer having a weight average molecular weight of 5,500 g/mol. A thermoplastic starch composition, a biodegradable composition for film molding, and a biodegradable film were prepared.
제조예 3.Preparation Example 3.
중량평균분자량이 5,500 g/mol인 스티렌-무수말레산 공중합체 대신 중량평균분자량이 27,000 g/mol인 스티렌-무수말레산 공중합체를 사용한 점을 제외하고는 제조예 1과 동일한 조건 및 동일한 방법으로 열가소성 전분 조성물, 필름 성형용 생분해성 조성물 및 생분해성 필름을 제조하였다.The same conditions and methods as in Preparation Example 1 were used except that a styrene-maleic anhydride copolymer having a weight average molecular weight of 27,000 g/mol was used instead of a styrene-maleic anhydride copolymer having a weight average molecular weight of 5,500 g/mol. A thermoplastic starch composition, a biodegradable composition for film molding, and a biodegradable film were prepared.
제조예 4.Preparation Example 4.
중량평균분자량이 5,500 g/mol인 스티렌-무수말레산 공중합체 대신 중량평균분자량이 약 1.1×10 5 g/mol인 스티렌-무수말레산 공중합체를 사용한 점을 제외하고는 제조예 1과 동일한 조건 및 동일한 방법으로 열가소성 전분 조성물, 필름 성형용 생분해성 조성물 및 생분해성 필름을 제조하였다.The same conditions as in Preparation Example 1 except that a styrene-maleic anhydride copolymer having a weight average molecular weight of about 1.1 × 10 5 g/mol was used instead of the styrene-maleic anhydride copolymer having a weight average molecular weight of 5,500 g/mol And a thermoplastic starch composition, a biodegradable composition for film molding, and a biodegradable film were prepared in the same manner.
제조예 5. Preparation 5.
중량평균분자량이 5,500 g/mol인 스티렌-무수말레산 공중합체 대신 중량평균분자량이 약 1.5×10 5 g/mol인 스티렌-무수말레산 공중합체를 사용한 점을 제외하고는 제조예 1과 동일한 조건 및 동일한 방법으로 열가소성 전분 조성물, 필름 성형용 생분해성 조성물 및 생분해성 필름을 제조하였다.The same conditions as in Preparation Example 1 except that a styrene-maleic anhydride copolymer having a weight average molecular weight of about 1.5 × 10 5 g/mol was used instead of the styrene-maleic anhydride copolymer having a weight average molecular weight of 5,500 g/mol And a thermoplastic starch composition, a biodegradable composition for film molding, and a biodegradable film were prepared in the same manner.
제조예 6. Preparation 6.
제2혼합물 제조 단계에서 스티렌-무수말레산 공중합체(중량평균분자량 5,500 g/mol) 투입량을 0.5 중량부 대신 0.1 중량부로 변경한 점을 제외하고는 제조예 1과 동일한 조건 및 동일한 방법으로 열가소성 전분 조성물, 필름 성형용 생분해성 조성물 및 생분해성 필름을 제조하였다.Thermoplastic starch under the same conditions and in the same manner as in Preparation Example 1, except that the amount of styrene-maleic anhydride copolymer (weight average molecular weight: 5,500 g/mol) was changed to 0.1 parts by weight instead of 0.5 parts by weight in the second mixture preparation step. A composition, a biodegradable composition for forming a film, and a biodegradable film were prepared.
제조예 7. Preparation 7.
제2혼합물 제조 단계에서 스티렌-무수말레산 공중합체(중량평균분자량 5,500 g/mol) 투입량을 0.5 중량부 대신 0.3 중량부로 변경한 점을 제외하고는 제조예 1과 동일한 조건 및 동일한 방법으로 열가소성 전분 조성물, 필름 성형용 생분해성 조성물 및 생분해성 필름을 제조하였다.Thermoplastic starch in the same manner and under the same conditions as in Preparation Example 1, except that in the second mixture preparation step, the input amount of the styrene-maleic anhydride copolymer (weight average molecular weight 5,500 g/mol) was changed to 0.3 parts by weight instead of 0.5 parts by weight. A composition, a biodegradable composition for forming a film, and a biodegradable film were prepared.
제조예 8.Preparation 8.
제2혼합물 제조 단계에서 스티렌-무수말레산 공중합체(중량평균분자량 5,500 g/mol) 투입량을 0.5 중량부 대신 0.7 중량부로 변경한 점을 제외하고는 제조예 1과 동일한 조건 및 동일한 방법으로 열가소성 전분 조성물, 필름 성형용 생분해성 조성물 및 생분해성 필름을 제조하였다.Thermoplastic starch under the same conditions and in the same manner as in Preparation Example 1, except that the amount of styrene-maleic anhydride copolymer (weight average molecular weight: 5,500 g/mol) was changed to 0.7 parts by weight instead of 0.5 parts by weight in the second mixture preparation step. A composition, a biodegradable composition for forming a film, and a biodegradable film were prepared.
비교제조예 1.Comparative Preparation Example 1.
옥수수전분 85 중량부 및 글리세린 15 중량부를 믹서에 투입하고 가열하면서 혼합하여 제1혼합물을 수득하였다. 이후, 제1혼합물을 이축압출기에 투입하고 배럴 온도 185~190℃, 스크루 회전 속도 300 rpm, 원료 공급 속도 20 rpm의 조건에서 압출하였다. 이후, 제1혼합물의 압출물을 펠렛화하여압출물을 펠렛화하여 펠렛 형태의 열가소성 전분 조성물을 수득하였다.85 parts by weight of corn starch and 15 parts by weight of glycerin were added to a mixer and mixed while heating to obtain a first mixture. Thereafter, the first mixture was put into a twin-screw extruder and extruded under the conditions of a barrel temperature of 185 to 190° C., a screw rotation speed of 300 rpm, and a raw material supply rate of 20 rpm. Thereafter, the extrudate of the first mixture was pelletized to pelletize the extrudate to obtain a thermoplastic starch composition in pellet form.
이후, 열가소성 전분 조성물 30 중량부 및 PBAT[Poly(butylene adipate-co-terephthalate)] 70 중량부를 균일하게 혼합하여 제2혼합물을 수득하였다. 이후, 제2혼합물을 이축압출기에 투입하고 배럴 온도 175~180℃, 스크루 회전 속도 400~410 rpm, 원료 공급 속도 110~120 rpm의 조건에서 압출한 후 압출물을 수냉하고 펠렛화하고 약 60℃에서 건조하여 펠렛 형태의 필름 성형용 생분해성 조성물을 수득하였다. 이후, 필름 성형용 생분해성 조성물을 필름 압출 성형기에 투입하고 성형 온도 150~160℃ 및 원료 공급 속도 700~800 rpm의 조건으로 성형하여 생분해성 필름을 제조하였다.Then, 30 parts by weight of the thermoplastic starch composition and 70 parts by weight of PBAT [Poly(butylene adipate-co-terephthalate)] were uniformly mixed to obtain a second mixture. After that, the second mixture is put into the twin-screw extruder and extruded under the conditions of a barrel temperature of 175-180 ℃, a screw rotation speed of 400-410 rpm, and a raw material supply speed of 110-120 rpm, and then the extrudate is cooled with water, pelletized, and about 60 ℃ was dried to obtain a biodegradable composition for film molding in the form of pellets. Thereafter, the biodegradable composition for film molding was put into a film extrusion molding machine and molded under the conditions of a molding temperature of 150 to 160° C. and a raw material supply rate of 700 to 800 rpm to prepare a biodegradable film.
비교제조예 2.Comparative Preparation Example 2.
옥수수전분 85 중량부 및 글리세린 15 중량부를 믹서에 투입하고 혼합하여 제1혼합물을 수득하였다. 이후, 제1혼합물 100 중량부에 무수말레산 0.5 중량부 및 반응 개시제인 2,5-디메틸-2,5-디(터트-부틸퍼옥시)헥산[2,5-dimethyl-2,5-di(tert-butylperoxy)hexane] 0.1 중량부를 투입하고 가열하면서 혼합하여 제2혼합물을 수득하였다. 이후, 제2혼합물을 이축압출기에 투입하고 배럴 온도 185~190℃, 스크루 회전 속도 300 rpm, 원료 공급 속도 20 rpm의 조건에서 압출하여 옥수수 전분과 무수말레산간의 화학적 결합을 유도하였다. 이후, 제2혼합물의 압출물을 펠렛화하여 펠렛 형태의 열가소성 전분 조성물을 수득하였다.85 parts by weight of corn starch and 15 parts by weight of glycerin were added to a mixer and mixed to obtain a first mixture. Thereafter, 0.5 parts by weight of maleic anhydride and 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane [2,5-dimethyl-2,5-di as a reaction initiator, in 100 parts by weight of the first mixture (tert-butylperoxy)hexane] 0.1 parts by weight was added and mixed while heating to obtain a second mixture. Thereafter, the second mixture was introduced into a twin-screw extruder and extruded under conditions of a barrel temperature of 185 to 190° C., a screw rotation speed of 300 rpm, and a raw material feed rate of 20 rpm to induce chemical bonding between corn starch and maleic anhydride. Thereafter, the extrudate of the second mixture was pelletized to obtain a thermoplastic starch composition in pellet form.
이후, 열가소성 전분 조성물 30 중량부 및 PBAT[Poly(butylene adipate-co-terephthalate)] 70 중량부를 균일하게 혼합하여 제3혼합물을 수득하였다. 이후, 제3혼합물을 이축압출기에 투입하고 배럴 온도 175~180℃, 스크루 회전 속도 400~410 rpm, 원료 공급 속도 110~120 rpm의 조건에서 압출한 후 압출물을 수냉하고 펠렛화하고 약 60℃에서 건조하여 펠렛 형태의 필름 성형용 생분해성 조성물을 수득하였다. 이후, 필름 성형용 생분해성 조성물을 필름 압출 성형기에 투입하고 성형 온도 150~160℃ 및 원료 공급 속도 700~800 rpm의 조건으로 성형하여 생분해성 필름을 제조하였다.Then, 30 parts by weight of the thermoplastic starch composition and 70 parts by weight of PBAT [Poly(butylene adipate-co-terephthalate)] were uniformly mixed to obtain a third mixture. After that, the third mixture is put into the twin-screw extruder and extruded under the conditions of a barrel temperature of 175 to 180 ° C, a screw rotation speed of 400 to 410 rpm, and a raw material supply rate of 110 to 120 rpm, and then the extrudate is cooled with water, pelletized, and about 60 ° C. was dried to obtain a biodegradable composition for film molding in the form of pellets. Thereafter, the biodegradable composition for film molding was put into a film extrusion molding machine and molded under the conditions of a molding temperature of 150 to 160° C. and a raw material supply rate of 700 to 800 rpm to prepare a biodegradable film.
비교제조예 3.Comparative Preparation Example 3.
옥수수전분 85 중량부 및 글리세린 15 중량부를 믹서에 투입하고 혼합하여 제1혼합물을 수득하였다. 이후, 제1혼합물 100 중량부에 무수말레산 0.5 중량부, 및 반응 개시제인 2,5-디메틸-2,5-디(터트-부틸퍼옥시)헥산[2,5-dimethyl-2,5-di(tert-butylperoxy)hexane] 0.1 중량부를 투입하고 가열하면서 혼합하여 제2혼합물을 수득하였다. 이후, 제2혼합물 100 중량부에 생분해성 고분자인 PBAT[Poly(butylene adipate-co-terephthalate)] 11.11 중량부를 투입하고 균일하게 혼합하여 제3혼합물을 수득하였다. 이후, 제3혼합물을 이축압출기에 투입하고 배럴 온도 185~190℃, 스크루 회전 속도 300 rpm, 원료 공급 속도 20 rpm의 조건에서 압출하여 무수말레산을 매개로 한 옥수수 전분과 생분해성 고분자간의 화학적 결합을 유도하였다. 이후, 제3혼합물의 압출물을 펠렛화하여 펠렛 형태의 열가소성 전분 조성물을 수득하였다.85 parts by weight of corn starch and 15 parts by weight of glycerin were added to a mixer and mixed to obtain a first mixture. Then, 0.5 parts by weight of maleic anhydride in 100 parts by weight of the first mixture, and 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane [2,5-dimethyl-2,5- di(tert-butylperoxy)hexane] 0.1 parts by weight was added and mixed while heating to obtain a second mixture. Then, 11.11 parts by weight of a biodegradable polymer PBAT [Poly (butylene adipate-co-terephthalate)] was added to 100 parts by weight of the second mixture and uniformly mixed to obtain a third mixture. Thereafter, the third mixture is put into a twin-screw extruder and extruded under the conditions of a barrel temperature of 185 to 190°C, a screw rotation speed of 300 rpm, and a raw material supply speed of 20 rpm. was induced. Thereafter, the extrudate of the third mixture was pelletized to obtain a thermoplastic starch composition in pellet form.
이후, 열가소성 전분 조성물 33.3 중량부 및 PBAT[Poly(butylene adipate-co-terephthalate)] 66.7 중량부를 균일하게 혼합하여 제4혼합물을 수득하였다. 이후, 제4혼합물을 이축압출기에 투입하고 배럴 온도 175~180℃, 스크루 회전 속도 400~410 rpm, 원료 공급 속도 110~120 rpm의 조건에서 압출한 후 압출물을 수냉하고 펠렛화하고 약 60℃에서 건조하여 펠렛 형태의 필름 성형용 생분해성 조성물을 수득하였다. 이후, 필름 성형용 생분해성 조성물을 필름 압출 성형기에 투입하고 성형 온도 150~160℃ 및 원료 공급 속도 700~800 rpm의 조건으로 성형하여 생분해성 필름을 제조하였다.Then, 33.3 parts by weight of the thermoplastic starch composition and 66.7 parts by weight of PBAT [Poly(butylene adipate-co-terephthalate)] were uniformly mixed to obtain a fourth mixture. After that, the fourth mixture is put into the twin-screw extruder and extruded under the conditions of a barrel temperature of 175 to 180 ℃, a screw rotation speed of 400 to 410 rpm, and a raw material supply speed of 110 to 120 rpm, and then the extrudate is cooled with water, pelletized, and about 60 ℃ was dried to obtain a biodegradable composition for film molding in the form of pellets. Thereafter, the biodegradable composition for film molding was put into a film extrusion molding machine and molded under the conditions of a molding temperature of 150 to 160° C. and a raw material supply rate of 700 to 800 rpm to prepare a biodegradable film.
비교제조예 4.Comparative Preparation Example 4.
옥수수전분 85 중량부 및 트리부틸 시트레이트(Tributyl citrate) 15 중량부를 믹서에 투입하고 혼합하여 제1혼합물을 수득하였다. 이후, 제1혼합물 100 중량부에 무수말레산 0.5 중량부, 스티렌-무수말레산 공중합체(중량평균분자량 27,000 g/mol) 0.5 중량부 및 반응 개시제인 2,5-디메틸-2,5-디(터트-부틸퍼옥시)헥산[2,5-dimethyl-2,5-di(tert-butylperoxy)hexane] 0.1 중량부를 투입하고 가열하면서 혼합하여 제2혼합물을 수득하였다. 이후, 제2혼합물 100 중량부에 생분해성 고분자인 PBAT[Poly(butylene adipate-co-terephthalate)] 11.11 중량부를 투입하고 균일하게 혼합하여 제3혼합물을 수득하였다. 이후, 제3혼합물을 이축압출기에 투입하고 배럴 온도 185~190℃, 스크루 회전 속도 300 rpm, 원료 공급 속도 20 rpm의 조건에서 압출하여 무수말레산 및 스티렌-무수말레산 공중합체를 매개로 한 옥수수 전분과 생분해성 고분자간의 화학적 결합을 유도하였다. 이후, 제3혼합물의 압출물을 펠렛화하여 펠렛 형태의 열가소성 전분 조성물을 수득하였다.85 parts by weight of corn starch and 15 parts by weight of tributyl citrate were added to a mixer and mixed to obtain a first mixture. Then, 0.5 parts by weight of maleic anhydride, 0.5 parts by weight of a styrene-maleic anhydride copolymer (weight average molecular weight 27,000 g/mol), and 2,5-dimethyl-2,5-di, which is a reaction initiator, in 100 parts by weight of the first mixture 0.1 parts by weight of (tert-butylperoxy)hexane [2,5-dimethyl-2,5-di(tert-butylperoxy)hexane] was added and mixed while heating to obtain a second mixture. Then, 11.11 parts by weight of a biodegradable polymer PBAT [Poly (butylene adipate-co-terephthalate)] was added to 100 parts by weight of the second mixture and uniformly mixed to obtain a third mixture. Thereafter, the third mixture was put into a twin-screw extruder and extruded under the conditions of a barrel temperature of 185 to 190° C., a screw rotation speed of 300 rpm, and a feed rate of 20 rpm. Corn using maleic anhydride and a styrene-maleic anhydride copolymer A chemical bond was induced between the starch and the biodegradable polymer. Thereafter, the extrudate of the third mixture was pelletized to obtain a thermoplastic starch composition in pellet form.
이후, 열가소성 전분 조성물 33.3 중량부 및 PBAT[Poly(butylene adipate-co-terephthalate)] 66.7 중량부를 균일하게 혼합하여 제4혼합물을 수득하였다. 이후, 제4혼합물을 이축압출기에 투입하고 배럴 온도 175~180℃, 스크루 회전 속도 400~410 rpm, 원료 공급 속도 110~120 rpm의 조건에서 압출한 후 압출물을 수냉하고 펠렛화하고 약 60℃에서 건조하여 펠렛 형태의 필름 성형용 생분해성 조성물을 수득하였다. 이후, 필름 성형용 생분해성 조성물을 필름 압출 성형기에 투입하고 성형 온도 150~160℃ 및 원료 공급 속도 700~800 rpm의 조건으로 성형하여 생분해성 필름을 제조하였다.Then, 33.3 parts by weight of the thermoplastic starch composition and 66.7 parts by weight of PBAT [Poly(butylene adipate-co-terephthalate)] were uniformly mixed to obtain a fourth mixture. After that, the fourth mixture is put into the twin-screw extruder and extruded under the conditions of a barrel temperature of 175 to 180 ℃, a screw rotation speed of 400 to 410 rpm, and a raw material supply speed of 110 to 120 rpm, and then the extrudate is cooled with water, pelletized, and about 60 ℃ was dried to obtain a biodegradable composition for film molding in the form of pellets. Thereafter, the biodegradable composition for film molding was put into a film extrusion molding machine and molded under the conditions of a molding temperature of 150 to 160° C. and a raw material supply rate of 700 to 800 rpm to prepare a biodegradable film.
비교제조예 5.Comparative Preparation Example 5.
옥수수전분 85 중량부 및 글리세린 15 중량부를 믹서에 투입하고 혼합하여 제1혼합물을 수득하였다. 이후, 제1혼합물 100 중량부에 무수말레산 0.5 중량부 및 스티렌-무수말레산 공중합체(중량평균분자량 27,000 g/mol) 0.5 중량부를 투입하고 가열하면서 혼합하여 제2혼합물을 수득하였다. 이후, 제2혼합물 100 중량부에 생분해성 고분자인 PBAT[Poly(butylene adipate-co-terephthalate)] 11.11 중량부를 투입하고 균일하게 혼합하여 제3혼합물을 수득하였다. 이후, 제3혼합물을 이축압출기에 투입하고 배럴 온도 185~190℃, 스크루 회전 속도 300 rpm, 원료 공급 속도 20 rpm의 조건에서 압출하였다. 이후, 제3혼합물의 압출물을 펠렛화하여 펠렛 형태의 열가소성 전분 조성물을 수득하였다.85 parts by weight of corn starch and 15 parts by weight of glycerin were added to a mixer and mixed to obtain a first mixture. Then, 0.5 parts by weight of maleic anhydride and 0.5 parts by weight of a styrene-maleic anhydride copolymer (weight average molecular weight 27,000 g/mol) were added to 100 parts by weight of the first mixture and mixed with heating to obtain a second mixture. Then, 11.11 parts by weight of a biodegradable polymer PBAT [Poly (butylene adipate-co-terephthalate)] was added to 100 parts by weight of the second mixture and uniformly mixed to obtain a third mixture. Then, the third mixture was put into a twin-screw extruder and extruded under the conditions of a barrel temperature of 185 to 190° C., a screw rotation speed of 300 rpm, and a raw material supply speed of 20 rpm. Thereafter, the extrudate of the third mixture was pelletized to obtain a thermoplastic starch composition in pellet form.
이후, 열가소성 전분 조성물 33.3 중량부 및 PBAT[Poly(butylene adipate-co-terephthalate)] 66.7 중량부를 균일하게 혼합하여 제4혼합물을 수득하였다. 이후, 제4혼합물을 이축압출기에 투입하고 배럴 온도 175~180℃, 스크루 회전 속도 400~410 rpm, 원료 공급 속도 110~120 rpm의 조건에서 압출한 후 압출물을 수냉하고 펠렛화하고 약 60℃에서 건조하여 펠렛 형태의 필름 성형용 생분해성 조성물을 수득하였다. 이후, 필름 성형용 생분해성 조성물을 필름 압출 성형기에 투입하고 성형 온도 150~160℃ 및 원료 공급 속도 700~800 rpm의 조건으로 성형하여 생분해성 필름을 제조하였다.Then, 33.3 parts by weight of the thermoplastic starch composition and 66.7 parts by weight of PBAT [Poly(butylene adipate-co-terephthalate)] were uniformly mixed to obtain a fourth mixture. After that, the fourth mixture is put into the twin-screw extruder and extruded under the conditions of a barrel temperature of 175 to 180 ℃, a screw rotation speed of 400 to 410 rpm, and a raw material supply speed of 110 to 120 rpm, and then the extrudate is cooled with water, pelletized, and about 60 ℃ was dried to obtain a biodegradable composition for film molding in the form of pellets. Thereafter, the biodegradable composition for film molding was put into a film extrusion molding machine and molded under the conditions of a molding temperature of 150 to 160° C. and a raw material supply rate of 700 to 800 rpm to prepare a biodegradable film.
2. 열가소성 전분 조성물, 필름 성형용 생분해성 조성물 및 생분해성 필름의 물성 분석2. Analysis of physical properties of thermoplastic starch composition, biodegradable composition for film molding, and biodegradable film
(1) FT-IR(Fourier-transform infrared spectroscopy) 분석(1) FT-IR (Fourier-transform infrared spectroscopy) analysis
제조예 1에서 수득한 열가소성 전분 조성물('Starch-g-PBAT'라 함), 비교제조예 2에서 수득한 열가소성 전분 조성물('Ref. TPS'라 함) 및 비교제조예 2에서 수득한 필름 성형용 생분해성 조성물('Ref. Compound'라 함)을 시료로 하여 FT-IR 분석을 실시하였고, 그 결과를 도 1에 나타내었다. 도 1에서 보이는 바와 같이 제조예 1에서 수득한 열가소성 전분 조성물('Starch-g-PBAT'라함)에 대한 FT-IR 분석 결과를 비교제조예 2에서 수득한 열가소성 전분 조성물('Ref. TPS'라 함)에 대한 FT-IR 분석 결과를 살펴보면, 제조예 1에서 수득한 열가소성 전분 조성물('Starch-g-PBAT'라함)에서는 무수말레산 및 스티렌-무수말레산 공중합체를 매개로 한 그래프트 반응에 의해 생분해성 고분자인 PBAT가 전분과 화학적으로 결합되어 전분에 존재하는 OH기의 피크(3,200~3,300 cm -1)가 크게 감소하고 에스터기와 카르복실산을 나타내는 C=O 피크가 생성되었다. 한편, 비교제조예 2에서 수득한 필름 성형용 생분해성 조성물('Ref. Compound'라 함)의 FT-IR 분석 결과를 살펴보면, 비교제조예 2에서 수득한 필름 성형용 생분해성 조성물에는 열가소성 전분 조성물과 생분해성 고분자인 PBAT가 단분히 블렌딩되어 과량의 PBAT가 존재하기 때문에 불포화 에스터기에 해당하는 피크를 보였다.The thermoplastic starch composition obtained in Preparation Example 1 (referred to as 'Starch-g-PBAT'), the thermoplastic starch composition obtained in Comparative Preparation Example 2 (referred to as 'Ref. TPS') and the film molding obtained in Comparative Preparation Example 2 FT-IR analysis was performed using the biodegradable composition (referred to as 'Ref. Compound') as a sample, and the results are shown in FIG. 1 . As shown in FIG. 1 , the FT-IR analysis results of the thermoplastic starch composition (referred to as 'Starch-g-PBAT') obtained in Preparation Example 1 were compared with the thermoplastic starch composition obtained in Comparative Preparation Example 2 (referred to as 'Ref. TPS'). In the FT-IR analysis result of As a result, PBAT, a biodegradable polymer, was chemically combined with starch, and the peak (3,200-3,300 cm -1 ) of the OH group present in the starch was greatly reduced, and a C=O peak representing the ester group and carboxylic acid was generated. On the other hand, looking at the FT-IR analysis results of the biodegradable composition for film molding (referred to as 'Ref. Compound') obtained in Comparative Preparation Example 2, the biodegradable composition for film molding obtained in Comparative Preparation Example 2 contained a thermoplastic starch composition. Since PBAT, which is a biodegradable polymer, was well blended and an excess of PBAT was present, a peak corresponding to the unsaturated ester group was shown.
(2) 열중량 분석(Thermogravimetric Analysis, TGA)(2) Thermogravimetric Analysis (TGA)
제조예 1에서 수득한 열가소성 전분 조성물('Starch-g-PBAT'라 함), 제조예 1에서 수득한 필름 성형용 생분해성 조성물('Starch-g-PBAT Compound'라 함), 비교제조예 2에서 수득한 열가소성 전분 조성물('Ref. TPS'라 함) 및 비교제조예 2에서 수득한 필름 성형용 생분해성 조성물('Ref. Compound'라 함)을 시료로 하여 열중량 분석(TGA)을 실시하였고, 그 결과를 도 2 내지 도 5에 나타내었다. 도 2는 본 발명의 실시예 중 비교제조예 2에서 수득한 열가소성 전분 조성물('Ref. TPS'라 함)의 열중량 분석(TGA) 분석 결과이고, 도 3은 본 발명의 실시예 중 제조예 1에서 수득한 열가소성 전분 조성물('Starch-g-PBAT'라 함)의 열중량 분석(TGA) 분석 결과이다. 또한, 도 4는 본 발명의 실시예 중 비교제조예 2에서 수득한 필름 성형용 생분해성 조성물('Ref. Compound'라 함)의 열중량 분석(TGA) 분석 결과이고, 도 5는 본 발명의 실시예 중 제조예 1에서 수득한 필름 성형용 생분해성 조성물('Starch-g-PBAT Compound'라 함)의 열중량 분석(TGA) 분석 결과이다. 도 2 및 도 3에서 보이는 바와 같이 제조예 1에서 수득한 열가소성 전분 조성물('Starch-g-PBAT'라 함)의 경우 무수말레산 및 스티렌-무수말레산 공중합체를 매개로 한 그래프트 반응에 의해 전분과 생분해성 고분자인 PBAT가 화학적으로 결합되는 것을 나타내는 피크가 관찰되었고, 전분과 생분해성 고분자인 PBAT간의 화학적 결합에 의해 전분 분해온도 피크가 300℃보다 높은 쪽으로 이동(shift) 하였다. 또한, 도 4 및 도 5에서 보이는 바와 같이 제조예 1에서 수득한 필름 성형용 생분해성 조성물('Starch-g-PBAT Compound'라 함)의 경우 제조예 1에서 수득한 열가소성 전분 조성물('Starch-g-PBAT'라 함)의 기여에 의해 생분해성 고분자인 PBAT의 분해온도가 410℃보다 낮은 쪽으로 이동(shift) 하였다.The thermoplastic starch composition obtained in Preparation Example 1 (referred to as 'Starch-g-PBAT'), the biodegradable composition for film molding obtained in Preparation Example 1 (referred to as 'Starch-g-PBAT Compound'), Comparative Preparation Example 2 Thermogravimetric analysis (TGA) was performed using the thermoplastic starch composition (referred to as 'Ref. TPS') obtained in and the results are shown in FIGS. 2 to 5 . 2 is a thermogravimetric analysis (TGA) analysis result of the thermoplastic starch composition (referred to as 'Ref. TPS') obtained in Comparative Preparation Example 2 of Examples of the present invention, and FIG. 3 is Preparation Example of Examples of the present invention. These are the results of thermogravimetric analysis (TGA) analysis of the thermoplastic starch composition (referred to as 'Starch-g-PBAT') obtained in step 1. 4 is a thermogravimetric analysis (TGA) analysis result of the biodegradable composition for film molding (referred to as 'Ref. Compound') obtained in Comparative Preparation Example 2 of the Examples of the present invention, and FIG. 5 is the result of the present invention. These are the results of thermogravimetric analysis (TGA) analysis of the biodegradable composition for film molding (referred to as 'Starch-g-PBAT Compound') obtained in Preparation Example 1 among Examples. As shown in FIGS. 2 and 3, in the case of the thermoplastic starch composition (referred to as 'Starch-g-PBAT') obtained in Preparation Example 1, a graft reaction mediated by maleic anhydride and a styrene-maleic anhydride copolymer was performed. A peak indicating the chemical bonding between starch and PBAT, a biodegradable polymer, was observed, and the peak of the starch decomposition temperature was shifted to higher than 300° C. due to the chemical bond between starch and PBAT, a biodegradable polymer. In addition, as shown in FIGS. 4 and 5, in the case of the biodegradable composition for film molding (referred to as 'Starch-g-PBAT Compound') obtained in Preparation Example 1, the thermoplastic starch composition obtained in Preparation Example 1 ('Starch- g-PBAT'), the decomposition temperature of PBAT, a biodegradable polymer, was shifted to a lower side than 410 °C.
(3) 기계적 강도 및 수분 흡수율 측정(3) Measurement of mechanical strength and water absorption rate
제조예 1 내지 제조예 8 및 비교제조예 1 내지 비교제조예 5에서 제조한 생분해성 필름의 기계적 강도 및 수분 흡수율을 측정하였다.The mechanical strength and water absorption rate of the biodegradable films prepared in Preparation Examples 1 to 8 and Comparative Preparation Examples 1 to 5 were measured.
* 기계적 강도 측정 방법*Mechanical strength measurement method
생분해성 필름을 KSS M1008 규격에 따라 폭 10㎜으로 절단하여 시편을 준비하고 필름 두께를 두께측정기를 이용하여 기록하였다. 인스트론 인장시험기(Intstron Tensile testing machine)를 이용하여 준비한 시편의 인장강도, 신율 및 인열강도를 측정하였다. 인장시험 조건은 그립간 거리 60㎜, 시험속도 500 ㎜/min 이었다.A specimen was prepared by cutting the biodegradable film to a width of 10 mm according to the KSS M1008 standard, and the film thickness was recorded using a thickness gauge. Tensile strength, elongation, and tear strength of the prepared specimens were measured using an Instron Tensile testing machine. Tensile test conditions were a distance between grips of 60 mm and a test speed of 500 mm/min.
* 수분 흡수율 측정 방법* How to measure moisture absorption
생분해성 필름을 10㎝×5㎝의 크기로 절단하여 시편을 준비하였다. 이후, 시편을 오븐에 넣고 50℃에서 약 16 hr 동안 건조시킨 후 건조된 시편의 무게를 측정하였다. 이후 건조된 시편을 증류수가 담긴 데시케이터에 넣고 35℃의 온도 및 80% 습도 조건의 항온항습기에서 5일 동안 보관하여 시편에 수분을 흡수시켰다. 이후, 수분이 흡수된 시편을 꺼내고 무게를 측정한 후 수분 흡수율을 하기의 식으로 계산하였다.A specimen was prepared by cutting the biodegradable film into a size of 10 cm × 5 cm. Thereafter, the specimen was placed in an oven and dried at 50° C. for about 16 hr, and the weight of the dried specimen was measured. Thereafter, the dried specimen was placed in a desiccator containing distilled water and stored for 5 days in a thermo-hygrostat at a temperature of 35° C. and a humidity of 80% to absorb moisture into the specimen. Thereafter, the moisture-absorbed specimen was taken out, weight was measured, and the moisture absorption rate was calculated by the following formula.
Figure PCTKR2021004405-appb-img-000001
Figure PCTKR2021004405-appb-img-000001
하기 표 1에 제조예 1 내지 제조예 8 및 비교제조예 1 내지 비교제조예 5에서 제조한 생분해성 필름의 기계적 강도 및 수분 흡수율 측정 결과를 정리하였다.Table 1 below summarizes the mechanical strength and moisture absorption measurement results of the biodegradable films prepared in Preparation Examples 1 to 8 and Comparative Preparation Examples 1 to 5.
생분해성 필름 구분Classification of biodegradable films 인장강도(N/㎟)Tensile strength (N/㎟) 신율(%)Elongation (%) 인열강도(N/㎜)Tear strength (N/mm) 수분 흡수율(%)Moisture absorption rate (%)
MDMD CDCD MDMD CDCD MDMD CDCD
제조예 1Preparation Example 1 3333 3030 749749 694694 154154 142142 2.02.0
제조예 2 Preparation 2 4040 3232 441441 719719 162162 460460 2.32.3
제조예 3 Preparation 3 3535 2828 319319 640640 152152 166166 2.92.9
제조예 4 Preparation 4 3737 2727 628628 704704 148148 158158 3.23.2
제조예 5 Preparation 5 3737 2525 575575 815815 136136 151151 4.14.1
제조예 6 Preparation 6 3737 3232 547547 737737 161161 158158 3.53.5
제조예 7 Preparation 7 3737 2828 381381 643643 160160 161161 1.71.7
제조예 8Preparation 8 3838 3131 423423 619619 176176 160160 2.62.6
비교제조예 1Comparative Preparation Example 1 44 22 8585 3838 4040 2020 2020
비교제조예 2Comparative Preparation Example 2 2323 1818 285285 676676 9696 9595 10.010.0
비교제조예 3Comparative Preparation Example 3 3030 2828 667667 746746 102102 8585 7.87.8
비교제조예 4Comparative Preparation Example 4 2020 1515 187187 714714 7575 8484 3.43.4
비교제조예 5Comparative Preparation Example 5 2525 1919 236236 692692 105105 104104 7.47.4
* MD(machine direction) : 압출 방향(종방향)* MD (machine direction): extrusion direction (longitudinal direction)
* CD(cross direction) : 압출 수직 방향(횡방향)* CD (cross direction) : Extrusion vertical direction (cross direction)
상기 표 1에서 보이는 바와 같이, 제조예 1 내지 제조예 8에서 제조한 생분해성 필름은 높은 인장강도, 신율 및 인열강도를 나타냈고, 동시에 낮은 수분 흡수율을 나타냈다. 이러한 결과는 제조예 1 내지 제조예 8에서 제조한 생분해성 필름의 구성성분으로 사용된 열가소성 전분 조성물에서 무수말레산 및 스티렌-무수말레산 공중합체를 매개로 한 그래프트 반응에 의해 전분과 생분해성 고분자인 PBAT간에 형성된 화학적 결합에 기인한 것으로 판단된다. 또한, 비교제조예 3과 같이 열가소성 전분 조성물의 구성성분으로 스티렌-무수말레산 공중합체를 배제하는 경우 생분해성 필름의 수분 흡수율이 크게 높아지는 것으로 나타났다. 또한, 비교제조예 4에서 보이는 바와 같이 열가소성 전분 조성물의 구성성분인 가소제로 글리세린 대신 트리부틸 시트레이트(Tributyl citrate)를 사용하는 경우 수분 흡수율은 양호하나 기계적 물성이 전반적으로 떨어지는 결과를 보였다.As shown in Table 1, the biodegradable films prepared in Preparation Examples 1 to 8 exhibited high tensile strength, elongation and tear strength, and at the same time exhibited low water absorption. These results show that starch and biodegradable polymers were subjected to a graft reaction mediated by maleic anhydride and a styrene-maleic anhydride copolymer in the thermoplastic starch composition used as a component of the biodegradable film prepared in Preparation Examples 1 to 8. It is thought to be due to the chemical bond formed between the phosphorus PBATs. In addition, as in Comparative Preparation Example 3, when the styrene-maleic anhydride copolymer was excluded as a component of the thermoplastic starch composition, the water absorption rate of the biodegradable film was significantly increased. In addition, as shown in Comparative Preparation Example 4, when tributyl citrate was used instead of glycerin as a plasticizer, which is a component of the thermoplastic starch composition, the moisture absorption rate was good, but the mechanical properties were overall poor.
이상에서와 같이 본 발명을 상기의 실시예를 통해 설명하였지만 본 발명이 반드시 여기에만 한정되는 것은 아니며 본 발명의 범주와 사상을 벗어나지 않는 범위 내에서 다양한 변형실시가 가능함은 물론이다. 따라서, 본 발명의 보호범위는 본 발명에 첨부된 특허청구의 범위에 속하는 모든 실시 형태를 포함하는 것으로 해석되어야 한다.As described above, the present invention has been described through the above embodiments, but the present invention is not necessarily limited thereto, and various modifications are possible without departing from the scope and spirit of the present invention. Accordingly, the protection scope of the present invention should be construed to include all embodiments falling within the scope of the claims appended hereto.

Claims (10)

  1. 전분, 가소제, 상용화제, 생분해성 고분자 및 반응 개시제를 포함하고,Contains starch, a plasticizer, a compatibilizer, a biodegradable polymer, and a reaction initiator,
    상기 상용화제는 불포화 다이카르복실산, 무수 불포화 다이카르복실산, 스티렌-불포화 다이카르복실산 공중합체 또는 스티렌-무수 불포화 다이카르복실산 공중합체에서 선택되는 1종 이상으로 구성되고,The compatibilizer is composed of at least one selected from unsaturated dicarboxylic acid, unsaturated dicarboxylic acid anhydride, styrene-unsaturated dicarboxylic acid copolymer or styrene-unsaturated dicarboxylic acid anhydride copolymer,
    상기 전분 및 생분해성 고분자는 상용화제를 매개로 한 그래프트 반응에 의해 화학적으로 결합된 상태로 존재하는 것을 특징으로 하는 열가소성 전분 조성물.The thermoplastic starch composition, characterized in that the starch and the biodegradable polymer exist in a chemically bonded state by a graft reaction mediated by a compatibilizer.
  2. 제1항에 있어서, 상기 가소제는 솔비톨, 에틸렌글리콜, 글리세린 또는 펜타에리쓰리톨에서 선택되는 1종 이상의 다가알코올로 구성되는 것을 특징으로 하는 열가소성 전분 조성물.The thermoplastic starch composition according to claim 1, wherein the plasticizer comprises at least one polyhydric alcohol selected from sorbitol, ethylene glycol, glycerin, and pentaerythritol.
  3. 제1항에 있어서, 상기 상용화제는 제1상용화제 및 제2상용화제로 구성되고,According to claim 1, wherein the compatibilizer is composed of a first compatibilizer and a second compatibilizer,
    상기 제1상용화제는 불포화 다이카르복실산 또는 무수 불포화 다이카르복실산에서 선택되고,The first compatibilizing agent is selected from an unsaturated dicarboxylic acid or an anhydrous unsaturated dicarboxylic acid,
    상기 제2상용화제는 스티렌-불포화 다이카르복실산 공중합체 또는 스티렌-무수 불포화 다이카르복실산 공중합체에서 선택되고,The second compatibilizer is selected from a styrene-unsaturated dicarboxylic acid copolymer or a styrene-anhydride unsaturated dicarboxylic acid copolymer,
    전분 및 생분해성 고분자는 제1상용화제 또는 제2상용화제를 매개로 한 그래프트 반응에 의해 화학적으로 결합된 상태로 존재하는 것을 특징으로 하는 열가소성 전분 조성물.A thermoplastic starch composition, characterized in that the starch and the biodegradable polymer exist in a chemically bonded state by a graft reaction mediated by the first compatibilizing agent or the second compatibilizing agent.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 제1상용화제는 말레산(Maleic acid), 푸마르산(Fumaric acid), 아세틸렌다이카르복실산(Acetylenedicarboxylic acid), 글루타콘산(Glutaconic acid), 2-데세네디오익산(2-Decenedioic acid), 트라우마틴산(Traumatic acid), 뮤콘산(Muconic acid), 글루틴산(Glutinic acid), 시트라콘산(Citraconic acid), 메사콘산(Mesaconic acid), 이타콘산(Itaconic acid), 무수말레산(Maleic anhydride), 무수푸마르산(Fumaric anhydride), 무수아세틸렌다이카르복실산(Acetylenedicarboxylic anhydride), 무수글루타콘산(Glutaconic anhydride), 무수2-데세네디오익산(2-Decenedioic anhydride), 무수트라우마틴산(Traumatic anhydride), 무수뮤콘산(Muconic anhydride), 무수글루틴산(Glutinic anhydride), 무수시트라콘산(Citraconic anhydride), 무수메사콘산(Mesaconic anhydride) 또는 무수이타콘산(Itaconic anhydride)에서 선택되는 1종 이상으로 구성되고,The first compatibilizing agent is maleic acid, fumaric acid, acetylenedicarboxylic acid, glutaconic acid, 2-decenedioic acid, Traumatic acid, Muconic acid, Glutinic acid, Citraconic acid, Mesaconic acid, Itaconic acid, Maleic anhydride ), Fumaric anhydride, Acetylenedicarboxylic anhydride, Glutaconic anhydride, 2-Decenedioic anhydride, Traumatic anhydride , composed of at least one selected from muconic anhydride, glutinic anhydride, citraconic anhydride, mesaconic anhydride, or itaconic anhydride become,
    상기 제2상용화제는 스티렌-말레산 공중합체[Poly(Styrene-co-Maleic acid)], 스티렌-푸마르산 공중합체[Poly(Styrene-co-Fumaric acid)], 스티렌-아세틸렌다이카르복실산 공중합체[Poly(Styrene-co-Acetylenedicarboxylic acid)], 스티렌-글루타콘산 공중합체[Poly(Styrene-co-Glutaconic acid)], 스티렌-2-데세네디오익산 공중합체[Poly(Styrene-co-2-Decenedioic acid)], 스티렌-트라우마틴산 공중합체[Poly(Styrene-co-Traumatic acid)], 스티렌-뮤콘산 공중합체[Poly(Styrene-co-Muconic acid)], 스티렌-글루틴산 공중합체[Poly(Styrene-co-Glutinic acid)], 스티렌-시트라콘산 공중합체[Poly(Styrene-co-Citraconic acid)], 스티렌-메사콘산 공중합체[Poly(Styrene-co-Mesaconic acid)], 스티렌-이타콘산 공중합체[Poly(Styrene-co-Itaconic acid)], 스티렌-무수말레산 공중합체[Poly(Styrene-co-Maleic anhydride)], 스티렌-무수푸마르산 공중합체[Poly(Styrene-co-Fumaric anhydride)], 스티렌-무수아세틸렌다이카르복실산 공중합체[Poly(Styrene-co-Acetylenedicarboxylic anhydride)], 스티렌-무수글루타콘산 공중합체[Poly(Styrene-co-Glutaconic anhydride)], 스티렌-무수2-데세네디오익산 공중합체[Poly(Styrene-co-2-Decenedioic anhydride)], 스티렌-무수트라우마틴산 공중합체[Poly(Styrene-co-Traumatic anhydride)], 스티렌-무수뮤콘산 공중합체[Poly(Styrene-co-Muconic anhydride), 스티렌-무수글루틴산 공중합체[Poly(Styrene-co-Glutinic anhydride)], 스티렌-무수시트라콘산 공중합체[Poly(Styrene-co-Citraconic anhydride)], 스티렌-무수메사콘산 공중합체[Poly(Styrene-co-Mesaconic anhydride)] 또는 스티렌-무수이타콘산 공중합체[Poly(Styrene-co-Itaconic anhydride)]에서 선택되는 1종 이상으로 구성되는 것을 특징으로 하는 열가소성 전분 조성물.The second compatibilizing agent is a styrene-maleic acid copolymer [Poly(Styrene-co-Maleic acid)], a styrene-fumaric acid copolymer [Poly(Styrene-co-Fumaric acid)], a styrene-acetylenedicarboxylic acid copolymer [Poly(Styrene-co-Acetylenedicarboxylic acid)], styrene-glutaconic acid copolymer [Poly(Styrene-co-Glutaconic acid)], styrene-2-decenedioic acid copolymer [Poly(Styrene-co-2- Decenedioic acid)], styrene-traumatic acid copolymer [Poly(Styrene-co-Traumatic acid)], styrene-muconic acid copolymer [Poly(Styrene-co-Muconic acid)], styrene-glutinic acid copolymer [Poly(Styrene-co-Traumatic acid)] (Styrene-co-Glutinic acid)], styrene-citraconic acid copolymer [Poly(Styrene-co-Citraconic acid)], styrene-mesaconic acid copolymer [Poly(Styrene-co-Mesaconic acid)], styrene-ita Conic acid copolymer [Poly(Styrene-co-Itaconic acid)], Styrene-maleic anhydride copolymer [Poly(Styrene-co-Maleic anhydride)], Styrene-Fumaric anhydride copolymer [Poly(Styrene-co-Fumaric anhydride) ], styrene-acetylenedicarboxylic acid anhydride copolymer [Poly(Styrene-co-Acetylenedicarboxylic anhydride)], styrene-glutaconic anhydride copolymer [Poly(Styrene-co-Glutaconic anhydride)], styrene-anhydride 2-de Senedioic acid copolymer [Poly (Styrene-co-2-Decenedioic anhydride)], styrene-traumatic anhydride copolymer [Poly (Styrene-co-Traumatic anhydride)], styrene-muconic anhydride copolymer [Poly (Styrene- co-Muconic anhydride), styrene-glutinic anhydride copolymer [Poly (Styrene-co -Glutinic anhydride)], styrene-citraconic anhydride copolymer [Poly(Styrene-co-Citraconic anhydride)], styrene-mesaconic anhydride copolymer [Poly(Styrene-co-Mesaconic anhydride)] or styrene-itaconic anhydride A thermoplastic starch composition comprising at least one selected from copolymer [Poly (Styrene-co-Itaconic anhydride)].
  5. 제3항에 있어서, 상기 제2상용화제의 중량평균분자량은 3,000~300,000 g/mol 인 것을 특징으로 하는 열가소성 전분 조성물.The thermoplastic starch composition according to claim 3, wherein the weight average molecular weight of the second compatibilizer is 3,000 to 300,000 g/mol.
  6. 제1항에 있어서, 상기 생분해성 고분자는 폴리라틱산(Polylactic acid, PLA), 폴리글리코릭산(Polyglycolic acid, PGA), 폴리카프로락톤(Polycaprolactone, PCL), 폴리비닐알코올, 폴리부틸렌석시네이트(Polybutylene succinate, PBS), 폴리하이드록시알카노에이트(Polyhydroxyalkanoate, PHA), 부틸렌석시네이트-아디페이트 공중합체[Poly(butylene succinate-co-adipate), PBSA], 부틸렌아디페이트-부틸렌테레프탈레이트 공중합체[Poly(butylene adipate-co-bytylene terephtalate), PBABT] 또는 부틸렌아디페이트-테레프탈레이트 공중합체[Poly(butylene adipate-co-terephtalate), PBAT]에서 선택되는 1종 이상으로 구성되는 것을 특징으로 하는 열가소성 전분 조성물.According to claim 1, wherein the biodegradable polymer is polylactic acid (Polylactic acid, PLA), polyglycolic acid (Polyglycolic acid, PGA), polycaprolactone (Polycaprolactone, PCL), polyvinyl alcohol, polybutylene succinate ( Polybutylene succinate (PBS), polyhydroxyalkanoate (PHA), butylene succinate-adipate copolymer [Poly (butylene succinate-co-adipate), PBSA], butylene adipate-butylene terephthalate Characterized in that it is composed of at least one selected from copolymer [Poly (butylene adipate-co-bytylene terephtalate), PBABT] or butylene adipate-terephthalate copolymer [Poly (butylene adipate-co-terephtalate), PBAT] A thermoplastic starch composition comprising
  7. 제1항에 있어서, 상기 반응 개시제는 벤조일 퍼옥사이드(benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), 디라우릴 퍼옥사이드(dilauryl peroxide), 디-터트-부틸 퍼옥사이드(di-tert-butyl peroxide), 큐밀 퍼옥사이드(cumyl hydroperoxide), 디-터트-부틸 히드로퍼옥사이드(di - tert -butyl hydroperoxide), 디벤조일 퍼옥사이드(dibenzoyl peroxide), 숙신산 퍼옥사이드(succinic peroxide), 디라우릴일 퍼옥사이드(dilauryl peroxide), 디데카노일 퍼옥사이드(didecanoyl peroxide), 디큐밀 퍼옥사이드(dicumyl peroxide), 2,5-디메틸-2,5-디(터트-부틸퍼옥시)헥산[2,5-dimethyl-2,5-di-(tert- butylperoxy)hexane], α-큐밀 퍼옥시-네오데카보네이트(α-cumyl peroxy-neodecanoate), 1,1-디메틸-3-하이드록시부틸 퍼옥시-2-에틸헥사노에이티트(1-1-dimethyl-3-hydroxybutyl peroxy-2- ethyl hexanoate), 터트-암밀 퍼옥시벤조에이트(tert-amyl peroxy-benzoate), 터트-부틸 퍼옥시피발레이트(tert-butyl peroxy-pivalate), 2,5-디하이드록시퍼옥시-2,5-디메틸헥산(2,5-dihydroperoxy-2,5 -dimethylhexane), 쿠멘 하이드로퍼옥사이드(cumene hydroperoxide) 또는 1,3-비스(터트-부틸퍼옥시이소프로필)벤젠[1,3-Bis(tert-butylperoxyisopropyl)benzene]에서 선택되는 1종 이상의 퍼옥사이드(Peroxide)계 반응 개시제로 구성되는 것을 특징으로 하는 열가소성 전분 조성물.According to claim 1, wherein the reaction initiator is benzoyl peroxide (benzoyl peroxide), acetyl peroxide (acetyl peroxide), dilauryl peroxide (dilauryl peroxide), di-tert-butyl peroxide (di-tert-butyl peroxide) , cumyl peroxide, di-tert-butyl hydroperoxide, dibenzoyl peroxide, succinic peroxide, dilauryl peroxide peroxide), didecanoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane [2,5-dimethyl-2, 5-di-(tert-butylperoxy)hexane], α-cumyl peroxy-neodecanoate, 1,1-dimethyl-3-hydroxybutyl peroxy-2-ethylhexanoe ytite (1-1-dimethyl-3-hydroxybutyl peroxy-2-ethyl hexanoate), tert-amyl peroxy-benzoate, tert-butyl peroxy-pivalate ), 2,5-dihydroxyperoxy-2,5-dimethylhexane (2,5-dihydroperoxy-2,5-dimethylhexane), cumene hydroperoxide or 1,3-bis (tert-butyl) A thermoplastic starch composition comprising at least one peroxide-based reaction initiator selected from peroxyisopropyl)benzene [1,3-Bis(tert-butylperoxyisopropyl)benzene].
  8. 제1항에 있어서, 전체 중량을 기준으로 전분 60~90 중량%, 가소제 3~30 중량%, 상용화제 0.1~5 중량%, 생분해성 고분자 2~25 중량% 및 반응 개시제 0.01~0.8 중량%를 포함하는 것을 특징으로 하는 열가소성 전분 조성물.According to claim 1, based on the total weight, 60 to 90% by weight of starch, 3 to 30% by weight of a plasticizer, 0.1 to 5% by weight of a compatibilizer, 2 to 25% by weight of a biodegradable polymer, and 0.01 to 0.8% by weight of a reaction initiator A thermoplastic starch composition comprising:
  9. 전분 및 가소제를 혼합하여 제1혼합물을 수득하는 단계;mixing starch and a plasticizer to obtain a first mixture;
    상기 제1혼합물에 상용화제 및 반응 개시제를 첨가하고 가열하면서 혼합하여 제2혼합물을 수득하는 단계;adding a compatibilizer and a reaction initiator to the first mixture and mixing while heating to obtain a second mixture;
    상기 제2혼합물에 생분해성 고분자를 첨가하고 혼합하여 제3혼합물을 수득하는 단계; 및adding and mixing a biodegradable polymer to the second mixture to obtain a third mixture; and
    상기 제3혼합물을 160~220℃의 온도 조건에서 압출하면서 상용화제의 그래프트 반응에 의해 매개되는 전분과 생분해성 고분자간의 화학적 결합을 유도하는 단계를 포함하는 방법으로서,A method comprising inducing a chemical bond between starch and biodegradable polymer mediated by a graft reaction of a compatibilizer while extruding the third mixture at a temperature of 160 to 220 ° C.
    상기 상용화제는 불포화 다이카르복실산, 무수 불포화 다이카르복실산, 스티렌-불포화 다이카르복실산 공중합체 또는 스티렌-무수 불포화 다이카르복실산 공중합체에서 선택되는 1종 이상으로 구성되는 것을 특징으로 하는 열가소성 전분 조성물의 제조방법.The compatibilizer is characterized in that it is composed of at least one selected from unsaturated dicarboxylic acid, unsaturated dicarboxylic acid anhydride, styrene-unsaturated dicarboxylic acid copolymer, or styrene-unsaturated dicarboxylic acid anhydride copolymer. A method for preparing a thermoplastic starch composition.
  10. 제1항 내지 제8항 중 어느 한 항의 열가소성 전분 조성물 및 생분해성 고분자를 1:9 내지 5:5의 중량비로 포함하는 필름 성형용 생분해성 조성물.A biodegradable composition for film molding comprising the thermoplastic starch composition of any one of claims 1 to 8 and the biodegradable polymer in a weight ratio of 1:9 to 5:5.
PCT/KR2021/004405 2021-02-15 2021-04-08 Thermoplastic starch composition, method for preparing same, and uses thereof WO2022173073A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180021491.6A CN115315477A (en) 2021-02-15 2021-04-08 Thermoplastic starch composition, method for producing same, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210019813A KR102508277B1 (en) 2021-02-15 2021-02-15 Thermoplastic starch composition, manufacturing method thereof, and use thereof
KR10-2021-0019813 2021-02-15

Publications (1)

Publication Number Publication Date
WO2022173073A1 true WO2022173073A1 (en) 2022-08-18

Family

ID=82838361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004405 WO2022173073A1 (en) 2021-02-15 2021-04-08 Thermoplastic starch composition, method for preparing same, and uses thereof

Country Status (3)

Country Link
KR (1) KR102508277B1 (en)
CN (1) CN115315477A (en)
WO (1) WO2022173073A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304850A (en) * 2022-09-05 2022-11-08 宇豪(马鞍山)科技有限公司 Method for transforming thermoplastic material into homogeneous thermoplastic material
CN115403851A (en) * 2022-10-17 2022-11-29 宇豪(马鞍山)科技有限公司 Thermoplastic composite material and preparation method thereof
WO2023031908A1 (en) * 2021-09-03 2023-03-09 Tipa Corp. Ltd Biodegradable sheets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040061885A (en) * 2002-12-31 2004-07-07 조석형 The one time an instrument which accomplished with the biodegradation characteristic resin composition
KR20100108683A (en) * 2009-03-30 2010-10-08 대상 주식회사 Polylactic acid-containing biodegradable resin composition
CN102226001A (en) * 2011-04-26 2011-10-26 东北师范大学 Fully biodegradable nano-starch graft polylactic acid
KR20160002546A (en) * 2014-06-30 2016-01-08 대상 주식회사 Copolymer of starch and thermoplastec polymer, manufacturing method of the same and use of the same
KR20170075052A (en) * 2015-12-22 2017-07-03 롯데정밀화학 주식회사 Resin composition for mulching film and biodegradable mulching film using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861461A (en) * 1995-12-06 1999-01-19 Yukong Limited Biodegradable plastic composition, method for preparing thereof and product prepared therefrom
CN1164661C (en) * 2001-12-17 2004-09-01 武汉华丽环保科技有限公司 Starch-based biodegradable material and its preparation method
CN1267487C (en) * 2004-08-23 2006-08-02 成都新柯力化工科技有限公司 Biodegradation starch resin masterbatch
CN100429263C (en) * 2004-11-18 2008-10-29 成都新柯力化工科技有限公司 Biological-degradable starch/polyester plastic completely and production thereof
CN102321249B (en) * 2011-06-30 2013-01-16 无锡碧杰生物材料科技有限公司 Thermoplastic starch (TPS), biodegradable polyester/starch composite material and preparation thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040061885A (en) * 2002-12-31 2004-07-07 조석형 The one time an instrument which accomplished with the biodegradation characteristic resin composition
KR20100108683A (en) * 2009-03-30 2010-10-08 대상 주식회사 Polylactic acid-containing biodegradable resin composition
CN102226001A (en) * 2011-04-26 2011-10-26 东北师范大学 Fully biodegradable nano-starch graft polylactic acid
KR20160002546A (en) * 2014-06-30 2016-01-08 대상 주식회사 Copolymer of starch and thermoplastec polymer, manufacturing method of the same and use of the same
KR20170075052A (en) * 2015-12-22 2017-07-03 롯데정밀화학 주식회사 Resin composition for mulching film and biodegradable mulching film using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031908A1 (en) * 2021-09-03 2023-03-09 Tipa Corp. Ltd Biodegradable sheets
CN115304850A (en) * 2022-09-05 2022-11-08 宇豪(马鞍山)科技有限公司 Method for transforming thermoplastic material into homogeneous thermoplastic material
CN115304850B (en) * 2022-09-05 2023-08-15 宇豪(马鞍山)科技有限公司 Method for converting thermoplastic material into homogeneous new thermoplastic material
CN115403851A (en) * 2022-10-17 2022-11-29 宇豪(马鞍山)科技有限公司 Thermoplastic composite material and preparation method thereof
CN115403851B (en) * 2022-10-17 2023-08-15 宇豪(马鞍山)科技有限公司 Thermoplastic composite material and preparation method thereof

Also Published As

Publication number Publication date
CN115315477A (en) 2022-11-08
KR20220116678A (en) 2022-08-23
KR102508277B1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2022173073A1 (en) Thermoplastic starch composition, method for preparing same, and uses thereof
HUT57808A (en) Polymer composition suitable for producing biologically decomposable plastic products and process for its production
KR101000749B1 (en) Biodegradable resin composition, method for production thereof and biodegradable film therefrom
WO2009073197A1 (en) Biodegradable thermoplasticized starch-polyester reactive blends for thermoforming applications
WO2021112396A1 (en) Biodegradable resin composition and production method therefor
WO2012144781A2 (en) Biodegradable polymer composite material
JPH0717810B2 (en) Stabilized composition of polyacetal
US5635550A (en) Starch-based composition
WO2021112397A1 (en) Biodegradable resin composition and method for producing same
CN111944291B (en) Polylactic resin composition and preparation method thereof
CN113831702B (en) Degradable plastic cutlery box composition and preparation method thereof
JPH0967414A (en) Polyvinyl alcohol thermoplastic copolymer and its production
WO2023068459A1 (en) Thermoplastic starch composition, preparation method therefor, and use thereof
US5349000A (en) Extrudable polyvinyl alcohol compositions containing polyester-polyether block copolymers
WO2022060063A1 (en) Biodegradable film composition containing surface-treated byproduct gypsum and preparation method therefor
EP0592240B1 (en) Method for rendering resins compatible and composition comprising such compatibilized resins
JP4240882B2 (en) Resin composition for printing ink and method for producing the same
US5286793A (en) In situ compatibilization of PPE/polyethylene copolymer blends
KR100200169B1 (en) Articles from a polyester resin
JPH06340771A (en) Polyolefin-starch-based molding composition
JPH059298A (en) Polyolefin copolymer grafted with polycaprolactone and preparation thereof
JP2885919B2 (en) Modified propylene ethylene copolymer and method for producing the same
JP2860127B2 (en) Resin composition and its use
JP2996072B2 (en) Resin compatibilizing method and resin composition
WO2023229427A1 (en) Biodegradable resin composition, biodegradable resin molded product, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925895

Country of ref document: EP

Kind code of ref document: A1