JP3965697B2 - Chlorinated polyolefin binder resin composition with good solvent resistance - Google Patents

Chlorinated polyolefin binder resin composition with good solvent resistance Download PDF

Info

Publication number
JP3965697B2
JP3965697B2 JP2004055418A JP2004055418A JP3965697B2 JP 3965697 B2 JP3965697 B2 JP 3965697B2 JP 2004055418 A JP2004055418 A JP 2004055418A JP 2004055418 A JP2004055418 A JP 2004055418A JP 3965697 B2 JP3965697 B2 JP 3965697B2
Authority
JP
Japan
Prior art keywords
weight
chlorinated
polyolefin
acid
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004055418A
Other languages
Japanese (ja)
Other versions
JP2005239983A (en
Inventor
晃二 増本
隆行 広瀬
直輔 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Chemicals Co Ltd
Original Assignee
Nippon Paper Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Chemicals Co Ltd filed Critical Nippon Paper Chemicals Co Ltd
Priority to JP2004055418A priority Critical patent/JP3965697B2/en
Publication of JP2005239983A publication Critical patent/JP2005239983A/en
Application granted granted Critical
Publication of JP3965697B2 publication Critical patent/JP3965697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

本発明はポリオレフィン系樹脂、例えばポリプロピレン、ポリエチレン、エチレン−プロピレン共重合物、エチレン−プロピレン−ジエン共重合物などの保護または美粧を目的として用いられるバインダー樹脂組成物に関し、更に詳しくはこれらのシートやフィルム及び成型物に対し優れた耐溶剤性、付着性及びその他の物性に優れ且つ安定性良好な、プライマー及び塗料用のバインダー樹脂として用いる塩素化ポリオレフィン組成物に関する。   The present invention relates to a binder resin composition used for the purpose of protection or cosmetics of polyolefin-based resins such as polypropylene, polyethylene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, etc. The present invention relates to a chlorinated polyolefin composition used as a binder resin for primers and paints, which is excellent in solvent resistance, adhesion and other physical properties and excellent in stability to films and molded products.

プラスチックは、高生産性でデザインの自由度が広く、軽量、防錆、耐衝撃性など多くの利点があるため、近年、自動車部品、電気部品、建築資材、食品包装用フィルム等の材料として多く用いられてきている。とりわけポリオレフィン系樹脂は、安価で成形性、耐薬品性、耐熱性、耐水性、良好な電気特性など多くの優れた性質を有するため、工業材料として広範囲に使用されており、将来その需要の伸びが最も期待されている材料の一つである。しかしながらポリオレフィン系樹脂は、ポリウレタン系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリエステル系樹脂等、極性を有する合成樹脂と異なり、非極性で且つ結晶性のため、塗装や接着が困難であるという欠点を有する。   Plastics are highly productive, have a wide range of design freedom, and have many advantages such as light weight, rust prevention, impact resistance, etc. In recent years, they have been widely used as materials for automobile parts, electrical parts, building materials, food packaging films, etc. It has been used. In particular, polyolefin resins are widely used as industrial materials because they are inexpensive and have many excellent properties such as moldability, chemical resistance, heat resistance, water resistance, and good electrical properties. Is one of the most promising materials. However, unlike the synthetic resins with polarity, such as polyurethane resins, polyamide resins, acrylic resins, polyester resins, etc., polyolefin resins have the disadvantage that they are nonpolar and crystalline, making them difficult to paint and bond. Have.

この様な難付着性なポリオレフィン系樹脂の塗装や接着には、ポリオレフィン系樹脂に対して強い付着力を有する低塩素化ポリオレフィンが従来よりバインダー樹脂として使用されている。またカルボン酸及び/またはカルボン酸無水物を含有する低塩素化ポリプロピレンあるいは低塩素化プロピレン−α−オレフィン共重合体が、ポリオレフィン系成型品の塗装用プライマーやコーティング用のバインダー樹脂として提案されている(例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5参照)。   For the coating and adhesion of such difficult-to-adhere polyolefin resins, low chlorinated polyolefins having a strong adhesion to polyolefin resins have been conventionally used as binder resins. In addition, low chlorinated polypropylene or low chlorinated propylene-α-olefin copolymer containing carboxylic acid and / or carboxylic acid anhydride has been proposed as a primer for coating a polyolefin-based molded article or a binder resin for coating. (For example, see Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5).

近年、ポリオレフィン系成型品用のプライマーには付着性のみならず、耐溶剤性、特に耐ガソホール性が要求されるようになっているが、上記の塩素化酸変性ポリオレフィンでは耐ガソホール性が十分ではなく改良が望まれている。   In recent years, primers for polyolefin-based molded products are required not only for adhesion but also for solvent resistance, particularly gasohol resistance. However, the above chlorinated acid-modified polyolefin does not have sufficient gasohol resistance. Improvement is desired.

上記耐ガソホール性を改良するために、塩素化酸変性ポリオレフィンにモノエポキシ化合物及び/または樹脂を添加することで改良する(例えば、特許文献6参照)ことや、塩素化酸変性ポリオレフィンのグラフトしたα、β−不飽和カルボン酸無水物の一部を水で開環させることで改良する(例えば、特許文献7参照)ことが提案されている。しかしこれらは何れも塩素化する前に未反応の酸モノマー等を溶剤で除去することが必要であり、製造工程が増え、製造コストが増加するという欠点があった。   In order to improve the gasohol resistance, it can be improved by adding a monoepoxy compound and / or resin to the chlorinated acid-modified polyolefin (see, for example, Patent Document 6), or a α grafted with the chlorinated acid-modified polyolefin. It has been proposed to improve a part of the β-unsaturated carboxylic acid anhydride by ring-opening with water (see, for example, Patent Document 7). However, all of these require the removal of unreacted acid monomers and the like with a solvent before chlorination, which has the disadvantage that the production process increases and the production cost increases.

特開昭57−36128号公報JP-A-57-36128 特公昭63−50381号公報Japanese Patent Publication No. 63-50381 特開昭59−166534号公報JP 59-166534 A 特公昭63−36624号公報Japanese Examined Patent Publication No. 63-36624 特開平10−168123号公報Japanese Patent Laid-Open No. 10-168123 特開平9−235433号公報Japanese Patent Laid-Open No. 9-235433 特開2001−114843号公報JP 2001-114843 A

本発明は、上記の問題を解決しポリオレフィンに対する付着性や耐溶剤性、特に耐ガソホール性に優れ、且つ溶剤溶解性が良好で、保存安定性良好なプライマー、塗料用に使用される塩素化ポリオレフィン系バインダー樹脂組成物の提供を目的とする。   The present invention solves the above problems and is excellent in adhesion and solvent resistance to polyolefin, particularly in gasohol resistance, good in solvent solubility, good storage stability, and chlorinated polyolefin used for coatings. An object is to provide a binder resin composition.

本発明者らは、(a)α、β―不飽和カルボン酸及び/またはその誘導体で0.1〜10重量%グラフト重合したポリオレフィンを、塩素含有率が10〜20重量%の範囲で塩素化した塩素化酸変性ポリオレフィン100重量部に対して、(b)α、β―不飽和カルボン酸及び/またはその誘導体で0〜10重量%グラフト重合したポリオレフィンを、塩素含有率が20〜45重量%の範囲で塩素化した塩素化ポリオレフィンまたは塩素化酸変性ポリオレフィンを5〜50重量部混合することによりポリオレフィンに対する付着性や耐溶剤性、特に耐ガソホール性を維持したまま、溶剤溶解性、保存安定性が良好になることを見出し、本発明に至った。   The present inventors have (a) chlorinated a polyolefin obtained by graft polymerization of 0.1 to 10% by weight with an α, β-unsaturated carboxylic acid and / or a derivative thereof in a chlorine content of 10 to 20% by weight. (B) A polyolefin obtained by graft polymerization of 0 to 10% by weight with α, β-unsaturated carboxylic acid and / or a derivative thereof, based on 100 parts by weight of the chlorinated acid-modified polyolefin, has a chlorine content of 20 to 45% by weight. By mixing 5 to 50 parts by weight of chlorinated polyolefin or chlorinated acid-modified polyolefin chlorinated in the range, solvent solubility and storage stability while maintaining adhesion to polyolefin and solvent resistance, especially gasohol resistance Has been found to be favorable, leading to the present invention.

一般に分子量が高いほど、また塩素含有率が低いほど、耐溶剤性は良好になる。反面、溶剤溶解性が悪く、溶液にするとすぐにゲル化が起こる。本発明の特徴とするところは、塩素含有率が比較的高く、分子量の小さい塩素化ポリオレフィンまたは塩素化酸変性ポリオレフィンを、耐溶剤性は良いものの、溶剤溶解性に乏しい高分子量、低塩素含有率の塩素化酸変性ポリオレフィンに混合することにより、耐溶剤性を維持したまま、溶解性を改善したことにある。   In general, the higher the molecular weight and the lower the chlorine content, the better the solvent resistance. On the other hand, the solvent solubility is poor and gelation occurs as soon as it is made into a solution. A feature of the present invention is that chlorinated polyolefin or chlorinated acid-modified polyolefin having a relatively high chlorine content and a low molecular weight is good in solvent resistance, but has a high molecular weight and low chlorine content. By mixing with the chlorinated acid-modified polyolefin, the solubility was improved while maintaining the solvent resistance.

耐溶剤性が良好なのは、塗膜にした際、溶剤に溶けやすい低分子、高塩素含有率の塩素化ポリオレフィンまたは塩素化酸変性ポリオレフィンが、溶剤に溶けにくい高分子、低塩素含有率の塩素化酸変性ポリオレフィンに分子レベルで複雑に絡み合い、溶剤による低分子、高塩素含有率の塩素化ポリオレフィンまたは塩素化酸変性ポリオレフィンの溶出を妨げるために、結果的に高分子、低塩素含有率の塩素化酸変性ポリオレフィンの持つ耐溶剤性を維持しているものと考えられる。一方、溶解性が改善できたのは、逆に溶剤に溶けやすい低分子、高塩素含有率の塩素化ポリオレフィンまたは塩素化酸変性ポリオレフィンが、溶剤に溶けにくい高分子、低塩素含有率の塩素化酸変性ポリオレフィンの溶媒和生成を補助しているものと考えられる。   Solvent resistance is good because low molecular weight, high chlorine content chlorinated polyolefins or chlorinated acid-modified polyolefins that are easily soluble in the solvent when applied to coatings are high solubility, low chlorine content chlorinated polymers. Intricately entangled with acid-modified polyolefins at the molecular level, resulting in high molecular weight, low chlorine content chlorination to prevent elution of low molecular weight, high chlorine content chlorinated polyolefin or chlorinated acid modified polyolefin by solvent It is considered that the solvent resistance of the acid-modified polyolefin is maintained. On the other hand, the solubility was improved because chlorinated polyolefins with low molecular weight, high chlorine content, or chlorinated acid modified polyolefins that are easily soluble in solvents, polymers that are difficult to dissolve in solvents, and chlorinated with low chlorine content. It is thought that it assists the solvation formation of acid-modified polyolefin.

本発明の原料であるポリオレフィンとは、結晶性ポリプロピレン、プロピレン−α−オレフィン共重合物が挙げられる。結晶性ポリプロピレンとは、アイソタクチックポリプロピレンであり、重量平均分子量が10,000〜300,000のものが使用できる。プロピレン−α−オレフィン共重合物とは、プロピレンを主体としてこれにα−オレフィンを共重合したものであり、ブロック共重合物でもランダム共重合物の何れでも使用できる。α−オレフィン成分としては、例えばエチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、4−メチル−1−ペンテン等を例示することができる。プロピレン成分の含有量は50〜98モル%が最適で、50モル%未満であるとポリプロピレンに対する付着性が低下し、98モル%を超えると塗膜の柔軟性が悪くなる。また上記ポリオレフィンは、従来のチーグラー・ナッタ触媒を重合触媒として用いることにより重合したポリオレフィンでも、近年、ポリオレフィンの重合触媒として開発されたメタロセン化合物を用いて重合したポリオレフィンでも良い。更には、上記ポリオレフィンは何れも熱減成により前処理を行ったものも使用でき、結晶性ポリプロピレン、プロピレン−α−オレフィン共重合物、またはそれらを熱減成したものをそれぞれ単独、もしくは2種以上混合して使用しても良い。   Examples of the polyolefin that is a raw material of the present invention include crystalline polypropylene and propylene-α-olefin copolymer. Crystalline polypropylene is isotactic polypropylene, and those having a weight average molecular weight of 10,000 to 300,000 can be used. The propylene-α-olefin copolymer is a copolymer of propylene as a main component and an α-olefin copolymerized therewith, and either a block copolymer or a random copolymer can be used. Examples of the α-olefin component include ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene and the like. The content of the propylene component is optimally 50 to 98 mol%, and if it is less than 50 mol%, the adhesion to polypropylene is lowered, and if it exceeds 98 mol%, the flexibility of the coating film is deteriorated. The polyolefin may be a polyolefin polymerized by using a conventional Ziegler-Natta catalyst as a polymerization catalyst, or may be a polyolefin polymerized using a metallocene compound developed in recent years as a polymerization catalyst for polyolefins. Further, any of the above polyolefins that have been pretreated by thermal degradation can be used, and crystalline polypropylene, propylene-α-olefin copolymer, or those thermally degraded, each alone or in combination. You may mix and use above.

本発明の塩素化ポリオレフィンまたは酸変性塩素化ポリオレフィンとは、前者は上記ポリオレフィン樹脂に塩素を導入することにより、また後者は上記ポリオレフィン樹脂にα、β−不飽和カルボン酸及び/またはその誘導体、および塩素を導入することにより得られるが、その製造は次に挙げる方法により製造可能である。   The chlorinated polyolefin or acid-modified chlorinated polyolefin of the present invention refers to the former by introducing chlorine into the polyolefin resin, and the latter to the polyolefin resin by α, β-unsaturated carboxylic acid and / or a derivative thereof, and Although it can be obtained by introducing chlorine, it can be produced by the following method.

酸変性塩素化ポリオレフィンでは、まずポリオレフィン樹脂にα、β−不飽和カルボン酸及び/またはその誘導体をグラフト共重合するが、その方法は、ラジカル発生剤の存在下で該ポリオレフィンを融点以上に加熱融解して反応させる方法(溶融法)、該ポリオレフィンを有機溶剤に溶解させた後ラジカル発生剤の存在下に加熱撹拌して反応させる方法(溶液法)等、公知の方法によって行うことができる。溶融法の場合には、バンバリーミキサー、ニーダー、押出機等を使用し融点以上300℃以下の温度で加熱溶融して反応させるので操作が簡単である上、短時間で反応できるという利点がある。一方、溶液法においては反応溶剤としてトルエン、キシレン等の芳香族系溶剤を使うことが好ましい。反応温度は100〜180℃であり、副反応が少なく均一なグラフト重合物を得ることができるという特徴がある。   In an acid-modified chlorinated polyolefin, first, α, β-unsaturated carboxylic acid and / or a derivative thereof are graft-copolymerized onto a polyolefin resin. The method is to heat and melt the polyolefin to a melting point or higher in the presence of a radical generator. And the like (melting method) and the method of dissolving the polyolefin in an organic solvent and then reacting by heating and stirring in the presence of a radical generator (solution method). In the case of the melting method, a Banbury mixer, a kneader, an extruder or the like is used and heated and melted at a temperature of not lower than the melting point and not higher than 300 ° C., so that there is an advantage that the operation is simple and the reaction can be performed in a short time. On the other hand, in the solution method, it is preferable to use an aromatic solvent such as toluene or xylene as a reaction solvent. The reaction temperature is 100 to 180 ° C., and there is a feature that a uniform graft polymer can be obtained with few side reactions.

α、β−不飽和カルボン酸無水物のグラフト反応に使用する上記有機過酸化物系化合物としては、例えば、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、ジラウリルパーオキサイド、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド、1,1−ビス(t−ブチルパーオキシ)−3,5,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−シクロヘキサン、シクロヘキサノンパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソプロピルカーボネート、クミルパーオキシオクトエート等があげられる。   Examples of the organic peroxide compound used in the graft reaction of α, β-unsaturated carboxylic acid anhydride include di-t-butyl peroxide, dicumyl peroxide, t-butylcumyl peroxide, and benzoyl peroxide. Oxide, dilauryl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, 1,1-bis (t-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (t-butyl) Peroxy) -cyclohexane, cyclohexanone peroxide, t-butylperoxybenzoate, t-butylperoxyisobutyrate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy-2 -Ethylhexanoate, t-butylperoxyisopropyl Examples include carbonate and cumyl peroxyoctoate.

また上記ポリオレフィン樹脂にグラフト共重合するα、β−不飽和カルボン酸及び/またはその誘導体としては、例えばマレイン酸、無水マレイン酸、フマル酸、シトラコン酸、無水シトラコン酸、メサコン酸、イタコン酸、無水イタコン酸、アコニット酸、無水アコニット酸、無水ハイミック酸等を例示できるが、ポリオレフィン樹脂へのグラフト性を考慮すると無水マレイン酸が最も適している。また、α、β−不飽和カルボン酸及び/またはその誘導体をグラフト共重合によって導入する量は、主成分である請求項1における(a)塩素化酸変性ポリオレフィンは0.1〜10重量%が最適であり、好ましくは1〜8重量%である。0.1重量部未満では得られたプライマー用組成物と上塗り塗料との付着性が十分に得られず、10重量%を越えると塩素化の途中でゲル化する。一方、併用される(b)塩素化ポリオレフィンまたは塩素化酸変性ポリオレフィンの導入量は、0〜10重量%が最適であり、好ましくは0〜5重量%である。10重量%を越えると塩素化の途中でゲル化する。   Examples of the α, β-unsaturated carboxylic acid and / or derivative thereof which are graft copolymerized with the polyolefin resin include maleic acid, maleic anhydride, fumaric acid, citraconic acid, citraconic anhydride, mesaconic acid, itaconic acid, anhydrous Itaconic acid, aconitic acid, aconitic anhydride, hymic anhydride and the like can be exemplified, but maleic anhydride is most suitable in consideration of grafting property to polyolefin resin. The amount of α, β-unsaturated carboxylic acid and / or derivative thereof introduced by graft copolymerization is a main component. (A) The chlorinated acid-modified polyolefin in claim 1 is 0.1 to 10% by weight. Optimum, preferably 1-8% by weight. If the amount is less than 0.1 part by weight, sufficient adhesion between the obtained primer composition and the top coat cannot be obtained, and if it exceeds 10% by weight, gelation occurs during chlorination. On the other hand, the amount of (b) chlorinated polyolefin or chlorinated acid-modified polyolefin used in combination is optimally 0 to 10% by weight, preferably 0 to 5% by weight. If it exceeds 10% by weight, gelation occurs during chlorination.

上記酸変性後に行う、または先に示したポリオレフィン樹脂に酸変性を行わずに行う塩素化反応は、それら酸変性ポリオレフィン樹脂またはポリオレフィン樹脂をクロロホルム等の塩素系溶媒に溶解した後に紫外線の照射下、もしくは触媒の存在下、もしくは不存在下で、常圧もしくは加圧下で50〜140℃の温度範囲で塩素ガスを吹き込むことにより行われる。また塩素化反応により導入する塩素含有率は、主成分である請求項1における(a)塩素化酸変性ポリオレフィンは10〜20重量%が最適であり、好ましくは13〜18重量%である。10重量%未満の場合は、塩素化ポリオレフィン系バインダー樹脂組成物として(b)と併用した際でも溶剤溶解性が改善できず、20重量%を越えると(a)塩素化酸変性ポリオレフィンの耐溶剤性、特に耐ガソホール性が低下する。   The chlorination reaction performed after the acid modification or without performing the acid modification on the polyolefin resin described above is performed under ultraviolet irradiation after dissolving the acid-modified polyolefin resin or the polyolefin resin in a chlorine-based solvent such as chloroform. Alternatively, it is carried out by blowing chlorine gas in the temperature range of 50 to 140 ° C. under normal pressure or under pressure in the presence or absence of a catalyst. The chlorine content to be introduced by the chlorination reaction is the main component, and (a) the chlorinated acid-modified polyolefin in claim 1 is optimally 10 to 20% by weight, preferably 13 to 18% by weight. When it is less than 10% by weight, the solvent solubility cannot be improved even when used in combination with (b) as a chlorinated polyolefin-based binder resin composition, and when it exceeds 20% by weight, the solvent resistance of (a) chlorinated acid-modified polyolefin is not improved. Properties, particularly gasohol resistance, are reduced.

一方、併用される(b)塩素化ポリオレフィンまたは塩素化酸変性ポリオレフィンの導入量は、20〜45重量%が最適であり、好ましくは30〜45重量%である。20重量%未満では、塩素化ポリオレフィン系バインダー樹脂組成物として(a)と併用した際に、溶剤溶解性が改善できず、45重量%を超えると塩素化ポリオレフィン系バインダー樹脂組成物として(a)と併用した際の耐溶剤性、特に耐ガソホール性が維持できない。塩素化反応に用いる触媒としては、上記有機過酸化物系化合物の他に、2,2−アゾビス(2−メチルブチロニトリル)、2,2−アゾビスイソブチロニトリル、2,2−アゾビス(2,4−ジメチルバレロニトリル)、2,2−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾニトリル類が使用できる。   On the other hand, the introduction amount of (b) chlorinated polyolefin or chlorinated acid-modified polyolefin used in combination is optimally 20 to 45% by weight, preferably 30 to 45% by weight. If it is less than 20% by weight, the solvent solubility cannot be improved when used in combination with (a) as a chlorinated polyolefin binder resin composition. If it exceeds 45% by weight, (a) Solvent resistance, especially gasohol resistance, cannot be maintained when used together. Catalysts used for the chlorination reaction include 2,2-azobis (2-methylbutyronitrile), 2,2-azobisisobutyronitrile, 2,2-azobis in addition to the above organic peroxide compounds. Azonitriles such as (2,4-dimethylvaleronitrile) and 2,2-azobis (4-methoxy-2,4-dimethylvaleronitrile) can be used.

本発明の塩素化ポリオレフィン系バインダー樹脂溶液組成物を製造する方法は、請求項1における(a)塩素化酸変性ポリオレフィンと(b)塩素化ポリオレフィンまたは塩素化酸変性ポリオレフィンそれぞれを、塩素化反応が終了した後、クロロホルム等の塩素系溶媒を減圧留去し、芳香族炭化水素、及び/または脂環式炭化水素、及び/または脂肪族炭化水素、及び/または極性溶剤で置換した後、固形分比で(a)100重量部に対し(b)を5〜50重量部混合することで達成できるが、塩素化反応が終了した後、クロロホルム等の塩素系溶媒に溶解した状態で、(a)100重量部に対し(b)を5〜50重量部の固形分比で混合した後、上記溶剤に置換しても達成できる。また下記に示した方法で(a)塩素化酸変性ポリオレフィンと(b)塩素化ポリオレフィンまたは塩素化酸変性ポリオレフィンそれぞれ、または混合して塩素化酸変性ポリオレフィンまたは塩素化ポリオレフィンを固形化した後、上記溶剤に溶解しても良い。   The method for producing the chlorinated polyolefin-based binder resin solution composition of the present invention comprises (a) a chlorinated acid-modified polyolefin and (b) a chlorinated polyolefin or a chlorinated acid-modified polyolefin according to claim 1, After completion, the chlorinated solvent such as chloroform is distilled off under reduced pressure, and after substitution with aromatic hydrocarbon and / or alicyclic hydrocarbon and / or aliphatic hydrocarbon and / or polar solvent, solid content This can be achieved by mixing 5 to 50 parts by weight of (b) with respect to 100 parts by weight of (a), but after completion of the chlorination reaction, it is dissolved in a chlorinated solvent such as chloroform. This can also be achieved by mixing (b) at a solid content ratio of 5 to 50 parts by weight with respect to 100 parts by weight and then substituting the solvent. In addition, after solidifying the chlorinated acid-modified polyolefin or the chlorinated polyolefin by mixing (a) chlorinated acid-modified polyolefin and (b) chlorinated polyolefin or chlorinated acid-modified polyolefin, respectively, by the method shown below, It may be dissolved in a solvent.

本発明の塩素化ポリオレフィン組成物の固形化方法は、塩素化反応が終了した後、(a)塩素化酸変性ポリオレフィンと(b)塩素化ポリオレフィンまたは塩素化酸変性ポリオレフィンそれぞれを、クロロホルム等の塩素化反応溶媒を減圧留去し、濃縮された反応液をドラムドライヤーで乾燥することで達成できる。また、ドラムドライヤーの替わりに反応溶媒を減圧留去するためのベント口を設置したベント付き押出機で反応溶媒を完全に除去し、塩素化ポリオレフィン組成物の固形物をストランド状に押出し、水中カッターや水冷式ペレタイザー等でペレット化することでも達成できる。または、それぞれ単独で固形化する替わりに、塩素化反応が終了した後、クロロホルム等の塩素系溶媒に溶解した状態で、(a)100重量部に対し(b)を5〜50重量部の固形分比で混合した後、上記方法にて固形化しても達成できる。   The solidification method of the chlorinated polyolefin composition of the present invention comprises (a) a chlorinated acid-modified polyolefin and (b) a chlorinated polyolefin or a chlorinated acid-modified polyolefin, respectively This can be achieved by distilling off the reaction solvent under reduced pressure and drying the concentrated reaction solution with a drum dryer. Also, instead of using a drum dryer, the reaction solvent is completely removed with a vented extruder equipped with a vent port for distilling off the reaction solvent under reduced pressure, and the solid material of the chlorinated polyolefin composition is extruded into a strand, and an underwater cutter. It can also be achieved by pelletizing with a water-cooled pelletizer or the like. Alternatively, instead of solidifying each independently, after the chlorination reaction is completed, in a state dissolved in a chlorine-based solvent such as chloroform, (a) 5 to 50 parts by weight of solid (b) with respect to 100 parts by weight It can also be achieved by mixing at a fractional ratio and then solidifying by the above method.

何れの場合においても、固形分比は(a)100重量部に対し(b)を5〜50重量部が最適で、好ましくは15〜35重量部である。5重量部未満では、得られた塩素化ポリオレフィン系バインダー樹脂の溶剤溶解性や低温における安定性が極端に悪くなり、50重量部を超えると得られた塩素化ポリオレフィン系バインダー樹脂の耐溶剤性、特に耐ガソホール性が維持できなくなる。   In any case, the solid content ratio is optimally 5 to 50 parts by weight, preferably 15 to 35 parts by weight of (b) with respect to (a) 100 parts by weight. If it is less than 5 parts by weight, the solvent solubility of the obtained chlorinated polyolefin-based binder resin and the stability at low temperature are extremely poor, and if it exceeds 50 parts by weight, the solvent resistance of the obtained chlorinated polyolefin-based binder resin, In particular, gasohol resistance cannot be maintained.

さらに得られた請求項1における(a)塩素化酸変性ポリオレフィン樹脂のゲルパーミネーションクロマドグラフィー(GPC)によって測定された、ポリスチレン樹脂を標準とした重量平均分子量は80,000〜150,000であることが好ましい。80,000未満では塩素化ポリオレフィン系バインダー樹脂として(b)と併用した際の耐溶剤性、特に耐ガソホール性が維持できなくなり、150,000を超えると塩素化ポリオレフィン系バインダー樹脂として(b)と併用した際でも溶剤溶解性や低温における安定性が悪くなる。   Further, the weight average molecular weight of polystyrene resin as a standard measured by gel permeation chromatography (GPC) of (a) chlorinated acid-modified polyolefin resin in claim 1 obtained is 80,000 to 150,000. Preferably there is. If it is less than 80,000, the solvent resistance when used in combination with (b) as a chlorinated polyolefin binder resin, in particular, gasohol resistance cannot be maintained, and if it exceeds 150,000, (b) Even when used in combination, solvent solubility and stability at low temperatures deteriorate.

また併用される(b)塩素化酸変性ポリオレフィンまたは塩素化ポリオレフィンのGPCによって測定された重量平均分子量は5,000〜30,000であることが好ましい。5,000未満では塩素化ポリオレフィン系バインダー樹脂として(a)を併用した際の耐溶剤性、特に耐ガソホール性が維持できなくなり、30,000を超えると塩素化ポリオレフィン系バインダー樹脂として(a)を併用した際の溶剤溶解性や低温における安定性が悪くなる。   Moreover, it is preferable that the weight average molecular weight measured by GPC of (b) chlorinated acid modification | denaturation polyolefin or chlorinated polyolefin used together is 5,000-30,000. If it is less than 5,000, the solvent resistance at the time of using (a) together as a chlorinated polyolefin binder resin, in particular, gasohol resistance cannot be maintained, and if it exceeds 30,000, (a) is obtained as a chlorinated polyolefin binder resin. Solvent solubility when used in combination and stability at low temperatures deteriorate.

重量平均分子量の調整方法として、バンバリーミキサー、ニーダー、押出機等を使用し、融点以上350℃以下の温度でラジカル発生剤の存在下または不存在下で熱減性をすること等により調整できる。反応に用いるラジカル発生剤は、公知のものの中より適宜選択できるが、特に上記した有機過酸化物が望ましい。または、酸変性の時に起こるβ切断等の化学変化を利用しても調整できる。   As a method for adjusting the weight average molecular weight, it can be adjusted by using a Banbury mixer, a kneader, an extruder, or the like, and by reducing heat in the presence or absence of a radical generator at a temperature of the melting point or higher and 350 ° C. or lower. The radical generator used for the reaction can be appropriately selected from known ones, but the organic peroxides described above are particularly desirable. Alternatively, it can be adjusted by utilizing a chemical change such as β-cleavage that occurs during acid modification.

上記に使用する溶剤としては、芳香族系炭化水素としてトルエン、キシレン、脂環式炭化水素としてシクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、脂肪族炭化水素としてn−ヘキサン、ヘプタン、極性溶剤としてはアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶剤が例示でき、これらを単独、もしくは2種以上混合して使用できる。また上記溶剤に溶解したときの固形分濃度は用途により適宜選択すればよいが、固形分濃度は高すぎても低すぎても塗工作業性が損なわれるため、樹脂濃度は5〜35重量%が好ましい。   Solvents used above include toluene, xylene as aromatic hydrocarbons, cyclohexane, methylcyclohexane, ethylcyclohexane as alicyclic hydrocarbons, n-hexane, heptane as aliphatic hydrocarbons, acetone, methylethylketone as polar solvents. Examples thereof include ketone solvents such as methyl isobutyl ketone, ester solvents such as ethyl acetate and butyl acetate, and alcohol solvents such as methanol, ethanol and isopropyl alcohol, and these can be used alone or in admixture of two or more. Further, the solid content concentration when dissolved in the solvent may be appropriately selected depending on the use, but if the solid content concentration is too high or too low, the coating workability is impaired, so the resin concentration is 5 to 35% by weight. Is preferred.

塩素化ポリオレフィン類は紫外線や、高熱にさらされると脱塩酸を伴い劣化する。塩素化ポリオレフィン類が脱塩酸により劣化を起こすと、樹脂の着色とともにポリレフィン基材への付着性低下等の物性低下を始め、遊離する塩酸により作業環境の悪化を引き起こすことから、安定剤の添加は必須である。安定剤としては分子中にオキシラン環またはオキセタン環を有するエポキシ化合物またはオキセタン化合物、さらにはこれらの樹脂が使用できる。エポキシ化合物としては、例えば天然の不飽和基を有する植物油を過酸でエポキシ化したエポキシ化大豆油やエポキシ化アマニ油、また、オレイン酸、トール油脂肪酸、大豆油脂肪酸等の不飽和脂肪酸をエポキシ化したエポキシ脂肪酸エステル類、エポキシ化テトラヒドロフタレートに代表されるエポキシ化脂環化合物、ビスフェノールAや多価アルコールとエピクロルヒドリンを縮合した、例えばビスフェーノールAグリシジルエーテル、エチレングリコールグリシジルエーテル、プロピレングリコールグリシジルエーテル、グリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等が例示できる。また、ブチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、sec−ブチルフェニルグリシジルエーテル、tert−ブチルフェニルグリシジルエーテル、フェノールポリエチレンオキサイドグリシジルエーテル等に代表されるモノエポキシ化合物類が例示できる。オキセタン化合物としては、オキセタン環を1分子中に1個あるいは2個以上有する化合物である。1個のオキセタン環を有する化合物としては、例えば、3−エチル−3−ヒドロキシメチルオキセタン、3−エチル−3−(2−エチルヘキシロキシメチル)オキセタン、3−エチル−3−(フェノキシメチル)オキセタン等が例示でき、また2個以上のオキセタン環を有する化合物としては、例えば、1,4−ビス{〔(3−エチル−3−オキセタニル)メトキシ〕メチル}ベンゼン、ジ〔1−エチル(3−オキセタニル)〕メチルエーテル、1,4−ビス〔(1−エチル−3−オキセタニル)メトキシ〕ベンゼン、1,3−ビス〔(1−エチル−3−オキセタニル)メトキシ〕ベンゼン、4,4´−ビス〔(3−エチル−3−オキセタニル)メトキシ〕ビフェニル、フェノールノボラックオキセタン等が例示できる。   Chlorinated polyolefins deteriorate with dehydrochlorination when exposed to ultraviolet light or high heat. When chlorinated polyolefins deteriorate due to dehydrochlorination, the coloring of the resin and physical properties such as reduced adhesion to the polyrefine base material begin, and the free hydrochloric acid causes deterioration of the working environment. It is essential. As the stabilizer, an epoxy compound or oxetane compound having an oxirane ring or an oxetane ring in the molecule, and these resins can be used. Examples of the epoxy compound include epoxidized soybean oil and epoxidized linseed oil obtained by epoxidizing a vegetable oil having a natural unsaturated group with a peracid, and unsaturated fatty acids such as oleic acid, tall oil fatty acid, soybean oil fatty acid, and the like. Epoxy fatty acid esters, epoxidized alicyclic compounds represented by epoxidized tetrahydrophthalate, condensed bisphenol A and polyhydric alcohols and epichlorohydrin, for example, bisphenol A glycidyl ether, ethylene glycol glycidyl ether, propylene glycol glycidyl ether And glycerol polyglycidyl ether and sorbitol polyglycidyl ether. Also represented by butyl glycidyl ether, 2-ethylhexyl glycidyl ether, decyl glycidyl ether, stearyl glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, sec-butylphenyl glycidyl ether, tert-butylphenyl glycidyl ether, phenol polyethylene oxide glycidyl ether, etc. And monoepoxy compounds. An oxetane compound is a compound having one or more oxetane rings in one molecule. Examples of the compound having one oxetane ring include 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, and 3-ethyl-3- (phenoxymethyl) oxetane. Examples of the compound having two or more oxetane rings include 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene, di [1-ethyl (3- Oxetanyl)] methyl ether, 1,4-bis [(1-ethyl-3-oxetanyl) methoxy] benzene, 1,3-bis [(1-ethyl-3-oxetanyl) methoxy] benzene, 4,4′-bis [(3-Ethyl-3-oxetanyl) methoxy] biphenyl, phenol novolac oxetane and the like can be exemplified.

本発明の塩素化ポリオレフィン系バインダー樹脂組成物は、そのままコーティングして用いてもプライマー、塗料、インキ、接着剤、ヒートシール剤として用いることもできるが、顔料、溶剤、その他の添加剤を加え、混練、分散した後、プライマー、塗料、インキ、として用いることもできる。また該バインダー樹脂はそれだけでバランスのとれた塗膜物性を示すが、必要であればアルキッド樹脂、アクリル樹脂、ポリアクリルポリオール、ポリエステル樹脂、ポリエステルポリオール、ポリウレタン樹脂、塩素化ポリオレフィン等を更に添加して用いても差し支えない。   The chlorinated polyolefin-based binder resin composition of the present invention can be used as it is as a primer, paint, ink, adhesive, heat sealant, pigment, solvent, other additives, After kneading and dispersing, it can also be used as a primer, paint or ink. In addition, the binder resin alone has a well-balanced coating film property. If necessary, an alkyd resin, an acrylic resin, a polyacrylic polyol, a polyester resin, a polyester polyol, a polyurethane resin, a chlorinated polyolefin and the like can be further added. It can be used.

以下に本発明を実施例により更に詳細に説明するが、本発明はこれに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

[製造例−1] メタロセン触媒を重合触媒として製造したエチレン含有量約3モル%のエチレン−プロピレン共重合体100重量部に対し、無水マレイン酸5重量部、ジクルミパーオキサイド2重量部を混合し、L/D=60、φ=40mmの二軸押出機に定量フィーダを用いて供給した。滞留時間は15分、バレル温度は200℃(第3バレル〜第7バレル)として反応し、第9バレルにて減圧により未反応の無水マレイン酸を除去することにより、無水マレイン酸変性エチレン−プロピレン共重合物を得た。   [Production Example 1] 5 parts by weight of maleic anhydride and 2 parts by weight of diculummiperoxide were mixed with 100 parts by weight of an ethylene-propylene copolymer having an ethylene content of about 3 mol% produced using a metallocene catalyst as a polymerization catalyst. And it supplied to the twin-screw extruder of L / D = 60 and (phi) = 40mm using the fixed quantity feeder. The residence time was 15 minutes, the barrel temperature was 200 ° C. (3rd to 7th barrels), and the unreacted maleic anhydride was removed by decompression at the 9th barrel, so that maleic anhydride-modified ethylene-propylene was removed. A copolymer was obtained.

次に、この生成物3kgをグラスライニングされた反応釜に投入し、40L(リットル、以下同)のクロロホルムを加え、0.3MPaの圧力の下、温度110℃で充分に溶解させた後、アゾビスイソブチロニトリル5gを加え、上記釜内圧力を0.3MPaに制御しながら塩素ガスを吹き込み、塩素含有率15重量%の反応液を得た。次にエバポレーターで反応溶媒であるクロロホルムを留去し、トルエンで置換した。安定剤としてエピオールSB(日本油脂(株)製)を対樹脂4%添加し、固形分濃度が20重量%(トルエン溶液)の塩素化酸変性エチレン−プロピレン共重合物を得た。得られた塩素化酸変性エチレン−プロピレン共重合物をゲルパーミネーションクロマトグラフィー(GPC;HLC8120GPC 東ソー(株)製)による分析を行った結果、重量平均分子量(Mw)が110,000であった。   Next, 3 kg of this product was put into a glass-lined reaction kettle, 40 L (liter, hereinafter the same) chloroform was added and dissolved sufficiently at a temperature of 110 ° C. under a pressure of 0.3 MPa. 5 g of bisisobutyronitrile was added, and chlorine gas was blown in while controlling the pressure in the kettle at 0.3 MPa to obtain a reaction solution having a chlorine content of 15% by weight. Next, chloroform as a reaction solvent was distilled off with an evaporator and replaced with toluene. Epiol SB (manufactured by Nippon Oil & Fats Co., Ltd.) as a stabilizer was added to 4% of resin to obtain a chlorinated acid-modified ethylene-propylene copolymer having a solid content concentration of 20% by weight (toluene solution). The obtained chlorinated acid-modified ethylene-propylene copolymer was analyzed by gel permeation chromatography (GPC; manufactured by HLC8120GPC Tosoh Corp.). As a result, the weight average molecular weight (Mw) was 110,000.

[製造例−2] 重量平均分子量が20,000の結晶性ポリプロピレン3kg、クロロホルム40L、アゾビスイソブチロニトリル5gを採取する以外は製造例−1と同様な方法で塩素化し、塩素含有率30重量%、Mwが15,000の塩素化ポリプロピレン(固形分濃度20重量%;トルエン溶液)を得た。   [Production Example 2] Chlorinated in the same manner as in Production Example 1 except that 3 kg of crystalline polypropylene having a weight average molecular weight of 20,000, 40 L of chloroform, and 5 g of azobisisobutyronitrile were collected, and the chlorine content was 30 A chlorinated polypropylene (solid content concentration: 20% by weight; toluene solution) having a weight% and Mw of 15,000 was obtained.

[製造例−3] メルトインデックスが14g/min(ASTM D1238−621Tに準じて測定)であり、エチレン含有量5モル%のエチレン−プロピレン共重合物100重量部に対し、無水マレイン酸4重量部、ジクルミパーオキサイド2重量部を混合し、L/D=34、φ=40mmの二軸押出機に定量フィーダを用いて供給した。滞留時間は10分、バレル温度は180℃(第1バレル〜第6バレル)として反応し、第7バレルにて減圧により未反応の無水マレイン酸を除去することにより、無水マレイン酸変性エチレン−プロピレン共重合物を得た。   [Production Example 3] Maleic anhydride is 4 parts by weight per 100 parts by weight of an ethylene-propylene copolymer having a melt index of 14 g / min (measured according to ASTM D1238-621T) and an ethylene content of 5 mol%. Then, 2 parts by weight of diwalm peroxide was mixed and fed to a twin screw extruder with L / D = 34 and φ = 40 mm using a quantitative feeder. The residence time was 10 minutes, the barrel temperature was 180 ° C. (1st barrel to 6th barrel), and the unreacted maleic anhydride was removed by reducing the pressure in the 7th barrel. A copolymer was obtained.

次にこの生成物3kg、クロロホルム40L、アゾビスイソブチロニトリル5gを採取する以外は製造例−1と同様な方法で塩素化し、塩素含有率19重量%、Mwが130,000の塩素化酸変性エチレン−プロピレン共重合物(固形分濃度20重量%;トルエン溶液)を得た。   Next, chlorination was performed in the same manner as in Production Example-1, except that 3 kg of this product, 40 L of chloroform, and 5 g of azobisisobutyronitrile were collected. Chlorinated acid having a chlorine content of 19% by weight and Mw of 130,000 A modified ethylene-propylene copolymer (solid content concentration 20% by weight; toluene solution) was obtained.

[製造例−4] 製造例−3で得た無水マレイン酸変性エチレン−プロピレン共重合物3kgとメチルエチルケトン(MEK)15Lを攪拌機と溶媒を還流するための冷却管を取り付けた三ツ口フラスコ中に入れ、80℃で一定に保たれた水浴中で3時間撹拌し、低分子量成分を取り除いた。撹拌後、MEKを濾過し、20時間70℃で乾燥することにより、低分子量成分を除去した無水マレイン酸変性エチレン−プロピレン共重合物を得た。   [Production Example-4] 3 kg of the maleic anhydride-modified ethylene-propylene copolymer obtained in Production Example-3 and 15 L of methyl ethyl ketone (MEK) were placed in a three-necked flask equipped with a stirrer and a cooling tube for refluxing the solvent. The mixture was stirred in a water bath kept constant at 80 ° C. for 3 hours to remove low molecular weight components. After stirring, MEK was filtered and dried at 70 ° C. for 20 hours to obtain a maleic anhydride-modified ethylene-propylene copolymer from which low molecular weight components had been removed.

次にこの生成物3kg、クロロホルム40L、アゾビスイソブチロニトリル5gを採取する以外は製造例−1と同様な方法で塩素化し、塩素含有率19重量%、Mwが135,000の塩素化酸変性エチレン−プロピレン共重合物(固形分濃度20重量%;トルエン溶液)を得た。   Next, chlorination was performed in the same manner as in Production Example-1, except that 3 kg of this product, 40 L of chloroform, and 5 g of azobisisobutyronitrile were collected. Chlorinated acid having a chlorine content of 19% by weight and Mw of 135,000 A modified ethylene-propylene copolymer (solid content concentration 20% by weight; toluene solution) was obtained.

[製造例−5] 重量平均分子量が30,000であり、エチレン含有量3モル%のエチレン−プロピレン共重合物5kgを、攪拌機と滴下ロートとモノマーを還流するための冷却管を取り付けた三ツ口フラスコ中に入れ、180℃で一定に保たれた油浴中で完全に溶融した。フラスコ内の窒素置換を約10分間行った後、撹拌を行いながら無水マレイン酸180gを約5分間かけて投入し、次にジ−tert−ブチルパーオキサイド15gを50mLのヘプタンに溶解し滴下ロートより約30分間かけて投入した。このとき、系内は180℃に保たれ、更に1時間反応を継続した後、アスピレーターでフラスコ内を減圧しながら約1時間かけて未反応の無水マレイン酸を取り除いた。   [Production Example-5] A three-necked flask equipped with 5 kg of ethylene-propylene copolymer having a weight average molecular weight of 30,000 and an ethylene content of 3 mol%, equipped with a stirrer, a dropping funnel and a cooling tube for refluxing the monomer. And was completely melted in an oil bath kept constant at 180 ° C. After replacing the nitrogen in the flask for about 10 minutes, 180 g of maleic anhydride was added over about 5 minutes while stirring, and then 15 g of di-tert-butyl peroxide was dissolved in 50 mL of heptane and added from a dropping funnel. It was added over about 30 minutes. At this time, the inside of the system was kept at 180 ° C., and the reaction was further continued for 1 hour, and then unreacted maleic anhydride was removed over about 1 hour while reducing the pressure in the flask with an aspirator.

次にこの生成物3kg、クロロホルム40L、アゾビスイソブチロニトリル5gを採取する以外は、製造例−1と同様な方法で塩素化し、塩素含有率40重量%、Mwが20,000の塩素化酸変性エチレン−プロピレン共重合物(固形分濃度20重量%;トルエン溶液)を得た。   Next, except that 3 kg of this product, 40 L of chloroform, and 5 g of azobisisobutyronitrile were collected, chlorination was carried out in the same manner as in Production Example 1, and chlorination with a chlorine content of 40% by weight and Mw of 20,000. An acid-modified ethylene-propylene copolymer (solid concentration 20% by weight; toluene solution) was obtained.

[製造例−6] 重量平均分子量が100,000であり、エチレン含有量3モル%、1−ブテン含有量1モル%のプロピレン系三元共重合物3kg、無水マレイン酸200g、ジ−tert−ブチルパーオキサイド20gを採取する以外は、製造例−4と同様な方法で無水マレイン酸変性を行い、無水マレイン酸変性プロピレン系三元共重合物を得た。   [Production Example-6] 3 kg of propylene terpolymer having a weight average molecular weight of 100,000, ethylene content of 3 mol% and 1-butene content of 1 mol%, maleic anhydride 200 g, di-tert- Except for collecting 20 g of butyl peroxide, maleic anhydride modification was carried out in the same manner as in Production Example 4 to obtain a maleic anhydride modified propylene terpolymer.

次にこの生成物3kg、クロロホルム40L、アゾビスイソブチロニトリル5gを採取する以外は、製造例−1と同様な方法で塩素化し、塩素含有率13重量%、Mwが85,000の塩素化酸変性プロピレン系三元共重合物(固形分濃度20重量%;トルエン溶液)を得た。   Next, except that 3 kg of this product, 40 L of chloroform, and 5 g of azobisisobutyronitrile were collected, chlorination was performed in the same manner as in Production Example-1, and the chlorination was 13% by weight in chlorine content and 85,000 Mw. An acid-modified propylene-based terpolymer (solid content concentration 20% by weight; toluene solution) was obtained.

[製造例−7] 重量平均分子量が35,000であり、エチレン含有量4モル%のエチレン−プロピレン共重合物3kg、クロロホルム40L、アゾビスイソブチロニトリル5gを採取する以外は製造例−1と同様な方法で塩素化し、塩素含有率21重量%、Mwが30,000の塩素化ポリプロピレン(固形分濃度20重量%;トルエン溶液)を得た。   [Production Example-7] Production Example-1 except that 3 kg of ethylene-propylene copolymer having a weight average molecular weight of 35,000 and an ethylene content of 4 mol%, chloroform 40 L, and 5 g of azobisisobutyronitrile were collected. Was chlorinated in the same manner as above to obtain a chlorinated polypropylene (solid content concentration 20% by weight; toluene solution) having a chlorine content of 21% by weight and Mw of 30,000.

[製造例−8] メルトインデックスが18g/min(ASTM D1238−621Tに準じて測定)である結晶性ポリプロピレン3kg、無水マレイン酸180g、ジ−tert−ブチルパーオキサイド20gを採取する以外は、製造例−4と同様な方法で無水マレイン酸変性を行い、無水マレイン酸変性ポリプロピレンを得た。   [Production Example-8] Production Example except that 3 kg of crystalline polypropylene having a melt index of 18 g / min (measured according to ASTM D1238-621T), 180 g of maleic anhydride, and 20 g of di-tert-butyl peroxide are collected. Maleic anhydride modification was carried out in the same manner as in -4 to obtain maleic anhydride modified polypropylene.

次にこの生成物3kg、クロロホルム40L、アゾビスイソブチロニトリル5gを採取する以外は、製造例−1と同様な方法で塩素化し、塩素含有率21重量%、Mwが60,000の塩素化酸変性ポリプロピレン(固形分濃度20重量%;トルエン溶液)を得た。   Next, except that 3 kg of this product, 40 L of chloroform, and 5 g of azobisisobutyronitrile were collected, chlorination was carried out in the same manner as in Production Example-1, and the chlorination was 21% by weight of chlorine and Mw was 60,000. An acid-modified polypropylene (solid content concentration 20% by weight; toluene solution) was obtained.

[製造例−9] 製造例−8で得た無水マレイン酸変性ポリプロピレン3kg、MEK15L採取する以外は、製造例−4と同様な方法で低分子量成分の除去を行った。   [Production Example-9] Low molecular weight components were removed in the same manner as in Production Example-4, except that 3 kg of maleic anhydride-modified polypropylene obtained in Production Example-8 and MEK15L were collected.

次にこの生成物3kg、クロロホルム30L、アゾビスイソブチロニトリル5gを採取する以外は、製造例−1と同様な方法で塩素化し、塩素含有率21重量%、Mwが63,000の塩素化酸変性ポリプロピレン(固形分濃度20重量%;トルエン溶液)を得た。   Next, except that 3 kg of this product, 30 L of chloroform, and 5 g of azobisisobutyronitrile were collected, chlorination was performed in the same manner as in Production Example-1, and chlorination with a chlorine content of 21% by weight and Mw of 63,000. An acid-modified polypropylene (solid content concentration 20% by weight; toluene solution) was obtained.

製造例−1〜9で得た塩素化酸変性ポリオレフィン及び塩素化ポリオレフィンの内容を表1にまとめた。   The contents of the chlorinated acid-modified polyolefin and the chlorinated polyolefin obtained in Production Examples-1 to 9 are summarized in Table 1.

Figure 0003965697
[実施例−1〜3] 製造例−1で得た固形分20重量%の塩素化酸変性エチレン−プロピレン共重合物トルエン溶液100重量部に対し、製造例−2で得た固形分20重量%の塩素化ポリプロピレントルエン溶液を10重量部混合(実施例−1;固形分比;100対10)することにより、塩素化ポリオレフィン系樹脂組成物のトルエン溶液を得た(固形分20重量%)。同様に製造例−5で得た塩素化酸変性エチレン−プロピレン共重合体、及び製造例−7で得た塩素化エチレン−プロピレン共重合体を、それぞれ40重量部(実施例−2;固形分比;100対40)及び25重量部(実施例−3;固形分比;100対25)混合することにより、塩素化ポリオレフィン系樹脂組成物の20重量%トルエン溶液をそれぞれ得た。
Figure 0003965697
[Examples 1-3] The solid content of 20 wt% obtained in Production Example-2 with respect to 100 parts by weight of the chlorinated acid-modified ethylene-propylene copolymer toluene solution having a solid content of 20 wt% obtained in Production Example-1. % Of chlorinated polypropylene toluene solution was mixed with 10 parts by weight (Example-1; solid content ratio: 100 to 10) to obtain a toluene solution of a chlorinated polyolefin resin composition (solid content 20% by weight) . Similarly, 40 parts by weight of each of the chlorinated acid-modified ethylene-propylene copolymer obtained in Production Example-5 and the chlorinated ethylene-propylene copolymer obtained in Production Example-7 (Example-2; solid content) Ratio: 100 to 40) and 25 parts by weight (Example-3; solid content ratio: 100 to 25) were mixed to obtain a 20 wt% toluene solution of the chlorinated polyolefin resin composition, respectively.

[実施例−4〜6] 製造例−3で得た固形分20重量%の塩素化酸変性エチレン−プロピレン共重合物トルエン溶液100重量部に対し、製造例−2で得た固形分20重量%の塩素化ポリプロピレントルエン溶液を10重量部混合(実施例−4;固形分比;100対10)することにより、塩素化ポリオレフィン系樹脂組成物のトルエン溶液を得た(固形分20重量%)。同様に製造例−5で得た塩素化酸変性エチレン−プロピレン共重合体、製造例−7で得た塩素化エチレン−プロピレン共重合体を、それぞれ40重量部(実施例−5;固形分比;100対40)及び25重量部(実施例−6;固形分比;100対25)混合することにより、塩素化ポリオレフィン系樹脂組成物の20重量%トルエン溶液をそれぞれ得た。   [Examples 4 to 6] The solid content of 20% by weight obtained in Production Example-2 with respect to 100 parts by weight of the chlorinated acid-modified ethylene-propylene copolymer toluene solution having a solid content of 20% by weight obtained in Production Example-3. A toluene solution of a chlorinated polyolefin resin composition was obtained (solid content 20 wt%) by mixing 10 parts by weight of a 10% chlorinated polypropylene toluene solution (Example-4; solid content ratio; 100 to 10). . Similarly, 40 parts by weight of each of the chlorinated acid-modified ethylene-propylene copolymer obtained in Production Example-5 and the chlorinated ethylene-propylene copolymer obtained in Production Example-7 (Example-5; solid content ratio) 100 to 40) and 25 parts by weight (Example-6; solid content ratio; 100 to 25) were mixed to obtain a 20 wt% toluene solution of the chlorinated polyolefin resin composition, respectively.

[実施例−7〜9] 製造例−6で得た固形分20重量%の塩素化酸変性プロピレン系三元共重合物トルエン溶液100重量部に対し、製造例−2で得た固形分20重量%の塩素化ポリプロピレントルエン溶液を10重量部混合(実施例−7;固形分比;100対10)することにより、塩素化ポリオレフィン系樹脂組成物のトルエン溶液を得た(固形分20重量%)。同様に製造例−5で得た塩素化酸変性エチレン−プロピレン共重合体、及び製造例−7で得た塩素化エチレン−プロピレン共重合体を、それぞれ40重量部(実施例−8;固形分比;100対40)及び25重量部(実施例−9;固形分比;100対25)混合することにより、塩素化ポリオレフィン系樹脂組成物の20重量%トルエン溶液をそれぞれ得た。   [Examples 7 to 9] Solid content 20 obtained in Production Example-2 with respect to 100 parts by weight of the chlorinated acid-modified propylene terpolymer toluene solution having a solid content of 20% by weight obtained in Production Example-6. A toluene solution of a chlorinated polyolefin resin composition was obtained (solid content 20% by weight) by mixing 10 parts by weight of a 10% by weight chlorinated polypropylene toluene solution (Example-7; solid content ratio: 100 to 10). ). Similarly, 40 parts by weight of each of the chlorinated acid-modified ethylene-propylene copolymer obtained in Production Example-5 and the chlorinated ethylene-propylene copolymer obtained in Production Example-7 (Example-8; solid content) Ratio: 100 to 40) and 25 parts by weight (Example-9; solid content ratio: 100 to 25) were mixed to obtain a 20 wt% toluene solution of the chlorinated polyolefin resin composition, respectively.

実施例−1〜9で得た塩素化ポリオレフィン系樹脂組成物の内容を表2に示した。   Table 2 shows the contents of the chlorinated polyolefin resin compositions obtained in Examples-1 to 9.

Figure 0003965697
[比較例−1〜6] 製造例−3、4、6、7、8及び9を単独で用いた場合を、それぞれ比較例−1、2、3、4、5及び6とした。
Figure 0003965697
[Comparative Examples-1 to 6] The cases where Production Examples-3, 4, 6, 7, 8, and 9 were used alone were referred to as Comparative Examples-1, 2, 3, 4, 5, and 6, respectively.

[比較例−7〜8] 製造例−1で得た固形分20重量%の塩素化酸変性エチレン−プロピレン共重合物トルエン溶液100重量部に対し、製造例−5で得た固形分20重量%の塩素化酸変性エチレン−プロピレン共重合物トルエン溶液を80重量部混合(比較例−7;固形分比;100対80)することにより、塩素化ポリオレフィン系樹脂組成物のトルエン溶液を得た(固形分20重量%)。同様に製造例−7で得た塩素化エチレン−プロピレン共重合体を、60重量部(比較例−8;固形分比;100対60)混合することにより、塩素化ポリオレフィン系樹脂組成物の20重量%トルエン溶液を得た。   [Comparative Examples-7 to 8] 20 wt% solid content obtained in Production Example-5 with respect to 100 parts by weight of the chlorinated acid-modified ethylene-propylene copolymer toluene solution having a solid content of 20 wt% obtained in Production Example-1. % Of chlorinated acid-modified ethylene-propylene copolymer toluene solution was mixed by 80 parts by weight (Comparative Example-7; solid content ratio: 100: 80) to obtain a toluene solution of a chlorinated polyolefin resin composition. (Solid content 20% by weight). Similarly, by mixing 60 parts by weight of the chlorinated ethylene-propylene copolymer obtained in Production Example-7 (Comparative Example-8; solid content ratio; 100: 60), 20 of the chlorinated polyolefin resin composition was obtained. A weight% toluene solution was obtained.

[比較例−9〜10] 製造例−3で得た固形分20重量%の塩素化酸変性エチレン−プロピレン共重合物トルエン溶液100重量部に対し、製造例−5で得た固形分20重量%の塩素化酸変性エチレン−プロピレン共重合物トルエン溶液を80重量部混合(比較例−9;固形分比;100対80)することにより、塩素化ポリオレフィン系樹脂組成物のトルエン溶液を得た(固形分20重量%)。同様に製造例−7で得た塩素化エチレン−プロピレン共重合体を、60重量部(比較例−10;固形分比;100対60)混合することにより、塩素化ポリオレフィン系樹脂組成物の20重量%トルエン溶液を得た。   [Comparative Examples-9 to 10] The solid content of 20 weight% obtained in Production Example-5 with respect to 100 parts by weight of the chlorinated acid-modified ethylene-propylene copolymer toluene solution having a solid content of 20 weight% obtained in Production Example-3. A toluene solution of a chlorinated polyolefin resin composition was obtained by mixing 80 parts by weight of a chlorinated acid-modified ethylene-propylene copolymer toluene solution (Comparative Example-9; solid content ratio: 100: 80). (Solid content 20% by weight). Similarly, by mixing 60 parts by weight of the chlorinated ethylene-propylene copolymer obtained in Production Example-7 (Comparative Example-10; solid content ratio: 100 to 60), 20 of the chlorinated polyolefin resin composition was obtained. A weight% toluene solution was obtained.

[比較例−11〜12] 製造例−6で得た固形分20重量%の塩素化酸変性プロピレン系三元共重合物トルエン溶液100重量部に対し、製造例−5で得た固形分20重量%の塩素化酸変性エチレン−プロピレン共重合物トルエン溶液を80重量部混合(比較例−11;固形分比;100対80)することにより、塩素化ポリオレフィン系樹脂組成物のトルエン溶液を得た(固形分20重量%)。同様に製造例−7で得た塩素化エチレン−プロピレン共重合体を、60重量部(比較例−12;固形分比;100対60)混合することにより、塩素化ポリオレフィン系樹脂組成物の20重量%トルエン溶液を得た。   [Comparative Examples 11-12] The solid content 20 obtained in Production Example-5 with respect to 100 parts by weight of the chlorinated acid-modified propylene terpolymer toluene solution having a solid content of 20% by weight obtained in Production Example-6. A toluene solution of a chlorinated polyolefin resin composition was obtained by mixing 80 parts by weight of a chlorinated acid-modified ethylene-propylene copolymer toluene solution by weight (Comparative Example-11; solid content ratio: 100 to 80). (20 wt% solid content). Similarly, by mixing 60 parts by weight of the chlorinated ethylene-propylene copolymer obtained in Production Example-7 (Comparative Example-12; solid content ratio; 100 to 60), 20 of the chlorinated polyolefin resin composition was obtained. A weight% toluene solution was obtained.

比較例1〜12で得た塩素化ポリオレフィン系樹脂組成物の内容を表3に示した。   The contents of the chlorinated polyolefin resin compositions obtained in Comparative Examples 1 to 12 are shown in Table 3.

Figure 0003965697
〈プライマー試験〉
実施例1〜9及び比較例1〜12より得られた樹脂溶液(固形分20重量%)100gと二酸化チタン20gをサンドミルで3時間混練した後、No.4フォードカップで13〜15秒/20℃になるようにキシレンで粘度調製を行い、超高剛性ポリプロピレン(PP)板(TX−933A、三菱化学(株)製)にエアー式スプレーガンによって膜厚が約10μmになるように塗装した。次に、2液硬化型ウレタン塗料を塗装した(膜厚約30μm)。80℃で30分間乾燥し、室温にて48時間放置し物性試験を行った。プライマー試験結果を表4に示す。
Figure 0003965697
<Primer test>
After kneading 100 g of the resin solutions (solid content 20 wt%) obtained from Examples 1 to 9 and Comparative Examples 1 to 12 with 20 g of titanium dioxide in a sand mill, Viscosity was adjusted with xylene so that it would be 13 to 15 seconds / 20 ° C. in a 4 Ford cup, and the film thickness was applied to an ultra-high rigidity polypropylene (PP) plate (TX-933A, manufactured by Mitsubishi Chemical Corporation) with an air spray gun. Was coated to be about 10 μm. Next, a two-component curable urethane coating was applied (film thickness of about 30 μm). The film was dried at 80 ° C. for 30 minutes and allowed to stand at room temperature for 48 hours to conduct a physical property test. The primer test results are shown in Table 4.

Figure 0003965697
〔試験方法〕
・付着性:
塗面上に1mm間隔で素地に達する100個の碁盤目を作り、その上にセロハン粘着テープを密着させて180度方向に引き剥がし、塗膜の残存する碁盤目の数を数えた。
・耐ガソホール性:
塗装板をレギュラーガソリン/エタノール=9/1(v/v)に120分間浸漬し、塗膜の状態を観察した。
・耐水性:
40℃の温水に塗装板を240時間浸漬し、塗膜の状態と付着性を調べた。
Figure 0003965697
〔Test method〕
・ Adhesiveness:
On the coated surface, 100 grids reaching the substrate at 1 mm intervals were made, and a cellophane adhesive tape was closely adhered to the coated surface and peeled in the direction of 180 degrees, and the number of grids remaining on the coating film was counted.
-Gasohol resistance:
The coated plate was immersed in regular gasoline / ethanol = 9/1 (v / v) for 120 minutes, and the state of the coating film was observed.
·water resistant:
The coated plate was immersed in warm water at 40 ° C. for 240 hours, and the state and adhesion of the coating film were examined.

良好;剥離が全くない状態、 不良;剥離が生じた状態
〈低温安定性試験〉
実施例1〜9及び比較例1〜12より得られた樹脂溶液(固形分20重量%)を20℃、−5℃、−10℃の雰囲気に保存したときの、各溶液の溶液状態(低温安定性)を表5に示した。
Good: no peeling at all, poor: peeling occurred (low temperature stability test)
When the resin solutions (solid content 20% by weight) obtained in Examples 1 to 9 and Comparative Examples 1 to 12 were stored in an atmosphere of 20 ° C., −5 ° C., and −10 ° C., the solution state of each solution (low temperature Table 5 shows the stability.

Figure 0003965697
〈塗料試験〉
実施例1〜9、比較例1〜12で得られた溶液樹脂(固形分20重量%)を、バインダー樹脂として以下の配合で塗料へ調整した。
Figure 0003965697
<Paint test>
The solution resins (solid content 20% by weight) obtained in Examples 1 to 9 and Comparative Examples 1 to 12 were prepared as binder resins in the following formulation.

バインダー樹脂(20%トルエン溶液) :100重量部
アルキド樹脂(フタルキッドV904 日立化成工業): 15 〃
TiO2 : 5 〃
カーボンブラック : 1 〃
弁柄 : 2 〃
タルク : 15 〃
シリカ艶消し剤 : 5 〃
上記組成物をサンドミルで約1時間混練した後、No.4フォードカップで12〜13秒/20℃の粘度になるようトルエンで希釈して調製した。各塗料を超高剛性PP板に乾燥被膜厚が約30μmとなるようにスプレー塗布し、室温で30分間乾燥した後、80℃で30分間焼付を行った。試験片を室温にて48時間室温放置し、上記プライマー試験と同様の試験を行った。結果を表6に示す。
Binder resin (20% toluene solution): 100 parts by weight Alkyd resin (Phthalkid V904 Hitachi Chemical): 15 〃
TiO2: 5 〃
Carbon black: 1 〃
Petal: 2 〃
Talc: 15 〃
Silica matting agent: 5 〃
After the composition was kneaded in a sand mill for about 1 hour, It was prepared by diluting with toluene so that the viscosity was 12 to 13 seconds / 20 ° C. in a 4 Ford cup. Each paint was spray-applied to an ultra-high rigidity PP plate so that the dry film thickness was about 30 μm, dried at room temperature for 30 minutes, and then baked at 80 ° C. for 30 minutes. The test piece was left at room temperature for 48 hours, and the same test as the primer test was performed. The results are shown in Table 6.

Figure 0003965697
Figure 0003965697

Claims (4)

(a)α、β−不飽和カルボン酸及び/またはその誘導体で0.1〜10重量%グラフト重合したポリオレフィンを、塩素含有率が10〜20重量%の範囲で塩素化した、重量平均分子量が80,000〜150,000の塩素化酸変性ポリオレフィン100重量部に対して、(b)α、β−不飽和カルボン酸及び/またはその誘導体で0〜10重量%グラフト重合したポリオレフィンを、塩素含有率が20〜45重量%の範囲で塩素化した、重量平均分子量が5,000〜30,000の塩素化ポリオレフィンまたは塩素化酸変性ポリオレフィンを5〜50重量部混合することにより成る耐溶剤性良好な塩素化ポリオレフィン系バインダー樹脂組成物。 (A) A polyolefin obtained by graft polymerization of 0.1 to 10% by weight with an α, β-unsaturated carboxylic acid and / or a derivative thereof is chlorinated in a chlorine content of 10 to 20% by weight , and the weight average molecular weight is 100 parts by weight of chlorinated acid-modified polyolefin of 80,000 to 150,000 , (b) polyolefin containing 0-10% by weight graft polymerization with α, β-unsaturated carboxylic acid and / or derivative thereof, containing chlorine Good solvent resistance by mixing 5 to 50 parts by weight of chlorinated polyolefin or chlorinated acid-modified polyolefin having a weight average molecular weight of 5,000 to 30,000 chlorinated at a rate of 20 to 45% by weight Chlorinated polyolefin binder resin composition. 請求項1に記載の塩素化ポリオレフィン系バインダー樹脂組成物を有効成分とするポリオレフィンフィルム、シートまたは成型物用プライマー。 As an active ingredient a chlorinated polyolefin binder resin composition according to claim 1, a primer for polyolefin films, sheets or moldings. 請求項1に記載の塩素化ポリオレフィン系バインダー樹脂組成物を有効成分とするポリオレフィンフィルム、シートまたは成型物用塗料。 As an active ingredient a chlorinated polyolefin binder resin composition according to claim 1, polyolefin films, sheets or coatings for moldings. (a)α、β−不飽和カルボン酸及び/またはその誘導体で0.1〜10重量%グラフト重合した、メタロセン触媒を重合触媒として製造したポリオレフィンを、塩素含有率が10〜20重量%の範囲で塩素化した、重量平均分子量が80,000〜150,000の塩素化酸変性ポリオレフィン100重量部に対して、(b)α、β−不飽和カルボン酸及び/またはその誘導体で0〜10重量%グラフト重合した、メタロセン触媒を重合触媒として製造したポリオレフィンを、塩素含有率が20〜45重量%の範囲で塩素化した、重量平均分子量が5,000〜30,000の塩素化ポリオレフィンまたは塩素化酸変性ポリオレフィンを5〜50重量部混合することにより成る耐溶剤性良好な塩素化ポリオレフィン系バインダー樹脂組成物。(A) A polyolefin produced by graft polymerization of 0.1 to 10% by weight of an α, β-unsaturated carboxylic acid and / or a derivative thereof using a metallocene catalyst as a polymerization catalyst, and having a chlorine content of 10 to 20% by weight. (B) α, β-unsaturated carboxylic acid and / or derivative thereof is 0 to 10 weights per 100 weight parts of chlorinated acid-modified polyolefin chlorinated with % Graft polymerized polyolefin produced using a metallocene catalyst as a polymerization catalyst, chlorinated in a chlorine content of 20 to 45% by weight, chlorinated polyolefin or chlorinated with a weight average molecular weight of 5,000 to 30,000 A chlorinated polyolefin binder resin composition having good solvent resistance, comprising 5 to 50 parts by weight of an acid-modified polyolefin.

JP2004055418A 2004-02-27 2004-02-27 Chlorinated polyolefin binder resin composition with good solvent resistance Expired - Fee Related JP3965697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004055418A JP3965697B2 (en) 2004-02-27 2004-02-27 Chlorinated polyolefin binder resin composition with good solvent resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055418A JP3965697B2 (en) 2004-02-27 2004-02-27 Chlorinated polyolefin binder resin composition with good solvent resistance

Publications (2)

Publication Number Publication Date
JP2005239983A JP2005239983A (en) 2005-09-08
JP3965697B2 true JP3965697B2 (en) 2007-08-29

Family

ID=35022041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055418A Expired - Fee Related JP3965697B2 (en) 2004-02-27 2004-02-27 Chlorinated polyolefin binder resin composition with good solvent resistance

Country Status (1)

Country Link
JP (1) JP3965697B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091933A (en) * 2005-09-29 2007-04-12 Nippon Paper Chemicals Co Ltd Low-temperature baking-corresponding type chlorinated and acid-modified polyolefin, composition containing the same and application thereof
GB2449597B (en) * 2006-02-16 2011-01-12 Kansai Paint Co Ltd Water-based primer composition and coating method of plastic shaped articles using the composition
JPWO2007113922A1 (en) * 2006-04-05 2009-08-13 東洋化成工業株式会社 Binder resin composition
CN101914337B (en) * 2010-08-13 2012-01-04 广东省石油化工研究院 Environment friendly chlorinated polypropylene modified acrylic acid resin primer and preparation method thereof

Also Published As

Publication number Publication date
JP2005239983A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP4987473B2 (en) Chlorinated propylene-based random copolymer and composition containing the same
KR102260657B1 (en) Chlorinated polyolefin resin composition
TWI762549B (en) Modified polyolefin resin
KR100656110B1 (en) Binder resin compositions, production process, and use thereof
JP6976260B2 (en) Modified polyolefin resin
US8158715B2 (en) Binder resin composition
JP3898636B2 (en) Binder resin composition, production method and use thereof
JP3965697B2 (en) Chlorinated polyolefin binder resin composition with good solvent resistance
JP6166564B2 (en) Chlorinated polyolefin resin composition
JPH06306227A (en) Binder resin solution composition having good fluidity at low temperature
JP3045498B2 (en) Binder resin composition and method for producing the same
JP2001114961A (en) Binder resin composition and its preparation method
JP4473500B2 (en) Binder resin composition and use thereof
JP4420314B2 (en) Chlorinated polyolefin binder resin composition with good stability
US6555621B1 (en) Binder resin composition and process for the production thereof
JP2001114843A (en) Acid modified chlorinated polyolefin having good solvent resistance
US10266703B2 (en) Polyolefin polyols as surface modifying agents
JP2000007979A (en) Coating resin composition for polyolefin and its production
JP2004217807A (en) Chlorinated polyolefin-based resin solution having good stability at low temperature
CN111770962B (en) Resin composition
JP2015067719A (en) Chlorinated polyolefin resin composition
JP2015209450A (en) Chlorinated polyolefin resin composition
JP2006104431A (en) Binder resin composition
JP2021031528A (en) Modified polyolefin resin
JP2001114960A (en) Acid-modified chlorinated polyolefin composition with good solvent resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160608

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees