JP4234924B2 - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP4234924B2
JP4234924B2 JP2001397310A JP2001397310A JP4234924B2 JP 4234924 B2 JP4234924 B2 JP 4234924B2 JP 2001397310 A JP2001397310 A JP 2001397310A JP 2001397310 A JP2001397310 A JP 2001397310A JP 4234924 B2 JP4234924 B2 JP 4234924B2
Authority
JP
Japan
Prior art keywords
injection material
weight
injection
less
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001397310A
Other languages
Japanese (ja)
Other versions
JP2003193457A (en
Inventor
了三 吉田
良明 土田
英典 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2001397310A priority Critical patent/JP4234924B2/en
Publication of JP2003193457A publication Critical patent/JP2003193457A/en
Application granted granted Critical
Publication of JP4234924B2 publication Critical patent/JP4234924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/021Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00068Mortar or concrete mixtures with an unusual water/cement ratio
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、注入材が地盤へ必要十分に浸透し、しかも初期の地盤改良効果に優れた地盤改良方法に関する。
【0002】
【従来の技術】
セメント系注入材を用いた地盤改良方法は、ダムの基礎、大型地下構造物等の岩盤の強化・止水、砂地盤の液状化対策などを目的とした恒久的な改良方法として注目を浴びている。
セメントを主体とする注入材には、浸透性を高めた超微粒子セメント(例えば、ブレーン比表面積9000cm2/g)が使用され、地盤への浸透性を期待して、水注入材比を高く設定して施工されている。
【0003】
例えば、特開平11-268949号には、「都市ゴミ焼却灰及び下水汚泥焼却灰から選ばれる1種又は2種以上を原料として製造された平均粒径2〜7μmであって最大粒径10μm以下かつ1μm未満の粒子存在比率が10重量%以下の水硬性組成物粒子と、平均粒径2〜7μmであって最大粒径10μm以下かつ1μm未満の粒子存在比率が10重量%以下の高炉スラグ粒子からなる湿式グラウト材」が記載されている。このような湿式グラウト材は、浸透性を優先して、微粉含量を制限しているため、初期強度発現性は期待し難い。また、地盤への浸透性を高めるため、水注入材比を高く設定して施工すると、ブリーディング水発生率が高くなり、強度低下は避けられない。従って、このようなグラウト材及び施工方法では、早期に地盤回良効果を得ることはできなかった。
【0004】
また、初期強度発現性を改善するために、急硬・早強性の特殊セメントを注入材に配合することも知られている。例えば、特公昭57-10058号には、「結晶質又は無定形質カルシウムアルミネートないしこれにハロゲン元素が固溶したカルシウムハロアルミネートからなる可溶性アルミと、無水、半水もしくは二水の石膏又は硫酸ソーダよりなる無機硫酸塩とを主体とする粉状又は懸濁液状のセメント急硬剤、及びこれを用いたセメントの急硬施工方法」が記載されている。しかしながら、この急硬剤は水和物の生成が早く、浸透性が大幅に低下してしまうという欠点があった。また、注入施工時には、1.5ショット(例えば、セメントとカルシウムアルミネート系急硬剤との混合が注入用ノズルの手前の配管部分で行われる)や2ショット(例えば、セメントとカルシウムアルミネート系急硬剤との混合が注入用ノズル部分で行われる)が採用されているため、装置が複雑で、かつ操作が煩雑である。更に、このような急硬剤は、普通セメントよりも極めて高価であるため、施工コストが高くなるという問題もあった。水比を大きくすることで、施工コストを低減させることもできるが、初期強度が低減するため限界があった。
【0005】
【発明が解決しようとする課題】
従って、本発明の目的は、従来のセメント系注入材の浸透性能を維持しつつ、安価な施工コストで、初期強度発現性を飛躍的に改善した地盤改良方法を提供することにある。
【0006】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意研究を行なった結果、特定の組成及び粒度分布を有する注入材を、特定の水注入材比に調整して注入すれば、注入材が地盤へ必要十分に浸透し、しかも優れた初期強度発現性で、地盤改良できることを見出し、本発明を完成した。
【0007】
すなわち、本発明は、都市ゴミ焼却灰及び/又は下水汚泥焼却灰を原料とし、C3A及びC4AFから選ばれる1種以上と、C2S及びC3Sから選ばれる1種以上を含む脱ハロゲン型水硬性組成物、潜在水硬性物質並びに石膏を含有し、最大粒径が10μm以下で、かつ1μm未満の粒子存在比率が10重量%を超え25重量%以下である注入材を、水注入材比を50〜900重量%に調整して注入することを特徴とする地盤改良方法を提供するものである。
【0008】
【発明の実施の形態】
本発明で用いる注入材は、脱ハロゲン型水硬性組成物、潜在水硬性物質及び石膏を含有するものである。
水硬性組成物は、都市ゴミ焼却灰及び下水汚泥焼却灰から選ばれる1種以上を原料とするもので、C3A及びC4AFから選ばれる1種以上と、C2S及びC3Sから選ばれる1種以上を含む脱ハロゲン型のものである。原料としては、都市ゴミ焼却灰や下水汚泥焼却灰等の廃棄物焼却灰に加え、貝殻や下水汚泥に生石灰を混合した下水汚泥乾粉、その他の一般廃棄物、更には普通のセメントの原料である石灰石、粘土、珪石、アルミ灰、ボーキサイト、鉄等と混合して成分調整した原料なども用いることができる。このような原料を1200〜1450℃で焼成することにより、水硬性組成物を得ることができる。
【0009】
このような水硬性組成物には、積極的に塩素を取り込んで、C117CaCl2を生成させたものと、可能な限り塩素を取り除き、C3Aとして生成させたものがあるが、本発明においては、後者の可能な限り塩素を取り除いた脱ハロゲン型のものを用いる必要がある。脱ハロゲン型以外のものでは、水和活性が高く、凝集しやすいため、注入材に用いると浸透性が悪くなる。
【0010】
塩素を可能な限り除去させるためには、都市ゴミ焼却灰や下水汚泥焼却灰等に含まれる塩素分などのハロゲンと化合物を形成し、ハロゲン化物として1000℃以上の高温度下で揮散させるような成分、例えばナトリウム、カリウム等のアルカリ金属を含む炭酸塩などを、ハロゲンと当量となるように調整して加え、キルン等の加熱炉で焼成すれば良く、それにより、塩素分をほとんど取り除いた脱ハロゲン型の水硬性組成物を得ることができる。
【0011】
このようにして得られた水硬性組成物は、C3A及びC4AFから選ばれる1種以上を10〜30重量%と、C2S及びC3Sから選ばれる1種以上を70〜90重量%含有するのが好ましい。
【0012】
潜在水硬性物質としては、製鉄所の溶鉱炉で銑鉄製造時に副生するスラグを急冷した高炉水砕スラグのほか、下水汚泥を溶融化したスラグ等の他のスラグ類、ブレーン比表面積が3000cm2/g以上のフライアッシュ、シリカフューム、メタカオリンなどを使用することができる。
【0013】
石膏としては、特に限定されず、例えば無水石膏、半水石膏、二水石膏等を用いることができる。
【0014】
注入材における、これら成分の配合割合は、脱ハロゲン型水硬性組成物5〜60重量部、特に10〜50重量部、潜在水硬性物質40〜95重量部、特に50〜90重量部、石膏がSO3換算で0.1〜20重量部、特に5〜10重量部であるのが好ましい。これらの範囲内であると、注入時の浸透性及び初期強度発現性により優れるので好ましい。
【0015】
なお、本発明においては、都市ゴミ焼却灰及び/又は下水汚泥焼却灰を原料とする脱ハロゲン型水硬性組成物に石膏を混合、粉砕したセメント(以下、「エコセメント」という)を用いることができる。前記のような都市ゴミ焼却灰及び/又は下水汚泥焼却灰から構成される調合原料をキルン等の加熱炉で焼成することにより焼成物が得られるが、本発明においては、カルシウムクロロアルミネート(C117CaCl2)等の塩素化合物を生成させずにC3Aを生成させた焼成物を配合したエコセメントを用いる。
また、本発明の注入材においては、エコセメントとともに普通セメントを用いることもでき、過度の凝集を抑えることができる。普通セメントを用いる場合は、エコセメント100重量部に対し、20〜220重量部の割合で配合すれば、注入時に凝集が生じず、しかも初期強度が低下しないので好ましい。
【0016】
また、注入材には、炭酸カルシウム、消石灰等のカルシウム化合物や、減水剤、分散剤、凝結遅延剤等を、本発明の効果を損なわない範囲で適宜配合することができる。
これらは、コンクリート用として通常用いられるものであれば特に制限されず、例えばクエン酸、酒石酸、グルコン酸、リンゴ酸、グルコヘプトン酸、ガラクトン酸等のヒドロキシカルボン酸又はその塩;グルコース、サッカロース、デキストリン等の糖類;リン酸、硼酸等の非強酸性の無機酸又は塩;ピルビン酸、2−ケトグルコン酸等のケトカルボン酸又はその塩;アルカリ又はアルカリ土類金属の炭酸塩又は硫酸塩;ナフタレンスルホン酸等の高分子化合物などが挙げられ、1種又は2種以上を組合わせて用いることができる。
【0017】
注入材は、通常の方法により製造することができ、例えば、各成分の1種以上を混合粉砕する方法や、各成分を個別に粉砕した後混合する方法が挙げられる。特に、個別に粉砕した後混合すると、浸透性、強度発現性がさらに良好な注入材を得ることができる。
【0018】
また、注入材は、最大粒径が10μm以下で、かつ1μm未満の粒子存在比率が10重量%を超え25重量%以下、好ましくは12〜20重量%となるよう粒度調整することが必要である。最大粒径が10μmを超えると、土粒子間隙の閉塞が生じて、浸透性が低下する。また、1μm未満の粒子存在比率が10重量%以下では、初期強度発現性が低下し、25重量%を超えると、注入材粒子の凝集により、注入時の浸透性が低下する。本発明の注入材において用いられるエコセメントを注入材として使用すれば、1μm未満の粒子存在比率が10重量%を超えても、凝集力が著しく増加して解こう及び分散性が低下することなく、強度発現性は良好で、むしろ普通セメントを用いた場合よりも高い強度が得られる。
なお、粒度調整は、分級等の公知の方法により、行うことができる。
【0019】
本発明においては、このようにして得られる注入材を、水注入材比が50〜900重量%、好ましくは85〜800重量%となるように調整(作液)して注入する。この範囲内であれば、広い地盤改良範囲と早期の地盤改良効果をバランス良く得ることができ、普通セメントを用いた場合と比較して広い範囲で使用でき、初期強度を損なうことなく、高い水比での使用が可能となる。水注入材比が50重量%未満では、水中での注入材の分散性が著しく低下し、注入対象箇所への浸透注入が困難となり、900重量%を超えると、注入対象箇所への浸透性は向上するが、地盤改良効果が大きく低下する。
注入材を作液する方法としては、注入材が液中で均一に分散していれば良く、特に限定されず、通常の方法により行うことができる。
【0020】
本発明において、注入材は、水に分散させて対象箇所に注入するものである。注入対象箇所に十分浸透させるため、通常用いられる分散剤を、注入材に対して固形分換算で10重量%以下用いると、浸透性をより改善することができる。ここで用いる分散剤は、液体又は粉末のいずれの状態でも良く、添加時期も特に制限されず、セメントとのドライブレンド、混練水への添加等のいずれの方法でも添加することができる。
【0021】
本発明で用いる注入材は、地盤注入に必要十分な浸透性と可使時間が確保され、しかも初期強度発現性も改善されているので、作液後の地盤への注入方法は特に制限されず、通常の方法により行うことができる。特に、施工コストの安価な1ショット(各種材料の配合が地盤注入前に予め完了している)として施工するのが好ましい。また、例えば水ガラス(LW)、シリカゾル等と併用して、1.5ショットや2ショットとして施工することも可能である。
【0022】
【実施例】
次に、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらにより何ら制限されるものではない。なお、実施例で用いた各種材料は表1及び表2に示すとおりである。
【0023】
【表1】

Figure 0004234924
【0024】
【表2】
Figure 0004234924
【0025】
実施例1
表3に示す種類のセメント30重量部及び高炉水砕スラグ70重量部を混合し、チューブミルを用いて混合粉砕した後、遠心分級機を用いて粒度を調整し、最大粒径10μm、1μm未満が15重量%の粒度分布を有する注入材を製造した。粒度測定は、レーザー回折式粒度分布測定装置(HELOS&RODOS)を用いて行った。
得られた注入材を用いて、浸透性及び強度発現性を評価した。結果を表3に示す。
【0026】
(評価方法)
(1)浸透性:
加圧注入浸透試験を行って評価した。すなわち、まず、φ5×100cmのアクリル管に、間隙率39%となるように豊浦砂を充填して供試体とした。各注入材は、ナフタレンスルホン酸系分散剤(マイティ150、花王社製)を、注入材に対して1重量%加え、表3に示す水注入材比で混練りした後、攪拌装置を取り付けた圧力容器内に投入し、1.0kgf/cm2の一定圧力で、垂直に立てた供試体の下部より注入した。砂層上部から流出するミルクの量をグラウト注入量として測定した。なお、供試体は注入に先立ち水で飽和しておき、注入完了は注入開始から20分までとした。
【0027】
(2)強度発現性:
(1)の加圧注入浸透試験において、セメントミルク硬化後、アクリル管から脱型した供試体をφ5×10cmに成形し、材齢1日まで養生した。地盤工学会基準「土の一軸圧縮試験方法」(T511)に準じて、一軸圧縮強さを測定した。
【0028】
【表3】
Figure 0004234924
【0029】
実施例2
表4に示す種類のセメント30重量部及び高炉水砕スラグ70重量部を用い、実施例1と同様にして、表4に示す粒度分布を有する注入材を製造した。得られた注入材は、ナフタレンスルホン酸系分散剤(マイティ150、花王社製)を、注入材に対して1重量%加え、水注入材比300%に調整し、実施例1と同様にして、浸透性及び強度発現性を評価した。結果を表4に示す。
【0030】
【表4】
Figure 0004234924
【0031】
【発明の効果】
本発明によれば、注入材が地盤へ必要十分に浸透し、しかも優れた初期強度発現性で、地盤改良することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ground improvement method in which an injection material penetrates into the ground as necessary and has an excellent initial ground improvement effect.
[0002]
[Prior art]
The ground improvement method using cement-based injecting material has attracted attention as a permanent improvement method for the purpose of strengthening and stopping water for rock foundations such as dam foundations and large underground structures, and countermeasures against liquefaction of sand ground. Yes.
The cement-based injection material uses ultra-fine cement (for example, Blaine specific surface area of 9000 cm 2 / g) with improved permeability, and the water injection ratio is set high in order to achieve penetration into the ground. And it is constructed.
[0003]
For example, Japanese Patent Laid-Open No. 11-268949 states that “the average particle size is 2 to 7 μm and the maximum particle size is 10 μm or less produced from one or more selected from municipal waste incineration ash and sewage sludge incineration ash. In addition, hydraulic composition particles having an abundance ratio of particles of less than 1 μm of 10% by weight or less, and blast furnace slag particles having an average particle diameter of 2 to 7 μm, a maximum particle diameter of 10 μm or less and a particle abundance ratio of less than 1 μm of 10% by weight or less Wet grout material "is described. Since such wet grout material gives priority to permeability and restricts the fine powder content, it is difficult to expect initial strength development. Moreover, if the water injection ratio is set high in order to increase the permeability to the ground, the bleeding water generation rate is increased, and the strength is inevitable. Therefore, with such a grout material and construction method, the ground recovery effect could not be obtained at an early stage.
[0004]
In addition, in order to improve the initial strength development property, it is also known to blend a special cement with rapid hardening and early strength into the injection material. For example, Japanese Examined Patent Publication No. 57-10058 states that “soluble aluminum composed of crystalline or amorphous calcium aluminate or calcium haloaluminate in which a halogen element is dissolved therein, and anhydrous, semi-water or dihydrate gypsum or A powdery or suspension cement hardener mainly composed of an inorganic sulfate composed of sodium sulfate and a method of rapid hardening of cement using the same are described. However, this rapid hardening agent has a drawback that hydrates are rapidly formed and the permeability is greatly reduced. In addition, at the time of injection construction, 1.5 shots (for example, mixing of cement and calcium aluminate-based hardener is performed in the pipe portion in front of the injection nozzle) and 2 shots (for example, cement and calcium aluminate-based) The mixing with the rapid hardening agent is performed at the injection nozzle portion), so that the apparatus is complicated and the operation is complicated. Furthermore, since such a hardener is extremely expensive than ordinary cement, there is also a problem that the construction cost becomes high. Although the construction cost can be reduced by increasing the water ratio, there is a limit because the initial strength is reduced.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a ground improvement method that drastically improves the initial strength development at a low construction cost while maintaining the permeation performance of a conventional cement-based injection material.
[0006]
[Means for Solving the Problems]
In such a situation, the present inventors have conducted intensive research, and as a result, if the injection material having a specific composition and particle size distribution is injected to adjust to a specific water injection material ratio, the injection material is necessary and sufficient to the ground. It has been found that the ground can be improved with penetration and excellent initial strength, and the present invention has been completed.
[0007]
That is, the present invention uses municipal waste incineration ash and / or sewage sludge incineration ash as a raw material, and contains at least one selected from C 3 A and C 4 AF and at least one selected from C 2 S and C 3 S. An injecting material containing a dehalogenated hydraulic composition, a latent hydraulic substance, and gypsum, wherein the maximum particle size is 10 μm or less, and the particle abundance ratio of less than 1 μm is more than 10 wt% and 25 wt% or less, The present invention provides a ground improvement method characterized in that the water injection material ratio is adjusted to 50 to 900% by weight for injection.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The injection material used in the present invention contains a dehalogenated hydraulic composition, a latent hydraulic substance, and gypsum.
The hydraulic composition is made from at least one selected from municipal waste incineration ash and sewage sludge incineration ash, and one or more selected from C 3 A and C 4 AF, and C 2 S and C 3 S. It is a dehalogenated type containing at least one selected from the group consisting of Raw materials include waste incineration ash such as municipal waste incineration ash and sewage sludge incineration ash, as well as sewage sludge dry powder in which quick lime is mixed with shells and sewage sludge, other general waste, and ordinary cement materials. Materials prepared by mixing ingredients with limestone, clay, silica, aluminum ash, bauxite, iron, etc. can also be used. A hydraulic composition can be obtained by baking such a raw material at 1200-1450 degreeC.
[0009]
Such hydraulic compositions include those in which chlorine is actively incorporated to produce C 11 A 7 CaCl 2, and those in which chlorine is removed as much as possible to produce C 3 A. In the present invention, it is necessary to use the latter dehalogenation type in which chlorine is removed as much as possible. Those other than the dehalogenated type have high hydration activity and are likely to aggregate, so that when used as an injection material, the permeability becomes poor.
[0010]
In order to remove chlorine as much as possible, halogen and compounds such as chlorine contained in municipal waste incineration ash and sewage sludge incineration ash are formed and volatilized as a halide at a high temperature of 1000 ° C or higher. Components such as carbonates containing alkali metals such as sodium and potassium are added so as to be equivalent to halogen, and then fired in a heating furnace such as a kiln, so that the chlorine content is almost removed. A halogen-type hydraulic composition can be obtained.
[0011]
The hydraulic composition thus obtained has 10 to 30% by weight of one or more selected from C 3 A and C 4 AF, and 70 to 1 or more selected from C 2 S and C 3 S. It is preferable to contain 90% by weight.
[0012]
Potential hydraulic materials include granulated blast furnace slag that rapidly cools slag produced as a by-product during the production of pig iron in a blast furnace at an ironworks, other slag such as slag melted from sewage sludge, and a specific surface area of 3000 cm 2 / g or more of fly ash, silica fume, metakaolin and the like can be used.
[0013]
The gypsum is not particularly limited, and for example, anhydrous gypsum, hemihydrate gypsum, dihydrate gypsum and the like can be used.
[0014]
The mixing ratio of these components in the injection material is 5 to 60 parts by weight, particularly 10 to 50 parts by weight of the dehalogenated hydraulic composition, 40 to 95 parts by weight of the latent hydraulic substance, particularly 50 to 90 parts by weight, and gypsum. It is preferably 0.1 to 20 parts by weight, particularly 5 to 10 parts by weight in terms of SO 3 . Within these ranges, it is preferable because it is more excellent in permeability and initial strength development at the time of injection.
[0015]
In the present invention, a cement obtained by mixing and crushing gypsum into a dehalogenated hydraulic composition made from municipal waste incineration ash and / or sewage sludge incineration ash (hereinafter referred to as “eco-cement”) is used. it can. A fired product can be obtained by firing a raw material composed of municipal waste incineration ash and / or sewage sludge incineration ash as described above in a kiln or other heating furnace. In the present invention, calcium chloroaluminate (C Eco-cement blended with a calcined product in which C 3 A is produced without producing a chlorine compound such as 11 A 7 CaCl 2 ) is used.
Moreover, in the injection material of this invention, a normal cement can also be used with an ecocement, and an excessive aggregation can be suppressed. In the case of using ordinary cement, it is preferable to add 20 to 220 parts by weight with respect to 100 parts by weight of eco-cement because aggregation does not occur during injection and initial strength does not decrease.
[0016]
Moreover, calcium compounds, such as calcium carbonate and slaked lime, a water reducing agent, a dispersing agent, a setting retarder, and the like can be appropriately added to the injection material as long as the effects of the present invention are not impaired.
These are not particularly limited as long as they are usually used for concrete, for example, citric acid, tartaric acid, gluconic acid, malic acid, glucoheptonic acid, galactonic acid and other hydroxycarboxylic acids or salts thereof; glucose, saccharose, dextrin, etc. Non-strongly acidic inorganic acids or salts such as phosphoric acid and boric acid; Ketocarboxylic acids such as pyruvic acid and 2-ketogluconic acid or salts thereof; Alkali or alkaline earth metal carbonates or sulfates; Naphthalenesulfonic acid, etc. The high molecular compound etc. are mentioned, It can use combining 1 type (s) or 2 or more types.
[0017]
An injection material can be manufactured by a normal method, for example, the method of mixing and grinding 1 or more types of each component, and the method of mixing after grind | pulverizing each component separately are mentioned. In particular, when pulverized separately and then mixed, an injection material with better permeability and strength can be obtained.
[0018]
In addition, it is necessary to adjust the particle size of the injection material so that the maximum particle size is 10 μm or less and the ratio of particles having a particle size of less than 1 μm is more than 10 wt% and 25 wt% or less, preferably 12 to 20 wt%. . When the maximum particle size exceeds 10 μm, the soil particle gap is blocked, and the permeability is lowered. Further, when the particle abundance ratio of less than 1 μm is 10% by weight or less, the initial strength developability is lowered, and when it exceeds 25% by weight, the permeability at the time of injection is lowered due to aggregation of the injection material particles. If the ecocement used in the injecting material of the present invention is used as the injecting material, even if the particle abundance ratio of less than 1 μm exceeds 10% by weight, the cohesive force is remarkably increased and the peptization and dispersibility are not lowered. In addition, the strength development is good, and rather a higher strength is obtained than when ordinary cement is used.
The particle size adjustment can be performed by a known method such as classification.
[0019]
In the present invention, the injection material obtained in this way is injected after adjusting (working) so that the water injection material ratio is 50 to 900% by weight, preferably 85 to 800% by weight. Within this range, a wide ground improvement range and an early ground improvement effect can be obtained in a well-balanced manner, and it can be used in a wider range than when ordinary cement is used. The ratio can be used. If the water injection material ratio is less than 50% by weight, the dispersibility of the injection material in water will be significantly reduced, making it difficult to infiltrate into the injection target location. Although improved, the ground improvement effect is greatly reduced.
The method for producing the injection material is not particularly limited as long as the injection material is uniformly dispersed in the liquid, and can be performed by a normal method.
[0020]
In the present invention, the injection material is dispersed in water and injected into the target portion. In order to sufficiently infiltrate the site to be injected, if a commonly used dispersant is used in an amount of 10% by weight or less in terms of solid content, the permeability can be further improved. The dispersant used here may be in either a liquid or powder state, and the addition timing is not particularly limited, and can be added by any method such as dry blending with cement or addition to kneaded water.
[0021]
The injection material used in the present invention has sufficient permeability and pot life necessary for ground injection, and the initial strength development is improved, so the injection method to the ground after liquid preparation is not particularly limited. Can be carried out by a usual method. In particular, it is preferable to construct as one shot with a low construction cost (mixing of various materials is completed in advance before the ground injection). In addition, for example, 1.5 shots or 2 shots can be used in combination with water glass (LW), silica sol, or the like.
[0022]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated still in detail, this invention is not restrict | limited at all by these. Various materials used in the examples are as shown in Tables 1 and 2.
[0023]
[Table 1]
Figure 0004234924
[0024]
[Table 2]
Figure 0004234924
[0025]
Example 1
After mixing 30 parts by weight of cement of the type shown in Table 3 and 70 parts by weight of granulated blast furnace slag, mixing and pulverizing using a tube mill, the particle size is adjusted using a centrifugal classifier, and the maximum particle size is less than 10 μm and 1 μm. Produced an injection material having a particle size distribution of 15% by weight. The particle size measurement was performed using a laser diffraction particle size distribution analyzer (HELOS & RODOS).
Using the obtained injection material, permeability and strength development were evaluated. The results are shown in Table 3.
[0026]
(Evaluation methods)
(1) Permeability:
A pressure injection penetration test was conducted for evaluation. That is, first, a Toyoura sand was filled in a φ5 × 100 cm acrylic tube so that the porosity was 39% to obtain a specimen. Each injection material was added with 1% by weight of a naphthalene sulfonic acid dispersant (Mighty 150, manufactured by Kao Corporation) to the injection material, kneaded at a water injection material ratio shown in Table 3, and then a stirrer was attached. The sample was put into a pressure vessel and injected from the lower part of a vertical specimen at a constant pressure of 1.0 kgf / cm 2 . The amount of milk flowing out from the upper part of the sand layer was measured as a grout injection amount. The specimen was saturated with water prior to the injection, and the injection was completed up to 20 minutes from the start of the injection.
[0027]
(2) Strength development:
In the pressure injection penetration test of (1), after hardening the cement milk, a specimen removed from the acrylic tube was molded into φ5 × 10 cm and cured until the material age was 1 day. The uniaxial compressive strength was measured according to the Geotechnical Society standard “Soil uniaxial compression test method” (T511).
[0028]
[Table 3]
Figure 0004234924
[0029]
Example 2
An injection material having a particle size distribution shown in Table 4 was produced in the same manner as in Example 1 using 30 parts by weight of the cement shown in Table 4 and 70 parts by weight of granulated blast furnace slag. The obtained injection material was obtained by adding 1% by weight of a naphthalene sulfonic acid dispersant (Mighty 150, manufactured by Kao Corporation) to the injection material to adjust the water injection material ratio to 300%. The permeability and strength development were evaluated. The results are shown in Table 4.
[0030]
[Table 4]
Figure 0004234924
[0031]
【The invention's effect】
According to the present invention, the injection material penetrates into the ground as necessary and the ground can be improved with excellent initial strength.

Claims (2)

都市ゴミ焼却灰及び/又は下水汚泥焼却灰を原料とし、C3A及びC4AFから選ばれる1種以上と、C2S及びC3Sから選ばれる1種以上を含む脱ハロゲン型水硬性組成物、潜在水硬性物質並びに石膏を含有し、最大粒径が10μm以下で、かつ1μm未満の粒子存在比率が10重量%を超え25重量%以下である注入材を、水注入材比を50〜900重量%に調整して注入することを特徴とする地盤改良方法。Dehalogenated hydraulic property containing municipal waste incineration ash and / or sewage sludge incineration ash and containing one or more selected from C 3 A and C 4 AF and one or more selected from C 2 S and C 3 S An injection material containing a composition, a latent hydraulic substance and gypsum, having a maximum particle size of 10 μm or less and a particle abundance ratio of less than 1 μm of more than 10% by weight and 25% by weight or less has a water injection material ratio of 50 The ground improvement method characterized by adjusting and inject | pouring to -900weight%. 注入材が、ポルトランドセメントを含むものである請求項1記載の地盤改良方法。The ground improvement method according to claim 1, wherein the injection material contains Portland cement.
JP2001397310A 2001-12-27 2001-12-27 Ground improvement method Expired - Fee Related JP4234924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001397310A JP4234924B2 (en) 2001-12-27 2001-12-27 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001397310A JP4234924B2 (en) 2001-12-27 2001-12-27 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2003193457A JP2003193457A (en) 2003-07-09
JP4234924B2 true JP4234924B2 (en) 2009-03-04

Family

ID=27603151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001397310A Expired - Fee Related JP4234924B2 (en) 2001-12-27 2001-12-27 Ground improvement method

Country Status (1)

Country Link
JP (1) JP4234924B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493903B2 (en) * 2002-10-18 2010-06-30 太平洋セメント株式会社 Hydraulic composition and concrete
JP4509210B1 (en) * 2009-04-03 2010-07-21 勝彦 太田 Improved treatment method for construction sludge
CN107675702B (en) * 2017-10-13 2020-02-11 南京林业大学 Construction method of waste incineration ash pile
CN110005370A (en) * 2019-04-24 2019-07-12 中国煤炭地质总局水文地质局 Control absciss layer injecting paste material of subsidence and preparation method thereof and grouting method

Also Published As

Publication number Publication date
JP2003193457A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
JP4533190B2 (en) Injection material
JP5500828B2 (en) Soil hardening material
JP5047745B2 (en) Ground improvement material
WO2017085565A2 (en) Portland cement free activation of ground granulated blast furnace slag
JP5442944B2 (en) Injection material and injection method
JP2013177279A (en) Spray material and spraying method using the same
JP4279918B2 (en) Cement grout composition
JP2001234167A (en) Ultra fast-curing injection material and injection process using the same
JP3856541B2 (en) Injection material
JP6032830B2 (en) Cement-based injection material
JP2004231884A (en) Injection material
JP4234924B2 (en) Ground improvement method
JP3267895B2 (en) Cement clinker and cement composition
JPH1161125A (en) Grouting material
JP2010215865A (en) Injection material and injection method
JP7315496B2 (en) Method for producing blast furnace cement
JP5464663B2 (en) Calcium aluminate clinker and quick-hardening material and quick-hardening admixture for injection
JP2010155758A (en) Cement admixture and cement composition
JP4162397B2 (en) Ground improvement method
JP2011079990A (en) Grouting material
JP3698348B2 (en) Hydraulic compound
JP2021195385A (en) Liquid chemical for stabilizing soil, production method of liquid chemical, and ground stabilization method
JP5717945B2 (en) Injection material, injection material and injection method
JP2021017379A (en) Cement admixture, expansion material, and cement composition
JP7510379B2 (en) Wet shotcrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4234924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees