JP2010155758A - Cement admixture and cement composition - Google Patents
Cement admixture and cement composition Download PDFInfo
- Publication number
- JP2010155758A JP2010155758A JP2008335369A JP2008335369A JP2010155758A JP 2010155758 A JP2010155758 A JP 2010155758A JP 2008335369 A JP2008335369 A JP 2008335369A JP 2008335369 A JP2008335369 A JP 2008335369A JP 2010155758 A JP2010155758 A JP 2010155758A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- fine powder
- mass
- admixture
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1003—Non-compositional aspects of the coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/70—Grouts, e.g. injection mixtures for cables for prestressed concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、セメント混和材に関し、特に、高強度グラウトモルタル組成物等の高強度流動性セメント組成物に用いた場合に優れた流動性及び高強度が得られ且つセメント硬化時の収縮が抑制することが可能なセメント混和材に関する。また、本発明は、セメント組成物に関し、特に、優れた流動性及び高強度が得られ且つセメント硬化時の収縮が抑制されたセメント組成物に関する。 The present invention relates to a cement admixture, and in particular, when used in a high-strength fluid cement composition such as a high-strength grout mortar composition, excellent fluidity and high strength are obtained, and shrinkage during cement hardening is suppressed. It relates to a cement admixture that can be used. The present invention also relates to a cement composition, and more particularly, to a cement composition that has excellent fluidity and high strength, and that suppresses shrinkage during cement hardening.
従来から、圧縮強度80N/mm2以上の超高強度のモルタルを製造するための手段として、水結合材比を小さくし、シリカフューム等のポゾラン微粉末を混和材として使用することで、ポゾラン反応による強度を増進させる手法がある(例えば特許文献1および特許文献2参照)。水結合材比を小さくすると、練り混ぜ時の負荷が大きくなりすぎて、通常の添加量の高性能減水剤を添加してもハンドミキサでは練り混ぜできない場合があるという問題がある。流動性を向上させるため、高性能減水剤の添加量を上げると、コストアップや凝結遅延を招くという問題がある。また、一般に使用されるシリカフュームを混和材として使用した場合、シリカフュームは粒子径が小さく、比表面積が大きいため、二次凝集を起こしやすい。このため、モルタル中での分散性が悪く、その結果、反応性、硬化体の緻密性(マイクロフィラー効果)の面で、充分な高強度が得られないという問題がある。 Conventionally, as a means for producing an ultra-high strength mortar with a compressive strength of 80 N / mm 2 or more, by using a pozzolanic fine powder such as silica fume as an admixture by reducing the water binder ratio, There is a technique for increasing the strength (see, for example, Patent Document 1 and Patent Document 2). If the water binder ratio is reduced, the load during kneading increases too much, and there is a problem that kneading may not be possible with a hand mixer even if a normal amount of high-performance water reducing agent is added. If the amount of the high-performance water reducing agent added is increased in order to improve the fluidity, there is a problem that the cost is increased and the setting delay is caused. In addition, when commonly used silica fume is used as an admixture, silica fume has a small particle diameter and a large specific surface area, and therefore tends to cause secondary aggregation. For this reason, the dispersibility in a mortar is bad, As a result, there exists a problem that sufficient high intensity | strength cannot be obtained in the surface of reactivity and the compactness (microfiller effect) of a hardening body.
また、シリカフュームのようなポゾラン微粉末を多く配合すると、硬化時の収縮が大きくなるという問題があった。硬化時の収縮が大きいほど、割れが発生する虞が高くなることが知られている。
本発明は前記問題の解決、即ち、セメント組成物に添加したときに、練り混ぜが容易で、硬化時の収縮が小さく、高強度のセメント硬化体が得られるセメント混和材を提供することを目的とする。また、本発明は、練り混ぜが容易で、硬化時の収縮が小さく、高強度のセメント硬化体が得られるセメント組成物を提供することを目的とする。 The object of the present invention is to provide a cement admixture that solves the above problems, that is, when added to a cement composition, is easy to knead, has a small shrinkage at the time of curing, and provides a hardened cement body with high strength. And Another object of the present invention is to provide a cement composition that is easy to knead, has a small shrinkage at the time of curing, and provides a high-strength cement cured body.
本発明者は、前記課題解決のため鋭意検討した結果、特定のポゾラン微粉末が主成分のセメント混和材とすることにより、前記課題を克服することができることを見出し、本発明を完成させた。即ち、本発明は、以下の(1)及び(2)で表すセメント混和材、並びに(3)で表すセメント組成物である。
(1)収縮低減剤により表面処理されたポゾラン微粉末を主成分とするセメント混和材。(2)上記ポゾラン微粉末が、上記表面処理前よりもBET比表面積が小さいポゾラン微粉末である上記(1)のセメント混和材。(3)上記(1)又は上記(2)のセメント混和材、セメント及びセメント分散剤を含有するセメント組成物。
As a result of intensive investigations for solving the above-mentioned problems, the present inventors have found that the above-mentioned problems can be overcome by using specific pozzolanic fine powder as a main component of cement admixture, and have completed the present invention. That is, this invention is the cement admixture represented by the following (1) and (2), and the cement composition represented by (3).
(1) A cement admixture mainly composed of pozzolanic fine powder surface-treated with a shrinkage reducing agent. (2) The cement admixture according to (1), wherein the pozzolanic fine powder is a pozzolanic fine powder having a BET specific surface area smaller than that before the surface treatment. (3) A cement composition containing the cement admixture (1) or (2), cement, and a cement dispersant.
本発明によれば、セメント組成物に添加したときに、練り混ぜが容易で、硬化時の収縮が小さく、高強度のセメント硬化体となるセメント混和材が得られる。より詳しくは、セメント組成物に添加したときに、ハンドミキサによる練り混ぜが容易で、硬化時の収縮が小さく、材齢28日における圧縮強度が120N/mm2以上のセメント硬化体となるセメント混和材が得られる。また、本発明によれば、練り混ぜが容易で、硬化時の収縮が小さく、高強度のセメント硬化体となるセメント組成物が得られる。より詳しくは、ハンドミキサによる練り混ぜが容易で、硬化時の収縮が小さく、材齢28日における圧縮強度が120N/mm2以上のセメント硬化体となるセメント組成物が得られる。水結合材比が小さくても、練混ぜが容易で、少ない減水剤の使用量で、高流動性、高ワーカビリティーが得られ、さらには、強度発現性に優れると共に、硬化時に生じる硬化収縮が小さいグラウト材料とすることが可能なセメント組成物を提供することができる。 According to the present invention, when added to a cement composition, a cement admixture that is easy to knead, has a small shrinkage at the time of curing, and becomes a high-strength cement cured body can be obtained. More specifically, when added to a cement composition, mixing with a cement is easy when kneading with a hand mixer, shrinkage at the time of curing is small, and a cement hardened body having a compressive strength of at least 120 N / mm 2 at the age of 28 days. A material is obtained. Furthermore, according to the present invention, a cement composition that is easy to knead, has a small shrinkage during curing, and becomes a high-strength cement cured body can be obtained. More specifically, a cement composition that is easy to knead with a hand mixer, has a small shrinkage at the time of curing, and becomes a cement hardened body having a compressive strength at a material age of 28 days of 120 N / mm 2 or more is obtained. Even if the water binder ratio is small, kneading is easy, high fluidity and workability can be obtained with a small amount of water reducing agent used, and excellent strength development and low shrinkage during curing. A cement composition that can be a grout material can be provided.
本発明に用いるポゾラン微粉末は、収縮低減剤により表面処理されたポゾラン微粉末である。窒素吸着法によるBET比表面積が5〜100m2/gのポゾラン微粉末を、収縮低減剤により表面処理することにより、BET比表面積が20m2/g未満としたものが、セメント組成物とする場合に練り混ぜし易く且つ高強度を得やすいので好ましい。例えば、BET比表面積が25〜100m2/gのシリカフュームを、収縮低減剤により表面処理することにより、BET比表面積が20m2/g未満としたものが好適に用いることができる。表面処理前のBET比表面積に対する収縮低減剤による表面処理後のBET比表面積の割合が、練り混ぜし易く且つ高強度を得やすいので15〜50%の表面処理されたポゾラン微粉末が好ましく、同割合が18〜40%の表面処理されたポゾラン微粉末がより好ましい。本発明に用いるポゾラン微粉末の代表的且つ好ましい例としてはシリカフュームが挙げられる。本発明におけるBET比表面積は、特に断らない限り、窒素を吸着気体として用い測定した値である。 The pozzolanic fine powder used in the present invention is a pozzolanic fine powder surface-treated with a shrinkage reducing agent. When a pozzolanic fine powder having a BET specific surface area of 5 to 100 m 2 / g by nitrogen adsorption method is surface-treated with a shrinkage reducing agent so that the BET specific surface area is less than 20 m 2 / g to be a cement composition It is preferable since it is easy to knead and obtain high strength. For example, a silica fume of BET specific surface area of 25~100m 2 / g, by surface treatment by shrinkage reducing agent, a BET specific surface area may be suitably used those which is less than 20 m 2 / g. Since the ratio of the BET specific surface area after the surface treatment with the shrinkage reducing agent to the BET specific surface area before the surface treatment is easy to knead and high strength is easily obtained, the surface-treated pozzolanic fine powder is preferably 15% to 50%. A surface-treated pozzolanic fine powder having a ratio of 18 to 40% is more preferable. A typical and preferred example of the pozzolanic fine powder used in the present invention is silica fume. The BET specific surface area in the present invention is a value measured using nitrogen as an adsorbed gas unless otherwise specified.
本発明における収縮低減剤による表面処理とは、ポゾラン微粒子の粒子表面に、収縮低減剤からなる層を形成することである。ポゾラン粒子の粒子表面の全てが、収縮低減剤からなる層で覆われている必要は無い。また、ポゾラン粒子の粒子表面に収縮低減剤からなる層が形成されていれば、該ポゾラン粒子の粒子表面の一部に水等の他の成分の層が形成されていてもよい。 The surface treatment with the shrinkage reducing agent in the present invention is to form a layer made of the shrinkage reducing agent on the particle surface of the pozzolanic fine particles. It is not necessary that the entire particle surface of the pozzolanic particle is covered with a layer made of a shrinkage reducing agent. In addition, as long as a layer made of a shrinkage reducing agent is formed on the particle surface of the pozzolanic particles, a layer of other components such as water may be formed on a part of the particle surface of the pozzolanic particles.
上記表面処理に用いる収縮低減剤とは、セメントペースト、モルタル又はコンクリート中の水に溶解し、この水の表面張力を低下させることができる物質をいう。例えば、(ポリ)オキシアルキレン化合物、低級アルコールアルキレンオキシド付加物,アミノアルコールアルキレンオキシド付加物、(ポリ)アルキレングリコール、低級アルコール等或いは市販のセメント用収縮低減剤が挙げられ、これら一種又は二種以上を用いることができる。収縮低減剤が、下式(1)で表される化合物を有効成分とするもの又は市販のセメント用収縮低減剤であると、練り混ぜし易く且つ高強度を得やすいので好ましい。
RO(AO)nH (1)
(式中、Rは水素、炭素数1〜20のアルキル基又は炭素数5〜6のシクロアルキル基、Aは炭素数2〜3の1種または2種のアルキレン基、nは1〜100の数)
The shrinkage reducing agent used for the surface treatment refers to a substance that can be dissolved in water in cement paste, mortar, or concrete to reduce the surface tension of the water. Examples include (poly) oxyalkylene compounds, lower alcohol alkylene oxide adducts, amino alcohol alkylene oxide adducts, (poly) alkylene glycols, lower alcohols, etc., or commercially available cement shrinkage reducing agents, one or more of these. Can be used. It is preferable that the shrinkage reducing agent contains a compound represented by the following formula (1) as an active ingredient or a commercially available shrinkage reducing agent for cement because it is easy to knead and high strength is easily obtained.
RO (AO) nH (1)
(In the formula, R is hydrogen, an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 5 to 6 carbon atoms, A is one or two alkylene groups having 2 to 3 carbon atoms, and n is 1 to 100. number)
市販のセメント用収縮低減剤としては、例えば、太平洋マテリアル社製「太平洋テトラガード」、竹本油脂社製「ヒビダン」、フリーロック社製「ヒビガード」、ライオン社製「レオソルブ703B」、電気化学工業社製「デンカカスケード」、住友大阪セメント社製「テスタF」(何れも商品名)等が挙げられる。 Commercially available shrinkage reducing agents for cement include, for example, “Pacific Tetra Guard” manufactured by Taiheiyo Materials Co., Ltd., “Hibidan” manufactured by Takemoto Yushi Co., Ltd. “Denka Cascade” manufactured by Sumitomo Osaka Cement Co., Ltd., “Tester F” (both trade names), etc.
ポゾラン微粉末100質量部に対する収縮低減剤の量は、5〜50質量部が好ましい。5質量部より少ないとセメント組成物とした場合に流動性、硬化体の強度、硬化時の収縮低減性能を全て満足するものを得られない。また、50質量部より多いとセメントの硬化が大幅に遅延する虞がある。より好ましくは、硬化体の強度が高く且つ硬化時の収縮低減性能が優れていることから、ポゾラン微粉末100質量部に対し、10〜30質量部とする。 The amount of the shrinkage reducing agent is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the pozzolanic fine powder. When the amount is less than 5 parts by mass, it is impossible to obtain a cement composition that satisfies all of the fluidity, the strength of the cured product, and the shrinkage reduction performance during curing. On the other hand, if it exceeds 50 parts by mass, the hardening of the cement may be significantly delayed. More preferably, it is 10 to 30 parts by mass with respect to 100 parts by mass of the pozzolanic fine powder because the strength of the cured product is high and the shrinkage reduction performance at the time of curing is excellent.
収縮低減剤により表面処理されたポゾラン微粉末の製造は、ミキサにポゾラン微粉末を投入した後、収縮低減剤を添加し、混合することが好ましい。収縮低減剤の添加方法は、滴下又は噴霧することが均一とし易いことから好ましい。使用するミキサとしては、例えば、容器回転型ミキサ、機械攪拌型ミキサ、気流攪拌型ミキサ等の通常粉体混合に使用されているミキサが好適に使用できる。また、収縮低減剤を添加する前に、ポゾラン微粉末に水を予め添加し混合しておくと、収縮低減剤の添加量を抑制できるので好ましい。混合の度合いは、収縮低減剤がほぼ均一にポゾラン微粉末に吸着できさえすれば良く、混合時間は、ミキサの種類や処理量によって適宜決定されるが、10分以内が好ましく、さらに好ましくは5分以内である。過度の混合は、造粒により見かけの粒子が過度に大きくなるため、分散不良などを招く原因となるため好ましくない。 In the production of the pozzolanic fine powder surface-treated with the shrinkage reducing agent, it is preferable that the pozzolanic fine powder is added to the mixer, and then the shrinkage reducing agent is added and mixed. The addition method of the shrinkage reducing agent is preferable because it is easy to make it drop or spray uniformly. As the mixer to be used, for example, a mixer that is usually used for powder mixing, such as a container rotation type mixer, a mechanical stirring type mixer, and an airflow stirring type mixer, can be suitably used. In addition, it is preferable to add water to the pozzolana fine powder in advance and mix it before adding the shrinkage reducing agent because the amount of shrinkage reducing agent added can be suppressed. The degree of mixing only needs to allow the shrinkage reducing agent to be adsorbed to the pozzolanic fine powder almost uniformly, and the mixing time is appropriately determined depending on the type and amount of the mixer, but is preferably within 10 minutes, more preferably 5 Within minutes. Excessive mixing is not preferable because apparent particles become excessively large due to granulation and cause a dispersion failure.
上記表面処理後のポゾラン微粉末のBET比表面積が、表面処理前のBET比表面積よりも小さいと、セメント組成物とする場合に練り混ぜし易く且つ高強度を得やすいので好ましい。練り混ぜし易く且つ高強度を得やすいことから、ポゾラン微粉末の表面処理前のBET比表面積に対する表面処理後のBET比表面積の割合は、より好ましくは80%〜10%、更に好ましくは50%〜15%とする。 When the BET specific surface area of the pozzolanic fine powder after the surface treatment is smaller than the BET specific surface area before the surface treatment, it is preferable because kneading is easy and high strength is easily obtained in the case of a cement composition. The ratio of the BET specific surface area after the surface treatment to the BET specific surface area before the surface treatment of the pozzolanic fine powder is more preferably 80% to 10%, and even more preferably 50% because it is easy to knead and easily obtain high strength. ~ 15%.
本発明のセメント混和材には、収縮低減剤により表面処理されたポゾラン微粉末以外に、他の混和材料の一種又は二種以上を本発明の効果を実質損なわない範囲で併用することができる。このような混和材料としては、例えば減水剤,AE減水剤,高性能減水剤,高性能AE減水剤,流動化剤等のセメント分散剤、増粘剤、膨張材、セメント用ポリマー、防水材、防錆剤、凍結防止剤、保水剤、顔料、繊維、撥水剤、白華防止剤、急結剤(材)、急硬剤(材)、凝結遅延剤、発泡剤、消泡剤、高炉スラグ微粉末、石粉、撥水剤、表面硬化剤等が挙げられる。 In the cement admixture of the present invention, in addition to the pozzolanic fine powder surface-treated with the shrinkage reducing agent, one or two or more other admixtures can be used in combination as long as the effects of the present invention are not substantially impaired. Such admixtures include, for example, water reducing agents, AE water reducing agents, high performance water reducing agents, high performance AE water reducing agents, cement dispersants such as fluidizing agents, thickeners, expansion materials, cement polymers, waterproofing materials, Rust preventive agent, antifreezing agent, water retention agent, pigment, fiber, water repellent agent, white flower prevention agent, quick setting agent (material), quick hardening agent (material), setting retarder, foaming agent, antifoaming agent, blast furnace Slag fine powder, stone powder, water repellent, surface hardener and the like can be mentioned.
本発明のセメント混和材に、収縮低減剤により表面処理されたポゾラン微粉末以外の混和材料が含まれる場合、本発明のセメント混和剤を製造する方法は、特に限定されず、例えば、重力式コンクリートミキサ、ヘンシェル式ミキサ、ナウターミキサ、レーディゲミキサ、V型混合器、リボンミキサ等のミキサを使用し、所定量の本発明のセメント混和剤の各材料を混合することで好適に製造することができる。このとき用いるミキサは、連続式ミキサでもバッチ式ミキサでも良い。各材料のミキサ内への投入順序は特に限定されない。一種ずつ添加してもよく、一部又は全部を同時添加してもよい。また、袋やポリエチレン製容器等の容器に各材料を計り取り投入する方法により、本発明のセメント混和材を製造することもできる。 When the cement admixture of the present invention contains an admixture other than the pozzolanic fine powder surface-treated with the shrinkage reducing agent, the method for producing the cement admixture of the present invention is not particularly limited. For example, gravity concrete Using a mixer such as a mixer, a Henschel mixer, a Nauter mixer, a Laedige mixer, a V-type mixer, a ribbon mixer, etc., a predetermined amount of each material of the cement admixture of the present invention can be used for suitable production. The mixer used at this time may be a continuous mixer or a batch mixer. The order in which each material is charged into the mixer is not particularly limited. They may be added one by one, or some or all of them may be added simultaneously. Further, the cement admixture of the present invention can be produced by a method of measuring and introducing each material into a container such as a bag or a polyethylene container.
本発明のセメント混和材は、セメントに添加して用いる。更に必要により添加する混和材料及び骨材を添加することもできる。本発明のセメント混和剤は、セメント及び水、並びに必要により添加する混和材料及び骨材とともに混練し用いる。 The cement admixture of the present invention is used by adding to cement. If necessary, admixtures and aggregates can be added. The cement admixture of the present invention is used by kneading together with cement and water, and an admixture and an aggregate added as necessary.
本発明のセメント組成物は、上記のセメント混和材及びセメントを含有するセメント組成物である。本発明のセメント組成物における上記のセメント混和材の含有量は、セメントの質量100質量部に対し、セメント混和材中の上記表面処理後のポゾラン微粉末の含有量が1質量部〜30質量部となる量とする。1質量部未満では強度が不足する虞がある場合や高強度を得るために低水結合材比とすると練り混ぜ時の負荷が掛かりすぎてハンドミキサで練り混ぜられない虞がある。また、30質量部を超えると混練物(本発明のセメント組成物を混練したもの、以下同じ)の流動性が不足する場合又は硬化収縮が大きすぎる場合がある。より練り混ぜが容易で、高い強度及び流動性が得られることから、上記のセメント混和材の含有量は、セメントの質量100質量部に対し、セメント混和材中の上記表面処理後のポゾラン微粉末の含有量が3質量部〜10質量部となる量とする。 The cement composition of the present invention is a cement composition containing the above cement admixture and cement. The content of the cement admixture in the cement composition of the present invention is such that the content of the pozzolanic fine powder after the surface treatment in the cement admixture is 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the cement. The amount to be. If the amount is less than 1 part by mass, the strength may be insufficient, or if the ratio of the low water binder is high in order to obtain a high strength, there is a possibility that the load during kneading is excessive and the kneading with the hand mixer is not possible. Moreover, when it exceeds 30 mass parts, the fluidity | liquidity of kneaded material (what knead | mixed the cement composition of this invention, hereafter the same) may be insufficient, or hardening shrinkage may be too large. Since kneading is easier and high strength and fluidity are obtained, the content of the cement admixture is 100 parts by mass of cement, and the pozzolana fine powder after the surface treatment in the cement admixture It is set as the quantity from which content of becomes 3 mass parts-10 mass parts.
本発明において使用するセメントとしては、水硬性セメントであればよく、例えば普通、早強、超早強、低熱及び中庸熱の各種ポルトランドセメント、エコセメント、並びにこれらのポルトランドセメント又はエコセメントに、フライアッシュ、高炉スラグ、シリカフューム又は石灰石微粉末等を混合した各種混合セメント、太平洋セメント社製「ジェットセメント」(商品名)や住友大阪セメント社製「ジェットセメント」(商品名)等の超速硬セメント、アルミナセメント等が挙げられ、これらの一種又は二種以上を使用することができる。 The cement used in the present invention may be a hydraulic cement, for example, ordinary, early strength, very early strength, low heat and moderate heat portland cement, ecocement, and portland cement or ecocement. Ashes, blast furnace slag, various mixed cements mixed with silica fume or limestone fine powder, etc., ultra-high speed cement such as “Jet Cement” (trade name) manufactured by Taiheiyo Cement Co., Ltd. and “Jet Cement” (trade name) manufactured by Sumitomo Osaka Cement Co., Ltd. An alumina cement etc. are mentioned, These 1 type (s) or 2 or more types can be used.
本発明のセメント組成物に骨材が含有しない場合における、本発明のセメント組成物中のセメントの含有率は、70質量%〜99質量%とする。70質量%未満ではブリーディングが発生する虞があり、99質量%を超えるとセメント以外の構成材料が不足するので混練物の流動性が不足する虞がある。より好ましいセメントの含有率は、80質量%〜92質量%とする。また、本発明のセメント組成物に骨材が含有する場合における、本発明のセメント組成物中のセメントの含有率は、25質量%〜95質量%とする。25質量%未満ではブリーディングが発生する虞があり、95質量%を超えるとセメント以外の構成材料が不足するので混練物の流動性が不足する虞がある。より好ましいセメントの含有率は、40質量%〜70質量%とする。 When the aggregate is not contained in the cement composition of the present invention, the content of cement in the cement composition of the present invention is 70% by mass to 99% by mass. If it is less than 70% by mass, bleeding may occur, and if it exceeds 99% by mass, constituent materials other than cement will be insufficient, and the fluidity of the kneaded product may be insufficient. A more preferable cement content is 80 mass% to 92 mass%. Moreover, the content rate of the cement in the cement composition of this invention when an aggregate contains in the cement composition of this invention shall be 25 mass%-95 mass%. If it is less than 25% by mass, bleeding may occur. If it exceeds 95% by mass, constituent materials other than cement will be insufficient, and the fluidity of the kneaded product may be insufficient. A more preferable cement content is 40 mass% to 70 mass%.
本発明のセメント組成物には、セメント分散剤を含有する。このセメント分散剤は、上記セメント混和材に含まれるものであっても良い。本発明のセメント組成物は、セメント分散剤を含有しているので、その混練物は、圧縮強度が高く且つ練り混ぜし易い。本発明に使用するセメント分散剤としては、特に種類は限定されないが、ポリカルボン酸塩系、ナフタレンスルホン酸塩系、メラミンスルホン酸塩系及びリグニンスルホン酸塩系の高性能減水剤又は高性能AE減水剤の一種又は二種以上を使用することが、高い強度が得やすいことから好ましい。分散性、硬化特性に優れることから、ナフタレンスルホン酸塩系の高性能減水剤又は高性能AE減水剤を用いることがより好ましい。本発明のセメント組成物中のセメント分散剤の含有率は、0.1質量%〜3.0質量%とすることが好ましい。0.1質量%未満では含有することによる圧縮強度の増進が見込めない。また、3.0質量%を超えると凝結遅延又は材料分離が生じる虞がある。より好ましくは0.15質量%〜2.5質量%である。 The cement composition of the present invention contains a cement dispersant. This cement dispersant may be included in the cement admixture. Since the cement composition of the present invention contains a cement dispersant, the kneaded product has high compressive strength and is easy to knead. The cement dispersant used in the present invention is not particularly limited in kind, but is a polycarboxylate, naphthalene sulfonate, melamine sulfonate, and lignin sulfonate high-performance water reducing agent or high-performance AE. It is preferable to use one or more water reducing agents because high strength is easily obtained. From the viewpoint of excellent dispersibility and curing properties, it is more preferable to use a naphthalene sulfonate-based high-performance water reducing agent or a high-performance AE water reducing agent. The content of the cement dispersant in the cement composition of the present invention is preferably 0.1% by mass to 3.0% by mass. If it is less than 0.1% by mass, the increase in compressive strength due to inclusion cannot be expected. Moreover, when it exceeds 3.0 mass%, there exists a possibility that a setting delay or material separation may arise. More preferably, it is 0.15 mass%-2.5 mass%.
本発明のセメント組成物には、セメント、上記セメント混和材及びセメント分散剤以外に、他の混和材料及び骨材から選ばれる一種又は二種以上を本発明の効果を実質損なわない範囲で併用することができる。この混和材料としては、例えばセメント用ポリマー、増粘剤、膨張材、防水材、防錆剤、収縮低減剤、保水剤、顔料、繊維、撥水剤、白華防止剤、急結剤(材)、急硬剤(材)、凝結遅延剤、発泡剤、消泡剤、高炉スラグ微粉末、石粉、撥水剤、表面硬化剤等が挙げられる。また、骨材としては、例えば、川砂、陸砂、海砂、砕砂、珪砂、川砂利、陸砂利、砕石、軽量骨材及び人工骨材等が挙げられる。また、本発明で使用される混和材料は、粉末状でも水溶液状でも使用可能であるが、施工現場で複雑な計量操作等を必要とせずに、所定量の水を計量し混練するだけですぐに使用できるように、本発明のセメント組成物が配合成分の全てが予め混合され粉末状である所謂「プレミックス製品」であるほうが施工現場での作業性が良い為、使用する混和材料自体も全て粉末状であることが好ましい。 In the cement composition of the present invention, in addition to cement, the above-mentioned cement admixture and cement dispersant, one or more selected from other admixtures and aggregates are used in a range that does not substantially impair the effects of the present invention. be able to. Examples of this admixture include polymers for cement, thickeners, expansion materials, waterproofing materials, rust preventives, shrinkage reducing agents, water retention agents, pigments, fibers, water repellents, whitening prevention agents, and quick setting agents (materials). ), Rapid hardening agent (material), setting retarder, foaming agent, antifoaming agent, fine powder of blast furnace slag, stone powder, water repellent, surface hardener and the like. Examples of the aggregate include river sand, land sand, sea sand, crushed sand, quartz sand, river gravel, land gravel, crushed stone, lightweight aggregate, and artificial aggregate. In addition, the admixture used in the present invention can be used in the form of powder or aqueous solution, but it does not require a complicated measuring operation etc. at the construction site, and it is just necessary to measure and knead a predetermined amount of water. Since the cement composition of the present invention is a so-called “premix product” in which all of the components are premixed and in powder form, the workability at the construction site is better. It is preferable that all are powdery.
本発明のセメント組成物には増粘剤を含有することが好ましい。増粘剤を用いると材料分離、特にブリーディングの発生を抑制し易い。本発明で使用する増粘剤としては、例えばヒドロキシメチルセルロースやヒドロキシプロピルセルロース等の水溶性セルロース;アルギン酸、β−1,3グルカン、プルラン、ウェランガム等の多糖類;アクリル樹脂やポリビニルアルコール等のポリビニル化合物等が挙げられ、これらの一種又は二種以上の使用が可能であるが、凝結遅延の影響があまりない程度の少量で、材料分離することなく高い流動性が得やすいことから、水溶性セルロースが好ましい。本発明のセメント組成物中の増粘剤の含有率は、0.0005質量%〜0.01質量%が好ましい。増粘剤の含有率が小さいと、増粘剤を含有させる効果が低く、増粘剤の含有率が多くなると粘性が増加して流動性の低下を招く虞があることから、増粘剤のより好ましい含有率は、0.001重量%〜0.005重量%である。 The cement composition of the present invention preferably contains a thickener. When a thickener is used, it is easy to suppress material separation, especially bleeding. Examples of the thickener used in the present invention include water-soluble cellulose such as hydroxymethyl cellulose and hydroxypropyl cellulose; polysaccharides such as alginic acid, β-1,3 glucan, pullulan and welan gum; polyvinyl compounds such as acrylic resin and polyvinyl alcohol. It is possible to use one or more of these, but it is easy to obtain high fluidity without material separation in a small amount that does not have much influence of setting delay. preferable. As for the content rate of the thickener in the cement composition of this invention, 0.0005 mass%-0.01 mass% are preferable. If the content of the thickener is small, the effect of containing the thickener is low, and if the content of the thickener is increased, the viscosity may increase and the fluidity may be lowered. A more preferable content is 0.001 wt% to 0.005 wt%.
本発明のセメント組成物には、ブリーディングの発生を抑制するために膨張材を含有することが好ましい。また、乾燥時の収縮を抑制するためにも膨張材を用いることが好ましい。本発明に用いられる膨張材としては、モルタルやコンクリートで用いられる膨張材であれば特に限定されず、例えば遊離生石灰を膨張成分とするものや、カルシウムサルホアルミネート等のエトリンガイト形成物質を膨張成分とする市販品を使用することができる。本発明のセメント組成物中の膨張材の含有率は0.1重量%〜30重量%とすることが好ましい。膨張材の含有量が少ないとその効果が不充分である場合があり、また、多すぎると充分に拘束されたまま養生されないと目的の強度が得られなくなる場合がある。 The cement composition of the present invention preferably contains an expansion material in order to suppress the occurrence of bleeding. In order to suppress shrinkage during drying, it is preferable to use an expansion material. The expansion material used in the present invention is not particularly limited as long as it is an expansion material used in mortar or concrete, for example, those containing free quick lime as an expansion component, and ettringite-forming substances such as calcium sulfoaluminate as the expansion component. Commercial products can be used. The content of the expansion material in the cement composition of the present invention is preferably 0.1% by weight to 30% by weight. If the content of the expandable material is small, the effect may be insufficient. If the content is too large, the desired strength may not be obtained unless the material is cured sufficiently.
本発明のセメント組成物は、水を混練に用いる。混練する方法は特に限定されず、例えば水に本発明のセメント組成物を全量加え混練する方法、水に本発明のセメント組成物を混練しながら加えさらに混練する方法、本発明のセメント組成物に水を混練しながら加えさらに混練する方法、水及び本発明のセメント組成物のそれぞれ一部ずつを2つ以上に分けて混練し、混練したものを合わせてさらに混練する方法等がある。また、混練に用いる器具や混練装置も特に限定されないが、ミキサを用いることが量を多く混練できるので好ましい。用いることのできるミキサとしては連続式ミキサでもバッチ式ミキサでも良く、例えばパン型コンクリートミキサ、パグミル型コンクリートミキサ、重力式コンクリートミキサ、グラウトミキサ、オムニミキサ、ハンドミキサ、左官ミキサ等が挙げられる。 The cement composition of the present invention uses water for kneading. The method of kneading is not particularly limited, for example, a method of adding the entire cement composition of the present invention to water and kneading, a method of adding the cement composition of the present invention to water while kneading, and a method of kneading the cement composition of the present invention. There are a method of adding water while kneading and further kneading, a method of kneading water and a part of the cement composition of the present invention separately into two or more, and kneading the kneaded materials together. Moreover, although the apparatus and kneading apparatus used for kneading are not particularly limited, it is preferable to use a mixer because a large amount can be kneaded. The mixer that can be used may be a continuous mixer or a batch mixer, and examples thereof include a pan-type concrete mixer, a pug mill-type concrete mixer, a gravity-type concrete mixer, a grout mixer, an omni mixer, a hand mixer, and a plaster mixer.
使用する水は、特に限定されるものではない。混和材料に含まれる水を用いてもよい。用いる水の量は、本発明のセメント組成物に含まれる結合材、即ちセメント、ポゾラン、潜在水硬性物質の粉末及び膨張材の質量の合計100質量部に対し、20質量部〜40質量部が好ましく、23質量部〜35質量部が更に好ましく、23質量部〜28質量部が最も好ましい。20重量部未満では流動性が得られにくく、40重量部を超えると強度が不足する虞がある。 The water to be used is not particularly limited. You may use the water contained in an admixture. The amount of water used is 20 to 40 parts by mass with respect to a total of 100 parts by mass of the binder, that is, cement, pozzolana, latent hydraulic substance powder, and expansion material contained in the cement composition of the present invention. Preferably, 23 parts by mass to 35 parts by mass are more preferable, and 23 parts by mass to 28 parts by mass are most preferable. If it is less than 20 parts by weight, it is difficult to obtain fluidity, and if it exceeds 40 parts by weight, the strength may be insufficient.
[実施例1]
表1に示す原料のポゾラン微粉末に水及び収縮低減剤を噴霧により添加し、ヘンシェル式ミキサにより5分間混合することにより表面処理し、収縮低減剤により表面処理されたポゾラン微粉末(以下、「改質ポゾラン微粉末」ということがある。)を作製した。原料に用いたポゾラン微粉末は、ハロゲン化ケイ素化合物の火炎加水分解により生成されたポゾラン微粉末であって、窒素を用いたBET比表面積が20〜100m2/gのいわゆるシリカフュームを用いた。原料のポゾラン微粉末及び改質ポゾラン微粉末のBET比表面積、水及び収縮低減剤の添加量(原料のポゾラン微粉末100質量部に対する質量部)、用いた収縮低減剤を表1に示した。表1中の収縮低減剤の種類の略記号は、以下の通りである。また、表1中の「BET比率」は、ポゾラン微粉末の表面処理前のBET比表面積に対する表面処理後のBET比表面積の割合を示した。
<収縮低減剤の種類の略記号>
S1 :n−ブタノールのエチレンオキサイド2モル/プロピレンオキサイド2モルブロック付加物
S2 :ラウリルアルコールのエチレンオキサイド7モル付加物
[Example 1]
Water and a shrinkage reducing agent were added to the raw material pozzolanic powder shown in Table 1 by spraying and mixed with a Henschel mixer for 5 minutes for surface treatment. The pozzolanic fine powder surface treated with the shrinkage reducing agent (hereinafter referred to as “ It was sometimes referred to as “modified pozzolanic fine powder”). The pozzolanic fine powder used as the raw material was a pozzolanic fine powder produced by flame hydrolysis of a silicon halide compound, and so-called silica fume having a BET specific surface area of 20 to 100 m 2 / g using nitrogen was used. Table 1 shows the BET specific surface area of the raw pozzolanic fine powder and the modified pozzolanic fine powder, the addition amount of water and a shrinkage reducing agent (parts by mass relative to 100 parts by mass of the raw pozzolanic fine powder), and the shrinkage reducing agent used. Abbreviations for the types of shrinkage reducing agents in Table 1 are as follows. “BET ratio” in Table 1 represents the ratio of the BET specific surface area after the surface treatment to the BET specific surface area before the surface treatment of the pozzolanic fine powder.
<Abbreviations for types of shrinkage reducing agents>
S1: ethylene oxide 2 mol of n-butanol / propylene oxide 2 mol block adduct S2: ethylene oxide 7 mol adduct of lauryl alcohol
[実施例2]
普通ポルトランドセメント(市販品)と実施例1で作製した改質ポゾラン微粉末とからなる結合材100質量部に対して1質量部となる量の粉末状ナフタレンスルホン酸塩系高性能減水剤(市販品)、普通ポルトランドセメント及び改質ポゾラン微粉末をレーディゲミキサに投入後1分間混合することにより、セメント組成物を作製した。作製したセメント組成物に水結合材比(水/結合材)が25質量%となる量の水を加え、金属容器内でハンドミキサ(1000r.p.m.,羽根直径100mm)により180秒間混練することによりグラウト材(セメントペースト)を作製した。作製したグラウト材の品質試験として、以下に示す通り、混練性を評価し、フロー値、凝結時間、圧縮強度及び長さ変化率を測定した。用いた改質ポゾラン微粉末の種類、結合材中の改質ポゾラン微粉末の含有率、品質試験の結果を表2に示す。表2中の改質ポゾラン微粉末の含有率は、結合材全体の質量に対する改質ポゾラン微粉末の含有率を意味し、単位は質量%である。尚、圧縮強度試験以外の品質試験およびグラウト材の作製は、何れも20±3℃、湿度80%以上の恒温室内で行った。
<品質試験方法>
・混練性
上記ハンドミキサにより練り混ぜできたものを「良」、練り混ぜできなかったものを「不可」とした。
・フロー値<BR>
JIS R 5201「セメントの物理試験方法」11.フロー試験に準じて、落下運動行わずに、フロー値を測定した。
・凝結時間
JIS A 6204−2000 「コンクリート用化学混和材」附属書1(規定)コンクリートの凝結時間試験方法により、終結時間を測定した。
・圧縮強度試験
土木学会基準JSCE−G 505−1999「円柱供試体を用いたモルタルまたはセメントペーストの圧縮強度試験方法」に準じ、材齢28日の圧縮強度を測定した。このとき供試体は、材齢1日で脱型し、その後20℃の水中で試験直前まで養生した。
・長さ変化率
JIS A 6202「コンクリート用膨張材」附属書1(規定)膨張材のモルタルによる膨張性試験」に準じ材齢28日の長さ変化率を測定した。養生は20℃封緘養生とした。
[Example 2]
Powdered naphthalene sulfonate-based high-performance water reducing agent (commercially available) in an amount of 1 part by mass with respect to 100 parts by mass of the binder composed of ordinary Portland cement (commercially available product) and the modified pozzolanic fine powder produced in Example 1 Product), ordinary Portland cement and modified pozzolanic fine powder were added to a Roedige mixer and mixed for 1 minute to prepare a cement composition. To the prepared cement composition, water was added in an amount such that the water binder ratio (water / binder) was 25% by mass, and kneaded for 180 seconds in a metal container with a hand mixer (1000 rpm, blade diameter 100 mm). By doing so, a grout material (cement paste) was produced. As a quality test of the produced grout material, the kneadability was evaluated as shown below, and the flow value, setting time, compressive strength, and length change rate were measured. Table 2 shows the types of the modified pozzolanic fine powder used, the content of the modified pozzolanic fine powder in the binder, and the results of the quality test. The content of the modified pozzolanic fine powder in Table 2 means the content of the modified pozzolanic fine powder with respect to the total mass of the binder, and the unit is mass%. The quality test other than the compressive strength test and the production of the grout material were both performed in a temperature-controlled room at 20 ± 3 ° C. and a humidity of 80% or more.
<Quality test method>
-Kneading ability The thing which kneaded with the said hand mixer was set as "good", and the thing which could not be kneaded was set as "impossible".
・ Flow value <BR>
10. JIS R 5201 “Physical test method for cement” According to the flow test, the flow value was measured without performing the drop motion.
-Setting time JIS A 6204-2000 "Chemical admixture for concrete" Annex 1 (normative) Setting time was measured by the setting time test method for concrete.
-Compressive strength test The compressive strength of 28 days of age was measured according to JSCE-G 505-1999 "Method of testing compressive strength of mortar or cement paste using a cylindrical specimen". At this time, the specimen was demolded at the age of 1 day, and then cured in water at 20 ° C. until just before the test.
-Length change rate The length change rate of material age 28 days was measured according to JIS A 6202 "Expandable material for concrete" Annex 1 (normative) expansion test using mortar of expanded material. The curing was 20 ° C sealed curing.
本発明の実施例に相当するセメント混和材(配合No.1〜No.4)を用いたセメント組成物は、水結合材比が小さくても練り混ぜ易くハンドミキサによる混練でも良好に混練できた。また、その混練物は、上記フロー値が300mm以上と流動性に優れ、材齢28日における圧縮強度が130N/mm2以上と高強度が得られ、長さ変化率も−4.5×10−4以上と収縮が小さく、高強度グラウト材として相応しい性能を備えていた。それに比べ、比較例に当たる表面処理を行っていないポゾラン微粉末を用いた配合No.6のセメント混和材を用いたセメント組成物は、ハンドミキサでは混練できなかった。また、水のみで表面処理を行ったポゾラン微粉末を用いた配合No.5のセメント混和材を用いたセメント組成物は、ハンドミキサで混練することはできたが、長さ変化率が−18.2×10−4以上と収縮が大きく、本発明の実施例に相当するセメント混和材を用いたものに比べて圧縮強度も低かった。 The cement composition using the cement admixture (formulation No. 1 to No. 4) corresponding to the example of the present invention was easily kneaded even if the water binder ratio was small, and could be kneaded well even by kneading with a hand mixer. . Further, the kneaded product has excellent flowability with a flow value of 300 mm or more, a high strength with a compressive strength of 130 N / mm 2 or more at a material age of 28 days, and a rate of change in length of −4.5 × 10. The shrinkage was as small as −4 or more, and it had suitable performance as a high-strength grout material. Compared to that, the formulation No. using a pozzolana fine powder not subjected to the surface treatment equivalent to the comparative example. The cement composition using the cement admixture of No. 6 could not be kneaded with a hand mixer. In addition, blending No. using a pozzolanic fine powder surface-treated only with water. The cement composition using the cement admixture of No. 5 could be kneaded with a hand mixer, but the length change rate was −18.2 × 10 −4 or more and the shrinkage was large, which corresponds to the embodiment of the present invention. The compressive strength was lower than that using cement admixture.
[実施例3]
配合No.5と同一配合のセメント組成物に、ポゾラン微粉末100質量部に対し30質量部となる量の上記S1の収縮低減剤を添加し、配合No.7のセメント組成物を作製した。また、No.6と同一配合のセメント組成物に、ポゾラン微粉末100質量部に対し30質量部となる量の上記S1の収縮低減剤を添加し、配合No.8のセメント組成物を作製した。作製したセメント組成物に水結合材比(水/結合材)が25質量%となる量の水を加え、金属容器内でハンドミキサ(1000r.p.m.,羽根直径100mm)により180秒間混練することによりグラウト材(セメントペースト)を作製した。作製したグラウト材の品質試験として、実施例2と同様に品質試験を行い、混練性を評価し、フロー値、凝結時間、圧縮強度及び長さ変化率を測定した。用いた改質ポゾラン微粉末の種類、結合材中の改質ポゾラン微粉末の含有率、品質試験の結果を表3に示す。
[Example 3]
Compound No. 5 was added to the cement composition having the same composition as that of No. 5 in an amount of 30 parts by mass with respect to 100 parts by mass of the pozzolanic fine powder. 7 cement composition was prepared. No. 6 was added to the cement composition having the same composition as No. 6 in an amount of 30 parts by mass with respect to 100 parts by mass of the pozzolanic fine powder. 8 cement compositions were prepared. To the prepared cement composition, water was added in an amount such that the water binder ratio (water / binder) was 25% by mass, and kneaded for 180 seconds in a metal container with a hand mixer (1000 rpm, blade diameter 100 mm). By doing so, a grout material (cement paste) was produced. As a quality test of the produced grout material, a quality test was performed in the same manner as in Example 2, the kneadability was evaluated, and the flow value, setting time, compressive strength, and length change rate were measured. Table 3 shows the types of the modified pozzolanic fine powder used, the content of the modified pozzolanic fine powder in the binder, and the results of the quality test.
配合No.7のセメント混和材は、実施例1の配合No.1〜No.3のセメント混和材と同じ収縮低減剤が同量含まれているにも拘らず、含まれるポゾラン微粉末が収縮低減剤による表面処理が行われていないので、長さ変化率は収縮低減剤無添加の配合No.5のセメント混和材を用いたものに比べて著しく改善されセメント硬化時の収縮が抑制されているが、圧縮強度が本発明の実施例のものに比べて劣り、凝結時間に遅延が見られた。また、配合No.8のセメント混和材は、実施例1の配合No.1〜No.3のセメント混和材と同じ収縮低減剤が同量含まれているにも拘らず、ハンドミキサでは混練できなかった。 Compound No. The cement admixture of No. 7 is blended No. 1 of Example 1. 1-No. Despite containing the same amount of shrinkage reducing agent as the cement admixture of No. 3, the contained pozzolanic fine powder has not been surface-treated with the shrinkage reducing agent, so the rate of change in length is no shrinkage reducing agent. Addition No. 5 was significantly improved compared to that using the cement admixture of 5, and the shrinkage at the time of cement hardening was suppressed, but the compression strength was inferior to that of the example of the present invention, and the setting time was delayed. . In addition, blending No. The cement admixture of No. 8 is blended No. 8 of Example 1. 1-No. Despite containing the same amount of shrinkage reducing agent as the cement admixture of No. 3, it could not be kneaded with a hand mixer.
本発明のセメント混和材は、PCグラウト,プレパックドコンクリート用グラウト,トンネル裏込め用のグラウト,プレキャスト用グラウト,構造物の補修・補強用グラウト,橋梁の支承下グラウト,軌道下グラウト,耐震鉄骨ブレース周辺枠グラウト,増設壁逆打ちグラウト,鋼板巻き立て工法用グラウト,及び原子力発電所格納容器下グラウトなどの各種土木および建築用のグラウト用のセメント混和材として広範に利用できる。特に、高強度グラウト材用のセメント混和材として好適である。また、本発明のセメント組成物も同様に、各種土木および建築用のグラウト材に利用できる。特に、高強度グラウト材用のセメント組成物として好適である。 The cement admixture of the present invention is composed of PC grout, prepacked concrete grout, tunnel backfill grout, precast grout, structural repair / reinforcement grout, bridge support grout, under-track grout, seismic steel brace It can be widely used as a cement admixture for various civil engineering and construction grouts such as peripheral frame grouts, extension wall back-out grouts, steel sheet grouting grouts, and nuclear power plant containment grouts. In particular, it is suitable as a cement admixture for high-strength grout materials. Similarly, the cement composition of the present invention can be used for various civil engineering and architectural grout materials. In particular, it is suitable as a cement composition for high-strength grout materials.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008335369A JP5227161B2 (en) | 2008-12-27 | 2008-12-27 | Cement admixture and cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008335369A JP5227161B2 (en) | 2008-12-27 | 2008-12-27 | Cement admixture and cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010155758A true JP2010155758A (en) | 2010-07-15 |
JP5227161B2 JP5227161B2 (en) | 2013-07-03 |
Family
ID=42573969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008335369A Expired - Fee Related JP5227161B2 (en) | 2008-12-27 | 2008-12-27 | Cement admixture and cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5227161B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010155642A (en) * | 2008-12-27 | 2010-07-15 | Taiheiyo Materials Corp | Cement composition and prolonged storage method thereof |
JP2013136484A (en) * | 2011-12-28 | 2013-07-11 | Taiheiyo Materials Corp | Pozzolanic reactive admixture |
JP2016206134A (en) * | 2015-04-28 | 2016-12-08 | 太平洋セメント株式会社 | Determination method of cement composition and processing method of cement composition |
US20210284575A1 (en) * | 2018-07-26 | 2021-09-16 | Vicat | Novel cement composition for 3d printing and method of use |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02164754A (en) * | 1988-12-16 | 1990-06-25 | Nippon Cement Co Ltd | Cement additive for reducing shrinkage |
JP2004284909A (en) * | 2003-03-25 | 2004-10-14 | Taiheiyo Cement Corp | Grout |
-
2008
- 2008-12-27 JP JP2008335369A patent/JP5227161B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02164754A (en) * | 1988-12-16 | 1990-06-25 | Nippon Cement Co Ltd | Cement additive for reducing shrinkage |
JP2004284909A (en) * | 2003-03-25 | 2004-10-14 | Taiheiyo Cement Corp | Grout |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010155642A (en) * | 2008-12-27 | 2010-07-15 | Taiheiyo Materials Corp | Cement composition and prolonged storage method thereof |
JP2013136484A (en) * | 2011-12-28 | 2013-07-11 | Taiheiyo Materials Corp | Pozzolanic reactive admixture |
JP2016206134A (en) * | 2015-04-28 | 2016-12-08 | 太平洋セメント株式会社 | Determination method of cement composition and processing method of cement composition |
US20210284575A1 (en) * | 2018-07-26 | 2021-09-16 | Vicat | Novel cement composition for 3d printing and method of use |
Also Published As
Publication number | Publication date |
---|---|
JP5227161B2 (en) | 2013-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5165873B2 (en) | Reinforcement joint filling method using filler for reinforcing steel joints | |
JP2018193280A (en) | Quick-hardening ultrahigh-strength grout composition | |
JP4538438B2 (en) | Grout composition and grout material using the same | |
JP5227161B2 (en) | Cement admixture and cement composition | |
JP2011136863A (en) | Superhigh strength grout composition | |
JP4976803B2 (en) | Grout composition and grout material using the same | |
JP2011241095A (en) | Premix mortar composition, and premix shrinkage-compensating mortar composition | |
JP6985177B2 (en) | Hydraulic composition and concrete | |
JP6654932B2 (en) | High strength grout composition and high strength grout material | |
JP2017031037A (en) | Anti-washout underwater concrete composition and cured body thereof | |
JP2022111343A (en) | grout | |
JP3806420B2 (en) | Low strength mortar filler using shirasu | |
JP6959151B2 (en) | Mortar composition and mortar | |
JP7081939B2 (en) | concrete | |
JP2010155757A (en) | Admixture for grout and grout composition | |
JP2017165625A (en) | Grout composition | |
JP6959000B2 (en) | Cement composition | |
JP6300365B2 (en) | Underwater inseparable fast-hardening concrete and method for producing the same | |
JP7403342B2 (en) | Cement composition and its manufacturing method, and mortar | |
JP7510379B2 (en) | Wet shotcrete | |
JP7355690B2 (en) | Mortar or concrete compositions containing urea | |
JP5605282B2 (en) | Surface-modified anhydrous gypsum, cement composition using the anhydrous gypsum, and method for producing the cement composition | |
JP5383045B2 (en) | Cement composition for grout and grout material using the same | |
JP2012240874A (en) | Cement composition | |
JP2005162576A (en) | Grout material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121011 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130306 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5227161 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160322 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |