JP4231760B2 - 光学ガラス素子の成形装置 - Google Patents

光学ガラス素子の成形装置 Download PDF

Info

Publication number
JP4231760B2
JP4231760B2 JP2003329708A JP2003329708A JP4231760B2 JP 4231760 B2 JP4231760 B2 JP 4231760B2 JP 2003329708 A JP2003329708 A JP 2003329708A JP 2003329708 A JP2003329708 A JP 2003329708A JP 4231760 B2 JP4231760 B2 JP 4231760B2
Authority
JP
Japan
Prior art keywords
optical glass
mold
temperature
molding
glass material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003329708A
Other languages
English (en)
Other versions
JP2004137146A (ja
Inventor
博之 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003329708A priority Critical patent/JP4231760B2/ja
Publication of JP2004137146A publication Critical patent/JP2004137146A/ja
Application granted granted Critical
Publication of JP4231760B2 publication Critical patent/JP4231760B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/44Flat, parallel-faced disc or plate products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/47Bi-concave
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/76Pressing whereby some glass overflows unrestrained beyond the press mould in a direction perpendicular to the press axis

Description

本発明は、光学ガラス素子の成形装置に関する。
最近、レンズ系の設計自由度の拡大や今まででは不可能な小型化あるいは大口径化、さらには光学性能向上の要求が高まり、これを可能にする非球面レンズのニーズが増大している。この非球面レンズ形状を有する光学素子の成形方法としては、非球面形状を有する成形型の間に光学ガラス素材を配置した状態で押圧することにより成形して所望形状の光学素子とする方法が多数開発されている。
例えば、略円筒形状の部材であるスリーブ(以下、単に「スリーブ」という)内に摺動可能に挿入された一対の略円柱形状の成形型の間に光学ガラス素材を挟んだ状態で、スリーブの外周部からランプヒーターにより加熱を行い、成形型を相対的に接近させて押圧し成形を行うことがなされている。この方法においては、ランプヒーターが成形型や光学ガラス素材を均等に加熱するよう設計されている。このような均等に加熱する方法として、特開平7−277750号公報等においては、成形型の内部に中空の凹部を設けて成形面の乱れを相殺するように温度制御を行っている。このように成形型あるいは加熱手段の構成上、温度分布を均等にするための様々な手段を講じるのは、成形されるガラス内部の温度分布を均等に維持するのが最適であるという概念に基づくものである。
ところが、このような方法では、光学ガラス素材が厚い場合や非球面の場合に、均等な温度分布の制御が難しく、対応ができないものとなっている。このため、光学ガラス素材の厚みに応じて温度制御する方法が従来より開発されている。
この従来の方法の一つとして、光学ガラス素材を単体で加熱する工程を備えた方法において、その単体加熱時に、所望の光学ガラス素子形状の厚みに応じて温度分布を付与することが行われている(特許文献1参照。)
また、別の方法として、成形後の冷却工程において、光学面部中心の温度を非光学面部の温度よりも高く保ちながら冷却することが行われている(特許文献2参照。)。
特開平5−24858号公報 特開平2−55235号公報
しかしながら、特開平5−24858号公報のように、押圧成形前の光学ガラス素材の単体状態での加熱工程で温度分布を付与して成形を行っても、実際には光学ガラス素材と成形型の成形面が接触した後の極めて短時間のうちに光学ガラス素材と成形型との間で熱交換が発生するため、付与した温度分布が消滅する問題がある。このことは、最近進歩した温度分布計算のシミュレーション技術を用いて実際に温度分布の計算を行った結果、明らかになっている。
特開平2−55235号公報では、冷却中の金型に温度分布を付与するために、熱源に接する金型の一部にくり抜きを設けている。しかしながら、この発明では、加熱中、冷却中を問わず積極的に温度分布を付与するものではなく、温度分布制御を確実且つ正確に行うことができないものとなっている。
本発明は、成形される光学ガラス素材内部の加熱中や冷却中の温度分布を積極的に制御することにより、以上の従来の問題点を解決することを目的とする。より具体的には、従来より注目されている冷却時の光学ガラス素子の温度制御だけでなく、加熱から冷却に至る過渡的な温度分布を制御することにより従来の問題点を解決するものであり、そのための成形装置を提供するものである。
上記目的を達成するため、請求項1の発明の光学ガラス素子の成形装置は、相対する一対の上型と下型とからなる成形型の間に光学ガラス素材を配置し、前記成形型を加熱するとともに前記光学ガラス素材を流動可能な状態まで加熱し、前記成形型を相対的に接近させることにより押圧成形を行い、冷却後に前記成形型と前記光学ガラス素材とを離反させて、光学ガラス素子を取り出す光学ガラスの成形装置において、前記成形型に対する温度分布を付与する温度分布付与手段と、前記成形型が内部に配置され、前記上型と下型とに対応した断熱境界を有する略円筒形状の部材であるスリーブと、前記スリーブの外側から前記成形型を加熱する前記上型と下型とに対応する2つ以上の光エネルギー加熱手段と、を有することを特徴とする。
請求項2の発明は、請求項1記載の光学ガラス素子の成形装置であって、前記温度分布付与手段は、前記上型と下型の少なくとも一方の内部に形成した空間に、前記成形型の材料とは異なる熱伝導率を有した材料からなる温度調整部材を配置したものであることを特徴とする。
請求項3の発明は、請求項2記載の光学ガラス素子の成形装置であって、前記温度調整部材は、前記成形型と該成形型が固定される軸部材とに接触していることを特徴とする。
本発明によれば、従来では不可能であった様々な温度分布による成形条件を実施することが可能となり、これにより、従来ではなし得なかった形状的難易度の高い光学ガラス素子を成形することができる。また、成形面精度または成形の安定性を大幅に高めて光学ガラス素子を製造することができ、しかも光学ガラス素子に発生する形状変化(例えば「反り」)のコントロールや、離型のし易い形状への収縮量のコントロールが可能であり、さらには、従来の均温加熱成形のように成形圧力の微妙なコントロールやその保持等の精度向上手段を講ずることが必ずしも必要ではないため、成形サイクルタイムを短縮することが可能となる。
図1〜図5を用いて、本発明を原理的に説明する。図1は光軸に対して回転対称な形状で、光軸方向の中心部厚さが1mmに対して成形型に接触している最外周部の厚さが4mm、直径が15mmの両凹レンズを成形するための成形型を示し、上側の上型51と、下側の下型52とが対向している。上型51の成形面51aは非球面形状、下型52の成形面52aは球面形状となっている。なお、成形される光学ガラス素子の形状としては、図1で示す回転対称形状以外であっても良く、例えば、プリズムやバイナリ光学素子であったり、トーリック面を形成する非回転対称なガラス素子形状、その他の形状であっても良い。
上型51と下型52の間に光学ガラス素材55を挟み、それらの加熱を開始する。ここでは、押圧開始まで上型51及び下型52と光学ガラス素材55とを接触させた状態で加熱するが、加熱が終了した後、上型51を光学ガラス素材55に接触させても良い。また成形される光学ガラス素材55の形状を両平面の円柱形状としているが、光学ガラス素材55と成形完了時の形状が少しでも異なるのであれば、光学ガラス素材55の形状や種類が限定されるものではない。
光学ガラス素材55のガラス転移点は例えば、510℃で、そのときの粘度は、1012.75poiseであり、軟化点は例えば、595℃で、そのときの粘度は、107.65poiseであり、この区間の温度−粘度曲線はほぼ直線的に変化する。この光学ガラス素材55と上型51及び下型52を加熱して、光学ガラス素材55の温度が550℃以上、上型51の成形面の光軸中心(面頂)部が555℃に達した時点で押圧を開始する。このとき、光学ガラス素材55と接触することが予定される上型51及び下型52における成形面51a、52aの最外周部の温度は548℃に設定してある。
押圧を行うための加圧力Fは、例えば、2000N/cmとする。加圧と同時に、加熱された光学ガラス素材55は変形を始め、上型51と下型52に沿って上型51及び下型52の成形面51a、52aと、これに接触した光学ガラス素材55との間で熱交換が行われ、主に熱容量の遙かに大きい上型51と下型52の温度にガラス素材55の温度が同化しながら光学ガラス素材55は周辺方向に延ばされて広がっていく。
図1は、押圧を開始した直後の状態であり、上型51の成形面51aの中心部に存在する光学ガラス素材55は外周側への流動がほとんど発生しないため、上型51の接線と垂直な方向に加圧力Fを受け、反力F’が発生するが、粘度が下がった状態であるため、F>F’となり、光学ガラス素材55が変形を始める。
次に、光学ガラス素材55が押圧により押し広げられて、成形面の接線と光軸に垂直な平面とのなす角度θが20°となったとき(このときの上型51−光学ガラス素材55の接触部分をポイントAとする)における従来から行われている均等な温度で成形を行う場合を図2により説明する。
図2では、中心位置から離れるに従って、分解された反力は小さくなりポイントAでの反力F’’’は、中心部分の反力F’’に比較して非常に小さくなる。これは、光学ガラス素材55の中心部分に比べて、外周部分では解放されている外周部(光学ガラス素材55の非成形型接触部分)があるために流動の自由度が高いことによる。また、解放されている面積は、成形型を相対的に接近させる方向と平行な方向の長さが中心部よりも長い場合に大きくなり、成形面に作用する圧力が低下する。同様に、外周部の光軸と垂直な平面に対してなす角度θが増えるほど光学ガラス素材55からの反力が低下する。さらに、その角度θが所定角度を超えると、光学ガラス素材55が成形面から離れてしまうことがある。
この結果、従来においては、外周部に近づくと、所望の成形面精度を確保する圧力を得ることができない。図3は、この従来と比較して温度分布を付与した成形型を用いて押圧する本発明の方法を示している。
図3に示す上型51のポイントAでは、上型51の光軸中心位置よりも相対的に3℃低い温度分布が上型51に付与されている。この場合、ポイントAでは成形型の成形面と接触した光学ガラス素材55との熱交換により、中心位置よりも温度が下がり粘度が高くなっているため、流動の自由度が低下する。このため、ポイントAにおける反力F’’’を大きくすることが可能となる。すなわち、成形面に対する押圧力を増して転写精度を向上させることが可能となる。特に、成形面の接線が光軸と垂直な平面に対してなす角度が15°以上の場合に、図2に比べて顕著な効果が発生する。
本発明では、ガラスの粘度を下げるために、加熱して押圧中の成形面の温度、すなわち成形型の温度分布を動的に変化させるものであり、これにより、中心部及び外周部において光学ガラス素材55及び成形面に作用する圧力を制御することが可能となる。ここで、中心部と周辺部の理想的な温度差は、押圧するガラスの粘弾性及び押圧速度、光学ガラス素材55の体積及び成形面の形状により大きく変化するため、特に規定はしないが、少なくとも温度測定誤差よりも大きい、2℃以上の温度差を付与することが望ましい。
例えば、成形される形状が中心部付近の厚みに対して外周部の厚みが小さい凸レンズの場合は、上型51と下型52の相対距離変化により、外周部ほど径方向へ広がる距離が大きくなる。すなわち光学ガラス素材55の流動速度が速くなるが、光学ガラス素材55の流動方向と成形面(例えば51a)の押圧方向が対向する方向となり、同時に広がるための抵抗が増えるため、外周部の温度を上げることにより、成形型を押圧する成形圧力を下げ、同時に外周部の成形面精度も確保することが可能となる。
十分な光学ガラス素材55の変形が完了した後は、冷却を開始する工程に移行する。ここまでの工程で、すでに成形型に付与した温度分布を介して光学ガラス素材55に温度分布を付与したことによる効果が存在している。従来のような冷却を開始してから温度分布を付与し始める方法の場合には、部分的な冷却を行うことによって、またはあまり好ましくないが、部分的な加熱を行うことによってサイクルタイムの延長を招くのは必至であり、さらに面精度の安定性を確保する上で不安定要因になる可能性が高い。これに対し、本発明の方法では、加熱中に付与した温度分布のまま、あるいは分布の形状を連続的に変化させることにより、安定した状態で次の工程、すなわち温度を下げる冷却工程に移行することが可能となる。なお、分布の状態は必ずしも変更する必要はないが、本発明の温度分布付与手段によれば、安定してなお且つ積極的に温度分布を変化させる制御が可能となる。
冷却工程において、従来のように均温状態、すなわち成形型と光学ガラス素材に温度差がない状態で冷却を開始した場合には、特開平2−552352号公報において当該公報の図4を用いて説明されているような致命的な問題が発生する。これは、当該公報の図4に示すように、中心部と周辺部におけるガラスの厚みの違いに基づいて発生する収縮量の差により、外周部のガラスと型が剥離する。このとき、ガラスの粘度が十分に高い状態であれば、成形面の転写精度は低下しないが、現実にはまだ粘度の上昇が不十分な冷却状態で剥離が発生するため、所望の転写精度を得ることができない。
これに対し、本発明は、従来のような成形型に接触している光学ガラス素材の中心部から周辺部までの温度分布を付与する際に特に制御を加えることのない方法とは異なる。本発明においては、成形型へ付与する温度分布を積極的に制御するものであり、これにより、以上の問題点を解決することができる。
図4はこれを説明するものであり、成形型による押圧が完了して光学ガラス素材55が所望の範囲まで広がり、冷却を開始する直前の状態を示す。なお、光学ガラス素材55の押し広げが完了するまでに、中心部温度を555℃、外周部温度を545℃に連続的に制御し、圧力は押圧時と同様の状態を保っている。
全体の温度は、冷却のため時間の経過と共に低下し、最終的には流動不可能な状態まで達する。このような過程において、付与した温度分布により、中心部は流動可能で、外周部は流動不可能な状態を発生させることができる。そして、このときには、外周部の収縮に対応して、中心部は外周部の収縮による成形面と光学ガラス素材55との剥離が発生しないようにさらに変形を続けることが可能となる。厳密には、外周部の成形面と離間した位置から流動状態が停止し、外周部まで僅かではあるが流動が発生することにより、上記剥離の発生を防止できるものである。
この温度分布による流動の制御は、単純に成形面51a、52aと光学ガラス素材55との剥離を防止するだけではなく、さらに、冷却中に発生する成形品の割れを防止することも可能となる。すなわち、図に示した成形面の形状では、従来の均等温度で押圧、冷却を行った場合、その形状要因から、冷却による形状の変化(例えば「反り」)が生じる。これは、図5に示す成形品の光軸53に対して垂直な平面であって上下の成形型の面頂間隔の中点を通る面に対して、非球面側の距離L1と球面側の距離L2が異なり、均等な温度で冷却された場合の光学ガラス素材55内に発生する応力を想定した場合、非球面側の残留応力が大きいために生じる。これに対し、本発明においては前述の「反り」が発生しにくい。これは、冷却時に流動を発生させ、これにより応力を最も小さい状態に制御することが可能なため、内部の歪みを大幅に減らすことが可能になるからである。このような状態で、十分な冷却を行い、ガラスの流動が発生しない領域において、上型51と下型52とを相対的に離反させ、成形された光学ガラス素子を得る。
本発明においては、光学ガラス素材の加熱が完了し、成形型を相対的に接近させて光学ガラス素材が変形を開始し、押圧を完了した後に冷却して成形型のいずれかを光学ガラス素材から離反させるまでに50秒以上を要するものであり、この間、積極的な温度分布が継続される。これにより、温度分布が短時間の内に消滅する従来の問題点を解決することができる。
なお、本発明においては、温度分布の制御により、成形面の転写精度を保った状態で、離型が容易に可能となる光学ガラス素材55の「反り」を光学ガラス素材55内の残留応力状態により作り出すことも可能となる。すなわち、上下の成形型の温度分布を積極的に変化させる手段を用いることにより、成形品に発生する流動状態、ひいては応力の発生方向及びその発生量までも制御することが可能となるのである。
次に、凸レンズ形状の冷却状態における作用を説明する。凸レンズでは、凹レンズとは逆に、冷却過程においては中心部すなわち厚みの大きい部分の温度を低く、外周部の厚みが小さい部分の温度が高い温度分布を付与した状態で冷却することにより、中心部の粘度が高まり、流動不能な状態で収縮が発生しても、外周部はまだ流動が可能な状態にあるため、さらに外周部へガラスが広がることにより成形面とガラスの剥離を防ぐことができる。また、従来の均等冷却、すなわち温度分布を保ったまま冷却する場合は、成形面を均等に冷却しても中心部のガラスは、その形状から発生する熱容量の相違によって冷却が遅れ、最後に中心部が収縮する。これに伴い、外周部と中心部とで引っ張り合うため、成形品が破損する。このことは、サイクルタイムを短くするために短時間で冷却を行う場合に多く発生していたが、本発明を用いることにより、破損を防ぐことが可能となる。以上に加えて、本発明による積極的な温度分布の制御を行うことにより、単なる成形品の破損を防止するだけではなく、成形品の光学面のクセの量やその位置のコントロールまで可能となる。
以下、本発明を図示する実施の形態により、具体的に説明する。なお、各実施の形態において、同一の部材には同一の符号を付して対応させてある。
(実施の形態1)
図6は、温度分布の付与を可能にした実施の形態1の成形装置を示す。
上型1及び下型2は光学ガラス素材20を成形するに足る温度領域で十分な強度を有した材料(例えば、超硬合金、SIC等)によって形成されている。これらの型1,2は、型を相対的に駆動する上軸5及び下軸6にアタッチメント16,17により接続されている。なお、説明を容易にするため、上型1及び下型2の成形面の形状は平面としているが、成形面は、全く任意に所望の形状とすることができる。
上型1及び下型2の内部には、空間3及び空間4が形成されている。この空間3,4は、それぞれの型1,2の略中央部分に位置するように形成されるものである。空間3,4には、型1,2を構成する材料の熱伝導率よりも小さい熱伝導率を有した材料、例えば高密度アルミナ等が充填されている。この熱伝導率と熱容量は、成形型を構成する材料が有している熱伝導率以下であれば、後述する所望の温度分布に対して最適な材料を適宜選択することができる。
上型1、下型2の内部には、熱電対10、熱電対11が挿入されている。また、上型1の近傍の周囲には、加熱手段としての雰囲気加熱炉8が、同様に下型2の近傍の周囲には雰囲気加熱炉9が設置されている。加熱手段としては、雰囲気加熱炉8、9に限定する必要はなく、ランプヒーター等と代替することも可能である。また、雰囲気加熱炉8、9は上下の成形型に対応して2分割されているが、上下の型1,2の温度を調整する必要がなければ、1つの雰囲気加熱炉を用いても良い。これらの雰囲気加熱炉8,9は、熱電対12,13によって温度制御されるものである。
上軸5及び下軸6には、冷却経路18,19が形成されており、冷却媒体を冷却経路18,19に供給することにより、上型1及び下型2の温度制御が可能となっている。
この実施の形態では、まず、不図示の手段により光学ガラス素材20を下型2上に載置し、アタッチメント16を介して上型1と接続された上軸5、同じくアタッチメント17を介して下型2と接続された下軸6を相対的に接近させて光学ガラス素材20を挟み、雰囲気加熱炉8、9により上型1、下型2及び光学ガラス素材20を熱電対10と11を用いて温度制御を行いながら加熱する。
上型1、下型2及び光学ガラス素材20が輻射熱により所望の温度に達した状態で、不図示の駆動ユニット(例えば、直動型のエアシリンダやサーボモータとボールねじを用いた直動方向の駆動機構)を用いて加圧を行い、光学ガラス素材20の押圧、成形を行う。そして、所望の位置まで上型1と下型2を接近させた後、雰囲気加熱炉8、9による加熱を停止し、冷却を開始する。
これと同時に、それまでは気体が密閉された状態の冷却経路18、冷却経路19に対して冷却媒体を流すことで冷却を開始する。使用する冷却媒体は20N/cmに加圧された純水であるが、所望の冷却速度によっては、さらに熱容量の大きいオイル、例えばISO VG78クラスの鉱油を用いたり、熱容量が小さい水蒸気や窒素等の気体を用いることも可能である。なお、加熱時においては、上軸5及び下軸6の構成材料の種類によって(例えばSUS304)、上軸5、下軸6の材料の強度が低下する温度以上に上軸5、下軸6の温度が上昇しないように制御することが必要となる。この場合、上軸5及び下軸6に温度測定のための不図示の熱電対を設置し、冷却経路18、19に僅かな冷却媒体を流すことにより、過度の温度上昇を抑制する。これらの冷却方法は以下の各実施の形態に対しても同様である。
冷却を開始した後、加熱されていた熱エネルギーは型1,2を伝わり、上軸5,下軸6内部の冷却経路18,19を循環する冷却媒体により系外へ移動する。このとき、上型1及び下型2と接触している光学ガラス素材20の温度分布は、成形型の構造的特徴により外周部から熱が奪われ、中心部に対して外周部の温度が低下する。空間3,4に充填されている材料は、型1,2を加熱した時点でほぼ同じ温度に加熱されており、熱伝導率が低いので、中心部の温度を高く保つことができる。
成形型の冷却が開始され、軸5,6への熱伝導によって温度が低下していくが、空間3,4に充填された材料は、熱伝導率が成形型を構成する材料よりも小さいため、成形型の温度低下に対して遅れて温度低下する。これにより、成形型の外周部の温度に比較して、中心部の温度を高く保つことが可能となり、温度分布の幅を大きく設定することができる。なお、成形型内部の空間3,4の形状によっても、押圧された光学ガラス素材20と接触する成形面の温度分布状態が変化するため、所望の光学素子形状に合わせて自由に空間3,4の形状を設定し、冷却速度を調整することにより、結果的に温度分布の温度幅、そして分布の形状も任意に設定することが可能となる。
(実施の形態2)
図7は、本発明の実施の形態2の成形装置を示す。この実施の形態における実施の形態1との相違点は、上型1及び下型2内部の空間3,4に温度調整部材としての熱伝導シャフト14,15が挿入されて配置される点である。熱伝導シャフト14,15は、いずれも一方の側が上軸5、下軸6に接触し、他方の側が上型1、下型2に接触している。この場合、型1,2の中心部と接触するように熱伝導シャフト14,15が配置されるものである。
熱伝導シャフト14,15は上軸5、下軸6に挿入されて嵌合している。熱伝導シャフト14,15の材料としては、型1,2に用いられる材料に比較して、概ね同程度か、それよりも大きな熱伝導を有したものが好ましく、少なくとも7kcal/mh℃程度の熱伝導率を有していれば十分に効果を発揮することができる。材料としては、例えば、成形型1,2の材料が超硬合金の場合に対して、熱伝導シャフト14,15の材料が超硬合金より熱伝導率の低いアルミナというような組み合わせでなければ、特に支障はない。
また、実施の形態1においては、上型1及び下型2が上軸5、下軸6に直接接触した構造となっているが、この実施の形態においては、上型1及び下型2は上軸5,下軸6から僅かに浮いた状態でアタッチメント16、17により固定されているので、熱伝導シャフト14,15の長さがその分長くなっている。
この実施の形態では、実施の形態1と同様に、光学ガラス素材20を上型1及び下型2の間に挟み、雰囲気加熱炉8、9を用いて上型1と下型2、光学ガラス素材20を加熱する。上型1と下型2が所望の温度に達した時点で、両者を相対的に接近させて光学ガラス素材20を押圧する。
このとき、熱伝導シャフト14,15が型1,2の内部に存在することにより、加熱中における型1,2の成形面の温度分布は、外周部に比べて中心部が低くなる。これは、上軸5,下軸6には加熱手段がなく温度が低いため、型1,2の成形面中心部の裏側にあたる部分に接触した熱伝導シャフト14,15により熱が軸方向へ奪われるためである。これにより、この実施の形態においては、加熱中に外周部より中心部の温度が低い温度分布の付与が可能となる。
押圧成形の後、冷却を行うために、上軸5、下軸6の冷却経路18,19に冷却媒体を流通させる。その結果、上軸5、下軸6の温度が急速に低下し、続いて熱伝導シャフト14,15が冷却され、その先端が接触している上型1、下型2の成形面裏側から温度が低下する。すなわち、実施の形態1とは逆に、外周部に比べて中心部の温度が低い分布を冷却中に実現することができる。
なお、冷却を開始した後も、雰囲気加熱炉8、9への通電を停止せずに所望の温度に制御することにより、上型1、下型2の外周部を温め、同時に冷却経路18,19を通じた冷却媒体の熱交換による冷却を併用することにより、さらに温度幅の広い分布を付与することが可能となる。
この実施の形態では、型1,2の底面と、上軸、下軸5,6は直接接触していないが、以上の効果を得るために一部たりとも接触させてはならないということではない。仮に、上型1、下型2の底面と、上軸5、下軸6の一部分が接触していたとしても、熱伝導シャフト14,15が伝達する熱容量を超える熱伝達が発生しない接触面積の場合には、上記の効果を得ることが可能である。従って、型1,2と軸5,6の接触面積を調整することにより、熱伝導シャフト14,15による温度分布の効力を調整することが可能である。
(実施の形態3)
図8は、本発明の実施の形態3を示す。この実施の形態では、実施の形態1における空間3、4に対し、その内部に熱伝導シャフト14,15が配置されていると共に、熱伝導シャフト14,15に加熱手段としての例えばカートリッジヒータ22,23が挿入されている。
カートリッジヒータ22,23を挿入した熱伝導シャフト14,15は実施の形態2と異なり、上型1、下型2の空間3,4に挿入されて型1,2における成形面の裏側に密着するばかりでなく、同時に型1,2の側面に対して僅かに嵌合した状態となっている。
また、この実施の形態では、熱伝導シャフト14,15と上軸5、下軸6との接触を、できる限り少なく設定している。これは、上軸5、下軸6との熱伝達を最小限に抑えるためである。このために、必要であれば断熱材等を熱伝導シャフト14,15と上軸5、下軸6との間に挿入しても良い。
この実施の形態では、まず、光学ガラス素材20を不図示の手段により上型1と下型2との間に挟み、雰囲気加熱炉8、9により加熱を行う。このとき、カートリッジヒータ22,23も同時に使用して加熱を行う。このメリットとしては、型1,2の昇温に対する時間短縮と、外周部に比較して中心部の温度が高い温度分布を付与した状態での加熱が可能となる点にある。この場合、雰囲気加熱炉8、9のヒーター出力とカートリッジヒータ22,23の出力バランスとによって温度分布を変化させることが可能なため、カートリッジヒータ22,23を出力させることにより、型1,2の昇温時間を短縮しながら実施の形態1とは逆の温度分布である中心部の温度が外周よりも高い加熱状態とすることも可能である。
所望の温度に達した後、型1,2を相対的に接近させて光学ガラス素材20を押圧する。このとき、雰囲気加熱炉8、9の設定温度に対して、熱伝導シャフト14,15内のカートリッジヒータ22,23の温度を高温に制御することにより、加熱中の成形面の温度分布は、外周部に比べて中心部が高くなる。
この後、冷却を開始するため、雰囲気加熱炉8、9の出力を下げる、あるいは停止し、上軸5、下軸6の冷却経路18,19に冷却媒体を流通させる。これにより、上軸5、下軸6の温度が急速に低下するが、熱伝導シャフト14,15は上軸5、下軸6との接触を極力少なく設定されており、熱伝導シャフト14,15が接触している型1,2の成形面の裏側及び僅かに接触した側面は上軸5、下軸6から直接冷却されることがない。さらに、熱伝導シャフト14,15内のカートリッジヒータ22,23を高温の状態に保つことにより、全体の系としては冷却を行いながらも型1,2の外周部に比較して中心部の温度を高く保った温度分布を付与し続けることが可能となる。
(実施の形態4)
図9は、実施の形態4の成形装置を示す。この実施の形態においては、型1,2が、内部で高精度に嵌合した摺動可能なスリーブ21内に挿入されている。スリーブ21は円筒状となっており、上型1に固定されている。尚、スリーブとは略円筒形状の部材を意味し、スリーブ21は、略円筒形状の部材であれば何れのものでも良いが、ここでは円筒形状の部材とする。また加熱手段としては、光エネルギーを用いるものであり、具体的には赤外線ランプヒーター28,29が用いられている。光エネルギーを用いた加熱手段としては、短波長ランプヒーターあるいはレーザーを用いた加熱であっても良い。
この実施の形態では、石英管7が用いられており、石英管7による気密が確保された状態の空間内に型1,2および周辺の系が挿入されている。これにより、高温状態では不活性ガス、例えば窒素による非酸化性雰囲気にして成形を行うことができるため、高温で酸化される材料を用いても腐食の度合いを大幅に低減させることが可能となる。さらに、赤外線ランプヒーター28,29は石英管7の外側に配置され、赤外線ランプヒーター28,29の出力を制御するための温度センサーである熱電対12,13が近傍に設置されている。
この実施の形態において、型1,2の側面と、スリーブ21の側面は全面で嵌合しておらず、一部が嵌合するようになっている。これは、成形完了後に冷却を開始した時点で、大きな熱容量を有するスリーブ21が型1,2の側面の全面と嵌合していると、実施の形態1と比較して外周部の温度分布を低下させることが困難なためである。そして、このように構成することにより、上下型1,2の駆動精度、すなわち光学ガラス素子の偏心精度をスリーブ21により高精度に保つことが容易な状態で、外周部に比較して中心部の温度が高い温度分布の制御が可能となる。
なお、スリーブ21を構成する材料の熱伝導率が型1,2の材料の熱伝導率に比べて小さい場合は、熱伝導率に応じて嵌合部分の長さを調整するのが良い。
(実施の形態5)
図10は、実施の形態5の成形装置を示す。この実施の形態は、図7に示す実施の形態2を基本としているが、実施の形態2に対し、スリーブ21を用いる点と、赤外線ランプヒーター28、29を用い石英管7による気密密閉で成形を行う点が相違する。
また、型1,2の内部に熱伝導シャフト14,15が挿入されており、型1,2の成形面における外周部の温度より、内側の温度が高い設定が可能となっている点は実施の形態2と同様である。スリーブ21と型1,2の側面は、可能な限り嵌合面積を増やした構造となっている。このため、光学ガラス素材全体としては熱エネルギーを放出、すなわち冷却される状態においても、スリーブ21を赤外線ランプヒーター28,29によって加熱することにより分布温度幅の広い制御が可能となる。
(実施の形態6)
図11は実施の形態6の成形装置を示す。この実施の形態では、図10に示す実施の形態5に対し、熱伝導シャフト14,15の内部に、加熱手段としてのカートリッジヒータ22,23がそれぞれ挿入されているものである。カートリッジヒータ22,23を設けることにより、内部からの加熱が可能となり実施の形態5に比べてさらに分布温度幅の広い制御が可能となる。
(実施の形態7)
図12は実施の形態7の成形装置を示す。この実施の形態は、図9に示す実施の形態4に対し、冷却時に不活性ガスGとして充填或いは流されている気体、例えば、窒素ガスを利用して、型1,2の成形面と光学ガラス素材20とが接触していない部分の型1,2と光学ガラス素材20の冷却を行うものである。
また、円筒状のスリーブ21には、複数の気体透過孔21aが厚さ方向に貫通しており、スリーブ21の内外で気体の流通が可能な状態となっている。実施の形態1〜6では、型1,2の成形面の熱分布が光学ガラス素材20に伝達して温度分布を行うが、この実施の形態では、さらに積極的に成形面と光学ガラス素材20とが接触していない部分の型1,2と光学ガラス素材20の温度を不活性ガスGにより制御することにより、より自由度の高い温度分布を加熱或いは冷却中に付与することができる。
使用する気体は、必ずしも型1,2の成形面と光学ガラス素材20とが接触していない部分の温度を制御するだけではなく、スリーブ21の表面あるいは上型1、下型2の側面との間に熱交換を発生させることにより、光学ガラス素材20の温度分布を制御するために活用することが可能となっている。
この実施の形態では、不活性ガスを使用しているが、酸化雰囲気中で使用可能な型であれば、必ずしも不活性ガスである必要はない。また、気体としては、変化させたい所望の部分に対して影響を与えることが可能な温度に冷却あるいは加熱した不図示の温度制御部に接触させることにより熱交換を行い必要な温度にすることができる。
(実施の形態8)
図13は実施の形態8の成形装置を示す。この実施の形態では、図11に示す実施の形態6に対し、スリーブ21の構成が異なっている。すなわち、この実施の形態のスリーブ21では、上型1に対応するスリーブ部分と、下型2に対応するスリーブ部分との間に、熱的な断熱境界24が設けられている。実施の形態6において所望の温度分布あるいは分布の温度制御を行うためにランプヒーター28及び29を個別に制御しても、スリーブ21の熱伝導により所望の温度変化を上型1と下型2に与えることができない場合、スリーブ21に断熱境界24を設けることにより可能となるものである。
スリーブ21の断熱境界24は、例えば厚みを薄くしたり、孔をあけて断面積を減らしたり、熱伝導率の低い材料を介して締結する等によって設けることができる。このように断熱境界24を設けることにより、型1,2の間を連結する熱伝達部材としての効果を低くすることができる。
(実施の形態9)
図14は実施の形態9の成形装置を示す。この実施の形態では、光学ガラス素子として、回転対称形状である両凹レンズを成形するものである。
成形型である上型1及び下型2は超硬合金により作製されており、それぞれの直径(φ)は30mm、成形面1a、2aの直径(φ)は27mm、曲率半径(R)は25mmの凸面形状となっている。型1,2はそれぞれ上軸5、下軸6にアタッチメント16,17により固定されている。上軸5、下軸6内には冷却経路18,19が形成されており、成形前においては、気体(N)が充填されている。
型1,2は円筒状のスリーブ21の内部に摺動可能な嵌合状態で挿入されており、嵌合クリアランスは直径差で5μmとなっている。スリーブ21の材質は多孔質のアルミナが使用されている。型1,2の中心部分には、円筒状の空間3,4がそれぞれ形成されている。上型1、下型2の内部には、熱電対10,11が挿入されており、円筒状の空間3、4内部には熱伝導シャフト14,15が配置されている。
熱伝導シャフト14,15は、図に示すように成形面1a、2aの裏側と上下の軸5,6に接触面を有した形状となっている。熱伝導シャフト14,15の材料はステンレス(SUS304)が使用されている。熱伝導シャフト14,15内部には、それぞれ出力600Wの小型のカートリッジヒータ22,23が配置されている。また、スリーブ21と型1,2の側面は、全面が接触しておらず、成形面1a、2aから軸方向に向かって20mmの長さの非接触部分が設けられている。
上軸1及び下軸2の間には、不図示の手段により光学ガラス素子20が挿入されており、上型1及び下型2により荷重30Nで挟まれた状態となっている。光学ガラス素材20は硝材L−LAH53であり、直径25mm、厚み7mmの円柱形状となっており、両端は平面の研磨面となっている。
型1,2及びスリーブ21、軸5,6からなる系は、石英管7と不図示の上下方向の気密部材により密閉構造内に配置されるものである。また、石英管7の外側には合計出力が4000Wの赤外線ランプヒーター28,29が設置され、この温度制御を行うための熱センサーである熱電対12,13が近傍に設置されている。
この実施の形態では、まず、密閉された空間内の空気を不活性ガス(窒素)により置換し、流量10L/minの体積を継続して流しながらランプヒーター28,29による加熱を行う。これと同時に、カートリッジヒータ22,23による加熱を開始する。加熱においては、まずは熱電対10,11の測定温度が600℃になるまで昇温する。
そして、600℃に達した時点で、ランプヒーター28,29の合計出力W数と、カートリッジヒータ22,23の合計出力W数の比が1:1.2となるようにバランス調整し(ランプヒーター28,29の合計出力約1000W、カートリッジヒータ22,23の出力(片側)約600W)、熱電対10,11が610℃に達するまで加熱を継続する。熱電対10,11の温度が610℃に達した時点で、型1,2の成形面1a、2aの面頂部分の温度は612℃、有効成形面の最外周部にあたる直径27mmの位置での表面温度は604℃となる。
以上の加熱の後、押圧を開始するため、不図示の駆動装置、例えばエアシリンダやサーボモータとボールネジの組み合わせにより、8000Nの荷重で上型1と下型2とを相対的に接近させる。
このとき、押圧による変形を開始する直前の光学ガラス素材20の温度は、実際には608℃であったが、押圧による流動と同時に型1,2の成形面1a、2aの面頂部分から光学ガラス素材20の内部に1mm向かう位置で610℃に温度が馴染み、30秒後には押圧により成形面1a、2aと光学ガラス素材20とが接する範囲が直径20mmの位置まで拡大し、この位置における型1,2の成形面1a、2aの温度は606℃となっていた。さらに5秒後に同位置での光学ガラス素材20内部へ1mm向かった位置の温度は605℃に達する。ここでランプヒーター28,29の合計出力を700Wに低下させ、さらに押圧を続ける。
約100秒後には押圧が完了する位置である成形面1a、2aの間隔が1mmとなる位置まで型1,2が相対的に移動し、型1,2の成形面1a、2aの最外周部である直径27mmの位置に光学ガラス素材20が到達する。このとき、光学ガラス素材20の最外周部における成形面から1mm内部に向かう位置での温度は602℃であり、光学ガラス素材20が広がる速度が低下して熱交換が十分に行われるため、型1,2の有効成形面の最外周表面温度と同一となっている。
続いて、冷却工程に入る。まず、冷却経路18,19に対し、圧力50N/cmの40℃の純水を2L/minの流量で循環を開始する。その直後からランプヒーター28,29は合計20W/secで出力を低下させ、カートリッジヒータ22,23は合計2W/secで出力を下げる。冷却を開始してから15秒後に型1,2の成形面1a、2aの面頂温度は600℃となり、光学ガラス素材20の最外周部は570℃に低下する。このとき、まだ光学面の面頂温度は流動可能な温度であるが、最外周部はすでに流動が困難な粘度領域に達している。
この後、窒素ガスの流量を30L/minに増加して冷却を継続する。そして、30秒後には、加圧圧力に対して光学ガラス素材20内部の全域において流動が可能な範囲が消失し、光学ガラス素子としての形状が決定される。光学面における面頂の表面温度は約560℃である。
この温度条件設定によれば、上型1、下型2の成形面1a、2aに対して、成形されたガラスが張り付くような変形を起こすことはなく、同時に光学ガラス素材20の最外周部の収縮量の多さに起因した成形面からの剥離を起こすこともなく成形が完了する。なお、窒素の流量を30L/minに変更したタイミングで冷却経路18,19の流量を変化させても、型1,2中心部の温度を同様に制御することは可能であるが、この実施の形態では、外周部へ向かう温度分布のバランスを得るため、上記条件による温度分布条件を設定している。
この後、ランプヒーター28,29及びカートリッジヒータ22,23の出力を0にして冷却経路18,19への純水の循環量を10L/minに増加させる。この状態を、型1,2を含む密閉された空間を大気雰囲気中に暴露しても酸化の影響が問題となりにくい200℃まで継続する。そして、上型1、下型2を相対的に離反させ、不図示の手段によって成形が完了した光学ガラス素子を取り出し、成形を終了する。
なお、この実施の形態は、温度分布付与手段の一例を示したものであり、さらに様々な温度分布の制御を積極的に行うことが可能である。また、この実施の形態では、説明を簡略化するため、上型1と下型2の温度分布状態を同一としているが、これらの条件を変更して所望の収縮状態を行ったり、故意に部分的な転写精度を低下させたり、あるいは向上させたりすることも可能である。
(実施の形態10)
実施の形態10では、光学ガラス素子として、回転対称形状である両凸レンズを成形するものである。図15はこの実施例に用いる成形装置を示し、図14の成形装置とは大きな相違はなく、成形型である上型1及び下型2の光学ガラス素材20と接触する成形面1a、2aが直径(φ)27mm、曲率半径(R)30mmの凹面形状となっている。型1,2に挿入されている熱伝導シャフト14,15と、上軸5、下軸6との間に、厚さ1mm、SUS304製のスペーサー31,32が挿入されており、これにより上型1、下型2は上軸5、下軸6と直接には接触していない。上型1及び下型2は熱伝導シャフト14,15によって連結された状態でアタッチメント16、17により上軸5,下軸6に固定されている。スリーブ21は超硬合金により作製されており、型1,2の側面が全てスリーブ21に嵌合している。
上軸1と下軸2との間に挟まれた光学ガラス素材20は、商品名「VC81(住田光学製)」の硝材であり、直径23.2mm、中心肉厚8mm、上下面の曲率半径(R)が25mmの研磨面で両凸形状となっている。
この実施の形態では、まず、密閉された空間内を窒素ガスにより置換し、流量5L/minの体積を継続して流しながらランプヒーター28,29による加熱を開始する。同時に。カートリッジヒータ22,23による加熱を開始し、熱電対10,11の測定温度が540℃になるまで昇温する。
547℃に達した時点で、ランプヒーター28,29の合計出力W数と、カートリッジヒータ22,23の合計出力W数の比が6:1になるようにバランス調整し(ランプヒーター28,29の合計出力約1200W、カートリッジヒータ22,23の出力(片側)約100W)、熱電対10,11が548℃に達するまで加熱を継続する。熱電対10,11の測定温度が548℃に達した時点で、型1,2の成形面1a、2aの面頂部分の温度は549℃、有効成形面の最外周部にあたる直径27mmの位置では、その表面温度が554℃になっている。
加熱の後、押圧を開始し、6000Nの荷重によって上型1と下型2とを相対的に接近させる。このとき、変形を開始する直前の光学ガラス素材20の温度は、実際には547℃であったが、押圧による流動と同時に型1,2の成形面1a、2aの面頂部分から光学ガラス素材20の内部に1mm向かった位置でほぼ成形面1a、2aと同様の549℃に温度が馴染んでいた。
さらに押圧を続けることにより、30秒後に成形面1a、2aと光学ガラス素材20とが接する範囲が直径20mmの位置まで拡大し、この位置における光学面1a、2aの温度は550℃となっている。さらに5秒後に同位置での光学ガラス素材20の内部へ1mm向かった位置の温度は549℃に達する。ここでランプヒーター28,29の合計出力W数:カートリッジヒータ22,23の合計出力W数の比が20:1になるように調整し、さらに押圧を続ける。約30秒後には、押圧が完了する位置まで型1,2が相対的に移動し、型1,2の成形面1a、2aの最外周部である直径27mmの位置に光学ガラス素材20が到達する。このとき、光学ガラス素材20の中心温度は547℃に低下し、最外周部における成形面から0.2mm内部に向かう位置での温度は555℃で、ガラスが広がる速度とガラスが広がる抵抗に対して十分に粘度が低い状態に光学ガラス素子が加熱されて流動が可能な状態である。
続いて、冷却工程に入る。まず、冷却経路18,19に圧力40N/cmの20℃の純水を6L/minの流量で循環させる。その直後からランプヒーター28,29は10W/secで出力を低下させ、カートリッジヒータ22,23は通電を停止する。
冷却を開始してから10秒で型1,2の成形面1a、2aの面頂温度は530℃まで低下し、光学面の最外周部は550℃に低下する。このとき、まだ光学面の外周部は流動可能な温度であるが、中央付近はすでに流動が困難な粘度領域に達している。さらに30秒後には、加圧圧力に対して光学ガラス素材の内部の全域において流動が可能な範囲が消失し、光学ガラス素子の形状が決定される。光学面の最外周部の表面温度は約520℃である。
この温度分布条件によれば、従来は直径25mm以上で1mm以下の最外周部厚さ(コバ厚)を有するレンズを成形することが難しかったが、積極的な温度分布の付与により、全く問題なく成形が可能となった。また、中心部の面精度は、収縮により成形面の転写が安定しなかったが、この問題も解決することが可能となった。
この後、ランプヒーター28,29及びカートリッジヒータ22,23の出力を0にして冷却経路18,19への純水の循環量を10L/minに増加させ、型1,2を含む密閉された空間を大気雰囲気中に暴露しても酸化の影響が問題となりにくい200℃まで冷却する。そして、上型1、下型2を相対的に離反させ、不図示の手段によって成形が完了した光学ガラス素材を取り出す。
なお、この実施の形態においても、温度分布付与手段の一例を示したものであり、他の様々な温度分布の制御を積極的に行うことが可能である。
本発明による成形方法を示す断面図である。 成形時におけるベクトルの変化を示す断面図である。 温度分布を付与した状態での成形時におけるベクトルを示す断面図である。 従来の成形の問題点を示す断面図である。 本発明の成形条件による成形を示す断面図である。 本発明の実施の形態1の成形装置の断面図である。 実施の形態2の成形装置の断面図である。 実施の形態3の成形装置の断面図である。 実施の形態4の成形装置の断面図である。 実施の形態5の成形装置の断面図である。 実施の形態6の成形装置の断面図である。 実施の形態7の成形装置の断面図である。 実施の形態8の成形装置の断面図である。 実施の形態9の成形装置の断面図である。 実施の形態10の成形装置の断面図である。
符号の説明
1 上型
2 下型
3,4 空間
5 上軸
6 下軸
8,9 雰囲気加熱炉
14,15 熱伝導シャフト
18,19 冷却経路
20 光学ガラス素材
21 スリーブ
22,23 カートリッジヒータ
28,29 赤外線ランプヒーター

Claims (3)

  1. 相対する一対の上型と下型とからなる成形型の間に光学ガラス素材を配置し、前記成形型を加熱するとともに前記光学ガラス素材を流動可能な状態まで加熱し、前記成形型を相対的に接近させることにより押圧成形を行い、冷却後に前記成形型と前記光学ガラス素材とを離反させて光学ガラス素材を取り出す光学ガラスの成形装置において、
    前記成形型に対する温度分布を付与する温度分布付与手段と、
    前記成形型が内部に配置され、前記上型と下型とに対応した断熱境界を有する略円筒形状の部材であるスリーブと、
    前記スリーブの外側から前記成形型を加熱する前記上型と下型とに対応する2つ以上の光エネルギー加熱手段と、
    を有することを特徴とする光学ガラス素子の成形装置。
  2. 前記温度分布付与手段は、前記上型と下型の少なくとも一方の内部に形成した空間に、前記成形型の材料とは異なる熱伝導率を有した材料からなる温度調整部材を配置したものであることを特徴とする請求項1記載の光学ガラス素子の成形装置。
  3. 前記温度調整部材は、前記成形型と該成形型が固定される軸部材とに接触していることを特徴とする請求項2記載の光学ガラス素子の成形装置。
JP2003329708A 2002-09-27 2003-09-22 光学ガラス素子の成形装置 Expired - Lifetime JP4231760B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329708A JP4231760B2 (ja) 2002-09-27 2003-09-22 光学ガラス素子の成形装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002283877 2002-09-27
JP2003329708A JP4231760B2 (ja) 2002-09-27 2003-09-22 光学ガラス素子の成形装置

Publications (2)

Publication Number Publication Date
JP2004137146A JP2004137146A (ja) 2004-05-13
JP4231760B2 true JP4231760B2 (ja) 2009-03-04

Family

ID=32473207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329708A Expired - Lifetime JP4231760B2 (ja) 2002-09-27 2003-09-22 光学ガラス素子の成形装置

Country Status (1)

Country Link
JP (1) JP4231760B2 (ja)

Also Published As

Publication number Publication date
JP2004137146A (ja) 2004-05-13

Similar Documents

Publication Publication Date Title
JP2006256078A (ja) プレス成形装置、このプレス成形装置を用いたプレス成形方法およびこのプレス成形装置により形成された樹脂成形品
JP4231760B2 (ja) 光学ガラス素子の成形装置
JP2010125662A (ja) 成形装置
US10315945B2 (en) Optical element manufacturing apparatus
CN114212979B (zh) 一种玻璃热弯模具及玻璃热弯方法
JP5288923B2 (ja) 光学素子の成形方法及び成形装置
KR101848759B1 (ko) 온도조절부재를 구비한 플라스틱 광학 렌즈 제조용 금형장치
JPS6260622A (ja) 射出圧縮成形金型
JP4474755B2 (ja) 光学素子の製造方法
CN1262496C (zh) 光学玻璃元件的成形方法及成形装置
JP3984498B2 (ja) 成形用金型および、これを用いるプラスチックの成形方法
JP3068261B2 (ja) ガラス光学素子の成形方法
KR102578361B1 (ko) 차량 디스플레이용 유리 성형금형 구조
JP4564216B2 (ja) 光学素子成形方法
JP3537160B2 (ja) 光学レンズ成形用金型
JP2007076945A (ja) ガラスレンズの成形方法及び成形装置
JP2005231933A (ja) 光学素子用成形金型および光学素子の成形方法
JP6653135B2 (ja) 光学素子の製造方法及び製造装置
JP3939157B2 (ja) 光学素子成形方法
JP2011513166A (ja) 加熱成形によるガラス製品の製造装置及び製造方法
JP5453200B2 (ja) 成形装置及び成形方法
JPH04338120A (ja) ガラス光学素子の成形方法
JPH01115606A (ja) 樹脂成形型
JP2005272279A (ja) 光学素子成形装置及び光学素子成形方法
JP2008137835A (ja) 成形装置及び成形品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

R151 Written notification of patent or utility model registration

Ref document number: 4231760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term