JP4225538B2 - Hot displacement measuring device - Google Patents

Hot displacement measuring device Download PDF

Info

Publication number
JP4225538B2
JP4225538B2 JP2003125268A JP2003125268A JP4225538B2 JP 4225538 B2 JP4225538 B2 JP 4225538B2 JP 2003125268 A JP2003125268 A JP 2003125268A JP 2003125268 A JP2003125268 A JP 2003125268A JP 4225538 B2 JP4225538 B2 JP 4225538B2
Authority
JP
Japan
Prior art keywords
sample
furnace
lid
inlet lid
air cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003125268A
Other languages
Japanese (ja)
Other versions
JP2004333154A (en
Inventor
秀夫 朝倉
正幸 中務
昌博 岡崎
直輝 黒住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2003125268A priority Critical patent/JP4225538B2/en
Publication of JP2004333154A publication Critical patent/JP2004333154A/en
Application granted granted Critical
Publication of JP4225538B2 publication Critical patent/JP4225538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は加熱炉の一側にレーザ送光部、対向側にレーザ受光部を配設した熱間変位測定装置の改良に関する。
【0002】
【従来の技術】
従来、熱間変位測定装置として、試料加熱炉一方の側に2組の照明装置を他方の側に2組の固体走査受光素子を内蔵レンズ系と組み合わせたカメラとカメラコントロール部より構成した変位測定装置をそれぞれ配置して加熱時の試料の変位を自動的に測定する装置が色々提案されている(特開昭60-39540号公報、特開昭61-7452号公報、特開昭61-172041号公報)。
【0003】
しかし、これらの装置は試料のセットが煩雑であると供に、試料のセット状態を目視により確認することができないため適正なセットがしにくい。さらに、変位測定装置の分解能が低いため、小型試料では測定精度が低く、また、測定範囲が片側で3mm 程度と狭いため、異常膨張する試料とか収縮の大きい試料は測定できない。
【0004】
このような小寸法の試料をサブミクロンオーダーの分解能で高精度に変位測定する手段としてレーザ変位測定器を使用することにより高精度の測定を可能とした、「セラミックス等の熱間における変位測定装置」(特開平3-77053号公報)を提案している。
さらに、この装置に改良を加えて加熱炉の適正位置への試料のセットを容易にし、使い勝手が良く、高精度の熱間での変位測定を可能にした特開2002-82077号提案している。
【0005】
【発明が解決しようとする課題】
しかし上記変位測定装置により高分解能を達成でき、異常膨張する試料や収縮の大きい試料の測定も可能になったが、以下のような問題がある。
▲1▼特開平3-77053号公報では、加熱炉への試料セットのセットは従来と同様、操作が煩雑であるとともに、試料の適正なセツトがしがたい。
図8により概略説明すると、加熱炉1内の試料8を支持する炉芯管7内の両端部に計測窓4を設けて炉芯管7内を気密構造とし、炉芯管7の両端に排気口9(真空ポンプ19で排気)、及びガス導入口10を設けて、各種の雰囲気で試料8の変位を測定可能とし、水冷構造の計測窓固定金物17で固定された計測窓4及びその内側に炉内輻射熱防止スリットを有する断熱材6、炉内輻射光防止スリット金物5を配設し、炉内の熱により計測窓4のガラスが歪み、誤差になるのを防止する。レーザ送光部2の送光口2′とレーザ受光部3の受光口3′それぞれの端面に炉内輻射光低減スリット30′が設けられた炉内輻射光防止スリット板30及び炉内輻射光低減光学フィルタ29を配設し、高温測定時に炉内光がレーザ送光部2、レーザ受光部3に入射して試料8の変位計測誤差になるのを防止している。試料の変位は、レーザ送光部2より一定速度で水平に試料の長さ以上の幅で走査したレーザビームが遮られた時間、すなわちレーザ受光部3からの出力が0の時間を電気的に測定し、表示器12にデジタル表示するとともに、その出力信号と試料温度測定用デジタル温度計13の出力(熱電対20の検出信号をデジタル信号に変換)をインターフェース14を介してパーソナルコンピュータ15に入力して演算し、デジタルプロッタ16に温度と熱膨張率の関係曲線を描かせる。そして、試料8を加熱炉1内へセットするには、レーザ送光部2またはレーザ受光部3、計測窓4、炉心管7中の断熱材6の順に取り外し、炉心管7内へ試料台に載せた試料8を挿入治具等により挿入してセットしたのち、断熱材6、計測窓4、レーザ送光部2またはレーザ受光部3を装着していた。
▲2▼特開2002-82077号公報は、加熱炉の適正位置への試料のセットを容易にし、使い勝手が良く高精度の熱間での変位測定を可能にしたが、加熱炉への試料セットを人が行うため、就業時間外での測定装置への試料のセットができない。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するためのもので、加熱炉の適正な位置へ試料のセットを自動で行うことが出来、高精度で操作性の良い全自動でも測定可能な熱間変位測定装置を提供することを目的とする。
本発明は、加熱炉の一方の側にレーザ変位測定器のレーザ送光部を、対向側にレーザ受光部をそれぞれ配設し、前記レーザ送光部とレーザ受光部を結ぶ線に直交する方向に、コンピュータ制御により自動で試料の供給および排出を行う試料供給・排出手段を設けた熱間変位測定装置であって、
前記試料供給・排出手段は、
加熱炉の前部と後部にそれぞれ設けられ、下端に試料挿入用、試料排出用ブリッジがそれぞれ取り付けられた開閉用エアシリンダに駆動される炉入口蓋及び炉出口蓋と、
炉入口蓋付近に配置された位置センサと、
炉入口蓋側に設けられ、エンドレスベルトコンベヤに取り付けられた複数の試料搬送台及び各試料搬送台に載せられた試料台と、
前記試料台を加熱炉炉心管内に挿入する試料挿入用エアシリンダと、
炉出口蓋側に設けられ移動ローラを有する試料排出用ヤードと、
を備え、
前記位置センサの位置検出により、ベルトコンベヤで搬送される試料台が炉入口蓋の前に停止するように制御され、
前記試料挿入用ブリッジは、炉入口蓋が閉まった状態ではベルトコンベヤより下方に位置し、炉入口蓋が開いた状態では試料台が載る位置に上昇し、
前記試料台が炉入口蓋前に停止したとき、開閉用エアシリンダに駆動されて炉入口蓋が開くとともに、試料挿入用ブリッジが上昇し、試料挿入用ブリッジ、加熱炉炉心管、試料搬送台が一直線上に並び、試料挿入用エアシリンダの先端部が延びて試料台に形成された固定穴に嵌合し、エアシリンダに駆動されて試料台が炉心管上を摺動して炉内中央まで挿入され、炉入口蓋、炉出口蓋が閉まって測定が開始され、
測定終了時、開閉用エアシリンダに駆動されて炉入口蓋、炉出口蓋が上昇して開き、試料挿入用エアシリンダの先端部が延びて炉内試料台の固定穴に嵌合し、試料台を反対側の排出用ブリッジを通して排出ヤードまで押し出すことを特徴とする。
また、本発明は、測定終了後、前記加熱炉の炉蓋が開放状態に制御されることを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
図1は本発明の熱間変位測定装置の全体構成を説明する図、図2は自動試料供給装置の構成を説明する装置上面図、図3は自動試料供給装置の炉内試料挿入状態を説明する側面図、図4は炉蓋の詳細図で、図4(a)は炉蓋が閉まった状態を示す図、図4(b)は炉蓋が開いた状態を示す図、図5は自動試料供給装置の試料取り出し状況を説明する図、図6は試料台を説明する図である。
【0008】
加熱炉31には熱間変位を測定する試料48が試料台54に置かれ、加熱炉31の左右には変位計コントローラ37で制御されるレーザ送光部32、レーザ受光部33が配置され、加熱炉両側に設けられた計測窓(石英ガラス)43 を通して走査レーザ光が受光される。尚、計測窓43の内側には、輻射熱及び輻射光防止スリットを有する断熱材、その外側に輻射熱及び輻射光防止スリットをそれぞれ配設、内蔵し、また、レーザ送光部とレーザ受光部それぞれの端面に炉内輻射光防止スリットと光学フィルターを配設するようにし、計測窓ガラスが加熱炉からの輻射熱によって歪曲し、計測誤差を招くのを防ぐため、冷却機構を計測窓ガラスにもうけるようにするとともに、計測窓ガラスは耐熱性が高く、熱膨張係数の小さい石英ガラスで、ガラス両面が平行な計測窓ガラスであるようにしている。
【0009】
加熱炉31の前部にコンピュータ等からなるCPU38 で制御出来るエァーシリンダー59(図2)で作動する試料挿入用ブリッジ52(図3)を装備した炉入口蓋46と、後部に同じ構造の試料排出用ブリッジ52′(図5)を装備した炉出口蓋47が設けられている。加熱炉31はヒータコントローラ36で駆動制御されるヒータ45で加熱されるとともに、制御用熱電対42で検出された炉内温度信号が温度計49でデジタル信号に変換されてCPU38に取り込まれ、検出結果に基づいてCPU38はヒータコントローラ36を制御している。また,測温用熱電対44で試料温度が検出されて温度計40でデジタル信号に変換されてCPU38に取り込まれる。試料の熱間変位は、インプット装置49よりCPU38に対して試料名、試験温度、昇温速度等を入力し、レーザ送光部32より一定速度で水平に試料の長さ以上の幅で走査したレーザ光が遮られた時間、すなわちレーザ受光部33からの出力が「0」の時間を変位コントローラ37からの信号によりCPU38で演算して求め、同時に温度計40から取り込んだ温度データとにより、温度と熱膨張率の関係を求めてプリンター39に出力する。
【0010】
本発明の熱間変位測定装置は、詳細は後述するように、加熱炉31の中に試料を自動で挿入・排出できる自動試料供給装置34を有していて、その供給装置と連動して開閉する為の炉入口蓋46、炉出口蓋47、排出ヤード35を装備して、連続して試料を容易にセット出来る。また、一度に6個の試料の登録が出来ると共に途中で試料を継ぎ足すことができ、エンドレスで高精度の熱間での変位測定が可能な構成としたことを特徴としている。
【0011】
次に、図2〜図6により試料を炉内に挿入し、変位測定を行い、排出する機構について詳細に説明する。
図2において、駆動ベルトコンベヤー55には試料搬送台53が円周方向に18個付いていて、図では上面側の9個が示されている。試料48は、試料搬送台53に設けられた試料台54上にセットされる。そのうち、試料48が載せられる試料搬送台53は炉入口蓋46までに6個あり、CPU38で制御して駆動モータ61により駆動ベルトコンベャー55を駆動して搬送される。図示するように6個の試料を並べ、炉入口蓋46の付近に位置センサー58を設けて、試料台54が炉入口蓋46の前に正確に停止するようにしている。
【0012】
試料台54、試料48が炉入口蓋46前に停止し、図3に示すように、エアーシリンダー56に駆動されて炉入口蓋46が開く。図4に示すように、炉入口蓋46の下端には試料挿入用ブリッジ52が取り付けられていて、エアーシリンダ56が延びて炉入口蓋が閉まった状態(図4(a))では試料挿入用ブリッジ52はベルトコンベアより下方に位置し、エアーシリンダ56が引き込まれて炉入口蓋が開いた状態(図4(b))では試料挿入用ブリッジ52は試料台が載る位置に上昇するようになっている。したがって、炉入口蓋46が開くと同時に試料挿入用ブリッジ52が上昇し、挿入用ブリッジ52と、加熱炉31内に設けられた炉心管51と、試料搬送台53が一直線に並び(図5(a))、試料挿入用エアーシリンダー59の先端部59Aが試料台54に設けられた試料の安定を保つための固定穴57の中に入り(図6)、加熱炉31内に設けられた炉心管51上を摺動されて炉内中央まで挿入し炉入口蓋46が閉まり測定を開始する。
【0013】
測定が終了すると炉入口蓋46、炉出口蓋47が上昇し、図5(b)に示すように、試料挿入用エアーシリンダー59の先端部が延びて炉内試料台54の固定穴57の中に入り、反対側の排出用ブリッジ52′を通して排出ヤード35まで押し出す(図5(c))。なお、排出ヤード35には試料台54がスムーズに動くように移動ローラー61を設けている。
【0014】
以上のような一連の動作はCPU38 に予め格納されたプログラムにより制御されて自動で行われる。なお、炉入口蓋46、炉出口蓋47を測定終了後に強制的に開放状態として加熱炉内部を冷却させる事により、次の測定試料の待ち時間が短縮でき効率化を図ることができる。
【0015】
次に、測定試料形状について図7により説明する。なお、図7(A)は平面図、図7(B)は正面図である。
熱間変位を測定する耐火物試料の形状としては、膨張測定部が70〜85°のエッジで形成されているのが一般的であり、このようなエッジ形状の試料は作成中にエッジが欠け易く、欠けを生じないように意識するため操作性も低下し、特に組織が粗く均質でない場合に問題となる。そこで、本発明では、膨張測定部をR形状としたものである。図示するように、長さ方向i、高さh、幅をdとしたとき、
i:20〜150mm
h:5〜40mm
d:5〜30mm
で、曲率半径Rは2.5mm〜20mmがよく、さらに好ましくは5mm〜15mmである。Rが2.5mmより小さいとRの欠けが生じ易く、20mmより大きいと高精度の変位測定が難しい。また、端面の面精度が悪いと、端面が膨張で変位したとき、測定面の凹凸が原因で正確な熱膨張率を求めることができないので、R形状部の面精度は、試料の長さ寸法が大きい場合は160μm程度以下でよいが、試料の長さ寸法が小さい場合には50μm以下の面精度とするのが好ましい。
【0016】
【発明の効果】
請求項1乃至3の発明によれば、加熱炉に設けられた試料供給・排出装置により試料が適正な位置に自動的にもセットできるため測定精度が向上すると共に、就業時間外での測定が可能となりの効率化が図れる。
請求項4の発明によれば、加熱炉の温度制御手段、レーザ変位測定器の変位測定手段、試料の供給・排出手段を予めコンピュータにプログラムし全自動で熱間において試料の変位測定ができる機能を設けることにより更に測定の効率化が図れる。
請求項5の発明によれば、試料台の端部と、試料挿入用プッシャの先端部に形成された凹凸を係合させる構造とすることにより、炉心管に試料を安定して挿入させることができる。
請求項6の発明によれば、加熱炉の端面に設けた計測窓の内側に輻射熱及び輻射光防止スリットを有する断熱材を配設し、その外側に輻射熱及び輻射光防止スリットを配設することにより、レーザ送光・受光部に輻射熱及び輻射光の入射されるのが抑制されるため、高精度の変位測定が可能となる。
請求項7の発明によれば、レーザ送光部・受光部それぞれの端面に炉内輻射光防止スリットと光学フィルタを配設したことにより、レーザ送光部・受光部に輻射光が入射されるのを抑制されるため、高精度の寸法測定が可能となる。
請求項8の発明によれば、計測窓ガラスは冷却機構を計測窓ガラスに設けることにより、加熱炉からの輻射熱による窓ガラスの変形を抑制できるため、計測窓ガラスの平面性が保たれ、レーザ光の屈折等による変位測定精度に影響を及ぼすことはない。
請求項9の発明によれば、計測窓ガラスの材質が耐熱性が高く、熱膨張係数の小さい石英ガラスで、かつ、ガラスの両面が平行であるので、高温においても変形が最小限に抑制されるとともに、ガラスの平面性が良好であるため高精度の変位測定が可能となる。
請求項10の発明によれば、耐火物試料の測定端面にR形状を持たせるようにしたので、端部の欠けを生じにくくし、かつ操作性を向上させることができる。
請求項11の発明によれば、R端部の面精度を規定したことにより、高精度の測定を行うことが可能となる。
請求項12の発明によれば、測定終了後に加熱炉の炉蓋を開放状態とし、強制的に加熱炉内部の冷却させる事により、次の測定試料の待ち時間が短縮され効率化が図れる。
【図面の簡単な説明】
【図1】 本発明の熱間変位測定装置の全体構成を説明する図である。
【図2】 自動試料供給装置の構成を説明する装置上面図である。
【図3】 自動試料供給装置の炉内試料挿入状態を説明する側面図である。
【図4】 炉蓋の詳細図である。
【図5】 自動試料供給装置の試料取り出し状況を説明する図である。
【図6】 試料台を説明する図である。
【図7】 測定試料形状を説明する図である。
【図8】 従来の熱間変位測定装置の例を説明する図である。
【符号の説明】
31…加熱炉、32…レーザ送光部、33…レーザ受光部、34…自動試料供給装置、35…排出ヤード、36…ヒータコントローラ、37…変位コントローラ、38…CPU、40,49…温度計、42…制御用熱電対、43…計測窓、45…ヒータ、46…炉入口蓋、47…炉出口蓋、48…試料、52…試料挿入用ブリッジ、52′…試料排出用ブリッジ、53…自動試料搬送台、54…試料台、55…ベルトコンベア、57…固定穴、58…試料確認センサ、59…試料挿入用エアーシリンダー。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a hot displacement measuring apparatus in which a laser beam transmitter is provided on one side of a heating furnace and a laser beam receiver is provided on the opposite side.
[0002]
[Prior art]
Conventionally, as a hot displacement measuring device, a displacement measuring system composed of a camera control unit and a camera in which two sets of illumination devices on one side of a sample heating furnace and two sets of solid scanning light receiving elements on the other side are combined with a built-in lens system. Various devices have been proposed for automatically measuring the displacement of the sample during heating by arranging each device (Japanese Patent Laid-Open Nos. 60-39540, 61-7452 and 61-172041). Issue gazette).
[0003]
However, these apparatuses are difficult to set properly because the setting of the sample is complicated and the set state of the sample cannot be visually confirmed. Furthermore, because the resolution of the displacement measuring device is low, the measurement accuracy is low for small samples, and the measurement range is as narrow as about 3 mm on one side, so that abnormally expanded samples or samples with large shrinkage cannot be measured.
[0004]
"Displacement measuring device between hot materials such as ceramics, etc., which enables high-precision measurement by using a laser displacement measuring instrument as a means of measuring displacement of such a small dimension with high resolution with sub-micron order resolution. (JP-A-3-77053).
Furthermore, Japanese Patent Laid-Open No. 2002-82077 proposes that this device has been improved to make it easy to set the sample at the appropriate position in the heating furnace, and to be able to measure the displacement between the heat with high accuracy and ease of use. .
[0005]
[Problems to be solved by the invention]
However, although the above-described displacement measuring apparatus can achieve a high resolution and can measure a sample that abnormally expands or a sample that contracts greatly, there are the following problems.
{Circle around (1)} In Japanese Patent Laid-Open No. 3-77053, setting a sample set in a heating furnace is complicated as in the prior art and it is difficult to set the sample properly.
Briefly described with reference to FIG. 8, the measurement windows 4 are provided at both ends of the furnace core tube 7 that supports the sample 8 in the heating furnace 1 to form an airtight structure in the furnace core tube 7, and exhaust is performed at both ends of the furnace core tube 7. The measurement window 4 and the inside thereof are provided with a port 9 (exhaust by a vacuum pump 19) and a gas introduction port 10 so that the displacement of the sample 8 can be measured in various atmospheres, and is fixed by a measurement window fixing hardware 17 having a water cooling structure. A heat insulating material 6 having an in-furnace radiant heat prevention slit and an in-furnace radiant light prevention slit metal fitting 5 are provided to prevent the glass in the measurement window 4 from being distorted due to heat in the furnace and causing an error. In-furnace radiation light preventing slit plate 30 having in-furnace radiation light reducing slits 30 'provided on the end faces of the light transmitting port 2' of the laser light transmitting unit 2 and the light receiving port 3 'of the laser light receiving unit 3, and the in-furnace radiation light, respectively. A reduction optical filter 29 is provided to prevent the in-furnace light from entering the laser transmitter 2 and the laser receiver 3 during a high temperature measurement and causing a displacement measurement error of the sample 8. The sample is electrically displaced from the time when the laser beam scanned horizontally with a width equal to or greater than the length of the sample at a constant speed from the laser transmitting unit 2 is interrupted, that is, the time when the output from the laser receiving unit 3 is zero. Measured and digitally displayed on the display 12, and the output signal and the output of the sample temperature measuring digital thermometer 13 (converting the detection signal of the thermocouple 20 into a digital signal) are input to the personal computer 15 via the interface 14. And the digital plotter 16 draws a relationship curve between temperature and coefficient of thermal expansion. In order to set the sample 8 in the heating furnace 1, the laser transmitter 2 or the laser receiver 3, the measurement window 4, and the heat insulating material 6 in the furnace tube 7 are removed in this order, and the sample tube is put into the furnace tube 7. After the placed sample 8 was inserted and set with an insertion jig or the like, the heat insulating material 6, the measurement window 4, the laser transmitter 2 or the laser receiver 3 were mounted.
(2) Japanese Laid-Open Patent Publication No. 2002-82077 made it easy to set the sample at the proper position of the heating furnace and made it easy to use and highly accurate measurement of the displacement of the heat. Therefore, the sample cannot be set on the measuring device outside the working hours.
[0006]
[Means for Solving the Problems]
The present invention is to solve the above-mentioned problems, and is a hot displacement measuring device that can automatically set a sample to an appropriate position in a heating furnace and can be measured even with high accuracy and good operability. The purpose is to provide.
In the present invention, the laser beam transmitter of the laser displacement measuring device is disposed on one side of the heating furnace, the laser beam receiver is disposed on the opposite side, and the direction orthogonal to the line connecting the laser beam transmitter and the laser beam receiver And a hot displacement measuring device provided with a sample supply / discharge means for automatically supplying and discharging a sample under computer control,
The sample supply / discharge means is:
A furnace inlet lid and a furnace outlet lid, which are respectively provided at the front and rear of the heating furnace, driven by an open / close air cylinder with a sample insertion bridge and a sample discharge bridge attached to the lower end;
A position sensor located near the furnace inlet lid;
A plurality of sample transport tables provided on the furnace inlet lid side and attached to the endless belt conveyor and the sample tables mounted on each sample transport table;
A sample insertion air cylinder for inserting the sample stage into a furnace tube;
A sample discharge yard provided on the furnace outlet lid side and having a moving roller;
With
By the position detection of the position sensor, the sample stage conveyed by the belt conveyor is controlled to stop in front of the furnace inlet lid,
The sample insertion bridge is positioned below the belt conveyor when the furnace inlet lid is closed, and rises to a position where the sample table is placed when the furnace inlet lid is opened,
When the sample table stops before the furnace inlet lid, it is driven by the open / close air cylinder to open the furnace inlet lid, the sample insertion bridge rises, the sample insertion bridge, the heating furnace core tube, and the sample transport table Aligned in a straight line, the tip of the sample insertion air cylinder extends to fit into a fixed hole formed in the sample table, and the sample table slides on the core tube and is driven by the air cylinder to the center of the furnace Is inserted, the furnace inlet lid and the furnace outlet lid are closed, and measurement is started.
At the end of measurement, driven by the open / close air cylinder, the furnace inlet lid and furnace outlet lid rise and open, the tip of the sample insertion air cylinder extends and fits into the fixing hole of the in-furnace sample stage, and the sample stage Is pushed out to the discharge yard through the discharge bridge on the opposite side.
Moreover, the present invention is characterized in that after the measurement is completed, the furnace lid of the heating furnace is controlled to be in an open state.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
FIG. 1 is a diagram for explaining the overall configuration of the hot displacement measuring apparatus according to the present invention, FIG. 2 is a top view of the apparatus for explaining the configuration of the automatic sample supply apparatus, and FIG. 3 is for explaining the sample insertion state in the furnace of the automatic sample supply apparatus. 4 is a detailed view of the furnace lid, FIG. 4 (a) is a view showing a state where the furnace cover is closed, FIG. 4 (b) is a view showing a state where the furnace cover is opened, and FIG. 5 is an automatic view. FIG. 6 is a diagram for explaining a sample take-out state of the sample supply device, and FIG. 6 is a diagram for explaining a sample stage.
[0008]
A sample 48 for measuring hot displacement is placed on the sample stage 54 in the heating furnace 31, and a laser transmitter 32 and a laser receiver 33 controlled by a displacement meter controller 37 are arranged on the left and right of the furnace 31, Scanning laser light is received through measurement windows (quartz glass) 43 provided on both sides of the heating furnace. A heat insulating material having radiant heat and radiant light prevention slits is arranged inside the measurement window 43, and radiant heat and radiant light prevention slits are respectively arranged and built in the outside of the measurement window 43, and each of the laser transmitting part and the laser receiving part is provided. In order to prevent the measurement window glass from being distorted by the radiant heat from the heating furnace and causing a measurement error, a cooling mechanism should be provided on the measurement window glass. At the same time, the measurement window glass is made of quartz glass having high heat resistance and a low coefficient of thermal expansion, and is configured to be a measurement window glass having both glass surfaces parallel to each other.
[0009]
A furnace inlet lid 46 equipped with a sample insertion bridge 52 (Fig. 3) operated by an air cylinder 59 (Fig. 2) that can be controlled by a CPU 38 comprising a computer etc. at the front of the heating furnace 31, and a sample discharge of the same structure at the rear A furnace outlet lid 47 equipped with a working bridge 52 '(FIG. 5) is provided. The heating furnace 31 is heated by a heater 45 that is driven and controlled by a heater controller 36, and the furnace temperature signal detected by a control thermocouple 42 is converted into a digital signal by a thermometer 49 and is captured by a CPU 38 for detection. Based on the result, the CPU 38 controls the heater controller 36. Further, the temperature of the sample is detected by the thermocouple 44 for temperature measurement, converted into a digital signal by the thermometer 40, and taken into the CPU 38. As for the hot displacement of the sample, the sample name, test temperature, heating rate, etc. are input from the input device 49 to the CPU 38, and scanned at a constant speed from the laser transmitter 32 horizontally with a width greater than the length of the sample. The time when the laser beam is interrupted, that is, the time when the output from the laser light receiving unit 33 is “0” is calculated by the CPU 38 based on the signal from the displacement controller 37, and at the same time, the temperature data obtained from the thermometer 40 And the coefficient of thermal expansion are obtained and output to the printer 39.
[0010]
As will be described in detail later, the hot displacement measuring device of the present invention has an automatic sample supply device 34 that can automatically insert and eject a sample in a heating furnace 31, and opens and closes in conjunction with the supply device. Equipped with a furnace inlet lid 46, a furnace outlet lid 47, and a discharge yard 35, the sample can be easily set continuously. Further, it is characterized in that six samples can be registered at a time, and samples can be added in the middle, and endless and highly accurate displacement measurement can be performed.
[0011]
Next, a mechanism for inserting a sample into the furnace, measuring the displacement, and discharging it will be described in detail with reference to FIGS.
In FIG. 2, the drive belt conveyor 55 is provided with 18 sample transport bases 53 in the circumferential direction, and in the drawing, nine on the upper surface side are shown. The sample 48 is set on a sample table 54 provided on the sample transport table 53. Among them, there are six sample transport bases 53 on which the sample 48 is placed up to the furnace inlet lid 46, and the transport belt conveyor 55 is driven by the drive motor 61 under the control of the CPU 38 and transported. As shown in the figure, six samples are arranged, and a position sensor 58 is provided in the vicinity of the furnace inlet lid 46 so that the sample stage 54 stops accurately in front of the furnace inlet lid 46.
[0012]
The sample stage 54 and the sample 48 are stopped in front of the furnace inlet lid 46 and are driven by an air cylinder 56 to open the furnace inlet lid 46 as shown in FIG. As shown in FIG. 4, a sample insertion bridge 52 is attached to the lower end of the furnace inlet lid 46, and in the state where the air cylinder 56 extends and the furnace inlet lid is closed (FIG. 4 (a)), The bridge 52 is positioned below the belt conveyor, and in a state where the air cylinder 56 is pulled in and the furnace inlet lid is opened (FIG. 4B), the sample insertion bridge 52 rises to a position where the sample stage is placed. ing. Accordingly, the sample insertion bridge 52 rises simultaneously with the opening of the furnace inlet lid 46, and the insertion bridge 52, the core tube 51 provided in the heating furnace 31, and the sample transport table 53 are aligned in a straight line (FIG. 5 ( a)) The tip portion 59A of the sample insertion air cylinder 59 enters the fixing hole 57 for maintaining the stability of the sample provided in the sample stage 54 (FIG. 6), and the core provided in the heating furnace 31. The tube 51 is slid and inserted to the center of the furnace, and the furnace inlet lid 46 is closed to start measurement.
[0013]
When the measurement is completed, the furnace inlet lid 46 and the furnace outlet lid 47 are lifted, and the tip of the sample insertion air cylinder 59 extends to enter the fixing hole 57 of the in-furnace sample stage 54 as shown in FIG. Into the discharge yard 35 through the discharge bridge 52 'on the opposite side (FIG. 5C). The discharge yard 35 is provided with a moving roller 61 so that the sample stage 54 moves smoothly.
[0014]
The series of operations as described above are automatically performed under the control of a program stored in the CPU 38 in advance. Note that the furnace inlet lid 46 and the furnace outlet lid 47 are forcibly opened after the measurement and the inside of the heating furnace is cooled to shorten the waiting time of the next measurement sample and to improve efficiency.
[0015]
Next, the shape of the measurement sample will be described with reference to FIG. 7A is a plan view and FIG. 7B is a front view.
As for the shape of a refractory sample for measuring hot displacement, the expansion measurement part is generally formed with an edge of 70 to 85 °, and such an edge-shaped sample lacks an edge during preparation. It is easy and the operability is lowered because it is conscious not to cause chipping, and it becomes a problem particularly when the tissue is rough and not homogeneous. Therefore, in the present invention, the expansion measuring part is formed in an R shape. As shown in the figure, when the length direction i, the height h, and the width are d,
i: 20 to 150 mm
h: 5 to 40 mm
d: 5-30 mm
The radius of curvature R is preferably 2.5 mm to 20 mm, more preferably 5 mm to 15 mm. If R is smaller than 2.5 mm, the chipping of R is likely to occur, and if it is larger than 20 mm, highly accurate displacement measurement is difficult. In addition, when the end surface has poor surface accuracy, when the end surface is displaced due to expansion, an accurate coefficient of thermal expansion cannot be obtained due to the unevenness of the measurement surface. Therefore, the surface accuracy of the R-shaped portion is the length dimension of the sample. If the sample length is large, the surface accuracy may be about 160 μm or less. However, when the length dimension of the sample is small, the surface accuracy is preferably 50 μm or less.
[0016]
【The invention's effect】
According to the first to third aspects of the invention, the sample can be automatically set at an appropriate position by the sample supply / discharge device provided in the heating furnace, so that the measurement accuracy is improved and the measurement outside the working hours can be performed. Efficiency becomes possible.
According to the invention of claim 4, the temperature control means of the heating furnace, the displacement measurement means of the laser displacement measuring instrument, and the sample supply / discharge means are programmed in advance in the computer, and the function of measuring the displacement of the sample in the hot state is fully automatic. By providing this, the efficiency of measurement can be further improved.
According to the invention of claim 5, the sample can be stably inserted into the reactor core tube by engaging the end portion of the sample stage with the irregularities formed at the tip portion of the sample insertion pusher. it can.
According to invention of Claim 6, the heat insulating material which has a radiant heat and a radiation light prevention slit is arrange | positioned inside the measurement window provided in the end surface of a heating furnace, and a radiation heat and a radiation light prevention slit are arrange | positioned on the outer side. Thus, it is possible to suppress the incidence of radiant heat and radiant light to the laser beam transmission / reception unit, thereby enabling highly accurate displacement measurement.
According to the seventh aspect of the present invention, since the in-furnace radiation light preventing slit and the optical filter are disposed on the end faces of the laser light transmitting part and the light receiving part, radiation light is incident on the laser light transmitting part and the light receiving part. Therefore, highly accurate dimension measurement is possible.
According to the invention of claim 8, since the measurement window glass is provided with a cooling mechanism on the measurement window glass, deformation of the window glass due to radiant heat from the heating furnace can be suppressed, so that the flatness of the measurement window glass is maintained and the laser is maintained. It does not affect the accuracy of displacement measurement due to light refraction.
According to the invention of claim 9, since the material of the measurement window glass is high heat resistance, quartz glass having a small coefficient of thermal expansion, and both surfaces of the glass are parallel, deformation is suppressed to a minimum even at high temperatures. In addition, since the flatness of the glass is good, highly accurate displacement measurement is possible.
According to the tenth aspect of the present invention, the measurement end face of the refractory sample is provided with an R shape, so that the end portion is less likely to be chipped and the operability can be improved.
According to the eleventh aspect of the present invention, it is possible to perform highly accurate measurement by defining the surface accuracy of the R end portion.
According to the twelfth aspect of the present invention, the waiting time of the next measurement sample can be shortened and the efficiency can be improved by opening the furnace lid of the heating furnace after completion of the measurement and forcibly cooling the inside of the heating furnace.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an overall configuration of a hot displacement measuring apparatus according to the present invention.
FIG. 2 is a top view of the apparatus for explaining the configuration of the automatic sample supply apparatus.
FIG. 3 is a side view illustrating a sample insertion state in the furnace of the automatic sample supply device.
FIG. 4 is a detailed view of the furnace lid.
FIG. 5 is a diagram for explaining a sample taking-out state of the automatic sample supply device.
FIG. 6 is a diagram illustrating a sample stage.
FIG. 7 is a diagram illustrating the shape of a measurement sample.
FIG. 8 is a diagram illustrating an example of a conventional hot displacement measuring apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 31 ... Heating furnace, 32 ... Laser transmission part, 33 ... Laser light-receiving part, 34 ... Automatic sample supply apparatus, 35 ... Discharge yard, 36 ... Heater controller, 37 ... Displacement controller, 38 ... CPU, 40, 49 ... Thermometer 42 ... Control thermocouple, 43 ... Measurement window, 45 ... Heater, 46 ... Furnace inlet lid, 47 ... Furnace outlet lid, 48 ... Sample, 52 ... Sample insertion bridge, 52 '... Sample discharge bridge, 53 ... Automatic sample transport table 54... Sample table 55. Belt conveyor 57. Fixed hole 58. Sample confirmation sensor 59. Sample air cylinder.

Claims (2)

加熱炉の一の側にレーザ変位測定器のレーザ送光部を、対向側にレーザ受光部をそれぞれ配設し、前記レーザ送光部とレーザ受光部を結ぶ線に直交する方向に、コンピュータ制御により自動で試料の供給および排出を行う試料供給・排出手段を設けた熱間変位測定装置であって、
前記試料供給・排出手段は、
加熱炉の前部と後部にそれぞれ設けられ、下端に試料挿入用、試料排出用ブリッジがそれぞれ取り付けられた開閉用エアシリンダに駆動される炉入口蓋及び炉出口蓋と、
炉入口蓋付近に配置された位置センサと、
炉入口蓋側に設けられ、エンドレスベルトコンベヤに取り付けられた複数の試料搬送台及び各試料搬送台に載せられた試料台と、
前記試料台を加熱炉炉心管内に挿入する試料挿入用エアシリンダと、
炉出口蓋側に設けられ移動ローラを有する試料排出用ヤードと、
を備え、
前記位置センサの位置検出により、ベルトコンベヤで搬送される試料台が炉入口蓋の前に停止するように制御され、
前記試料挿入用ブリッジは、炉入口蓋が閉まった状態ではベルトコンベヤより下方に位置し、炉入口蓋が開いた状態では試料台が載る位置に上昇し、
前記試料台が炉入口蓋前に停止したとき、開閉用エアシリンダに駆動されて炉入口蓋が開くとともに、試料挿入用ブリッジが上昇し、試料挿入用ブリッジ、加熱炉炉心管、試料搬送台が一直線上に並び、試料挿入用エアシリンダの先端部が延びて試料台に形成された固定穴に嵌合し、エアシリンダに駆動されて試料台が炉心管上を摺動して炉内中央まで挿入され、炉入口蓋、炉出口蓋が閉まって測定が開始され、
測定終了時、開閉用エアシリンダに駆動されて炉入口蓋、炉出口蓋が上昇して開き、試料挿入用エアシリンダの先端部が延びて炉内試料台の固定穴に嵌合し、試料台を反対側の排出用ブリッジを通して排出ヤードまで押し出すことを特徴とする熱間変位測定装置。
A laser light transmitting unit of the laser displacement measuring instrument hand side of the heating furnace, a laser light receiving portion arranged respectively on opposite sides, in the direction perpendicular to the line connecting the laser light transmitting unit and the laser light receiving section, the computer A hot displacement measuring device provided with a sample supply / discharge means for automatically supplying and discharging a sample by control ,
The sample supply / discharge means is:
A furnace inlet lid and a furnace outlet lid, which are respectively provided at the front and rear of the heating furnace, driven by an open / close air cylinder with a sample insertion bridge and a sample discharge bridge attached to the lower end;
A position sensor located near the furnace inlet lid;
A plurality of sample transport tables provided on the furnace inlet lid side and attached to the endless belt conveyor and the sample tables mounted on each sample transport table;
A sample insertion air cylinder for inserting the sample stage into a furnace tube;
A sample discharge yard provided on the furnace outlet lid side and having a moving roller;
With
By the position detection of the position sensor, the sample stage conveyed by the belt conveyor is controlled to stop in front of the furnace inlet lid,
The sample insertion bridge is positioned below the belt conveyor when the furnace inlet lid is closed, and rises to a position where the sample table is placed when the furnace inlet lid is opened,
When the sample table stops before the furnace inlet lid, it is driven by the open / close air cylinder to open the furnace inlet lid, the sample insertion bridge rises, the sample insertion bridge, the heating furnace core tube, and the sample transport table Aligned in a straight line, the tip of the sample insertion air cylinder extends to fit into a fixed hole formed in the sample table, and the sample table slides on the core tube and is driven by the air cylinder to the center of the furnace Is inserted, the furnace inlet lid and the furnace outlet lid are closed, and measurement is started.
At the end of measurement, driven by the open / close air cylinder, the furnace inlet lid and furnace outlet lid rise and open, the tip of the sample insertion air cylinder extends and fits into the fixing hole of the in-furnace sample stage, and the sample stage The hot displacement measuring device is characterized in that it is pushed out to the discharge yard through the discharge bridge on the opposite side .
測定終了後、前記加熱炉の炉蓋が開放状態に制御されることを特徴とする請求項1記載の熱間変位測定装置。The hot displacement measuring apparatus according to claim 1, wherein the furnace lid of the heating furnace is controlled to be in an open state after the measurement is completed.
JP2003125268A 2003-04-30 2003-04-30 Hot displacement measuring device Expired - Fee Related JP4225538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125268A JP4225538B2 (en) 2003-04-30 2003-04-30 Hot displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125268A JP4225538B2 (en) 2003-04-30 2003-04-30 Hot displacement measuring device

Publications (2)

Publication Number Publication Date
JP2004333154A JP2004333154A (en) 2004-11-25
JP4225538B2 true JP4225538B2 (en) 2009-02-18

Family

ID=33502585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125268A Expired - Fee Related JP4225538B2 (en) 2003-04-30 2003-04-30 Hot displacement measuring device

Country Status (1)

Country Link
JP (1) JP4225538B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692199A (en) * 2012-06-11 2012-09-26 苏州禹石自动化工程技术有限公司 Unfused silicon ingot height measuring system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261237B (en) * 2008-04-03 2010-06-09 武汉科技大学 High-temperature thermodilatometer for measuring refractory materials large test sample and method of use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692199A (en) * 2012-06-11 2012-09-26 苏州禹石自动化工程技术有限公司 Unfused silicon ingot height measuring system

Also Published As

Publication number Publication date
JP2004333154A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
TWI295490B (en) Temperature measurement method of heating plate, substrate processing apparatus and readable media for computer
JP2006078501A (en) Calibration device for infrared pyrometer of heat treatment system
CN105330136A (en) Method for manufacturing glass product, heat exchanger device and device for measuring shape of product
KR101080216B1 (en) Apparatus for inspecting glass edge and method for inspecting glass edge using thereof
JPH1038699A (en) Self-calibrating temperature probe
JP4225538B2 (en) Hot displacement measuring device
JP2000286207A (en) Apparatus and method for heat treatment
US20210388501A1 (en) Semiconductor deposition monitoring device
WO1991002968A1 (en) Device for measuring displacement of ceramic materials while they are hot
JP3844332B2 (en) Hot displacement measuring device and measuring method
JP2005068502A (en) Vapor deposition system
JP3600873B2 (en) Substrate temperature measurement unit
CN111879808A (en) Measuring device for phase transition temperature of thin film material
JP3964355B2 (en) Vapor growth apparatus and vapor growth method
JP4429405B2 (en) Substrate processing apparatus and substrate temperature measuring method
JPH10111186A (en) Method and apparatus for measuring temperature of semiconductor substrate
CN212433027U (en) Measuring device for phase transition temperature of thin film material
JPS63148154A (en) Hot displacement measuring instrument for ceramics or the like
JP4220800B2 (en) Method for identifying the trajectory of internal observation means for inspecting a coke oven carbonization chamber using an inspection apparatus for the coke oven carbonization chamber and an inspection method for the coke oven carbonization chamber
JPH0663988B2 (en) Displacement measuring device for hot ceramics
JP3130908B2 (en) Temperature measurement method for heat treatment furnace for substrates
US6051844A (en) Scanning system for rapid thermal cycle stress/curvature measurement
JP2000114195A (en) Substrate processing apparatus, jig used for calibration of radiation termometer thereof, and calibrating method of the same
JP2681651B2 (en) Alignment method
KR100411282B1 (en) Method and apparatus for measuring temperature of body in heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees