JP3366538B2 - Temperature measuring apparatus and substrate heat treatment apparatus using the same - Google Patents

Temperature measuring apparatus and substrate heat treatment apparatus using the same

Info

Publication number
JP3366538B2
JP3366538B2 JP31901296A JP31901296A JP3366538B2 JP 3366538 B2 JP3366538 B2 JP 3366538B2 JP 31901296 A JP31901296 A JP 31901296A JP 31901296 A JP31901296 A JP 31901296A JP 3366538 B2 JP3366538 B2 JP 3366538B2
Authority
JP
Japan
Prior art keywords
radiation
temperature
semi
intensity
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31901296A
Other languages
Japanese (ja)
Other versions
JPH10160579A (en
Inventor
清裕 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP31901296A priority Critical patent/JP3366538B2/en
Publication of JPH10160579A publication Critical patent/JPH10160579A/en
Application granted granted Critical
Publication of JP3366538B2 publication Critical patent/JP3366538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、被測定体からの
熱放射を基に被測定体の温度を測定する温度測定装置、
およびそれによる液晶用ガラス基板、半導体ウエハ等の
基板(以下「基板」という。)の温度測定結果を基に基
板の加熱の制御を行う基板熱処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring device for measuring the temperature of an object to be measured based on heat radiation from the object to be measured,
Also, the present invention relates to a substrate heat treatment apparatus for controlling heating of a substrate based on a temperature measurement result of a substrate such as a glass substrate for liquid crystal and a semiconductor wafer (hereinafter referred to as “substrate”).

【0002】[0002]

【従来の技術】従来から、半導体基板の熱処理装置等に
おける温度測定方法としては、特開平6−341905
号公報に示されるような非接触型の技術がある。すなわ
ち、熱処理の対象となる基板を水平に支持するととも
に、その基板に近接してその上下にそれぞれ上部壁およ
び下部壁が設けられた熱処理チャンバにおいて、下部壁
の下のクーリング・プレート内に導管を設けて導管に入
射する熱放射を放射高温計に導き、そこで捉えた放射強
度を基に基板の温度Tを計測している。
2. Description of the Related Art Conventionally, as a temperature measuring method in a heat treatment apparatus for semiconductor substrates, etc., Japanese Patent Laid-Open No. 6-341905
There is a non-contact type technology as disclosed in the publication. That is, in a heat treatment chamber in which a substrate to be heat-treated is supported horizontally, and an upper wall and a lower wall are provided close to the substrate and above and below the substrate, a conduit is provided in a cooling plate below the lower wall. The thermal radiation incident on the conduit is provided to the radiation pyrometer, and the temperature T of the substrate is measured based on the radiation intensity captured there.

【0003】具体的には、基板と下方の反射板との間に
生ずる多重反射を考慮しつつ、下部壁の反射率r=1と
みなすことによって熱放射の導管への入射放射強度Iと
黒体放射強度L0(T)の関係を近似的にI=L0(T)と
し、さらに黒体放射強度L0(T)としてステファン−ボ
ルツマンの式を用いて得られた式を基礎としている。そ
して、導管への入射放射強度Iを測定し、その入射放射
強度Iから前述の式を用いてTを求めている。
Specifically, considering the multiple reflections occurring between the substrate and the lower reflector, by considering the reflectance of the lower wall to be r = 1, the radiation intensity I of the heat radiation incident on the conduit and the black The relation between the body radiation intensity L0 (T) is approximately I = L0 (T), and the black body radiation intensity L0 (T) is based on the formula obtained by using the Stefan-Boltzmann formula. Then, the incident radiation intensity I to the conduit is measured, and T is obtained from the incident radiation intensity I using the above equation.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記の技術
では下部壁が、その反射率r=1を完全に満たすものと
して基板の温度T0を求めているが、現実の下部壁では
反射率r<1であり、完全に「1」となるような材質は
知られていない。そのため、上記のような方法では入射
放射強度Iにより求めた温度Tと実際の基板の真温度と
は差異が生じてしまい精度の高い温度測定が行えなかっ
た。
By the way, in the above technique, the substrate temperature T0 is determined on the assumption that the lower wall completely satisfies the reflectance r = 1. However, in the actual lower wall, the reflectance r < It is 1, and the material which becomes "1" completely is not known. Therefore, in the above method, the temperature T determined by the incident radiation intensity I and the actual true temperature of the substrate are different from each other, so that the temperature cannot be measured with high accuracy.

【0005】この発明は、従来技術における上述の問題
の克服を意図しており、精度の高い温度測定を行うこと
ができる温度測定装置およびそれを用いた基板熱処理装
置を提供することを目的とする。
The present invention is intended to overcome the above-mentioned problems in the prior art, and an object of the present invention is to provide a temperature measuring apparatus and a substrate heat treatment apparatus using the temperature measuring apparatus which can perform highly accurate temperature measurement. .

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の請求項1の装置は、被測定体からの熱放
射を基に当該被測定体の温度を測定する温度測定装置で
あって、前記熱放射を不完全に透過する半透鏡と、前記
半透鏡を透過した前記熱放射の強度である半透過放射強
度を求める第1放射強度測定手段と、前記半透鏡を透過
していない状態の前記熱放射の強度である無反射放射強
度を求める第2放射強度測定手段と、前記半透過放射強
度および前記無反射放射強度を基に前記被測定体の温度
を求める温度算出手段と、を備え、前記半透鏡の前記第
1放射強度測定手段側の面の前記第1放射強度測定手段
に対向する部分以外の部分が黒化処理されていることを
特徴とする。
In order to achieve the above object, the apparatus according to claim 1 of the present invention is a temperature measuring apparatus for measuring the temperature of an object to be measured based on heat radiation from the object to be measured. there are, transmission and half mirror incompletely transmitted through the heat radiation, the a first radiation intensity measuring means for obtaining a semi-permeable radiation intensity which is the intensity of the heat radiation that has passed through the half Torukyo, the semi Torukyo
Second radiation intensity measuring means for obtaining the non-reflected radiation intensity which is the intensity of the thermal radiation in a non- operating state, and temperature calculation for obtaining the temperature of the object to be measured based on the semi-transmitted radiation intensity and the non-reflected radiation intensity. Means, and the first of the semi-transparent mirror
1. First radiation intensity measuring means on the surface on the side of the first radiation intensity measuring means
The part other than the part facing the
Characterize.

【0007】また、この発明の請求項2の装置は、請求
項1の温度測定装置であって、前記半透鏡が前記第1放
射強度測定手段に対向する位置を中心とした円盤状であ
ることを特徴とする。
The apparatus according to claim 2 of the present invention is the temperature measuring apparatus according to claim 1, wherein the semi-transparent mirror has a disk shape centered on a position facing the first radiation intensity measuring means. Is characterized by.

【0008】[0008]

【0009】また、この発明の請求項の装置は、請求
項1または請求項2の温度測定装置であって、前記第1
放射強度測定手段および前記第2放射強度測定手段また
は前記被測定体のうちのいずれかを回転させる回転手段
をさらに備え、前記回転手段により前記第1放射強度測
定手段および前記第2放射強度測定手段のそれぞれの前
記被測定体に対する相対的位置が互いに入れ替わること
を特徴とする。
[0009] The device according to claim 3 of the present invention, wherein
The temperature measuring device according to claim 1 or 2 , wherein the first
Radiation intensity measuring means and rotation means for rotating either the second radiation intensity measuring means or the object to be measured are further provided, and the first radiation intensity measuring means and the second radiation intensity measuring means by the rotation means. The relative position of each of the above with respect to the measured object is replaced with each other.

【0010】また、この発明の請求項の装置は、被測
定体からの熱放射を基に当該被測定体の温度を測定する
温度測定装置であって、第1波長および第2波長の前記
熱放射を含む熱放射群のうち、前記第1波長の熱放射を
不完全に透過するとともに、前記第2波長の前記熱放射
前記第1波長に対する透過率よりも高い透過率で透過
する半透鏡と、前記半透鏡を透過した前記熱放射群のう
ち前記第1波長の熱放射の強度である半透過放射強度お
よび前記第2波長の熱放射の強度である無反射放射強度
を求める放射強度測定手段と、前記半透過放射強度およ
び前記無反射放射強度を基に前記被測定体の温度を求め
る温度算出手段と、を備える。
An apparatus according to a fourth aspect of the present invention is a temperature measuring apparatus for measuring the temperature of an object to be measured on the basis of heat radiation from the object to be measured, which has the first wavelength and the second wavelength. Of the heat radiation group including heat radiation, the heat radiation of the first wavelength is incompletely transmitted, and the heat radiation of the second wavelength is transmitted at a transmittance higher than the transmittance for the first wavelength.
And a semi-transmissive radiation intensity which is the intensity of the thermal radiation of the first wavelength and a non-reflective radiation intensity which is the intensity of the thermal radiation of the second wavelength of the thermal radiation group transmitted through the semi-transparent mirror. Radiation intensity measurement means and temperature calculation means for obtaining the temperature of the object to be measured based on the semi-transmission radiation intensity and the non-reflection radiation intensity.

【0011】また、この発明の請求項の装置は、請求
の温度測定装置であって、前記半透鏡が前記放射強
度測定手段に対向する位置を中心とした円盤状であるこ
とを特徴とする。
A fifth aspect of the present invention is the temperature measuring apparatus according to the fourth aspect, wherein the semi-transparent mirror has a disk shape centered on a position facing the radiation intensity measuring means. And

【0012】また、この発明の請求項の装置は、請求
項4または請求項5の温度測定装置であって、前記半透
鏡の前記放射強度測定手段側の面の前記放射強度測定手
段に対向する部分以外の部分が黒化処理されていること
を特徴とする。
[0012] The apparatus of claim 6 of the present invention, wherein
The temperature measuring device according to claim 4 or 5 , wherein a portion of the surface of the semi-transparent mirror on the side of the radiation intensity measuring means other than the portion facing the radiation intensity measuring means is blackened. To do.

【0013】[0013]

【0014】さらに、この発明の請求項の装置は、請
求項1ないし請求項のうちのいずれかの温度測定装置
を温度測定手段として備え、前記被測定体を基板とする
とともに加熱手段によって前記基板を加熱する基板熱処
理装置であって、前記温度測定手段によって求められた
前記基板の温度をもとに前記加熱手段の動作制御を行う
加熱制御手段を備える。
Further, an apparatus according to claim 7 of the present invention comprises the temperature measuring device according to any one of claims 1 to 6 as a temperature measuring means, and the object to be measured is a substrate and a heating means. A substrate heat treatment apparatus for heating the substrate, comprising heating control means for controlling the operation of the heating means based on the temperature of the substrate obtained by the temperature measuring means.

【0015】[0015]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【0016】[0016]

【1.発明の原理】各実施の形態の説明の前に、以下に
おいてこの発明の温度測定原理について説明する。
[1. Prior to the description of each embodiment, the principle of temperature measurement of the present invention will be described below.

【0017】まず基板において、光の透過はないものと
してその放射率εおよび反射率ρ(いずれも「0」〜
「1」の値をとる)の関係は、次式のようになる。
First, assuming that the substrate does not transmit light, its emissivity ε and reflectance ρ (each of "0" to
The relationship of (taking a value of “1” ) is as follows.

【0018】[0018]

【数1】 [Equation 1]

【0019】また、半透鏡を透過しない基板からの熱放
射の放射強度である無反射放射強度I0は測定系のゲイ
ンも含めた温度Tの黒体の放射強度L0(T)を用いて
表わすと、次式となる。
The non-reflective radiant intensity I0, which is the radiant intensity of the thermal radiation from the substrate that does not pass through the semi-transparent mirror, is expressed using the radiant intensity L0 (T) of the black body at the temperature T including the gain of the measurement system. , Becomes the following formula.

【0020】[0020]

【数2】 [Equation 2]

【0021】ただし、この式(2)でT0は基板の温度
を表わしている。なお、この発明においては半透鏡は必
ずしも反射率が50%である鏡を意味するものではな
く、反射率が0%および100%以外のその間の反射率
の鏡を意味するものである。したがって、この発明にお
いて不完全に透過とは、透過率が0%および100%以
外のその間であることを意味している。
However, in this equation (2), T0 represents the temperature of the substrate. In the present invention, the semi-transparent mirror does not necessarily mean a mirror having a reflectance of 50%, but a mirror having a reflectance between 0% and 100%. Therefore, incomplete transmission in the present invention means that the transmittance is between 0% and 100%.

【0022】また、基板を半透鏡に近づけると基板と半
透鏡との間で多重反射を起こす。図1は基板と半透鏡と
の間の熱放射の多重反射の説明図である。以下において
半透鏡の反射率rおよび透過率t(いずれも「0」〜
「1」の値をとる)を用いて説明する。
When the substrate is brought close to the semi-transparent mirror, multiple reflection occurs between the substrate and the semi-transparent mirror. FIG. 1 is an illustration of multiple reflection of thermal radiation between a substrate and a semi-transparent mirror. In the following, the reflectance r and the transmittance t of the semi-transparent mirror (each of "0" to
The value will be “1”).

【0023】まず基板Wの下面から放射された無反射放
射強度I0の熱放射は半透鏡HMにおいて上方にrI0の
強度で反射されるとともに、下方にtI0の強度で透過
する。そして反射された熱放射は基板Wの下面において
rρI0の強度で反射される。その反射された熱放射は
再び半透鏡HMに入射しtrρI0の強度で透過する。
このように基板Wと半透鏡HMとの間で多重反射がおき
る場合に半透鏡HMから基板Wによる反射を経て再び半
透鏡HMに戻る1往復の後の熱放射の強度はrρ倍に減
衰している。したがって、最終的に半透鏡HMの下方に
おいて捉えられる熱放射の強度である半透過放射強度I
は1回〜無限回の多重反射の後に半透鏡HMを透過する
熱放射の強度の和になる。そして、この和は初項tI
0、公比rρの等比級数となり、次式のようになる。
First, the thermal radiation of non-reflected radiation intensity I0 radiated from the lower surface of the substrate W is reflected upward by the semitransparent mirror HM with an intensity of rI0 and transmitted downward with an intensity of tI0. The reflected heat radiation is then reflected at the lower surface of the substrate W with an intensity of rρI0. The reflected heat radiation is again incident on the semi-transparent mirror HM and is transmitted with an intensity of trρI0.
In this way, when multiple reflections occur between the substrate W and the semi-transparent mirror HM, the intensity of thermal radiation after one round trip returning from the semi-transparent mirror HM to the semi-transparent mirror HM via the reflection by the substrate W is attenuated by rρ times. ing. Therefore, the semi-transmissive radiation intensity I, which is the intensity of the thermal radiation finally captured below the semi-transparent mirror HM.
Is the sum of the intensities of the thermal radiation transmitted through the semi-transparent mirror HM after one to an infinite number of multiple reflections. And this sum is the first term tI
It becomes a geometric series of 0 and the common ratio rρ, and is given by the following equation.

【0024】[0024]

【数3】 [Equation 3]

【0025】そして、以上3式を連立して、基板Wの放
射率ε、反射率ρおよび基板Wの放射強度L0(T0)に
ついて解くと以下の3式になる。
The following three equations are obtained by solving the emissivity ε, the reflectance ρ of the substrate W and the radiation intensity L0 (T0) of the substrate W by solving the above three equations.

【0026】[0026]

【数4】 [Equation 4]

【0027】[0027]

【数5】 [Equation 5]

【0028】[0028]

【数6】 [Equation 6]

【0029】以下の実施の形態では半透過放射強度I、
無反射放射強度I0を測定し、その値と予め分かってい
る半透鏡の反射率r、透過率tの値を式(4)、式
(5)、式(6)に用いて放射率ε、反射率ρおよび基
板Wの放射強度L0(T0)を求める。さらに、図2に示
すような黒体の温度Tに対する放射強度L0(T)を示
すグラフに式(6)から求めた基板Wの放射強度L0(T
0)を用いて基板Wの温度T0を求めている。
In the following embodiments, the semi-transmission radiation intensity I,
The non-reflected radiation intensity I0 is measured, and the values thereof and the values of the reflectance r and the transmittance t of the semi-transparent mirror which are known in advance are used in the equations (4), (5), and (6) to calculate the emissivity ε, The reflectance ρ and the radiation intensity L0 (T0) of the substrate W are obtained. Further, the radiation intensity L0 (T of the substrate W obtained from the equation (6) is shown in the graph showing the radiation intensity L0 (T) with respect to the temperature T of the black body as shown in FIG.
0) is used to determine the temperature T0 of the substrate W.

【0030】さらに、シリコン基板Wの放射率εとその
薄膜の膜厚dとの関係式(藤原史郎(編著):光学薄
膜,12/18,共立出版(1986)参照)は次式で与えられ
る。
Further, the relational expression between the emissivity ε of the silicon substrate W and the film thickness d of the thin film (see Shiro Fujiwara (ed.): Optical thin film, 12/18, Kyoritsu Shuppan (1986)) is given by the following formula. .

【0031】[0031]

【数7】 [Equation 7]

【0032】この式においてρ1は薄膜と空気の境界で
の反射率、ρ2は薄膜とSiの境界での反射率、θは測
定方向と基板Wの法線の角度、λは測定波長、nは薄膜
の屈折率、dは膜厚を表わしている。
In this equation, ρ1 is the reflectance at the boundary between the thin film and air, ρ2 is the reflectance at the boundary between the thin film and Si, θ is the angle between the measurement direction and the normal to the substrate W, λ is the measurement wavelength, and n is the measurement wavelength. The refractive index of the thin film and d represent the film thickness.

【0033】この式(7)にフレネルの公式により求め
たρ1、ρ2や、予め測定されているθ、λ、n、および
式(4)により求められた基板Wの放射率εを用いて基
板Wの膜厚dを求める。
Using ρ1 and ρ2 obtained by the Fresnel's formula, θ, λ, n measured in advance, and the emissivity ε of the substrate W obtained by the equation (4) in the equation (7), The film thickness d of W is obtained.

【0034】以下に示す実施の形態においては、以上の
ようにして求めた基板Wの温度T0により温度制御を行
うとともに、膜厚dが所定値に達しているかどうかによ
り加熱・成膜処理の終了を制御する。
In the embodiment described below, the temperature control is performed by the temperature T0 of the substrate W obtained as described above, and the heating / film forming process is ended depending on whether the film thickness d has reached a predetermined value. To control.

【0035】[0035]

【2.第1の実施の形態】 <2−1.機構的構成および動作>図3は第1の実施の
形態の基板熱処理装置1の断面図である。同図、図4お
よび図6の各図においては、水平面をX−Y面とし、鉛
直方向をZ軸方向とする3次元座標系X−Y−Zが定義
されている。以下、図3を参照しつつこの装置の構成を
説明していく。
[2. First Embodiment <2-1. Mechanical Structure and Operation> FIG. 3 is a cross-sectional view of the substrate heat treatment apparatus 1 of the first embodiment. In each of FIG. 4, FIG. 4 and FIG. 6, a three-dimensional coordinate system XYZ having a horizontal plane as an XY plane and a vertical direction as a Z-axis direction is defined. The configuration of this device will be described below with reference to FIG.

【0036】第1の実施の形態の基板熱処理装置1は主
に炉体10、ランプ20、石英ガラス30、基板支持部
40、リニアモータ50、温度・膜厚測定部60、制御
部70、ランプドライバ80、モータドライバ90とを
備えている。
The substrate heat treatment apparatus 1 according to the first embodiment mainly comprises a furnace body 10, a lamp 20, a quartz glass 30, a substrate supporting section 40, a linear motor 50, a temperature / film thickness measuring section 60, a control section 70, and a lamp. A driver 80 and a motor driver 90 are provided.

【0037】炉体10は上部をリフレクター110、下
部をハウジング120とする箱状の炉体であり、それら
の内部には多数の冷却管130(図3には一部にのみ参
照番号を記載)が設けられている。また、炉体10の側
面にはガス供給口GIおよびガス排出口GOが、ハウジ
ング120にはガス供給管140およびガス排出管15
0が設けられており、加熱・成膜処理の際に処理ガスが
所定のタイミングで供給される。
The furnace body 10 is a box-shaped furnace body having an upper portion as a reflector 110 and a lower portion as a housing 120, and a large number of cooling pipes 130 (only some of the reference numerals are shown in FIG. 3) inside thereof. Is provided. Further, a gas supply port GI and a gas discharge port GO are provided on the side surface of the furnace body 10, and a gas supply pipe 140 and a gas discharge pipe 15 are provided in the housing 120.
0 is provided, and the processing gas is supplied at a predetermined timing during the heating / film formation processing.

【0038】ランプ20はリフレクター110の下面に
多数設けられ(図3には一部にのみ参照番号を記載)点
灯時にはその熱放射により基板Wを加熱する。
A large number of lamps 20 are provided on the lower surface of the reflector 110 (only a part of the reference numeral is shown in FIG. 3), and the substrate W is heated by its heat radiation during lighting.

【0039】石英ガラス30はランプ20の下方に設け
られ、それによる熱放射を透過する。
The quartz glass 30 is provided below the lamp 20 and transmits the heat radiation by the quartz glass 30.

【0040】基板支持部40は、基板Wを支持するとと
もに、そのZ軸方向を軸とした回転により基板Wを回転
させる。
The substrate support section 40 supports the substrate W and rotates the substrate W by rotating the substrate W around the Z-axis direction.

【0041】リニアモータ50は磁気浮上式のリニアモ
ータであり基板Wを支持した基板支持部40を回転させ
る。
The linear motor 50 is a magnetic levitation type linear motor and rotates the substrate support portion 40 supporting the substrate W.

【0042】温度・膜厚測定部60は、後に詳述するが
基板Wからの熱放射強度を測定し、それを基に基板Wの
温度T0や膜厚d等を求め、それらの信号を制御部70
に送る。
As will be described in detail later, the temperature / film thickness measuring unit 60 measures the heat radiation intensity from the substrate W, obtains the temperature T0, the film thickness d, etc. of the substrate W based on the measured intensity, and controls those signals. Part 70
Send to.

【0043】制御部70は後に詳述するように、後述の
ランプドライバ80にランプ20の制御信号を送った
り、後述のモータドライバ90に所定のタイミングで駆
動信号を送ったりする。
As will be described in detail later, the control unit 70 sends a control signal for the lamp 20 to a lamp driver 80, which will be described later, and sends a drive signal to a motor driver 90, which will be described later, at a predetermined timing.

【0044】ランプドライバ80は制御部70からの制
御信号を受けてランプ20に電力を供給する。
The lamp driver 80 receives a control signal from the control unit 70 and supplies electric power to the lamp 20.

【0045】モータドライバ90は制御部70からの駆
動信号を受けてリニアモータ50に電力を供給する。
The motor driver 90 receives a drive signal from the control unit 70 and supplies electric power to the linear motor 50.

【0046】つぎに、要部についてさらに詳細に説明し
ていく。
Next, the main part will be described in more detail.

【0047】基板支持部40は基板Wの周縁部分を支持
する支持リング410とその下面の数点において支持す
る支持脚420とから成り、その支持脚420の下端に
はリニアモータ50の浮揚部510が設けられ、基板W
の周縁に沿うように設けられた円環状のレール520上
面に嵌合している。そして、モータドライバ90からの
電力により浮揚部510が浮揚してレールに沿って摺動
し、基板支持部40を回転駆動し基板Wを回転させる。
この回転は基板Wの加熱を基板Wの各部分で均一にする
とともに、後述するように基板Wからの半透過放射強度
Iおよび無反射放射強度I0を測定する基板Wの測定対
象位置をプローブ620aとプローブ620bとで共通
にするために行われている。
The substrate supporting portion 40 comprises a supporting ring 410 for supporting the peripheral portion of the substrate W and supporting legs 420 for supporting the lower surface of the supporting ring 410 at several points, and the levitation portion 510 of the linear motor 50 is provided at the lower end of the supporting leg 420. Is provided on the substrate W
Is fitted to the upper surface of an annular rail 520 provided along the peripheral edge of the. Then, the levitation unit 510 levitates by the electric power from the motor driver 90 and slides along the rail, and the substrate supporting unit 40 is rotationally driven to rotate the substrate W.
This rotation makes the heating of the substrate W uniform in each part of the substrate W and, as will be described later, sets the measurement target position of the substrate W for measuring the semi-transmitted radiation intensity I and the non-reflected radiation intensity I0 from the substrate W to the probe 620a. And the probe 620b are commonly used.

【0048】温度・膜厚測定部60は透過板610、プ
ローブ620a,620b、放射高温計630a,63
0b、演算部640より成っている。
The temperature / film thickness measuring unit 60 includes a transmission plate 610, probes 620a and 620b, and radiation pyrometers 630a and 63.
0b, an arithmetic unit 640.

【0049】図4は第1の実施の形態の透過板610の
平面図である。透過板610は半透鏡611の周囲に透
明部材612が設けられた円盤状部材であり、ハウジン
グ120の上面に固設されている。
FIG. 4 is a plan view of the transmission plate 610 according to the first embodiment. The transparent plate 610 is a disk-shaped member in which a transparent member 612 is provided around the semi-transparent mirror 611, and is fixed to the upper surface of the housing 120.

【0050】半透鏡611は後述するプローブ620a
を中心とした円盤状で、上面が鏡面となっており上方か
らの熱放射を不完全に反射および透過する。また、半透
鏡611の下面においてはプローブ620aに対向する
部分は透明であり、さらにそれ以外の部分は黒化処理さ
れており、上方からの熱放射を全吸収して反射しない。
The semi-transparent mirror 611 is a probe 620a described later.
It has a disk shape centered on, and its upper surface is a mirror surface, and the heat radiation from above is imperfectly reflected and transmitted. Further, on the lower surface of the semi-transparent mirror 611, the portion facing the probe 620a is transparent, and the other portions are blackened, so that the heat radiation from above is completely absorbed and not reflected.

【0051】また、透明部材612は上方の基板Wから
の熱放射をほぼ完全に透過する性質を持っており、その
下方に設けられた後述するプローブ620bに入射さ
せ、無反射放射強度I0を後述する放射高温計630b
によって正確に測定することができる。
Further, the transparent member 612 has a property of almost completely transmitting the heat radiation from the upper substrate W, and it is incident on a probe 620b, which will be described later, provided below the transparent member 612, and the non-reflected radiation intensity I0 will be described later. Radiation pyrometer 630b
Can be measured accurately.

【0052】プローブ620a,620bは入射する熱
放射を伝える光ファイバであり、図中の上端において熱
放射を放射高温計630a,630bに送る。
The probes 620a and 620b are optical fibers for transmitting the incident heat radiation, and send the heat radiation to the radiation pyrometers 630a and 630b at the upper end in the figure.

【0053】放射高温計630a,630bは入射する
高温の熱放射を電圧すなわち、それぞれ半透過放射強度
Iおよび無反射放射強度I0を表わす電気信号に変換
し、演算部640に送る。
The radiation pyrometers 630a and 630b convert the incident high-temperature thermal radiation into electric signals representing the voltage, that is, the semi-transmissive radiation intensity I and the non-reflected radiation intensity I0, respectively, and send them to the computing unit 640.

【0054】なお、上記、プローブ620aと放射高温
計630aとを併せたものが第1放射強度測定手段に相
当し、プローブ620bと放射高温計630bとを併せ
たものが第2放射強度測定手段に相当する。
The combination of the probe 620a and the radiation pyrometer 630a corresponds to the first radiation intensity measuring means, and the combination of the probe 620b and the radiation pyrometer 630b serves as the second radiation intensity measuring means. Equivalent to.

【0055】さらに、演算部640は図示しないCPU
およびメモリから成り、放射高温計630a,630b
から時々刻々と送られてくる半透過放射強度Iおよび無
反射放射強度I0を示す信号のうち、前述のように回転
する基板Wの測定対象位置がプローブ620aおよび6
20bのそれぞれの上方に位置したタイミングで測定さ
れた値を1組の放射強度信号として用いる。すなわち、
両放射強度を求めるタイミングを基板W上の同じ位置を
測定するために同期をとっている。こうすることによ
り、半透過放射強度Iと無反射放射強度I0を求める測
定対象位置を共通にしている。そのため、より精度の高
い温度測定および膜厚測定を行うことができる。
Further, the arithmetic unit 640 is a CPU (not shown).
And radiation thermometers 630a and 630b.
Of the signals indicating the semi-transmissive radiation intensity I and the non-reflected radiation intensity I0 sent from time to time from the probe 620a and 6 on the rotating substrate W as described above.
The values measured at the timings above each of the 20b are used as a set of radiant intensity signals. That is,
The timings for obtaining both radiation intensities are synchronized in order to measure the same position on the substrate W. By doing so, the measurement target positions for obtaining the semi-transmission radiation intensity I and the non-reflection radiation intensity I0 are made common. Therefore, more accurate temperature measurement and film thickness measurement can be performed.

【0056】そして、このようにして得られた半透過放
射強度Iおよび無反射放射強度I0と、予めメモリに記
憶されていた発明の原理の項で用いた各パラメータとを
用いて基板Wの測定対象位置の温度T0、放射率ε、反
射率ρおよび膜厚dを求め、それらを制御部70に送
る。
Then, the substrate W is measured using the semi-transmitted radiation intensity I and the non-reflected radiation intensity I 0 thus obtained and the parameters used in the section of the principle of the invention stored in advance in the memory. The temperature T0, the emissivity ε, the reflectance ρ, and the film thickness d at the target position are obtained and sent to the control unit 70.

【0057】<2−2.処理および制御>図5は第1の
実施の形態の基板熱処理装置1の制御の流れを示す図で
ある。以下、図5を用いてこの装置における加熱・成膜
処理およびランプ20の制御について説明していく。
<2-2. Processing and Control> FIG. 5 is a diagram showing a control flow of the substrate heat treatment apparatus 1 of the first embodiment. The heating / film-forming process and control of the lamp 20 in this apparatus will be described below with reference to FIG.

【0058】まず、図示しない搬入口から基板Wがデバ
イス面を下にして搬入され、基板支持部40に支持され
る。ここで基板Wをデバイス面を下にした状態で支持す
るのは温度・膜厚測定部60によって膜厚dを測定する
ために、デバイス面に生成される薄膜からの熱放射をプ
ローブ620a,620bに入射させる必要があるため
である。
First, the substrate W is carried in from the carry-in port (not shown) with the device surface facing down, and is supported by the substrate supporting portion 40. In order to measure the film thickness d by the temperature / film thickness measuring unit 60, the substrate W is supported with the device surface facing down. Therefore, the heat radiation from the thin film generated on the device surface is measured by the probes 620a and 620b. This is because it is necessary to make it incident on.

【0059】つぎに、制御部70は図示しない処理ガス
供給手段に制御信号を送り加熱・成膜処理のための処理
ガスを炉体10内に供給させるとともに、ランプドライ
バ80に制御信号を送り、ランプ20を点灯して加熱を
開始する。それと同時にモータドライバ90に駆動信号
を送り、リニアモータ50を駆動して基板支持部40を
回転させることによって基板Wを回転させる。なお、以
下の加熱・成膜処理中において基板Wの回転は続けられ
る。
Next, the control unit 70 sends a control signal to a process gas supply means (not shown) to supply the process gas for heating / film forming process into the furnace body 10, and also sends a control signal to the lamp driver 80. The lamp 20 is turned on to start heating. At the same time, a drive signal is sent to the motor driver 90 to drive the linear motor 50 to rotate the substrate support portion 40, thereby rotating the substrate W. The rotation of the substrate W is continued during the following heating / film forming process.

【0060】ランプ20から発せられた放射熱は石英ガ
ラス30を透過して基板Wに至り、それにより基板Wは
加熱され、その温度に対応する熱放射が発生する。
Radiant heat emitted from the lamp 20 passes through the quartz glass 30 and reaches the substrate W, whereby the substrate W is heated and thermal radiation corresponding to the temperature is generated.

【0061】透過板610の半透鏡611を透過した基
板Wからの熱放射はプローブ620aに入射し、放射高
温計630aに導かれる。同様に、透過板610の透明
部材612を透過した基板Wからの熱放射はプローブ6
20bに入射し、放射高温計630bに導かれる。
The heat radiation from the substrate W that has passed through the semitransparent mirror 611 of the transmission plate 610 enters the probe 620a and is guided to the radiation pyrometer 630a. Similarly, the heat radiation from the substrate W transmitted through the transparent member 612 of the transmission plate 610 is generated by the probe 6
It is incident on 20b and is guided to the radiation pyrometer 630b.

【0062】そして、放射高温計630aからは半透鏡
611を透過した熱放射の半透過放射強度Iおよび、放
射高温計630bからは透明部材612を透過した熱放
射の無反射放射強度I0のそれぞれを表わす放射強度信
号が演算部640に送られる。
Then, from the radiation pyrometer 630a, the semi-transmission radiation intensity I of the thermal radiation transmitted through the semi-transparent mirror 611, and from the radiation pyrometer 630b, the non-reflection radiation intensity I0 of the thermal radiation transmitted through the transparent member 612, respectively. The radiant intensity signal represented is sent to the computing unit 640.

【0063】演算部640では半透過放射強度I、無反
射放射強度I0および、予め得られていて演算部640
内部のメモリに記憶されている半透鏡611の透過率
t、反射率r等をもとに発明の原理で述べた式(4)、
式(5),式(6)を用いて基板Wの温度T0、基板W
の放射率εおよび反射率ρを求めるとともに、予め求め
られてメモリに記憶されている前述のρ1、ρ2、θ、
λ、n、および式(4)により求められたεを式(7)
に用いて基板Wに形成された膜厚dを求める。
In the calculation unit 640, the semi-transmitted radiation intensity I, the non-reflected radiation intensity I0, and the calculation unit 640 obtained in advance.
Formula (4) described in the principle of the invention based on the transmittance t, the reflectance r, etc. of the semi-transparent mirror 611 stored in the internal memory,
Using the equations (5) and (6), the temperature T0 of the substrate W, the substrate W
The emissivity ε and the reflectance ρ of the above are obtained, and the above-mentioned ρ1, ρ2, θ, which are obtained in advance and stored in the memory,
λ, n, and ε obtained by the equation (4) are given by the equation (7)
Then, the film thickness d formed on the substrate W is obtained.

【0064】なお、第1の実施の形態では図2のような
黒体の温度Tに対する放射強度L0(T)を示すグラフ
に相当する変換テーブルを演算部640内のメモリに記
憶している。そして、これを用いて基板Wの温度T0を
求めている。
In the first embodiment, the conversion table corresponding to the graph showing the radiation intensity L0 (T) with respect to the temperature T of the black body as shown in FIG. 2 is stored in the memory in the arithmetic unit 640. Then, using this, the temperature T0 of the substrate W is obtained.

【0065】そして、演算部640で求められた基板W
の温度T0は温度信号として制御部70に送られ、それ
を基に制御部70は基板Wの温度を所定値に保つために
制御信号をランプドライバ80に送り、ランプドライバ
80はその制御信号に応じた電力をランプ20に供給す
る。
Then, the substrate W obtained by the arithmetic unit 640
Of temperature T0 is sent to the control unit 70 as a temperature signal, and based on this, the control unit 70 sends a control signal to the lamp driver 80 in order to keep the temperature of the substrate W at a predetermined value. The corresponding power is supplied to the lamp 20.

【0066】また、演算部640で求められた膜厚信号
は温度信号と同様に制御部70に送られ、制御部70で
は求めた膜厚dが所定の厚さに達しているかどうかを判
断し、所定の膜厚に達していたか否かに応じてランプ2
0のパワーを指示する制御信号をランプドライバ80に
送る。ランプドライバ80はその制御信号がONである
間は、上記のような基板Wの温度T0を一定に保つ温度
制御を行いつつ基板Wの加熱・成膜処理を行っていき、
制御信号がOFFになるとランプ20への電力の供給を
停止し加熱・成膜処理を終了する。
The film thickness signal obtained by the arithmetic unit 640 is sent to the control unit 70 in the same manner as the temperature signal, and the control unit 70 judges whether the obtained film thickness d has reached a predetermined thickness. , Lamp 2 depending on whether or not a predetermined film thickness has been reached
A control signal indicating zero power is sent to the lamp driver 80. While the control signal is ON, the lamp driver 80 performs the heating / film forming process on the substrate W while performing the temperature control for keeping the temperature T0 of the substrate W constant as described above.
When the control signal is turned off, the power supply to the lamp 20 is stopped and the heating / film forming process is ended.

【0067】以上説明したように、第1の実施の形態の
基板熱処理装置1の温度・膜厚測定部60では半透鏡6
11を透過した熱放射の強度である半透過放射強度I、
および、透明部材612を透過した熱放射の強度である
無反射放射強度I0を基に演算部640により基板Wの
温度T0を算出する構成であるため、半透鏡611の反
射率rおよび透過率tを考慮して基板Wの温度T0およ
び膜厚dを求めることができるので、精度の高い基板の
温度測定および膜厚測定を行うことができる。
As described above, the semi-transparent mirror 6 is used in the temperature / film thickness measuring unit 60 of the substrate heat treatment apparatus 1 of the first embodiment.
Semi-transmissive radiation intensity I, which is the intensity of thermal radiation transmitted through 11,
Also, since the calculation unit 640 calculates the temperature T0 of the substrate W based on the non-reflected radiation intensity I0 which is the intensity of the thermal radiation transmitted through the transparent member 612, the reflectance r and the transmittance t of the semi-transparent mirror 611 are calculated. Since the temperature T0 and the film thickness d of the substrate W can be obtained in consideration of the above, it is possible to measure the substrate temperature and the film thickness with high accuracy.

【0068】また、半透鏡611がプローブ620aを
中心とした円盤状をしているため、プローブ620aに
入射する熱放射がその周りの半透鏡611と基板Wとの
間で多重反射した熱放射の影響を均等に受けたものであ
るので、より精度の高い温度測定および膜厚測定を行う
ことができる。
Further, since the semi-transparent mirror 611 has a disk shape centering on the probe 620a, the thermal radiation incident on the probe 620a is multi-reflected between the surrounding semi-transparent mirror 611 and the substrate W. Since the influence is evenly exerted, more accurate temperature measurement and film thickness measurement can be performed.

【0069】また、半透鏡611の下面は黒化処理され
ているため、半透鏡611の上面の鏡面を透過した熱放
射が下面において反射して半透鏡内で多重反射した後に
プローブ620aに入射することがなく、その下面にお
いて反射していない熱放射のみがプローブ620aに入
射するので半透過放射強度Iを放射高温計630aによ
って正確に測定することができ、したがって、温度・膜
厚測定部60において、より精度の高い温度測定および
膜厚測定を行うことができる。
Since the lower surface of the semi-transparent mirror 611 is blackened, the heat radiation transmitted through the mirror surface of the upper surface of the semi-transparent mirror 611 is reflected on the lower surface and is multiple-reflected in the semi-transparent mirror, and then enters the probe 620a. Since only the heat radiation that is not reflected on the lower surface is incident on the probe 620a, the semi-transmission radiation intensity I can be accurately measured by the radiation pyrometer 630a, and therefore, the temperature / film thickness measuring unit 60 can It is possible to perform more accurate temperature measurement and film thickness measurement.

【0070】また、基板Wを回転させ、半透過放射強度
Iおよび無反射放射強度I0を捉えるタイミングを基板
W上の同じ位置を測定するために同期をとることによ
り、基板Wの同一部分からの熱放射を捉えることができ
るのでより精度の高い温度測定および膜厚測定を行うこ
とができる。
Further, by rotating the substrate W and synchronizing the timing of capturing the semi-transmitted radiation intensity I and the non-reflected radiation intensity I0 in order to measure the same position on the substrate W, the same portion of the substrate W can be obtained. Since the thermal radiation can be captured, more accurate temperature measurement and film thickness measurement can be performed.

【0071】また、第1の実施の形態の基板熱処理装置
1では上記のような温度・膜厚測定部60による精度の
高い基板Wの温度T0および膜厚dの測定結果に基づい
てランプ20の温度制御およびランプパワーの制御を行
っているため、基板Wの高精度の加熱・成膜処理を行う
ことができる。
In addition, in the substrate heat treatment apparatus 1 of the first embodiment, the lamp 20 of the lamp 20 is measured based on the highly accurate measurement results of the temperature T0 and the film thickness d of the substrate W by the temperature / film thickness measuring unit 60 as described above. Since the temperature control and the lamp power control are performed, the substrate W can be heated and film-formed with high accuracy.

【0072】さらに、従来装置のように基板Wを所定温
度下で所定時間処理することによって膜厚を制御してい
ないため、オペレータが基板Wを炉体10から取り出し
膜厚測定をし、再び戻して加熱・成膜処理を続行した
り、加熱・成膜処理の間、基板Wの温度T0が一定でな
くてもよいので予めダミー基板等を用いて所定温度まで
加熱する暖機運転を行う必要がないので、処理効率のよ
い加熱・成膜処理を行うことができる。
Further, unlike the conventional apparatus, since the film thickness is not controlled by processing the substrate W at a predetermined temperature for a predetermined time, the operator takes the substrate W out of the furnace body 10, measures the film thickness, and returns it again. The heating / film forming process is continued, and the temperature T0 of the substrate W does not have to be constant during the heating / film forming process, so it is necessary to perform a warm-up operation in which a dummy substrate or the like is used to heat to a predetermined temperature in advance. Therefore, the heating / film forming process can be performed with good processing efficiency.

【0073】[0073]

【3.第2の実施の形態】図6は第2の実施の形態の基
板熱処理装置2の断面図である。また、図7は第2の実
施の形態の透過板の平面図である。以下、図6および図
7を用いて第2の実施の形態の基板熱処理装置2につい
て、第1の実施の形態の基板熱処理装置1との相違点を
中心に説明していく。
[3. Second Embodiment FIG. 6 is a sectional view of a substrate heat treatment apparatus 2 according to a second embodiment. Further, FIG. 7 is a plan view of the transmission plate according to the second embodiment. The substrate heat treatment apparatus 2 of the second embodiment will be described below with reference to FIGS. 6 and 7 focusing on the differences from the substrate heat treatment apparatus 1 of the first embodiment.

【0074】基板熱処理装置2における透過板610は
その中心に円盤状の半透鏡611が設けられている。そ
して、その上面は後に詳述する性質を持つ鏡面になって
おり、逆に下面においてはプローブ620に対向する部
分は透明であり、それ以外の部分は黒化処理されてい
る。
The transparent plate 610 in the substrate heat treatment apparatus 2 is provided with a disk-shaped semi-transparent mirror 611 at the center thereof. The upper surface thereof is a mirror surface having the property described in detail later, and conversely, the lower surface of the portion facing the probe 620 is transparent, and the other portions are blackened.

【0075】図8は第2の実施の形態の半透鏡611の
性質を示す図である。この半透鏡611は半透鏡の性質
を示すと透明な性質とを併せ持っている。すなわち、図
示のようにこの半透鏡611は半透過波長λ1=0.9
μmと全透過波長λ2=1.0μmとの間の、0.95
μm付近の波長域で透過率tが急激に増加しており、逆
に反射率rは波長が0.95μm付近で急激に減少して
いる。そして、約0.95μm以下の波長域では透過率
tおよび反射率rがいずれも約「0.5」になってい
る。また、約0.95μmより上の波長域では透過率t
がほぼ「1」であり、逆に反射率rはほぼ「0」になっ
ている。そのため、この半透鏡611は約0.95μm
以下の波長域では半透鏡の性質を示すが、それより上の
波長域では透明な性質を示すものである。半透鏡611
にこのような性質を持たすために第2の実施の形態では
その鏡面を例えば、SiO2とTiO2の薄膜を透過させ
る波長に応じた厚さにし、互いに積層させるものとして
いる。
FIG. 8 is a diagram showing the nature of the semi-transparent mirror 611 of the second embodiment. The semi-transparent mirror 611 has a transparent property when it exhibits the properties of the semi-transparent mirror. That is, as shown in the figure, this semi-transparent mirror 611 has a semi-transmission wavelength λ1 = 0.9.
0.95 between μm and total transmission wavelength λ 2 = 1.0 μm
The transmittance t sharply increases in the wavelength region near μm, and conversely, the reflectance r sharply decreases near the wavelength 0.95 μm. Then, both the transmittance t and the reflectance r are about “0.5” in the wavelength range of about 0.95 μm or less. In the wavelength range above 0.95 μm, the transmittance t
Is almost “1”, and conversely, the reflectance r is almost “0”. Therefore, this semi-transparent mirror 611 is about 0.95 μm
It exhibits the properties of a semi-transparent mirror in the following wavelength regions, but it is transparent in the wavelength regions above it. Semi-transparent mirror 611
In order to have such a property, in the second embodiment, the mirror surface is made to have a thickness corresponding to the wavelength at which a thin film of SiO2 and TiO2 is transmitted, and they are laminated on each other.

【0076】また、プローブ620はその一端がハウジ
ング20内の半透鏡611に対向するようにその中心の
直下に1本だけ設けられており、半透鏡611に対向し
ていない端部において2色高温計635に接続されてい
る。
Further, only one probe 620 is provided immediately below the center of the housing 20 so that one end thereof faces the semi-transparent mirror 611 in the housing 20, and the two-color high temperature is provided at the end portion not facing the semi-transparent mirror 611. It is connected to a total of 635.

【0077】さらに、2色高温計635は上述の半透過
波長λ1および全透過波長λ2の2つの波長の熱放射が含
まれる熱放射群が入力されるとその熱放射群から半透過
波長λ1の熱放射と全透過波長λ2の熱放射とを抽出して
それぞれの波長の熱放射の放射強度を測定することがで
きる高温計である。なお、プローブ620と2色高温計
635とを併せたものが放射強度測定手段に相当する。
Further, when the two-color pyrometer 635 receives a heat radiation group including heat radiation of two wavelengths of the above-mentioned semi-transmission wavelength λ1 and full-transmission wavelength λ2, it inputs the half-transmission wavelength λ1 from the heat radiation group. The pyrometer is capable of extracting the thermal radiation and the thermal radiation having the total transmission wavelength λ2 and measuring the radiation intensity of the thermal radiation of each wavelength. A combination of the probe 620 and the two-color pyrometer 635 corresponds to the radiation intensity measuring means.

【0078】そして、上記以外の構成および動作は第1
の実施の形態の装置と同様である。
The configuration and operation other than the above are the first.
The device is the same as that of the embodiment.

【0079】以上のような構成によりこの装置は以下の
ような制御を行う。
With the above-mentioned configuration, this device performs the following control.

【0080】基板支持部40にデバイス面を下にして支
持された基板Wから下方に発せられた熱放射は、様々な
波長が混じった熱放射群としてプローブ620の上端に
入射している。
The thermal radiation emitted downward from the substrate W supported by the substrate supporting section 40 with the device surface facing downward is incident on the upper end of the probe 620 as a thermal radiation group in which various wavelengths are mixed.

【0081】そして、プローブ620により2色高温計
635に送られた熱放射のうち前述の半透過波長λ1と
全透過波長λ2とが抽出され、半透過波長λ1の熱放射の
放射強度が半透過放射強度I、全透過波長λ2の放射強
度が無反射放射強度I0としてそれぞれ求められ、放射
強度信号として演算部640に送られる。そして、これ
らの信号を基に第1の実施の形態と同様に基板Wの温度
T0および膜厚dが求められ、それらに基づいてランプ
20の温度制御およびランプパワーの制御を行う。
Then, of the thermal radiation sent to the two-color pyrometer 635 by the probe 620, the above-mentioned semi-transmission wavelength λ1 and total transmission wavelength λ2 are extracted, and the radiation intensity of the thermal radiation of the semi-transmission wavelength λ1 is semi-transmission. The radiant intensity I and the radiant intensity at the total transmission wavelength λ2 are respectively obtained as the non-reflected radiant intensity I0, and are sent to the computing unit 640 as a radiant intensity signal. Then, based on these signals, the temperature T0 and the film thickness d of the substrate W are obtained similarly to the first embodiment, and the temperature control of the lamp 20 and the lamp power are performed based on them.

【0082】ただし、半透過波長λ1および全透過波長
λ2は以下のような条件を満たしている必要がある。図
はSiの熱放射の放射率の温度依存性を示す図であ
る。図示のようにSiはその温度が約800°K以下に
おいては1.0〜2.0μmの間の熱放射の波長域にお
いて急激にその放射率が低下しており、さらに約15μ
mの波長域にかけて緩やかにその放射率が上昇してい
る。
However, the semi-transmission wavelength λ1 and the total transmission wavelength λ2 need to satisfy the following conditions. Figure
9 is a diagram showing the temperature dependence of the emissivity of thermal radiation of Si. As shown in the figure, when the temperature of Si is about 800 ° K or less, the emissivity of the Si is sharply reduced in the wavelength range of 1.0 to 2.0 μm, and further about 15 μm.
The emissivity gradually increases over the wavelength range of m.

【0083】逆に、熱放射の波長が約0.8〜1.0μ
mの波長域では約1100°K以下の温度における放射
率はほぼ一定である。
On the contrary, the wavelength of heat radiation is about 0.8 to 1.0 μm.
In the wavelength range of m, the emissivity at temperatures below about 1100 ° K is almost constant.

【0084】そのため、前述の半透過波長λ1、全透過
波長λ2を1.0〜2.0μmの波長域に設定すると両
波長におけるシリコン基板の放射率が異なるものとな
り、そのような波長の半透過放射強度Iおよび無反射放
射強度I0に基づいて求められた基板Wの温度T0および
膜厚dは信頼できる値ではなく、そのような値に基づく
ランプ20の温度制御およびランプパワーの制御も正確
なものではなくなってしまう。
Therefore, if the above-mentioned semi-transmission wavelength λ1 and total transmission wavelength λ2 are set in the wavelength range of 1.0 to 2.0 μm, the emissivity of the silicon substrate at both wavelengths will be different, and the semi-transmission of such wavelengths will be different. The temperature T0 and the film thickness d of the substrate W obtained based on the radiation intensity I and the non-reflected radiation intensity I0 are not reliable values, and the temperature control of the lamp 20 and the lamp power control based on such values are accurate. It's not something.

【0085】そこで第2の実施の形態の基板熱処理装置
2では半透過波長λ1および全透過波長λ2を放射率の安
定した約0.8〜1.0μmの波長域内の前述のような
値に設定しているのである。
Therefore, in the substrate heat treatment apparatus 2 of the second embodiment, the semi-transmission wavelength λ1 and the total transmission wavelength λ2 are set to the above-mentioned values within the wavelength range of about 0.8 to 1.0 μm where the emissivity is stable. I am doing it.

【0086】なお、半透過波長λ1と全透過波長λ2はで
きるだけ近い波長に設定する方がSiの放射率が等しく
なるという面では望ましいが、あまり近すぎると逆に半
透鏡611の反射率rや透過率tの安定しない波長域
(図8では0.95μm付近)に両波長が含まれること
になり、その場合も制御上望ましくない。そのため、第
2の実施の形態の基板熱処理装置2では半透過波長λ1
および全透過波長λ2を前述のような値としている。
Although it is desirable to set the semi-transmission wavelength λ1 and the total transmission wavelength λ2 as close to each other as possible in terms of equalizing the emissivity of Si, if they are too close, the reflectance r of the semi-transparent mirror 611 and Both wavelengths are included in the wavelength range in which the transmittance t is not stable (near 0.95 μm in FIG. 8), which is also undesirable in control. Therefore, in the substrate heat treatment apparatus 2 of the second embodiment, the semi-transmission wavelength λ1
And the total transmission wavelength λ2 is set to the value as described above.

【0087】また、半透鏡611の反射率rと透過率t
はいずれも「0.5」程度が望ましい。なぜなら、反射
率rが大きすぎると熱放射の多くが反射されてしまい半
透過放射強度Iが小さくなり、逆に透過率tが大きすぎ
ると半透過放射強度Iと無反射放射強度I0とが同程度
の大きさとなるためいずれも得られる結果の精度が落ち
るためである。
Further, the reflectance r and the transmittance t of the semi-transparent mirror 611.
It is desirable that each of them has a value of "0.5". This is because if the reflectance r is too large, most of the thermal radiation is reflected and the semi-transmission radiant intensity I becomes small. On the contrary, if the transmittance t is too large, the semi-transmission radiant intensity I and the non-reflecting radiant intensity I0 are the same. This is because the accuracy of the obtained results is reduced because of the size.

【0088】以上のような構成となっているので、第2
の実施の形態の基板熱処理装置2およびその温度・膜厚
測定部60でも、基板Wの回転による効果以外の第1の
実施の形態の基板熱処理装置1の効果と同様の効果を備
える。
With the above-mentioned structure, the second
The substrate heat treatment apparatus 2 and the temperature / film thickness measuring unit 60 thereof according to the second embodiment also have the same effects as those of the substrate heat treatment apparatus 1 according to the first embodiment except for the effect of the rotation of the substrate W.

【0089】さらに、第2の実施の形態の基板熱処理装
置2およびその温度・膜厚測定部60では、半透過波長
λ1および全透過波長λ2のいずれもが基板Wの放射率の
ほぼ温度に依存しない波長域に含まれる構成であるた
め、基板W上の同一の測定対象位置における同一時点の
半透過放射強度Iと無反射放射強度I0とを測定するこ
とができるので、より信頼性の高い温度測定および膜厚
測定を行うことができる。
Further, in the substrate heat treatment apparatus 2 and the temperature / film thickness measuring unit 60 of the second embodiment, both the semi-transmission wavelength λ1 and the total transmission wavelength λ2 depend on the temperature of the emissivity of the substrate W. Since it is included in the wavelength range not included, it is possible to measure the semi-transmitted radiation intensity I and the non-reflected radiation intensity I0 at the same time point at the same measurement target position on the substrate W, so that a more reliable temperature can be obtained. Measurement and film thickness measurement can be performed.

【0090】[0090]

【4.その他の実施の形態】図10は、その他の実施の
形態の基板熱処理装置における半透鏡611の性質を示
す図である。この装置は第2の実施の形態の基板熱処理
装置2と半透鏡611の性質以外はまったく同一の構成
となっている。そして、半透鏡611が図10に示すよ
うに、第2の実施の形態の基板熱処理装置2の半透過波
長λ1と全透過波長λ2の波長が入れ替わっていて、全透
過波長λ2=0.9μmと半透過波長λ1=1.0μmと
の間の、0.95μm付近の波長域で半透鏡611の透
過率tが急激に増加しており、逆に反射率rは波長が
0.95μm付近で急激に減少している。
[4. Other Embodiments FIG. 10 is a diagram showing the nature of a semi-transparent mirror 611 in a substrate heat treatment apparatus of another embodiment. This apparatus has exactly the same configuration as the substrate heat treatment apparatus 2 of the second embodiment except for the properties of the semitransparent mirror 611. As shown in FIG. 10, the semi-transparent mirror 611 has the semi-transmission wavelength λ1 and the total transmission wavelength λ2 of the substrate heat treatment apparatus 2 of the second embodiment interchanged, and the total transmission wavelength λ2 = 0.9 μm. The transmittance t of the semi-transparent mirror 611 sharply increases in the wavelength region near 0.95 μm between the semi-transmission wavelength λ1 = 1.0 μm, and conversely, the reflectance r sharply increases near the wavelength 0.95 μm. Has decreased.

【0091】そして、それより高い波長域では透過率t
および反射率rが「0.5」付近になっている。すなわ
ち、この半透鏡611は約0.95μm以上の波長域で
は半透鏡の性質を示すが、それより低い波長域では透明
な性質を示すものである。半透鏡611にこのような性
質を持たすためにこの基板熱処理装置ではその鏡面を例
えば、SiO2とTiO2の多層薄膜を積層したものとし
ている。
In the wavelength region higher than that, the transmittance t
And the reflectance r is around "0.5". That is, the semi-transparent mirror 611 exhibits semi-transparent properties in a wavelength range of about 0.95 μm or more, but is transparent in a wavelength range lower than that. In order to provide the semi-transparent mirror 611 with such a property, the mirror surface of this substrate heat treatment apparatus is formed by laminating a multilayer thin film of, for example, SiO2 and TiO2.

【0092】このような構成によりこの基板熱処理装置
およびその温度・膜厚測定部でも第2の実施の形態の基
板熱処理装置2と同様の効果を有する。
With this structure, this substrate heat treatment apparatus and its temperature / film thickness measuring section also have the same effects as the substrate heat treatment apparatus 2 of the second embodiment.

【0093】また、上記の各実施の形態の装置におい
て、基板支持部40により基板Wをそのデバイス面を下
にして支持して加熱・成膜処理を施している。これに対
して他の実施の形態として基板Wをそのデバイス面を上
にして加熱・成膜処理を施す構成とする。すなわち、装
置構成としてはほぼ第1の実施の形態の装置および第2
の実施の形態の装置と同様にして、ただし基板Wの膜厚
dの測定は行わないものとするのである。
Further, in the apparatus of each of the above-mentioned embodiments, the substrate W is supported by the substrate supporting portion 40 with its device surface facing down, and the heating / film forming process is performed. On the other hand, as another embodiment, the substrate W is subjected to heating / film formation processing with its device surface facing upward. That is, the device configuration is almost the same as that of the first embodiment and the second embodiment.
Similar to the device of the embodiment, the film thickness d of the substrate W is not measured.

【0094】そして温度制御は基板Wを上記各実施の形
態の装置において行ったと同様に半透過放射強度Iおよ
び無反射放射強度I0の測定結果に基づいた温度制御に
より基板Wを所定温度に保ちつつ、従来装置のように所
定時間だけ加熱・成膜処理を行い、その処理の終了後に
オペレータが基板Wを取り出して膜厚dを直接測定し、
所定の膜厚に達していなければ再度別の基板で加熱・成
膜処理を施すといった作業を繰返して最終的に所定の膜
厚の成膜を行うというものである。
The temperature control is performed while keeping the substrate W at a predetermined temperature by the temperature control based on the measurement results of the semi-transmission radiation intensity I and the non-reflected radiation intensity I0, as in the case of performing the substrate W in the apparatus of each of the above-mentioned embodiments. As in the conventional apparatus, the heating / film forming process is performed for a predetermined time, and after the process, the operator takes out the substrate W and directly measures the film thickness d,
If the predetermined film thickness has not been reached, the work of heating and film-forming processing on another substrate is repeated again to finally form a film having a predetermined film thickness.

【0095】このような構成であるのでこれらの実施の
形態の基板熱処理装置でも第1および第2の実施の形態
の装置と同様の温度制御により、精度の高い加熱・成膜
処理を行うことができる。
With such a structure, the substrate heat treatment apparatuses of these embodiments can perform highly accurate heating and film formation processing by the same temperature control as the apparatuses of the first and second embodiments. it can.

【0096】[0096]

【5.変形例】上記の第1の実施の形態の基板熱処理装
置1では無反射放射強度I0を透明部材612によって
透過された熱放射をプローブ620bに入射させて求め
る構成としたが、この発明はこれに限られず、透明部材
612を設けないで直接プローブ620bに入射させて
捉える構成としてもよい。
[5. Modified Example In the substrate heat treatment apparatus 1 of the first embodiment described above, the non-reflected radiation intensity I0 is obtained by making the thermal radiation transmitted by the transparent member 612 incident on the probe 620b. The configuration is not limited, and the transparent member 612 may not be provided and may be directly incident on the probe 620b to be captured.

【0097】また、第1の実施の形態の基板熱処理装置
1ではプローブ620aとプローブ620bのX−Y面
内での位置を透過板610の1つの直径上の中心を挟ん
で反対側に位置するように構成したが、この発明はこれ
に限られず、半透鏡に隣接し、透過板610の中心から
等距離の位置にプローブ620bが位置していてもよ
い。
Further, in the substrate heat treatment apparatus 1 of the first embodiment, the positions of the probe 620a and the probe 620b in the XY plane are located on the opposite sides of the diametric center of the transmission plate 610. However, the present invention is not limited to this, and the probe 620b may be located adjacent to the semi-transparent mirror and equidistant from the center of the transmission plate 610.

【0098】また、第1の実施の形態の基板熱処理装置
1ではプローブ620a、620bを1つずつ、第2の
実施の形態の基板熱処理装置2では透過板610の中心
にプローブ620を1つ備える構成としたが、この発明
はこれに限られず、たとえば第1の実施の形態の装置に
おいて透過板610に複数の半透鏡611とその下方に
複数のプローブ620aを設けるとともに、透明部材6
12の下方に複数のプローブ620bを設けて、プロー
ブ620aのそれぞれに入射する熱放射を集めて放射高
温計630aに、プローブ620bのそれぞれに入射す
る熱放射を集めて放射高温計630bに送り、それらで
求められた放射強度を基に加熱・成膜制御を行う構成等
とすることもできる。
The substrate heat treatment apparatus 1 of the first embodiment has one probe 620a and one probe 620b, and the substrate heat treatment apparatus 2 of the second embodiment has one probe 620 at the center of the transmission plate 610. However, the present invention is not limited to this. For example, in the device of the first embodiment, a plurality of semitransparent mirrors 611 and a plurality of probes 620a below the semitransparent mirrors 611 are provided on the transmission plate 610, and the transparent member 6 is provided.
A plurality of probes 620b are provided below 12, to collect the thermal radiation incident on each of the probes 620a to a radiation pyrometer 630a, and collect the thermal radiation incident to each of the probes 620b to send to a radiation pyrometer 630b. It is also possible to adopt a configuration in which heating / film formation control is performed based on the radiant intensity obtained in.

【0099】さらに、第2の実施の形態の装置において
基板Wをその温度が約850〜1100°Kでのみ処理
する場合には半透過波長λ1、全透過波長λ2を0.8〜
15μmとしてもよい。
Further, in the apparatus of the second embodiment, when the substrate W is processed only at the temperature of about 850 to 1100 ° K, the semi-transmission wavelength λ1 and the total transmission wavelength λ2 are 0.8 to.
It may be 15 μm.

【0100】[0100]

【発明の効果】以上説明したように、請求項1ないし請
求項の発明は、半透鏡を透過した被測定体からの熱放
射の強度である半透過放射強度、および、半透鏡を透過
していない状態の被測定体からの熱放射の強度である無
反射放射強度を基に温度算出手段により被測定体の温度
を求める構成であり、請求項ないし請求項の発明
は、半透鏡により不完全に透過される被測定体からの第
1波長の熱放射の強度である半透過放射強度、および半
透鏡により第1波長に対する透過率よりも高い透過率で
透過される被測定体からの第2波長の熱放射の強度であ
る無反射放射強度を基に温度算出手段により被測定体の
温度を求める構成であるため、半透鏡の反射率および透
過率を考慮して被測定体の温度を求めることができるの
で、精度の高い温度測定を行うことができる。
As described above, according to the inventions of claims 1 to 3 , the semi-transmissive radiation intensity, which is the intensity of the heat radiation from the object to be measured that has passed through the semi-transparent mirror , and the semi-transparent mirror.
And a configuration to determine the temperature of the object to be measured by the temperature calculating means on the basis of the non-reflected radiation intensity is an intensity of thermal radiation from the object to be measured in the state not, the invention of claims 4 to 6, the semi With the semi-transmissive radiation intensity, which is the intensity of the thermal radiation of the first wavelength from the DUT that is incompletely transmitted by the transparent mirror, and with the transmissivity higher than the transmittance for the first wavelength by the semi-transparent mirror .
Since the temperature calculation means obtains the temperature of the measured object based on the non-reflected radiation intensity, which is the intensity of the thermal radiation of the second wavelength transmitted from the measured object, the reflectance and the transmittance of the semi-transparent mirror can be calculated. Since the temperature of the object to be measured can be calculated in consideration, it is possible to perform highly accurate temperature measurement.

【0101】また、請求項2の発明では請求項1の発明
において半透鏡が第1放射強度測定手段に対向する位置
を中心とした円盤状であり、請求項の発明では請求項
の発明において半透鏡が放射強度測定手段に対向する
位置を中心とした円盤状であるため、第1放射強度測定
手段および放射強度測定手段に入射する熱放射がその周
りの半透鏡と基板との間で多重反射した熱放射の影響を
均等に受けたものであるので、いずれも、より精度の高
い温度測定を行うことができる。
In the invention of claim 2, the semi-transparent mirror in the invention of claim 1 has a disk shape centered on a position facing the first radiation intensity measuring means, and in the invention of claim 5 ,
In the invention of claim 4 , since the semi-transparent mirror has a disk shape centered on a position facing the radiant intensity measuring means, the thermal radiation incident on the first radiant intensity measuring means and the radiant intensity measuring means is surrounded by the semi-transparent mirror and the substrate. Since they are evenly affected by the heat radiation that is reflected multiple times between them, it is possible to perform more accurate temperature measurement.

【0102】また、請求項の発明では半透鏡の第1放
射強度測定手段側の面の第1放射強度測定手段に対向す
る部分以外の部分が黒化処理されており、請求項の発
明では請求項4または請求項5の発明において、半透鏡
の放射強度測定手段側の面の放射強度測定手段に対向す
る部分以外の部分が黒化処理されているため、いずれも
半透鏡内部で多重反射が生じないので、より精度の高い
温度測定を行うことができる。
[0102] Further, in the invention of claim 1 first a portion other than the portion facing the radiation intensity measuring means of the surface of the first radiation intensity measuring means side of the semi Torukyo are blackened, according to claim 6 According to the invention, in the invention of claim 4 or claim 5 , since a portion of the surface of the semi-transparent mirror on the side of the radiant intensity measuring means other than the portion facing the radiant intensity measuring means is blackened, both are inside the semi-transparent mirror. Since multiple reflection does not occur, more accurate temperature measurement can be performed.

【0103】また、請求項の発明では請求項1または
請求項2の発明において、第1放射強度測定手段および
第2放射強度測定手段のそれぞれの被測定体に対する相
対的位置が互いに入れ替わる構成であるため、第1放射
強度測定手段と第2放射強度測定手段とが被測定体の同
一部分からの熱放射を捉えることができるのでより精度
の高い温度測定を行うことができる。
In the invention of claim 3 , the invention according to claim 1 or
In the invention of claim 2 , since the relative positions of the first radiant intensity measuring means and the second radiant intensity measuring means with respect to the object to be measured are replaced with each other, the first radiant intensity measuring means and the second radiant intensity measuring means. Since the means and the means can capture the heat radiation from the same portion of the object to be measured, it is possible to perform more accurate temperature measurement.

【0104】[0104]

【0105】さらに、請求項の発明は請求項1ないし
請求項のうちのいずれかの温度測定装置を温度測定手
段として備えるとともに、加熱制御手段が温度測定手段
によって求められた基板の温度をもとに加熱手段の動作
制御を行う基板熱処理装置であるため、温度測定手段に
よる精度の高い温度測定に基づいて加熱制御が行えるの
で良好な基板の熱処理を行うことができる。
Furthermore, the invention of claim 7 is provided with the temperature measuring device according to any one of claims 1 to 6 as temperature measuring means, and the heating control means measures the temperature of the substrate obtained by the temperature measuring means. Since the substrate heat treatment apparatus controls the operation of the heating unit, the heating control can be performed based on the highly accurate temperature measurement by the temperature measuring unit, so that the excellent heat treatment of the substrate can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この基板と半透鏡との間の熱放射の多重反射の
説明図である。
FIG. 1 is an explanatory view of multiple reflection of thermal radiation between this substrate and a semi-transparent mirror.

【図2】黒体の温度に対する放射強度を示すグラフであ
る。
FIG. 2 is a graph showing radiation intensity with respect to temperature of a black body.

【図3】第1の実施の形態の基板熱処理装置の断面図で
ある。
FIG. 3 is a cross-sectional view of the substrate heat treatment apparatus of the first embodiment.

【図4】第1の実施の形態の透過板の平面図である。FIG. 4 is a plan view of the transmission plate according to the first embodiment.

【図5】第1の実施の形態の基板熱処理装置の制御の流
れを示す図である。
FIG. 5 is a diagram showing a control flow of the substrate heat treatment apparatus of the first embodiment.

【図6】第2の実施の形態の基板熱処理装置の断面図で
ある。
FIG. 6 is a cross-sectional view of the substrate heat treatment apparatus of the second embodiment.

【図7】第2の実施の形態の透過板の平面図である。FIG. 7 is a plan view of a transmission plate according to a second embodiment.

【図8】第2の実施の形態の半透鏡の性質を示す図であ
る。
FIG. 8 is a diagram showing properties of the semi-transparent mirror according to the second embodiment.

【図9】Siの放射率の温度依存性を示す図である。FIG. 9 is a diagram showing the temperature dependence of the emissivity of Si.

【図10】その他の実施の形態の半透鏡の性質を示す図
である。
FIG. 10 is a diagram showing properties of a semi-transparent mirror according to another embodiment.

【符号の説明】[Explanation of symbols]

1,2 基板熱処理装置 20 ランプ 50 リニアモータ 60 温度・膜厚測定部 70 制御部 611 半透鏡 620,620a,620b プローブ 630a,630b 放射高温計 640 演算部 I0 無反射放射強度 I 半透過放射強度 T0 基板の温度 W 基板 d 膜厚 r 半透鏡の反射率 t 半透鏡の透過率 λ1 半透過波長 λ2 全透過波長 1, 2 substrate heat treatment equipment 20 lamps 50 linear motor 60 Temperature / film thickness measurement unit 70 Control unit 611 Semi-transparent mirror 620, 620a, 620b probes 630a, 630b Radiation pyrometer 640 operation unit I0 Non-reflected radiation intensity I Semi-transmitted radiation intensity T0 substrate temperature W board d film thickness r Semi-transparent mirror reflectance transmissivity of semi-transparent mirror λ1 half transmission wavelength λ2 Total transmission wavelength

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01J 5/00 - 5/62 H01L 21/66 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01J 5/00-5/62 H01L 21/66

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定体からの熱放射を基に当該被測定
体の温度を測定する温度測定装置において、 前記熱放射を不完全に透過する半透鏡と、 前記半透鏡を透過した前記熱放射の強度である半透過放
射強度を求める第1放射強度測定手段と、前記半透鏡を透過していない 状態の前記熱放射の強度で
ある無反射放射強度を求める第2放射強度測定手段と、 前記半透過放射強度および前記無反射放射強度を基に前
記被測定体の温度を求める温度算出手段と、 を備え、前記半透鏡の前記第1放射強度測定手段側の面の前記第
1放射強度測定手段に対向する部分以外の部分が黒化処
理されてい ることを特徴とする温度測定装置。
1. A temperature measuring device for measuring the temperature of an object to be measured based on heat radiation from the object to be measured, comprising: a semi-transparent mirror that transmits the thermal radiation incompletely; First radiation intensity measuring means for obtaining a semi-transmission radiation intensity which is the intensity of radiation, and second radiation intensity measuring means for obtaining a non-reflected radiation intensity which is the intensity of the thermal radiation not transmitted through the semi-transparent mirror, Temperature calculating means for determining the temperature of the object to be measured based on the semi-transmissive radiant intensity and the non-reflected radiant intensity .
1 The part other than the part facing the radiation intensity measuring means is blackened
A temperature measuring device characterized by being processed.
【請求項2】 請求項1の温度測定装置であって、 前記半透鏡が前記第1放射強度測定手段に対向する位置
を中心とした円盤状であることを特徴とする温度測定装
置。
2. The temperature measuring device according to claim 1, wherein the semi-transparent mirror has a disk shape centered on a position facing the first radiation intensity measuring means.
【請求項3】 請求項1または請求項2の温度測定装置
であって、 前記第1放射強度測定手段および前記第2放射強度測定
手段または前記被測定体のうちのいずれかを回転させる
回転手段をさらに備え、前記回転手段により前記第1放
射強度測定手段および前記第2放射強度測定手段のそれ
ぞれの前記被測定体に対する相対的位置が互いに入れ替
わることを特徴とする温度測定装置。
3. The temperature measuring device according to claim 1 or 2.
And said first radiation intensity measuring means and said second radiation intensity measurement
Rotating either the means or the object to be measured
Rotation means is further provided, and the first release is performed by the rotation means.
Radiation intensity measuring means and that of the second radiation intensity measuring means
The relative positions of each of them are interchanged.
A temperature measuring device characterized in that
【請求項4】 被測定体からの熱放射を基に当該被測定
体の温度を測定する温度測定装置において、 第1波長および第2波長の前記熱放射を含む熱放射群の
うち、前記第1波長の熱放射を不完全に透過するととも
に、前記第2波長の熱放射を前記第1波長に対する透過
率よりも高い透過率で透過する半透鏡と、 前記半透鏡を透過した前記熱放射群のうち前記第1波長
の熱放射の強度である半透過放射強度および前記第2波
長の熱放射の強度である無反射放射強度を求める放射強
度測定手段と、 前記半透過放射強度および前記無反射放射強度を基に前
記被測定体の温度を求める温度算出手段と、 を備えることを特徴とする温度測定装置。
4. The measurement target based on heat radiation from the measurement target
A temperature-measuring device for measuring a temperature of a body, comprising: a thermal radiation group including the thermal radiation having a first wavelength and a second wavelength;
Of which, the heat radiation of the first wavelength is not completely transmitted.
And transmits the second wavelength of thermal radiation to the first wavelength.
A semi- transmissive mirror that transmits with a transmissivity higher than the transmissivity, and the first wavelength of the heat radiation group that has transmitted through the semi- transparent mirror.
Radiation intensity, which is the intensity of the thermal radiation of, and the second wave
Radiant intensity to obtain non-reflected radiant intensity, which is the intensity of long thermal radiation
Measuring means, and based on the semi-transmitted radiation intensity and the non-reflected radiation intensity
A temperature measuring device , comprising: temperature calculating means for obtaining the temperature of the object to be measured .
【請求項5】 請求項4の温度測定装置であって、 前記半透鏡が前記放射強度測定手段に対向する位置を中
心とした円盤状であることを特徴とする温度測定装置。
5. The temperature measuring device according to claim 4, wherein the semi-transparent mirror is located at a position facing the radiation intensity measuring means.
A temperature measuring device characterized by having a disc shape with a core.
【請求項6】 請求項4または請求項5の温度測定装置
であって、 前記半透鏡の前記放射強度測定手段側の面の前記放射強
度測定手段に対向する部分以外の部分が黒化処理されて
いることを特徴とする温度測定装置。
6. A temperature measuring device according to claim 4 or claim 5.
A is, wherein the radiation strength of the surface of the radiation intensity measuring means side of the semi Torukyo
The portion other than the portion facing the degree measuring means has been blackened
A temperature measuring device characterized in that
【請求項7】 請求項1ないし請求項6のうちのいずれ
かの温度測定装置を温度測定手段として備え、前記被測
定体を基板とするとともに加熱手段によって前記基板を
加熱する基板熱処理装置であって、 前記温度測定手段によって求められた前記基板の温度を
もとに前記加熱手段の動作制御を行う加熱制御手段を備
えることを特徴とする基板熱処理装置。
7. Any one of claims 1 to 6.
Equipped with a temperature measuring device as a temperature measuring means,
Using a fixed body as a substrate, the substrate is heated by heating means.
A substrate heat treatment apparatus for heating, wherein the temperature of the substrate obtained by the temperature measuring means is
Based on the above, a heating control means for controlling the operation of the heating means is provided.
A substrate heat treatment apparatus characterized by the above.
JP31901296A 1996-11-29 1996-11-29 Temperature measuring apparatus and substrate heat treatment apparatus using the same Expired - Fee Related JP3366538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31901296A JP3366538B2 (en) 1996-11-29 1996-11-29 Temperature measuring apparatus and substrate heat treatment apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31901296A JP3366538B2 (en) 1996-11-29 1996-11-29 Temperature measuring apparatus and substrate heat treatment apparatus using the same

Publications (2)

Publication Number Publication Date
JPH10160579A JPH10160579A (en) 1998-06-19
JP3366538B2 true JP3366538B2 (en) 2003-01-14

Family

ID=18105522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31901296A Expired - Fee Related JP3366538B2 (en) 1996-11-29 1996-11-29 Temperature measuring apparatus and substrate heat treatment apparatus using the same

Country Status (1)

Country Link
JP (1) JP3366538B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350988B1 (en) * 1999-02-08 2002-02-26 General Electric Company Optical spectrometer and method for combustion flame temperature determination
JP2007078394A (en) * 2005-09-12 2007-03-29 Sumitomo Metal Ind Ltd Apparatus and method for measuring surface temperature of metallic body, and method for manufacturing metallic body
KR101046220B1 (en) * 2008-12-05 2011-07-04 에이피시스템 주식회사 Rapid heat treatment device to extend the life of the pyrometer
WO2013018197A1 (en) 2011-08-02 2013-02-07 有限会社ワイ・システムズ Method and apparatus for measuring temperature of semiconductor layer

Also Published As

Publication number Publication date
JPH10160579A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
US8696197B2 (en) Method and system for determining optical properties of semiconductor wafers
JP5361713B2 (en) Method for determining wafer temperature
KR101047089B1 (en) Film forming apparatus and method comprising temperature and emissivity / pattern compensation
US6479801B1 (en) Temperature measuring method, temperature control method and processing apparatus
KR101047088B1 (en) Device temperature control and pattern compensation device method
US5226732A (en) Emissivity independent temperature measurement systems
US5874711A (en) Apparatus and method for determining the temperature of a radiating surface
US20070095812A1 (en) In-situ wafer parameter measurement method employing a hot susceptor as a reflected light source
JPH11316159A (en) Device and method for determining temperature of object in heat-treatment chamber
US6007241A (en) Apparatus and method for measuring substrate temperature
EP0612862A1 (en) Measuring wafer temperatures
JPH06323915A (en) Method of thermometry for material body
JPH1098084A (en) Substrate temperature measuring method and device
EP0536382A1 (en) Non-contact optical techniques for measuring surface conditions
WO2000008429A1 (en) A sensor for measuring a substrate temperature
JP3366538B2 (en) Temperature measuring apparatus and substrate heat treatment apparatus using the same
US6174080B1 (en) Apparatus and methods for measuring substrate temperature
JP2015513094A (en) Equipment for measuring substrate temperature
JPH08184496A (en) Measurement of radiation luminance by angular wave filteringused in temperature measurement of heat radiating body
JPH10163182A (en) Substrate heat treatment equipment and film thickness measuring equipment which can be used in substrate heat treatment equipment
TW528860B (en) Temperature measuring method and apparatus and semiconductor heat treatment apparatus
JPH04130746A (en) Radiation thermometer and method for wafer temperature measurement
JP3554182B2 (en) Temperature measurement device and substrate heat treatment device
JP2001304971A (en) Temperature measuring method, method and device for heat treatment, and computer readable medium
JPH0620938A (en) Quick thermal oxidizing apparatus for semiconductor substrate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees