JP4220908B2 - Method for producing unfired agglomerated mineral - Google Patents
Method for producing unfired agglomerated mineral Download PDFInfo
- Publication number
- JP4220908B2 JP4220908B2 JP2004009419A JP2004009419A JP4220908B2 JP 4220908 B2 JP4220908 B2 JP 4220908B2 JP 2004009419 A JP2004009419 A JP 2004009419A JP 2004009419 A JP2004009419 A JP 2004009419A JP 4220908 B2 JP4220908 B2 JP 4220908B2
- Authority
- JP
- Japan
- Prior art keywords
- agglomerated
- ore
- raw material
- clay
- curing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、非焼成塊成鉱の製造方法に関するものであり、殊に、操業状態に応じて高強度の非焼成塊成鉱を効率良く製造できる方法に関するものである。 The present invention relates to a method for producing a non-fired agglomerated mineral, and particularly to a method capable of efficiently producing a high-strength non-fired agglomerated mineral according to the operating state.
製鉄用の高炉では、取扱い性や操業性等の観点から、粉状の製鉄用原料を予め粒状化し、さらにこれを焼結して粒状の焼結鉱に成形したり、ペレット化したものが用いられている。例えば上記焼結鉱は、鉄鉱石などの酸化鉄原料を主原料とし、これに粉状の石灰石や珪石等を副原料として配合し、焼結して得られるのが一般的である。 In the blast furnace for iron making, from the viewpoints of handleability, operability, etc., the powdered iron making raw material is granulated in advance and then sintered into a granular sinter or pelletized. It has been. For example, the sintered ore is generally obtained by using an iron oxide raw material such as iron ore as a main raw material, and adding powdered limestone or silica as an auxiliary raw material, followed by sintering.
しかし、これら焼結鉱やペレットは、製造に多量のエネルギーを必要とし、CO2排出量が多い等の問題がある。また近年では、良質鉱石の産出量が減少してくるにつれて、品質の異なる様々な鉱石を製鉄用原料として使用する場合があるが、焼結性が低い鉱石やペレット化の難しい鉱石を使用する場合には、成形が難しいといった問題や、意図する強度レベルのものが得られ難いといった問題も生じてくる。 However, these sintered ores and pellets have problems such as requiring a large amount of energy for production and a large amount of CO 2 emission. Also, in recent years, as the production of high-quality ores has decreased, various types of ores with different qualities may be used as raw materials for ironmaking. However, there are problems such as difficulty in molding and difficulty in obtaining the intended strength level.
上記焼結鉱やペレット以外の製鉄用装入原料として、セメント等をバインダーとして用いて酸化物原料や副原料を結合させた非焼成塊成鉱が提案されている(例えば特許文献1)。また、コスト削減や有価物廃材の有効活用の観点から、高炉ダストをバインダーとして使用し、押出成形して塊成鉱を製造する方法も提案されている(例えば特許文献2)。しかし、これらの方法では養生に長時間を要するため、広い養生ヤードを確保する必要がある。また製造に時間を要し、製銑操業の状況に合わせて製鉄用装入原料を随時用意することが難しい。 As a raw material for iron making other than the above-mentioned sintered ore and pellets, a non-fired agglomerated mineral in which an oxide raw material and a secondary raw material are combined using cement or the like as a binder has been proposed (for example, Patent Document 1). Further, from the viewpoint of cost reduction and effective utilization of valuable waste materials, a method of producing agglomerated ore by extrusion molding using blast furnace dust as a binder has been proposed (for example, Patent Document 2). However, since these methods require a long time for curing, it is necessary to secure a wide curing yard. In addition, it takes time to manufacture, and it is difficult to prepare the raw materials for iron making according to the situation of the ironmaking operation.
この様な問題を解消すべく、養生温度を高めて短時間で養生を行う塊成鉱の製造方法も提案されている(例えば特許文献3)。しかし該方法では、加熱のための設備が必要であり、また、加熱時に生塊成鉱同士がくっつき易いため、形状の均一な塊成鉱を効率良く製造することが難しい。
本発明は上記事情に鑑みてなされたものであって、その目的は、高強度の塊成鉱を、焼成することなく、操業状態に応じて効率良く製造することのできる方法を提供することにある。 This invention is made | formed in view of the said situation, Comprising: The objective is to provide the method which can manufacture a high intensity | strength agglomerated mineral efficiently according to an operating state, without baking. is there.
本発明にかかる非焼成塊成鉱の製造方法とは、高炉装入用非焼成塊成鉱を製造する方法において、酸化鉄原料、粘土および水硬性バインダーを含む塊成鉱組成物に水を加えて混練した後、真空脱気しつつ押出成形し、得られた成形物を養生するところに特徴を有する。 The method for producing an unfired agglomerated mineral according to the present invention is a method for producing an unfired agglomerated ore for blast furnace charging, in which water is added to an agglomerated mineral composition containing an iron oxide raw material, clay and a hydraulic binder. After being kneaded and then kneaded, extrusion molding is performed while vacuum degassing, and the resulting molded product is cured.
尚、上記「塊成鉱組成物」とは、水を添加する前の「酸化鉄原料、粘土および水硬性バインダーを含む塊成鉱製造原料を配合した状態のもの」をいい、下記に示す「質量%」は、この塊成鉱組成物全体に対する質量割合をいうものとする。 The above “agglomerated ore composition” refers to “a state in which an agglomerated mineral raw material containing iron oxide raw material, clay and hydraulic binder is blended” before adding water, and is shown below. "Mass%" shall mean the mass ratio with respect to this whole agglomerated mineral composition.
前記水硬性バインダーとしては、セメントおよび/または高炉スラグを使用することができる。また、前記酸化鉄原料の配合量は、塊成鉱組成物全体の60質量%以上とするのがよく、前記粘土の配合量は、塊成鉱組成物全体の5〜30質量%とするのがよい。 Cement and / or blast furnace slag can be used as the hydraulic binder. Further, the blending amount of the iron oxide raw material is preferably 60% by mass or more of the entire agglomerated composition, and the blending amount of the clay is 5 to 30% by mass of the entire agglomerated composition. Is good.
本発明によれば、広い養生ヤードを確保せずとも、操業状況に応じて、必要量の塊成鉱を随時製造することができる。また、鉱石の品質を考慮することなく高強度の塊成鉱を効率良く製造できる。 According to the present invention, a necessary amount of agglomerate can be produced at any time according to the operation situation without securing a wide curing yard. In addition, a high-strength agglomerated ore can be efficiently produced without considering the quality of the ore.
本発明者らは、上述の通り、操業状況に応じて必要量の高強度塊成鉱を効率良く製造できる方法の確立を期して、鋭意研究を行ってきた。その結果、特に、押出成形を真空吸引により脱気しつつ行えば、高強度塊成鉱を短期間で製造できることを見出し、本発明に想到した。 As described above, the present inventors have conducted intensive studies with the aim of establishing a method that can efficiently produce a necessary amount of high-strength agglomerated minerals according to the operation status. As a result, the inventors have found that a high-strength agglomerated mineral can be produced in a short period of time when the extrusion molding is performed while degassing by vacuum suction, and the present invention has been conceived.
この様に真空脱気しつつ押出成形することによって、焼結性や成形性の悪い鉱石を使用した場合でも良好に成形することができ、かつ得られた生塊成鉱を短時間養生するだけで、高強度の非焼成塊成鉱が得られるのである。 By extruding while vacuum degassing in this way, even when using ore with poor sinterability and formability, it can be molded well, and the obtained agglomerated ore is only cured for a short time Thus, a high-strength non-fired agglomerated mineral can be obtained.
上記真空脱気は、原料が装入される押出成形装置内の圧力を、MPa絶対基準で0.016MPa以下まで吸引して減圧するのがよく、より好ましくは0.005MPa以下である。また上記押出成形には、後述する実施例で使用するスクリュータイプの二軸式押出成形機の他、スクリュータイプの単軸式押出成形機や、ローラータイプの押出成形機を使用することができる。 In the vacuum deaeration, the pressure in the extrusion molding apparatus into which the raw material is charged is preferably reduced to 0.016 MPa or less on an absolute basis, and more preferably 0.005 MPa or less. In addition to the screw-type twin-screw extruder used in the examples described later, a screw-type single-screw extruder or a roller-type extruder can be used for the extrusion.
成形方法として、下記実施例では、押し出された連続成形物をカッティングして円柱状の塊成鉱を得ているが、塊成鉱の形状はこれに限定されず、上記連続成形物をカッティング後、更にプレス成形するなどして、球状、砂利状等の様々な形状に成形することができる。 As a forming method, in the following example, the extruded continuous molded product is cut to obtain a cylindrical agglomerate, but the shape of the agglomerated mineral is not limited to this, and after the continuous molded product is cut Further, it can be formed into various shapes such as a spherical shape and a gravel shape by further press molding.
本発明では、上記成形後に下記の通り養生すればよく、従来のペレット製造方法の様に造粒する必要がない。また水を加えることで室温で硬化する水硬性バインダーを使用するため、焼成する必要もない。 In the present invention, curing may be performed as described below after the above molding, and granulation is not necessary unlike the conventional pellet manufacturing method. Moreover, since the hydraulic binder which hardens | cures at room temperature by adding water is used, it is not necessary to bake.
本発明では、酸化鉄原料、粘土および水硬性バインダーを含む塊成鉱組成物を塊成鉱の製造原料として用いる。 In the present invention, an agglomerated mineral composition containing an iron oxide raw material, clay and a hydraulic binder is used as a raw material for producing the agglomerated mineral.
上記酸化鉄原料としては、製鉄用原料として一般的に汎用されている鉄鉱石の他、酸化鉄を主成分として含む高炉ダストや転炉ダスト、ミルスケール等を使用することができる。鉄鉱石としては、様々な銘柄のものを用いることができ、例えば赤鉄鉱(ヘマタイト:Fe2 O3 )や磁鉄鉱(マグネタイト:Fe3 O4 )、ゲーサイト(Fe2 O3 ・H2 O)を多く含有する褐鉄鉱系鉱石、MgO含有物質としてドロマイト鉱石を使用してもよい。また焼結性の低いマラマンバ鉱石等を使用することもできる。 As the iron oxide raw material, blast furnace dust, converter dust, mill scale and the like containing iron oxide as a main component can be used in addition to iron ore generally used as a raw material for iron making. Various types of iron ores can be used. For example, hematite (hematite: Fe 2 O 3 ), magnetite (magnetite: Fe 3 O 4 ), goethite (Fe 2 O 3 .H 2 O), etc. Dolomite ore may be used as a limonite-based ore containing a large amount of Mg or a MgO-containing substance. Also, maramamba ore with low sinterability can be used.
前記酸化鉄原料の配合量は、塊成鉱組成物全体に占める比率で60質量%以上とするのがよい。酸化鉄原料の配合量が高く、鉄分含量の高い塊成鉱の方が、製銑において多量の金属鉄を効率良く製造できるからであり、より好ましくは配合原料全体の70質量%以上とするのがよい。尚、酸化鉄原料の配合量の上限は、成形性を高めるために配合する粘土や強度向上のために配合する水硬性バインダーの配合量を考慮して決定すればよい。 The blending amount of the iron oxide raw material is preferably 60% by mass or more in terms of the proportion of the entire agglomerated mineral composition. This is because the agglomerated mineral with a high compounding amount of the iron oxide raw material and a high iron content can efficiently produce a large amount of metallic iron in the ironmaking, and more preferably 70 mass% or more of the total compounding raw material. Is good. In addition, the upper limit of the compounding amount of the iron oxide raw material may be determined in consideration of the compounding amount of clay to be compounded for improving moldability and the hydraulic binder to be compounded for improving strength.
使用する酸化鉄原料のサイズ(粒径)は特に限定されないが、次の様な傾向を考慮して決定するのがよい。 The size (particle size) of the iron oxide raw material to be used is not particularly limited, but should be determined in consideration of the following tendency.
即ち、後述する実施例でも明らかにする通り、酸化鉄原料(鉱石)の粒径が大きくなるほど、該酸化鉄原料(鉱石)そのものの強度が塊成鉱の強度に反映されて、塊成鉱の高強度化を達成し易くなると思われる。しかしその反面、流動性が悪くなり、いわゆる可塑性が低下して成形し難くなり、結果として、酸化鉄原料(鉱石)の配合量の低減を余儀なくされるか、バインダー等に工夫が必要となる。 That is, as will become apparent in the examples described later, as the particle size of the iron oxide raw material (ore) increases, the strength of the iron oxide raw material (ore) is reflected in the strength of the agglomerated mineral. It seems easy to achieve high strength. However, on the other hand, the fluidity is deteriorated, so-called plasticity is lowered and it becomes difficult to mold, and as a result, the amount of iron oxide raw material (ore) is forced to be reduced, or the binder or the like is required.
一方、微細な酸化鉄原料を使用することによっても、相対的に高強度の塊成鉱を得ることができ、この場合には粘土や水硬性バインダーの配合量を多少低減しても良好な成形性を確保できる。しかし、微細化のための粉砕等の予備処理工程が必要となる。 On the other hand, a relatively strong agglomerate can also be obtained by using a fine iron oxide raw material. In this case, even if the blending amount of clay or hydraulic binder is somewhat reduced, good molding is achieved. Can be secured. However, a pretreatment process such as pulverization for miniaturization is required.
したがって、意図する強度レベルや塊成鉱中の鉄分(T.Fe)と成形性とを考慮して、使用する酸化鉄原料の最適サイズ(粒径)を決定することが必要と思われる。入手容易であることや高炉操業性を考慮すると、平均粒径が約5mm以下のものを使用することが望ましい。但し、場合によっては、粗粒と細粒の併用も有効であると思われる。 Therefore, it is necessary to determine the optimum size (particle size) of the iron oxide raw material to be used in consideration of the intended strength level, iron content (T.Fe) in the agglomerate and formability. Considering availability and blast furnace operability, it is desirable to use those having an average particle size of about 5 mm or less. However, in some cases, the combined use of coarse grains and fine grains seems to be effective.
本発明では原料成分の一つとして粘土を必須とする。粘土を配合することによって成形時の可塑性を確保でき、良好に成形加工できるからである。本発明における粘土とは、微細な含水アルミニウムケイ酸塩物質を主体とする可塑性の強い土壌物質であって、カオリン、ハロイ石、ダイアスポア、石英、絹雲母、葉ロウ石等を主構成鉱物とするものをいうが、具体的な粘土の種類については特に限定されず、採石廃土や製陶用の廃土等を使用することができる。 In the present invention, clay is essential as one of the raw material components. It is because the plasticity at the time of shaping | molding can be ensured by mix | blending clay, and it can shape | mold favorably. The clay in the present invention is a highly plastic soil material mainly composed of a fine hydrous aluminum silicate material, and mainly contains kaolin, halloyite, diaspore, quartz, sericite, phyllite, etc. Although it says a thing, about the kind of concrete clay, it is not specifically limited, The quarrying waste soil, the waste soil for ceramics, etc. can be used.
上記粘土の配合量は、塊成鉱組成物全体に占める比率で5〜30質量%の範囲内とすることが好ましい。後述する通り、粘土の適正配合量は、使用する酸化鉄原料の量やサイズにもよるが、少なすぎると混練物が可塑性不足となって良好に成形できなくなるので、塊成鉱組成物全体の5質量%以上となるよう配合するのがよい。より好ましくは10質量%以上である。一方、粘土の配合量が多過ぎると、塊成鉱中の鉄分含量が少なくなり、高炉の生産性を低下させる原因になる他、塊成鉱が強度不足になる等の不具合が生じるので、塊成鉱組成物全体の30質量%以下とすることが好ましい。より好ましくは25質量%以下である。 The blending amount of the clay is preferably in the range of 5 to 30% by mass in the ratio of the entire agglomerated mineral composition. As will be described later, the proper blending amount of clay depends on the amount and size of the iron oxide raw material to be used, but if it is too small, the kneaded product becomes insufficiently plastic and cannot be molded well. It is good to mix | blend so that it may become 5 mass% or more. More preferably, it is 10 mass% or more. On the other hand, if the amount of clay is too large, the iron content in the agglomerate will be reduced, leading to a decrease in the productivity of the blast furnace. It is preferable to set it as 30 mass% or less of the whole mineral composition. More preferably, it is 25 mass% or less.
また本発明では、水を加えることで時効的に硬化する水硬性バインダーを使用する。該水硬性バインダーを混合して養生することで、焼成せずとも高強度の塊成鉱を得ることができる。水硬性バインダーとしては、例えばセメントや、ベントナイト、高炉スラグ等を使用することができる。 Moreover, in this invention, the hydraulic binder which hardens | cures age by adding water is used. By mixing and curing the hydraulic binder, a high-strength agglomerate can be obtained without firing. As the hydraulic binder, for example, cement, bentonite, blast furnace slag, or the like can be used.
セメントとしては、市販されている通常のいわゆるポルトランドセメントや、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメントの他、高炉スラグを含む高炉セメント、ポルトランドセメントにシリカが含まれるシリカセメント、フライアッシュが含まれるフライアッシュセメントやアルミナの混入したアルミナセメント等を使用することができる。 As cement, ordinary so-called Portland cement commercially available, early strong Portland cement, super early strong Portland cement, moderately hot Portland cement, blast furnace cement containing blast furnace slag, silica cement containing silica in Portland cement, Fly ash cement containing fly ash, alumina cement mixed with alumina, or the like can be used.
また水硬性バインダーの他の例として、SiO、CaO、Al2O3を主構成成分として含む高炉スラグや転炉スラグを使用することができる。 As another example of the hydraulic binder, blast furnace slag and converter slag containing SiO, CaO, and Al 2 O 3 as main components can be used.
更に、ベントナイト(火山が噴火したときに海底などに堆積した火山灰等の鉱石が変質してできたものであり、極めて大きな吸水性能を有し、吸水すると糊状になって膨張するという性質を有する)を水硬性バインダーとして使用してもよく、とくに銘柄を限定することなく、ナトリウム系のものやカルシウム系のものを使用することができる。 Furthermore, bentonite (made of ore such as volcanic ash deposited on the sea floor when the volcano erupted is altered, and has extremely high water absorption performance, and has the property of expanding into a paste when absorbed. ) May be used as a hydraulic binder, and sodium-based or calcium-based ones can be used without any particular limitation on the brand.
これらの水硬性バインダーは、主に単独で使用されるが、必要により2種以上を併用することができる。 These hydraulic binders are mainly used alone, but two or more kinds can be used in combination if necessary.
尚、上記水硬性バインダーの配合量は、塊成鉱に求められる強度や成形性、養生時間等を考慮しつつ適宜決定すればよいが、その際には、塊成鉱に占める鉄分量(T.Fe)の観点から鉱石量を、また押出成形性の観点から粘土量も併せて考慮するのがよい。 In addition, what is necessary is just to determine suitably the compounding quantity of the said hydraulic binder, considering the intensity | strength, moldability, curing time, etc. which are calculated | required by an agglomerate, but in that case, the iron content (T in an agglomerate) .Fe), the amount of ore and the amount of clay from the viewpoint of extrudability are also considered.
尚、下記実施例では、鉱石(酸化物原料)、粘土およびセメント(水硬性バインダー)からなる塊成鉱組成物を塊成鉱の原料に用いているが、本発明の塊成鉱組成物は、主組成物であるこれら酸化物原料、粘土および水硬性バインダー以外に添加剤を含んでいてもよく、例えば養生時間調整のために無機金属元素を主体とする硬化剤等を含んでいてもよい。 In the following examples, an agglomerated composition composed of ore (oxide raw material), clay and cement (hydraulic binder) is used as the raw material of the agglomerated mineral. In addition to these oxide raw materials, clay and hydraulic binder, which are the main composition, additives may be included, for example, a curing agent mainly composed of inorganic metal elements may be included for adjusting the curing time. .
本発明では、上記酸化鉄原料、粘土および水硬性バインダーを含む塊成鉱組成物に水を加えて混練するが、このときに添加する水は、含水率が14質量%±5質量%となるように調整するのがよい。 In the present invention, water is added to the agglomerated mineral composition containing the iron oxide raw material, clay and hydraulic binder and kneaded. The water added at this time has a moisture content of 14% by mass ± 5% by mass. It is better to adjust as follows.
上記混練は、一般的に使用されている方法で行えばよく、ミキサーやニーダー、二軸式または単軸式の混練機を使用することができる。この様にして得られた混練物を上述の押出成形に供する。 The above kneading may be performed by a generally used method, and a mixer, a kneader, a biaxial or single screw kneader can be used. The kneaded product thus obtained is subjected to the above-described extrusion molding.
そして押出成形して得られた成形物(生塊成鉱)の養生を、養生ヤード(好ましくは屋内の養生ヤード)で行えばよい。養生は、成形物(生塊成鉱)を整列して配置した状態で行う他、生産性の観点から多少乱雑に積み重ねた状態で行ってもよい。 Then, the molded product (green agglomerate) obtained by extrusion molding may be cured in a curing yard (preferably an indoor curing yard). Curing may be performed in a state where the molded products (green agglomerated minerals) are arranged and arranged, or may be performed in a somewhat messy state from the viewpoint of productivity.
尚、本発明でいう養生とは、空中(湿空中)で放置して生塊成鉱を硬化させることをいう。 The term “curing” as used in the present invention refers to curing the green agglomerate by leaving it in the air (in the air).
本発明の方法によれば、押出成形直後や養生時に成形物同士がくっつき合うことがなく、個々の成形物の間隔を十分に設ける必要がないので、広い養生ヤードを確保する必要がなく、また、上記の通り成形物を積み重ねて養生しても、養生以後の取扱作業性が極めて良好である。 According to the method of the present invention, the molded products do not stick to each other immediately after extrusion molding or during curing, and it is not necessary to provide a sufficient interval between the molded products. Even if the molded products are stacked and cured as described above, the handling workability after curing is extremely good.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
図1に概略的に示す通り、酸化鉄原料として表1に示す組成の鉄鉱石1(焼結返鉱;製品焼結鉱の篩下)、セメント2(普通ポルトランドセメント)および粘土3(採石廃土)からなる塊成鉱組成物を、コンベア4で混練機5まで運搬し、混練機5で水6を加えて含水率が約14質量%となるように調整しながら混練した。そして混練物を真空押出成形機7に装入して、真空脱気(MPa絶対基準で0.016MPa)しつつ押出成形し、得られた連続成形物8をカッター9で切断して、直径:約50mmで高さ:約100mmの円柱状の成形物(生塊成鉱)10を得た。
As schematically shown in FIG. 1, iron ore 1 (sintered ore; under sinter of product sintered ore), cement 2 (ordinary Portland cement) and clay 3 (quarry waste) as raw materials for iron oxide The agglomerated mineral composition comprising soil) was conveyed to the kneader 5 by the conveyor 4, and kneaded while adjusting the water content to about 14% by mass by adding water 6 with the kneader 5. Then, the kneaded product is charged into a vacuum
そして、上記生塊成鉱10を屋内の養生ヤード11へ移し、常温で24時間、168時間、192時間または672時間養生して塊成鉱を得た。この様にして得られた塊成鉱の圧縮強度を、下記に示す市販の圧縮強度試験機を用いて測定した。これらの結果を表1に併記する。
And the said agglomerated
<圧縮強度試験機>
製造会社名:(株)森試験機製作所
形式:アムスラー式
適用規格:JIS B 7721
<Compressive strength tester>
Manufacturer name: Mori Testing Machine Co., Ltd. Format: Amsler type Applicable standards: JIS B 7721
以下、表1の結果について考察する。まず予備試験として、良好に押出成形できるかを確認するため、表1に示すNo.1の原料を用いて塊成鉱の製造を行った。その結果、No.1では、1日の養生で20N/mm2を超える十分高い強度のものが得られており、製鉄用原料として使用できる塊成鉱が1日の養生で得られることを確認した。尚、No.1において、更に養生時間を長く(1週間、または1ヶ月)すれば、塊成鉱を更に高強度化できることもわかった。 Hereinafter, the results of Table 1 will be considered. First, as a preliminary test, in order to confirm whether extrusion molding can be performed satisfactorily, No. 1 shown in Table 1 is used. Agglomerate was produced using 1 raw material. As a result, no. In No. 1, a sufficiently high strength exceeding 20 N / mm 2 was obtained by curing for one day, and it was confirmed that agglomerated ore that could be used as a raw material for iron making was obtained by curing for one day. No. It was also found that the strength of the agglomerate can be further increased by further increasing the curing time (1 week or 1 month).
次に、製鉄用原料として塊成鉱に占める鉄分(T.Fe)含量を高めた場合について検討した。即ち、No.1の組成における粘土とセメントの配合量を減少させ、鉱石の配合量を高めて塊成鉱を製造する実験を行った。その結果をNo.2および3に示す。 Next, a case where the iron content (T.Fe) content in the agglomerated ore as a raw material for iron making was increased was examined. That is, no. An experiment was conducted in which the amount of clay and cement in the composition No. 1 was reduced and the amount of ore was increased to produce agglomerates. The result was No. Shown in 2 and 3.
このNo.2およびNo.3の結果から、鉱石として粒径約5mm以下のものを使用し、粘土および/またはセメントの配合量をNo.1より減少させた場合には、成形性が不十分になることが判明した。 This No. 2 and no. From the results of No. 3, the ore having a particle size of about 5 mm or less was used, and the blending amount of clay and / or cement was No. It has been found that when it is decreased from 1, the moldability becomes insufficient.
そこで、粒径の微細な鉱石(粒径約0.25mm以下)を使用し、粘土とセメントの混合量は上記No.2およびNo.3と同様にして塊成鉱を製造した。その結果をNo.4およびNo.5に示す。このNo.4およびNo.5の結果から、粒径の微細な鉱石を使用すれば、粘土および/またはセメントの混合量を低減させても十分成形できることがわかる。 Therefore, an ore with a fine particle size (particle size of about 0.25 mm or less) is used, and the mixing amount of clay and cement is the above-mentioned No. 1. 2 and no. Agglomerate was produced in the same manner as in No. 3. The result was No. 4 and no. As shown in FIG. This No. 4 and no. From the result of 5, it can be seen that if an ore with a fine particle size is used, it can be sufficiently molded even if the mixing amount of clay and / or cement is reduced.
尚、塊成鉱の高強度化は、No.4およびNo.5よりも、粒径の大きな鉱石を使用した場合(No.1)の方が短期間(1日間)で達成できているが、No.4,5についても、養生時間を168時間(7日間)にすることで、No.1より高強度の塊成鉱が得られることがわかる。またNo.4,5について、更に養生時間を延ばしても(672時間)、強度は飛躍的に上昇せず、7日間の養生で十分に目的を達成できると思われる。 The strength of the agglomerated ore is no. 4 and no. When using an ore with a larger particle size than No. 5 (No. 1), it can be achieved in a shorter period (one day). For Nos. 4 and 5, the curing time was 168 hours (7 days). It can be seen that agglomerates with a strength higher than 1 are obtained. No. For 4 and 5, even if the curing time is further extended (672 hours), the strength does not increase dramatically, and it seems that the purpose can be sufficiently achieved by curing for 7 days.
No.6およびNo.7は、比較的大きなサイズの鉱石(粒径上限:5mm,No.1〜3で使用)と、微細サイズの鉱石(粒径上限:0.25mm,No.4,5で使用)の中間サイズの鉱石を用いて、鉱石の粒径が、養生時間と強度との関係や成形性に及ぼす影響を調べた結果であり、No.6は粒径上限:0.5mmの鉱石、またNo.7は粒径上限:1.0mmの鉱石を用いた実験例である。 No. 6 and no. 7 is an intermediate size between a relatively large size ore (particle size upper limit: 5 mm, used in Nos. 1 to 3) and a fine size ore (particle size upper limit: 0.25 mm, used in Nos. 4 and 5). Is the result of investigating the influence of the ore particle size on the relationship between the curing time and strength and on the formability. No. 6 is an ore with an upper limit of particle size: 0.5 mm. 7 is an experimental example using an ore having a particle size upper limit of 1.0 mm.
これらNo.6およびNo.7のデータについては、十分に解明できたわけではないが、No.6とNo.7を比較すると、サイズの大きな鉱石を使用した方が、同じ養生時間でより高強度のものが得られると思われる。但し、No.2やNo.3に示す通り、鉱石サイズがより大きくなると、成形性が悪くなるおそれがあると思われる。 These No. 6 and no. Although the data of 7 was not fully elucidated, no. 6 and no. If 7 is compared, it seems that the one using a larger size ore can obtain a higher strength in the same curing time. However, no. 2 or No. As shown in FIG. 3, it seems that if the ore size is larger, the moldability may be deteriorated.
また、No.6とNo.7の比較からは、サイズの大きな鉱石を使用したNo.7の方がより高強度の塊成鉱が得られているが、これらNo.6,7と前記No.4とを比較すると、鉱石として極微細のものを使用することによっても、同じ養生時間で上記No.7と同レベルまたはそれ以上の強度のものが得られると思われる。 No. 6 and no. From the comparison of No. 7, no. No. 7 has a higher strength agglomerate. 6, 7 and No. 4 is compared with the above No. 4 in the same curing time by using a very fine ore as an ore. It seems that the same strength as 7 or higher is obtained.
これらの実験結果をグラフ化してまとめたものを図2に示す。この図2から、次の様に考察することができる。 A graph summarizing these experimental results is shown in FIG. From FIG. 2, it can be considered as follows.
通常の方法でペレット状に成形したものの強度は、一般的に15〜18N/mm2程度であるが、本発明の方法によれば、約20N/mm2の塊成鉱が、No.1の組成・鉱石サイズの原料を用いれば約1日で得られ、またNo.4の組成・鉱石サイズの原料を用いれば約100時間(約4日強)程度の養生で得られる。また、No.1の組成・鉱石サイズの原料を用いれば、約50時間(約2日強)で約30N/mm2の塊成鉱が得られ、No.4の組成・鉱石サイズの原料を用いれば、同レベル程度のものが約7日間の養生で得られることがわかる。 Strength at which the compact into pellets in the usual way, but is generally 15~18N / mm 2 approximately, according to the method of the present invention, the mass Naruko about 20N / mm 2, No. No. 1 ore-sized material can be obtained in about one day. If a raw material of composition 4 ore size is used, it can be obtained by curing for about 100 hours (about 4 days or more). No. No. 1 agglomerated ore of about 30 N / mm 2 can be obtained in about 50 hours (about 2 days or more). It can be seen that if a raw material of composition 4 ore size is used, the same level can be obtained by curing for about 7 days.
1 酸化鉄原料(鉱石)
2 セメント
3 粘土
4 コンベア
5 混練機
6 水
7 真空押出成形機
8 連続成形物
9 カッター
10 成形物(生塊成鉱)
11 養生ヤード
1 Iron oxide raw material (Ore)
2 Cement 3 Clay 4 Conveyor 5 Kneading machine 6
11 Curing Yard
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004009419A JP4220908B2 (en) | 2004-01-16 | 2004-01-16 | Method for producing unfired agglomerated mineral |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004009419A JP4220908B2 (en) | 2004-01-16 | 2004-01-16 | Method for producing unfired agglomerated mineral |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005200719A JP2005200719A (en) | 2005-07-28 |
JP4220908B2 true JP4220908B2 (en) | 2009-02-04 |
Family
ID=34822469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004009419A Expired - Fee Related JP4220908B2 (en) | 2004-01-16 | 2004-01-16 | Method for producing unfired agglomerated mineral |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4220908B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4982993B2 (en) * | 2005-10-03 | 2012-07-25 | Jfeスチール株式会社 | Method for producing sintered ore |
JP2007100150A (en) * | 2005-10-03 | 2007-04-19 | Jfe Steel Kk | Method for producing sintered ore |
AT509072B1 (en) * | 2010-04-19 | 2011-06-15 | Siemens Vai Metals Tech Gmbh | BENTONITE-BOUNDED PRESS LEGS BELOW OXIDIC ICE CARRIER |
KR101322005B1 (en) | 2011-12-16 | 2013-10-28 | 재단법인 포항산업과학연구원 | Solidification briquette and method for manufacturing the same |
JP6467856B2 (en) * | 2014-10-16 | 2019-02-13 | 新日鐵住金株式会社 | Recycling method of fly ash and non-calcined agglomerated mineral |
JP6992644B2 (en) * | 2018-03-27 | 2022-01-13 | 日本製鉄株式会社 | Method for producing uncalcined agglomerate for blast furnace and method for producing pozzolan-reactive iron-containing raw material |
JP7389355B2 (en) * | 2020-04-07 | 2023-11-30 | 日本製鉄株式会社 | Method for producing unfired coal-containing agglomerated ore for blast furnaces |
-
2004
- 2004-01-16 JP JP2004009419A patent/JP4220908B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005200719A (en) | 2005-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3013769B1 (en) | Refractory formulation and use thereof | |
CN103602804B (en) | A kind of high performance pellet binder | |
EP2877437B1 (en) | Refractory product and use of the refractory product | |
CN104478402B (en) | A kind of scrap baked brick and preparation method thereof | |
JP2008214715A (en) | Method for manufacturing nonfired agglomerated ore for iron manufacture | |
JP6056492B2 (en) | Method for producing unfired carbon-containing agglomerated blast furnace | |
CN112867804A (en) | Binder formulation | |
JP4220908B2 (en) | Method for producing unfired agglomerated mineral | |
JP5803540B2 (en) | Method for producing unfired carbon-containing agglomerated mineral | |
JP5114742B2 (en) | Method for producing carbon-containing unfired pellets for blast furnace | |
JP2006322058A (en) | Method for manufacturing non-fired agglomerated ore | |
JP5786668B2 (en) | Method for producing unfired carbon-containing agglomerated mineral | |
JP2009030114A (en) | Method for producing ore raw material for blast furnace | |
JP6326074B2 (en) | Carbon material interior ore and method for producing the same | |
JP7188126B2 (en) | Method for manufacturing carbon-containing non-fired pellets for blast furnace | |
KR101309639B1 (en) | A cold bonnded pellet and method for preparing thereof | |
JP7253981B2 (en) | Method for producing iron and steel slag hydrated solid | |
JP2003096521A (en) | Sintered ore blended with high alumina iron ore, and production method therefor | |
JP4268419B2 (en) | Method for producing low slag sintered ore | |
JP2009030116A (en) | Method for producing ore raw material for blast furnace | |
KR20160096325A (en) | Cement brick having gypsum wastes and manufacturing process thereof | |
JP2002241853A (en) | Non-burning agglomerate for blast furnace | |
JP3888981B2 (en) | Method for producing sintered ore | |
JP4867394B2 (en) | Non-calcined agglomerate for iron making | |
JP7188033B2 (en) | Method for producing coal-bearing agglomerate ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060911 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4220908 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131121 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |