JP4211952B2 - Composite particles for abrasives and slurry abrasives - Google Patents

Composite particles for abrasives and slurry abrasives Download PDF

Info

Publication number
JP4211952B2
JP4211952B2 JP28163397A JP28163397A JP4211952B2 JP 4211952 B2 JP4211952 B2 JP 4211952B2 JP 28163397 A JP28163397 A JP 28163397A JP 28163397 A JP28163397 A JP 28163397A JP 4211952 B2 JP4211952 B2 JP 4211952B2
Authority
JP
Japan
Prior art keywords
abrasive
particles
polishing
particle
abrasives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28163397A
Other languages
Japanese (ja)
Other versions
JPH11114808A (en
Inventor
守 大野
文男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP28163397A priority Critical patent/JP4211952B2/en
Publication of JPH11114808A publication Critical patent/JPH11114808A/en
Application granted granted Critical
Publication of JP4211952B2 publication Critical patent/JP4211952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はガラス素材や金属素材または半導体デバイスなどを研磨加工するときに用いられる研磨材に関し、これらの素材の表面の平担精密仕上げや研磨速度の向上に好適である。
【0002】
【従来の技術】
素材表面を精密に研磨加工することが必要な用例として、光ディスク基板、磁気ディスク、フラットパネルディスプレイ用ガラス基板、時計板、カメラレンズ、光学部品用の各種レンズなどに用いられる無機ガラス素材やフィルター類などの結晶素材がある。そして、これらのガラス基板は、表面を高精度に研磨することが要求される。
【0003】
そのために、例えばガラス素材の精密研磨には、シリカや酸化セリウムの微粒子を液体中にスラリー状に分散させたものを研磨材として用いるのが一般的である。
【0004】
シリカ研磨材による研磨は研磨面の表面粗さやスクラッチなどが少なく研磨面の状態は優れる。しかし、研磨速度が遅いという欠点がある。そこでシリカ研磨材より研磨速度を上げるために、酸化セリウムを主成分とする研磨材が開発され、特開平3−146585号公報に提案されている。砥粒として研磨材に用いる粒子の分散形態は、コロイダルシリカ以外では、房状の凝集形態である場合が多い。
【0005】
この房状の凝集粒子体は、1次粒子径が、0.01〜0.1μmであり、この1次粒子が数100〜数1000個集まり0.2〜0.5μmの2次粒子を形成し、さらにこの2次粒子同士が集合して数μmの凝集体を構成している。この凝集した粒子が、数10μmの研磨パッドの空隙部に保持される。そして、凝集粒子体が研磨加工中に研磨パッドから供給され、磨砕を受け、さらに微小な粒子になり、活性比表面積を大きくしながら高精度の研磨加工に寄与する。
【0006】
しかし、このような凝集粒子には次のような問題がある。このように磨砕により解砕、微粒化するような凝集粒子を再現性よく製造することが困難である。磨砕で解砕、微粒化しない場合は、スクラッチを発生させる原因になる。また、シリカのように比重が軽い粒子を研磨砥粒として用いた研磨材は、スラリー中では、比較的沈澱が少ないが、比重が重い素材を研磨砥粒として用いた場合は、砥粒が沈殿して凝結するという欠点がある。
【0007】
通常研磨材は循環しながら使用されるので、砥粒が沈殿するとその砥粒が大きな固まりとなり研磨面を傷つけ、スクラッチを発生させる原因となる。また、配管内や容器内で沈殿すると、砥粒が所定濃度に保てず研磨速度が経時的に低下し、研磨量が管理を精度よく行うことが出来なくなり工程管理が困難になる。
【0008】
また、半導体デバイスを製造する中間工程でデバイスを平坦化する工程がある。この平坦化技術の一つとして、CMPとよばれる研磨法がある。この方法はChemical−Mechanical−Polishingの略称であり、砥粒の機械的作用と加工液砥粒の分散媒の化学的作用を複合化させた研磨法である。
【0009】
この方法により、例えば、層間絶縁膜を研磨することにより、デバイス全面を均一な厚みに形成させることが出来る。従来から行われているCMPの代表例としては、LSI用シリコンウエハに対し、シリカを砥粒として弱アルカリ性溶液に分散させ研磨材を製造し、平滑で歪みがない鏡面に研磨する方法がとられる。現在実用化されているCMP法には、上述した微粒子シリカが使用されている。これらのシリカ研磨材はガラスの研磨と同様に、研磨速度が遅いために、最近では酸化セリウムの房状の凝集形態の粒子が開発されている。
【0010】
しかし、このような酸化セリウムを砥粒として用いた研磨材は、上述したように、スラリー中で、砥粒の沈降性が大きいという欠点がある。
【0011】
さらに、半導体デバイスの製造に使用される種々の材料は、不純物混入による汚染防止が重要である。特に歩留まりの低下の原因となるナトリウム、カリウムなどのアルカリ金属イオンさらにα線の発生源となる放射性元素を含む不純物の混入はさけねばならない。従って、天然の鉱物を焼成、粉砕して製造した研磨材はこれらの不純物を含むために、半導体デバイス関連の素材には不適である。
【0012】
【発明が解決しようとする課題】
本発明の目的はガラス素材や半導体デバイスなどの研磨に関し、汚染物質を含まず、従来のシリカ研磨材と同等の表面加工状態を維持し、且つシリカ研磨材より、研磨速度を向上させ、生産性向上に寄与する研磨材を提供することにある。
【0013】
研磨速度を上げるために機械的方法として研磨圧力や回転速度を上げたりする方法が考えられるが、研磨面にスクラッチなどの傷が入りやすく、研磨面の表面精度に悪影響が出てくる。それを避けるために、研磨精度を下げることなく、研磨速度を上げる技術開発が必要とされる。
【0014】
【課題を解決するための手段】
上記の課題を達成するために鋭意検討した結果、母粒子の表面に酸化ジルコニウム・酸化セリウム固溶体からなる子粒子を担持したことを特徴とする研磨材用複合粒子である。
【0015】
【発明の実施の形態】
母粒子の平均粒子径は0.3〜30μmの範囲にあるのが好ましく、さらに好ましくは0.2〜5μmの範囲である。
【0016】
子粒子の平均粒子径は、母粒子のそれにもよるが、0.001〜5μmの範囲にあるのが好ましく、さらに好ましくは0.002〜0.5μmの範囲である。平均粒子径がこの範囲にあるとき、母粒子への担持と被覆性の良好な複合粒子が得られる。母粒子の表面に担持される子粒子の量は、好ましくは5〜70重量%、さらに好ましくは10〜40重量%の範囲にある。5重量%未満であると被覆率が低下し十分な研磨速度が得られず、70重量%を超えると母粒子から脱落するものが多くなる。
【0017】
このようにして得られる複合粒子の比重は、子粒子と母粒子のそれによるが、大幅な比重軽減効果が大きく、スラリーとした場合、沈降性が少なく優れた分散性を示す。
【0018】
本発明の複合粒子を用いてスラリー状の研磨材を調整するには、複合粒子を研磨材全量に対し、好ましくは0.5〜30重量%で含有させるが、さらに好ましくは、1〜10重量%の範囲である。添加量が、0.5重量%未満では、砥粒濃度が希薄すぎて研磨速度が下がる。また30重量%を超えて添加すると、砥粒の単位重量当たりに換算した場合の研磨速度が下がり、研磨効率が低下するので好ましくない。
【0019】
本発明の母粒子はナイロン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリウレタン、スチレンーアクリル共重合体、ポリメチルメタクリレート、エポキシ、フェノール、メラミン、セルロース、ポリオレフィン、シリコーン、酸化ケイ素を用いることができ、子粒子は酸化ジルコニウム・酸化セリウム固溶体を用いることができる。
【0020】
母粒子の表面に子粒子が担持された複合粒子を砥粒として添加しスラリーとして分散させた研磨材を用いることで、ガラス素材や半導体デバイスなどの研磨に関し、汚染物質を含まず、現行のシリカ研磨材と同等の表面加工状態を維持し、且つシリカ研磨材より、研磨速度を向上させることが出来る。
【0021】
【特性の評価法】
(1)粒子径の測定
ここで述べる粒子径の測定は、透過型電子顕微鏡にて、砥粒の1次粒子径、及び凝集体の大きさを観察し、測定した。
【0022】
(2)研磨条件
[ガラスディスクの場合]
被研磨材 :ガラスサブストレート(φ100青板ガラス)
研磨装置 :ラッピングマシーン
ポリシングクロス:合成スエードクロス
加重 :30g/cm2
定盤の回転数 :30rpm
ワークの回転数 :30rpm
研磨時間 :延べ5時間(サンプルリング間隔 30分毎)
【0023】
[シリコーンウエハの場合]
被研磨材 :4インチシリコーンウエハ
研磨装置 :ラッピングマシーン
ポリシングクロス:発泡ポリウレタン
加重 :100g/cm2
定盤の回転数 :60rpm
ワークの回転数 :30rpm
研磨時間 :延べ20分(サンプルリング間隔 5分)
【0024】
(3)研磨速度
[ガラスディスクの場合]
研磨中にサンプルリング間隔30分毎に、研磨前と研磨後の重量を測定し、前後の重量減を厚みに換算し、研磨時間で除し平均の研磨速度を求めた。
【0025】
[シリコーンウエハの場合]
研磨中にサンプルリング間隔5分毎に、研磨前と研磨後の重量を測定し、前後の重量減を厚みに換算し、研磨時間で除し平均の研磨速度を求めた。
【0026】
(4)傷の観察
ディスクを1%HF溶液で2分間エッチングし、純水で洗浄、乾燥後、集光ランプで傷を観察する。そのときのスクラッチの本数を数える。
【0027】
【実施例】
比較例
硝酸セリウム(Ce(NO3 )3 ・6H2 O)434gを純水2000mlに溶解する。これに31重量%過酸化水素水60gと28重量%アンモニア水200gを攪拌しながら滴下し、含水酸化セリウムゲルを得た。
【0028】
次にこのゲルを、オートクレーブにて、150℃で24時間加熱処理し、得られたスラリーを純水で5回濾過、洗浄し、さらにアセトンで3回濾過、洗浄し、ケークを得た。次に、このケークをアトライターで3時間粉砕し、ロータリエバポレータを使用して60℃で乾燥し、平均粒子径0.01μmの酸化セリウム粒子を得た。これを子粒子とする。
【0029】
一方、50gの無水ラウロラクタムを200mlの流動パラフィン(分散剤)と、1gのステアリン酸ソーダ(分散助剤)とを混合した。次に、混合物を窒素雰囲気中にて140℃で加熱してラウロラクタムを溶解するとともに、重合促進剤として三塩化リン0.2ml添加し、1時間ほどかき混ぜて重合を行わせ、ナイロン12粒子を得た。さらにこの粒子を濾別し、沸騰したベンゼンで洗浄し、80℃で減圧乾燥して、平均粒子径が5μmのナイロン12樹脂からなる粒子を得た。これを母粒子とする。
次に、5重量部の子粒子と20重量部の母粒子を混合し、自動乳鉢を使用し、混合して、母粒子の表面に子粒子を担持させ、複合粒子を得た。そして、上記複合粒子を純水中に3重量%の濃度になるように添加して、スラリー状の研磨材を調整した。この複合粒子の比重は、1.6であり、酸化セリウムの7.13と比較して、比重軽減効果が大きく、スラリーとした場合、沈降性が少なく優れた分散性を示した。
【0030】
このようにして得られた研磨材を用いて、ガラスディスクの研磨効果を調べた。この研磨材の、研磨速度は4.3μm/hrであり、傷は観察されなかった。
【0031】
比較例
研磨材用の砥粒として市販品のコロイダルシリカ(粒子径0.04μm)を10重量%の濃度になるように添加して、スラリー状の研磨材を調整したほかは比較例1と同様にして研磨した。この研磨材の、研磨速度は1.2μm/hrであり、傷は観察されなかった。
【0032】
実施例
CeとZrとの原子比(Ce/Zr)が40/60になるように、塩化セリウム(CeCl3 )水溶液59.48mlと、オキシ塩化ジルコニウム(ZrOCl 2 )水溶液83.04gを混合し、これに過酸化水素水1. 15gを添加、混合した後、純水を加えて200mlとした。一方、28重量%のアンモニア水を、NH 3 とCeCl3 及びZrOCl2 に含まれるClとの原子比(NH3 /Cl)が1.5になるように48.57ml計りとり、これに純水を加えて全量を200mlとした。2つの溶液を攪拌しながら滴下し、全量をビーカに投入し、含水酸化セリウムと含水酸化ジルコニウムの共沈ゲルを得た。以下は、比較例1の酸化セリウムと同様にオートクレーブにて加熱処理、純水による濾過、水洗、アセトン処理、乾燥を行い、粒子径0.01μmの酸化セリウム・酸化ジルコニウム固溶体粒子を得た。
【0033】
この固溶体粒子を子粒子として、比較例1と同様にナイロン12の母粒子に担持させ、複合粒子を得た。
【0034】
研磨材用の砥粒として上記粒子を純水中に5重量%の濃度になるように添加して、スラリー状の研磨材を調整した。このようにして得られた研磨材を用いてシリコンウエハの研磨効果を調べた。
【0035】
この研磨材の、研磨速度は5.2μm/hrであり、傷は観察されなかった。
【0036】
比較例
研磨材用の砥粒として市販品のコロイダルシリカ(粒子径0.04μm)10%の濃度になるように添加して、スラリー状の研磨材を調整したほかは実施例と同様にして研磨した。この研磨材の、研磨速度は2.5μm/hrであり、傷は観察されなかった。
【0037】
【発明の効果】
本発明は、母粒子の表面に子粒子が担持された複合研磨材を砥粒として添加しスラリーとして分散させた研磨材を用いることにより、ガラス素材や半導体デバイスなどの研磨に関し、汚染物質を含まず、現行のシリカ研磨材と同等の表面加工状態を維持し、且つシリカ研磨材より、研磨速度を向上させることが出来る。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an abrasive used when polishing a glass material, a metal material, a semiconductor device, or the like, and is suitable for the flat precision finishing of the surface of these materials and the improvement of the polishing rate.
[0002]
[Prior art]
Inorganic glass materials and filters used for optical disks, magnetic disks, glass substrates for flat panel displays, watch plates, camera lenses, various lenses for optical components, etc. There are crystal materials such as. These glass substrates are required to polish the surface with high accuracy.
[0003]
Therefore, for example, for precision polishing of a glass material, it is common to use a material in which fine particles of silica or cerium oxide are dispersed in a liquid as a slurry.
[0004]
Polishing with a silica abrasive has less surface roughness and scratches on the polished surface, and the polished surface is excellent. However, there is a drawback that the polishing rate is slow. Therefore, in order to increase the polishing rate compared with the silica abrasive, an abrasive mainly composed of cerium oxide has been developed and proposed in Japanese Patent Application Laid-Open No. 3-146585. The dispersion form of the particles used for the abrasive as the abrasive grains is often a tufted aggregate form other than colloidal silica.
[0005]
This tuft-like aggregated particle has a primary particle diameter of 0.01 to 0.1 μm, and several hundred to several thousand of these primary particles gather to form 0.2 to 0.5 μm secondary particles. Further, the secondary particles are aggregated to form an aggregate of several μm. These agglomerated particles are held in the voids of a polishing pad of several tens of μm. The agglomerated particles are supplied from the polishing pad during the polishing process, are crushed and become finer particles, and contribute to a highly accurate polishing process while increasing the active specific surface area.
[0006]
However, such aggregated particles have the following problems. Thus, it is difficult to produce agglomerated particles that are crushed and atomized by grinding with high reproducibility. If not pulverized or atomized by grinding, it may cause scratches. In addition, abrasives using particles with low specific gravity as silica, such as silica, have relatively little precipitation in the slurry, but if a material with high specific gravity is used as the abrasive, the particles will precipitate. And has the disadvantage of condensing.
[0007]
Usually, the abrasive is used while being circulated. Therefore, when the abrasive grains are settled, the abrasive grains become a large mass, which damages the polished surface and causes scratches. Further, if the particles settle in the pipe or the container, the abrasive grains cannot be maintained at a predetermined concentration, and the polishing rate decreases with time, and the amount of polishing cannot be controlled accurately, making process management difficult.
[0008]
Further, there is a step of flattening the device in an intermediate step of manufacturing a semiconductor device. As one of the planarization techniques, there is a polishing method called CMP. This method is an abbreviation for Chemical-Mechanical-Polishing, and is a polishing method in which the mechanical action of abrasive grains and the chemical action of a dispersion medium of working fluid abrasive grains are combined.
[0009]
By this method, for example, the entire surface of the device can be formed with a uniform thickness by polishing the interlayer insulating film. As a typical example of CMP that has been conventionally performed, a method is used in which a polishing material is manufactured by dispersing silica in a weak alkaline solution as an abrasive grain on a silicon wafer for LSI, and polishing to a smooth and distortion-free mirror surface. . The fine particle silica described above is used in the CMP method currently in practical use. Since these silica abrasives have a low polishing rate as in the case of glass polishing, recently, particles in the form of tufted aggregates of cerium oxide have been developed.
[0010]
However, an abrasive using such cerium oxide as an abrasive grain has a drawback that the settling property of the abrasive grain is large in the slurry as described above.
[0011]
Furthermore, it is important to prevent contamination caused by impurities in various materials used for manufacturing semiconductor devices. In particular, impurities including alkali metal ions such as sodium and potassium that cause a decrease in yield and radioactive elements that are sources of α rays must be avoided. Therefore, abrasives produced by firing and pulverizing natural minerals contain these impurities, and are therefore unsuitable for materials related to semiconductor devices.
[0012]
[Problems to be solved by the invention]
The object of the present invention relates to polishing of glass materials and semiconductor devices, does not contain contaminants, maintains the same surface processing state as conventional silica abrasives, and improves the polishing rate compared to silica abrasives, thereby improving productivity. It is to provide an abrasive that contributes to improvement.
[0013]
As a mechanical method for increasing the polishing rate, a method of increasing the polishing pressure or the rotation speed is conceivable. However, scratches such as scratches are likely to enter the polishing surface, which adversely affects the surface accuracy of the polishing surface. In order to avoid this, it is necessary to develop a technique for increasing the polishing rate without reducing the polishing accuracy.
[0014]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the composite particles for abrasives are characterized in that child particles comprising zirconium oxide / cerium oxide solid solution are supported on the surface of the mother particles.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The average particle diameter of the mother particles is preferably in the range of 0.3 to 30 μm, more preferably in the range of 0.2 to 5 μm.
[0016]
The average particle diameter of the child particles is preferably in the range of 0.001 to 5 μm, more preferably in the range of 0.002 to 0.5 μm, although it depends on that of the mother particles. When the average particle diameter is within this range, composite particles having good support on the mother particles and good coverage can be obtained. The amount of the child particles supported on the surface of the mother particles is preferably 5 to 70% by weight, more preferably 10 to 40% by weight. If it is less than 5% by weight, the coverage is lowered and a sufficient polishing rate cannot be obtained, and if it exceeds 70% by weight, many particles fall off from the mother particles.
[0017]
The specific gravity of the composite particles obtained in this manner depends on that of the child particles and the mother particles. However, the effect of greatly reducing specific gravity is great, and when the slurry is used, the settling property is small and excellent dispersibility is exhibited.
[0018]
In order to adjust the slurry-like abrasive using the composite particles of the present invention, the composite particles are preferably contained in an amount of 0.5 to 30% by weight, more preferably 1 to 10% by weight based on the total amount of the abrasive. % Range. When the addition amount is less than 0.5% by weight, the abrasive concentration is too dilute and the polishing rate is lowered. Further, if it is added in excess of 30% by weight, the polishing rate when converted per unit weight of the abrasive grains is lowered, and the polishing efficiency is lowered.
[0019]
Matrix particles of the present invention is nylon, polyethylene, polypropylene, polystyrene, polyurethane, styrene-acryl copolymer, polymethyl methacrylate, epoxy, phenolic, melamine, cellulose, polyolefins, silicones, may be used silicon oxide, child particles it can be used an acid zirconium-cerium oxide solid solution.
[0020]
By using a polishing material in which the composite particles with the child particles supported on the surface of the base particles are added as abrasive grains and dispersed as a slurry, it is free of contaminants and is used for polishing glass materials and semiconductor devices. The surface processing state equivalent to that of the abrasive can be maintained, and the polishing rate can be improved as compared with the silica abrasive.
[0021]
[Characteristic evaluation method]
(1) Measurement of particle diameter The particle diameter described here was measured by observing the primary particle diameter of abrasive grains and the size of aggregates with a transmission electron microscope.
[0022]
(2) Polishing conditions [for glass disc]
Material to be polished: Glass substrate (φ100 blue plate glass)
Polishing device: Wrapping machine polishing cloth: Synthetic suede cloth Weight: 30 g / cm 2
Surface plate rotation speed: 30 rpm
Work rotation speed: 30 rpm
Polishing time: 5 hours in total (sampling interval every 30 minutes)
[0023]
[For silicone wafers]
Material to be polished: 4-inch silicone wafer polishing device: Wrapping machine polishing cloth: Polyurethane foam load: 100 g / cm 2
Surface plate rotation speed: 60 rpm
Work rotation speed: 30 rpm
Polishing time: Total 20 minutes (sample ring interval 5 minutes)
[0024]
(3) Polishing rate [for glass disc]
During polishing, the weight before and after polishing was measured every 30 minutes between samplings, the weight loss before and after was converted into thickness, and the average polishing rate was obtained by dividing by the polishing time.
[0025]
[For silicone wafers]
During polishing, the weight before and after polishing was measured every 5 minutes between samplings, the weight loss before and after was converted into thickness, and the average polishing rate was obtained by dividing by the polishing time.
[0026]
(4) Scratch observation The disk is etched with a 1% HF solution for 2 minutes, washed with pure water, dried, and then observed with a condenser lamp. Count the number of scratches at that time.
[0027]
【Example】
Comparative Example 1
434 g of cerium nitrate (Ce (NO3) 3 .6H2 O) is dissolved in 2000 ml of pure water. To this, 60 g of 31 wt% aqueous hydrogen peroxide and 200 g of 28 wt% aqueous ammonia were added dropwise with stirring to obtain hydrous cerium oxide gel.
[0028]
Next, this gel was heat-treated at 150 ° C. for 24 hours in an autoclave, and the resulting slurry was filtered and washed 5 times with pure water, and further filtered and washed 3 times with acetone to obtain a cake. Next, this cake was pulverized with an attritor for 3 hours and dried at 60 ° C. using a rotary evaporator to obtain cerium oxide particles having an average particle diameter of 0.01 μm. This is a child particle.
[0029]
On the other hand, 50 g of anhydrous laurolactam was mixed with 200 ml of liquid paraffin (dispersing agent) and 1 g of sodium stearate (dispersing aid). Next, the mixture is heated at 140 ° C. in a nitrogen atmosphere to dissolve laurolactam, and 0.2 ml of phosphorus trichloride is added as a polymerization accelerator, and the mixture is stirred for about 1 hour to carry out polymerization. Obtained. Further, the particles were separated by filtration, washed with boiling benzene, and dried under reduced pressure at 80 ° C. to obtain particles made of nylon 12 resin having an average particle size of 5 μm. This is the mother particle.
Next, 5 parts by weight of the child particles and 20 parts by weight of the mother particles were mixed and mixed using an automatic mortar to support the child particles on the surface of the mother particles to obtain composite particles. And the said composite particle was added so that it might become a 3 weight% density | concentration in a pure water, and the slurry-like abrasive | polishing material was adjusted. The specific gravity of the composite particles was 1.6, and the specific gravity was greatly reduced as compared with 7.13 of cerium oxide. When the slurry was made into a slurry, the settling property was small and excellent dispersibility was shown.
[0030]
Using the abrasive thus obtained, the polishing effect of the glass disk was examined. The polishing rate of this abrasive was 4.3 μm / hr, and no scratches were observed.
[0031]
Comparative Example 2
The same as in Comparative Example 1 except that a commercially available colloidal silica (particle diameter 0.04 μm) was added as an abrasive grain for the abrasive to a concentration of 10% by weight to prepare a slurry abrasive. Polished. The polishing rate of this abrasive was 1.2 μm / hr, and no scratches were observed.
[0032]
Example 1
59.48 ml of an aqueous solution of cerium chloride (CeCl3) and 83.04 g of an aqueous solution of zirconium oxychloride (ZrOCl2) were mixed so that the atomic ratio of Ce to Zr (Ce / Zr) was 40/60. After adding and mixing 1.15 g of hydrogen oxide water, pure water was added to make 200 ml. On the other hand, 48.57 ml of 28 wt% ammonia water was measured so that the atomic ratio (NH3 / Cl) of NH3 to Cl contained in CeCl3 and ZrOCl2 was 1.5, and pure water was added thereto. The total volume was 200 ml. The two solutions were added dropwise with stirring, and the entire amount was put into a beaker to obtain a coprecipitated gel of hydrous cerium oxide and hydrous zirconium oxide. In the same manner as in the cerium oxide of Comparative Example 1, heat treatment, filtration with pure water, washing with water, acetone treatment, and drying were performed in an autoclave to obtain cerium oxide / zirconium oxide solid solution particles having a particle diameter of 0.01 μm.
[0033]
The solid solution particles were used as child particles on nylon 12 mother particles as in Comparative Example 1 to obtain composite particles.
[0034]
The above-mentioned particles were added as abrasive grains for the abrasive to a concentration of 5% by weight in pure water to prepare a slurry-like abrasive. The polishing effect of the silicon wafer was examined using the polishing material thus obtained.
[0035]
The polishing rate of this abrasive was 5.2 μm / hr, and no scratches were observed.
[0036]
Comparative Example 3
Polishing was carried out in the same manner as in Example 1 except that a commercially available colloidal silica (particle size: 0.04 μm) was added as an abrasive grain for the abrasive so as to have a concentration of 10%, and a slurry-like abrasive was prepared. . The polishing rate of this abrasive was 2.5 μm / hr, and no scratches were observed.
[0037]
【The invention's effect】
The present invention relates to the polishing of glass materials and semiconductor devices by using a polishing material in which a composite polishing material in which child particles are supported on the surface of base particles is added as abrasive grains and dispersed as a slurry. In addition, it is possible to maintain the surface processing state equivalent to the current silica abrasive and to improve the polishing rate as compared with the silica abrasive.

Claims (5)

母粒子の表面に酸化ジルコニウム・酸化セリウム固溶体からなる子粒子を担持したことを特徴とする研磨材用複合粒子。A composite particle for abrasives, wherein a child particle comprising a solid solution of zirconium oxide and cerium oxide is supported on the surface of a mother particle. 母粒子の平均粒子径が0.3〜30μmの範囲であることを特徴とする請求項1に記載の研磨材用複合粒子。 2. The composite particle for an abrasive according to claim 1, wherein the average particle diameter of the base particles is in the range of 0.3 to 30 μm. 子粒子の平均粒子径が0.001〜5μmの範囲であることを特徴とする請求項1に記載の研磨材用複合粒子。 The composite particle for abrasives according to claim 1, wherein the average particle diameter of the child particles is in the range of 0.001 to 5 μm. 母粒子がナイロン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリウレタン、スチレン−アクリル共重合体、ポリメチルメタクリレート、エポキシ、フェノール、メラミン、セルロース、ポリオレフィン、シリコーン、酸化ケイ素から選ばれてなることを特徴とする請求項1〜3のいずれかに記載の研磨材用複合粒子。 The base particle is selected from nylon, polyethylene, polypropylene, polystyrene, polyurethane, styrene-acrylic copolymer, polymethyl methacrylate, epoxy, phenol, melamine, cellulose, polyolefin, silicone, and silicon oxide. The composite particle for abrasive | polishing materials in any one of 1-3. 請求項1〜のいずれかに記載の研磨材用複合粒子が、液体中に懸濁粒子として分散していることを特徴とするおよびスラリー状研磨材。A composite abrasive particle for abrasive according to any one of claims 1 to 4 , which is dispersed as suspended particles in a liquid, and a slurry-like abrasive.
JP28163397A 1997-10-15 1997-10-15 Composite particles for abrasives and slurry abrasives Expired - Fee Related JP4211952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28163397A JP4211952B2 (en) 1997-10-15 1997-10-15 Composite particles for abrasives and slurry abrasives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28163397A JP4211952B2 (en) 1997-10-15 1997-10-15 Composite particles for abrasives and slurry abrasives

Publications (2)

Publication Number Publication Date
JPH11114808A JPH11114808A (en) 1999-04-27
JP4211952B2 true JP4211952B2 (en) 2009-01-21

Family

ID=17641839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28163397A Expired - Fee Related JP4211952B2 (en) 1997-10-15 1997-10-15 Composite particles for abrasives and slurry abrasives

Country Status (1)

Country Link
JP (1) JP4211952B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7163134B2 (en) 2018-10-18 2022-10-31 キヤノン株式会社 Liquid ejection head, method for manufacturing liquid ejection head, and liquid ejection apparatus

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243611B1 (en) 1999-11-22 2006-02-08 JSR Corporation Composited particles and aqueous dispersions for chemical mechanical polishing
JP2001267273A (en) 2000-01-11 2001-09-28 Sumitomo Chem Co Ltd Abrasive for metal, abrasive composition, and polishing method
JP3975047B2 (en) * 2000-04-21 2007-09-12 泰弘 谷 Polishing method
JP4057322B2 (en) * 2002-03-26 2008-03-05 泰弘 谷 Abrasive and polishing method
JP2008000867A (en) * 2006-06-26 2008-01-10 Sumitomo Metal Fine Technology Co Ltd Polishing liquid, its production method, and polishing method
JP5150833B2 (en) * 2006-07-07 2013-02-27 国立大学法人 熊本大学 Method for producing composite particles
JP5401008B2 (en) * 2006-11-20 2014-01-29 石原ケミカル株式会社 Polishing composition and use thereof
JP5315516B2 (en) * 2007-09-28 2013-10-16 国立大学法人 熊本大学 Polishing method
JP5495508B2 (en) * 2008-05-23 2014-05-21 日揮触媒化成株式会社 Abrasive particle dispersion and method for producing the same
WO2013042596A1 (en) * 2011-09-20 2013-03-28 堺化学工業株式会社 Composite particles for polishing glass
WO2014034746A1 (en) * 2012-08-28 2014-03-06 Hoya株式会社 Process for producing glass substrate for magnetic disc
JP7044510B2 (en) * 2017-10-10 2022-03-30 花王株式会社 Cerium oxide-containing composite abrasive
WO2019099655A1 (en) 2017-11-15 2019-05-23 Saint-Gobain Ceramics & Plastics, Inc. Composition for conducting material removal operations and method for forming same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7163134B2 (en) 2018-10-18 2022-10-31 キヤノン株式会社 Liquid ejection head, method for manufacturing liquid ejection head, and liquid ejection apparatus

Also Published As

Publication number Publication date
JPH11114808A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
JP4211952B2 (en) Composite particles for abrasives and slurry abrasives
KR100403719B1 (en) Abrasive, Method of Polishing Wafer, and Method of Producing Semiconductor Device
US5766279A (en) Polishing agent, method for producing the same and method for polishing
CN1323124C (en) Cerium oxide abrasive material and grinding method of base plate
JPH10152673A (en) Cerium oxide abrasive and method for polishing substrate
JP2009182344A (en) Cerium oxide abrasive and method of polishing substrate
WO2005017989A1 (en) Abrasive compound for semiconductor planarization
JPH06330025A (en) Polishing material for glass
JPH10237425A (en) Polishing agent
JPH10106990A (en) Cerium oxide abrasive material and polishing method of substrate
JP2000188270A (en) Cerium oxide abrasive and method of grinding substrate
JP4788585B2 (en) Abrasive and slurry
JP2000186276A (en) Cerium oxide abrasive and polishing method for substrate
JP2004336082A (en) Cerium oxide abrasive and method of grinding substrate
JP2000186277A (en) Cerium oxide abrasive and method for polishing substrate
JP4776519B2 (en) Abrasive and slurry
JP4776518B2 (en) Abrasive and slurry
JP2004282092A (en) Cerium oxide abrasive and substrate polishing method
JP2006148158A (en) Cerium oxide polishing material and substrate-polishing method
JP2001308044A (en) Oxide cerium polishing agent and polishing method for substrate
JPH11181406A (en) Cerium oxide abrasive and grinding of substrate
JP2002212545A (en) Cmp abrasive and method for producing the same
JPH10102039A (en) Cerium oxide abrasive and grinding of substrate
JP2003051467A (en) Cerium oxide abrasive and polishing method of substrate
JP2007123922A (en) Polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees