JP2003051467A - Cerium oxide abrasive and polishing method of substrate - Google Patents

Cerium oxide abrasive and polishing method of substrate

Info

Publication number
JP2003051467A
JP2003051467A JP2002162313A JP2002162313A JP2003051467A JP 2003051467 A JP2003051467 A JP 2003051467A JP 2002162313 A JP2002162313 A JP 2002162313A JP 2002162313 A JP2002162313 A JP 2002162313A JP 2003051467 A JP2003051467 A JP 2003051467A
Authority
JP
Japan
Prior art keywords
cerium oxide
polishing
insulating film
substrate
oxide abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002162313A
Other languages
Japanese (ja)
Inventor
Takashi Sakurada
剛史 櫻田
Masato Yoshida
誠人 吉田
Jun Matsuzawa
純 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002162313A priority Critical patent/JP2003051467A/en
Publication of JP2003051467A publication Critical patent/JP2003051467A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cerium oxide abrasive that can polish the surface to be polished of an silicon oxide insulating film or the like flat and quickly, and to provide a polishing method of a semiconductor device substrate, using the cerium oxide abrasive. SOLUTION: A cerium abrasive contains slurry, where cerium oxide, with a ratio of a/b being equal to or larger than 2.5 is used, is dispersed into a medium, where (a) and (b) indicate the intensity by the (111) face and that by the (200) obtained by X-ray diffraction, respectively. Also, a specific substrate is polished by the cerium oxide abrasive.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸化セリウム研磨
剤及び基板の研磨法を提供するものである。
TECHNICAL FIELD The present invention provides a cerium oxide abrasive and a method for polishing a substrate.

【0002】[0002]

【従来の技術】従来、半導体装置の製造工程において、
プラズマ−CVD、低圧−CVD等の方法で形成される
酸化珪素2絶縁膜等無機絶縁膜層を平坦化するための化
学機械研磨剤として、コロイダルシリカ系の研磨剤が一
般的に検討されている。コロイダルシリカ系の研磨剤
は、シリカ粒子を四塩化珪酸の熱分解等の方法で粒成長
させ、アンモニア等のアルカリ金属を含まないアルカリ
溶液でpH調整を行って製造している。しかしながら、こ
の様な研磨剤は無機絶縁膜の研磨速度が充分な速度を持
たず、実用化には低研磨速度という技術課題がある。
2. Description of the Related Art Conventionally, in the process of manufacturing a semiconductor device,
As a chemical mechanical polishing agent for flattening an inorganic insulating film layer such as a silicon oxide 2 insulating film formed by a method such as plasma-CVD or low-pressure-CVD, a colloidal silica-based polishing agent is generally studied. . The colloidal silica-based abrasive is manufactured by growing silica particles into particles by a method such as thermal decomposition of tetrachlorosilicic acid and adjusting the pH with an alkaline solution containing no alkali metal such as ammonia. However, such an abrasive does not have a sufficient polishing rate for the inorganic insulating film, and has a technical problem of low polishing rate for practical use.

【0003】一方、フォトマスク用ガラス表面研磨とし
て、酸化セリウム研磨剤が用いられている。酸化セリウ
ム粒子はシリカ粒子やアルミナ粒子に比べ硬度が低く、
したがって研磨表面に傷が入りにくいことから仕上げ鏡
面研磨に有用である。また、酸化セリウムは強い酸化剤
として知られるように、化学的活性な性質を有してい
る。この利点を活かし、絶縁膜用化学機械研磨剤への適
用が有用である。しかしながら、フォトマスク用ガラス
表面研磨用酸化セリウム研磨剤をそのまま無機絶縁膜研
磨に適用すると、一次粒子(結晶子)径が大きく、その
ため絶縁膜表面に目視で観察できる研磨傷が入ってしま
う。また、酸化セリウム粒子は理論比重が7.2と大き
いことから沈降しやすい。そのことから研磨時の研磨剤
供給濃度むら、供給管での詰まり等の問題が生じる。
On the other hand, a cerium oxide polishing agent is used for polishing the glass surface of a photomask. Cerium oxide particles have lower hardness than silica particles and alumina particles,
Therefore, the polished surface is less likely to be scratched, which is useful for finishing mirror polishing. Further, cerium oxide has a chemically active property, as is known as a strong oxidant. Taking advantage of this advantage, application to chemical mechanical polishing agents for insulating films is useful. However, when the cerium oxide abrasive for polishing the glass surface for a photomask is directly applied to the polishing of the inorganic insulating film, the primary particle (crystallite) diameter is large, and therefore the surface of the insulating film has visible scratches. Further, since the cerium oxide particles have a large theoretical specific gravity of 7.2, they tend to settle. As a result, problems such as uneven concentration of the polishing agent supplied during polishing and clogging of the supply pipe occur.

【0004】[0004]

【発明が解決しようとする課題】本発明は酸化珪素絶縁
膜等の被研磨面を、高速に、平坦に高速に研磨すること
が可能な酸化セリウム研磨剤、及びこの酸化セリウム研
磨剤を使用した半導体素子基板の研磨方法を提供する。
DISCLOSURE OF THE INVENTION The present invention uses a cerium oxide abrasive capable of polishing a surface to be polished such as a silicon oxide insulating film at high speed and flatly, and this cerium oxide abrasive. A method of polishing a semiconductor device substrate is provided.

【0005】[0005]

【課題を解決するための手段】本発明は、次のものに関
する。 (1)X線回折法で得られる(111)面による回折強
度aと(200)面による回折強度bがa/bの積分強
度比で2.5以上である酸化セリウムを媒体に分散させ
たスラリーを含む酸化セリウム研磨剤。 (2)スラリーが分散剤を含む項(1)記載の酸化セリ
ウム研磨剤。 (3)スラリーが媒体として水を含む項(1)又は
(2)記載の酸化セリウム研磨剤。 (4)分散剤が水溶性有機高分子、水溶性陰イオン性界
面活性剤、水溶性非イオン性界面活性剤及び水溶性アミ
ンから選ばれる少なくとも1種の化合物である項(2)
記載の酸化セリウム研磨剤。 (5)pHが7以上10以下である項(1)〜(4)のい
ずれかに記載の酸化セリウム研磨剤。
The present invention relates to the following. (1) Cerium oxide having a (111) plane diffraction intensity a and a (200) plane diffraction intensity b obtained by an X-ray diffraction method of 2.5 or more in an integrated intensity ratio of a / b is dispersed in a medium. Cerium oxide abrasive containing slurry. (2) The cerium oxide abrasive according to item (1), wherein the slurry contains a dispersant. (3) The cerium oxide abrasive according to item (1) or (2), wherein the slurry contains water as a medium. (4) Item wherein the dispersant is at least one compound selected from water-soluble organic polymers, water-soluble anionic surfactants, water-soluble nonionic surfactants and water-soluble amines (2)
The cerium oxide abrasive described. (5) The cerium oxide abrasive according to any one of items (1) to (4), which has a pH of 7 or more and 10 or less.

【0006】(6)項(1)〜(5)記載の酸化セリウ
ム研磨剤で、所定の基板を研磨することを特徴とする基
板の研磨法。 (7)所定の基板が酸化珪素絶縁膜の形成された半導体
素子である項(6)記載の基板の研磨法。
(6) A method of polishing a substrate, which comprises polishing a predetermined substrate with the cerium oxide abrasive according to the items (1) to (5). (7) The method for polishing a substrate according to item (6), wherein the predetermined substrate is a semiconductor element having a silicon oxide insulating film formed thereon.

【0007】[0007]

【発明の実施の形態】一般に酸化セリウムは、炭酸塩、
硫酸塩、蓚酸塩等のセリウム化合物を焼成することによ
って得られる。TEOS−CVD法等で形成される酸化
珪素絶縁膜は一次粒子(結晶子)径が大きく、かつ結晶
歪が少ないほど、すなわち結晶性がよいほど高速研磨が
可能であるが、研磨傷が入りやすい傾向がある。そこ
で、本発明で用いる酸化セリウム粒子は、あまり結晶性
を上げないで作製される。また、半導体チップ研磨に使
用することから、アルカリ金属およびハロゲン類の含有
率は1ppm以下に抑えることが好ましい。本発明の研磨
剤は高純度のもので、Na、K、Si、Mg、Ca、Z
r、Ti、Ni、Cr、Feはそれぞれ1ppm以下、A
lは10ppm以下であることが好ましい。
DETAILED DESCRIPTION OF THE INVENTION Generally, cerium oxide is a carbonate,
It is obtained by firing a cerium compound such as a sulfate or an oxalate. A silicon oxide insulating film formed by the TEOS-CVD method or the like has a large primary particle (crystallite) diameter and a small crystal strain, that is, the higher the crystallinity, the higher the speed of polishing is possible, but polishing scratches are likely to occur. Tend. Therefore, the cerium oxide particles used in the present invention are produced without raising the crystallinity so much. Since it is used for polishing semiconductor chips, it is preferable to keep the content of alkali metals and halogens to 1 ppm or less. The polishing agent of the present invention is of high purity and comprises Na, K, Si, Mg, Ca, Z.
r, Ti, Ni, Cr, Fe are each 1 ppm or less, A
It is preferable that l is 10 ppm or less.

【0008】本発明において、酸化セリウム粒子を作製
する方法として焼成法が使用できる。ただし、研磨傷が
入らない粒子を作製するために、できるだけ結晶性を上
げない低温焼成が好ましい。セリウム化合物の酸化温度
が300℃であることから、焼成温度は600℃以上9
00℃以下が好ましい。炭酸セリウムを600℃以上9
00℃以下で5〜300分、酸素ガス等の酸化雰囲気で
焼成することが好ましい。
In the present invention, a firing method can be used as a method for producing cerium oxide particles. However, in order to produce particles that are free from polishing scratches, low temperature firing that does not increase the crystallinity as much as possible is preferable. Since the oxidation temperature of the cerium compound is 300 ° C, the firing temperature is 600 ° C or higher 9
It is preferably 00 ° C or lower. Cerium carbonate over 600 ℃ 9
It is preferable to perform baking at 00 ° C. or lower for 5 to 300 minutes in an oxidizing atmosphere such as oxygen gas.

【0009】焼成された酸化セリウムは、ジェットミル
等の乾式粉砕、ビ−ズミル等の湿式粉砕で粉砕すること
ができる。ジェットミルは例えば化学工業論文集第6巻
第5号(1980)527〜532頁に説明されている。焼成酸化
セリウムをジェットミル等の乾式粉砕等で粉砕した酸化
セリウム粒子には、一次粒子(結晶子)サイズの小さい
粒子と一次粒子(結晶子)サイズまで粉砕されていない
多結晶体が含まれ、この多結晶体は一次粒子(結晶子)
が再凝集した凝集体とは異なっており、2つ以上の一次
粒子(結晶子)から構成され結晶粒界を有している。こ
の結晶粒界を有す多結晶体を含む研磨剤で研磨を行う
と、研磨時の応力により破壊され活性面を発生すると推
定され、酸化珪素絶縁膜等の被研磨面を傷なく高速に研
磨することに寄与していると考えられる。
The calcined cerium oxide can be pulverized by dry pulverization such as a jet mill or wet pulverization such as a bead mill. Jet mills are described, for example, in Chemical Industry Proceedings Vol. 6, No. 5 (1980), pages 527-532. Cerium oxide particles obtained by pulverizing calcined cerium oxide by dry pulverization using a jet mill or the like include particles having a small primary particle (crystallite) size and polycrystals not pulverized to a primary particle (crystallite) size, This polycrystal is a primary particle (crystallite)
Is different from the reaggregated aggregate, and is composed of two or more primary particles (crystallites) and has a crystal grain boundary. It is presumed that polishing with an abrasive containing a polycrystal having grain boundaries will cause active surfaces to be destroyed by the stress during polishing, and the surface to be polished such as a silicon oxide insulating film will be polished at high speed without scratches. It is thought that it contributes to doing.

【0010】本発明における酸化セリウムスラリーは、
上記の方法により製造された酸化セリウム粒子を含有す
る水溶液又はこの水溶液から回収した酸化セリウム粒
子、水及び必要に応じて分散剤からなる組成物を分散さ
せることによって得られる。ここで、酸化セリウム粒子
の濃度に制限は無いが、懸濁液(研磨剤)の取り扱い易
さから0.5〜10重量%の範囲が好ましい。さらに、
保存安定性を得るためには1〜5重量%の範囲が好まし
い。また分散剤としては、水溶性有機高分子、水溶性陰
イオン性界面活性剤、水溶性非イオン性界面活性剤、水
溶性アミン等がある。例えば、アクリル酸アンモニウム
塩とアクリル酸メチルの共重合体、特に重量平均分子量
(標準ポリスチレンの検量線を用いたゲルパーミエーシ
ョンクロマトグラフィーにより測定、以下同じ)100
0〜20000のアクリル酸アンモニウム塩とアクリル
酸メチルの共重合体がある。これらの分散剤の添加量
は、スラリー中の粒子の分散性及び沈降防止性等から、
酸化セリウム粒子100重量部に対して0.01重量部
から5重量部の範囲が好ましく、その分散効果を高める
ためには、分散処理時に分散機の中に粒子と同時に入れ
ることが好ましい。
The cerium oxide slurry in the present invention is
It is obtained by dispersing the aqueous solution containing the cerium oxide particles produced by the above method or the composition comprising the cerium oxide particles recovered from the aqueous solution, water and, if necessary, a dispersant. Here, there is no limitation on the concentration of the cerium oxide particles, but a range of 0.5 to 10% by weight is preferable from the viewpoint of easy handling of the suspension (abrasive). further,
In order to obtain storage stability, the range of 1 to 5% by weight is preferable. Examples of the dispersant include water-soluble organic polymers, water-soluble anionic surfactants, water-soluble nonionic surfactants and water-soluble amines. For example, a copolymer of ammonium acrylate and methyl acrylate, particularly a weight average molecular weight (measured by gel permeation chromatography using a calibration curve of standard polystyrene, the same applies hereinafter) 100
There are 0 to 20,000 ammonium acrylate and methyl acrylate copolymers. The amount of these dispersants added is, from the dispersibility of particles in the slurry and the anti-settling property,
The range of 0.01 to 5 parts by weight is preferable with respect to 100 parts by weight of the cerium oxide particles, and in order to enhance the dispersing effect, it is preferable to put the particles together with the particles in the dispersing machine during the dispersion treatment.

【0011】これらの酸化セリウム粒子を水中に分散さ
せる方法としては、通常の撹拌機による分散処理の他
に、超音波分散機、ホモジナイザー、ボールミル等を用
いることができる。サブミクロンオーダの酸化セリウム
粒子を分散させるためには、ボールミル、振動ボールミ
ル、遊星ボールミル、媒体撹拌式ミル等の湿式分散機を
用いることが好ましい。また、スラリーのアルカリ性を
高めたい場合には、分散処理時又は処理後に、アンモニ
ア水などの金属イオンを含まないアルカリ性物質を添加
することができる。
As a method for dispersing these cerium oxide particles in water, an ultrasonic disperser, a homogenizer, a ball mill or the like can be used in addition to the usual dispersion treatment with a stirrer. In order to disperse the submicron-order cerium oxide particles, it is preferable to use a wet disperser such as a ball mill, a vibrating ball mill, a planetary ball mill, or a medium stirring mill. Further, when it is desired to increase the alkalinity of the slurry, an alkaline substance containing no metal ions, such as aqueous ammonia, can be added during or after the dispersion treatment.

【0012】本発明のスラリーに含まれる分散剤にアク
リル酸アンモニウム塩とアクリル酸メチルの共重合体を
用いる場合、分散剤を酸化セリウム粒子100重量部に
対して0.01以上5.00重量部以下添加することが
好ましく、その重量平均分子量は1000〜20000
が好ましい。アクリル酸アンモニウム塩とアクリル酸メ
チルとのモル比は0.1以上0.9以下が好ましい。ア
クリル酸アンモニウム塩とアクリル酸メチルの共重合体
が酸化セリウム粒子100重量部に対して0.01重量
部未満では沈降し易く、5重量部より多いと再凝集によ
る粒度分布の経時変化が生じやすい。また、重量平均分
子量が20000を超えると再凝集による粒度分布の経
時変化が生じやすい。
When a copolymer of ammonium acrylate and methyl acrylate is used as the dispersant contained in the slurry of the present invention, the dispersant is 0.01 to 5.00 parts by weight with respect to 100 parts by weight of the cerium oxide particles. It is preferable to add the following, and the weight average molecular weight is 1,000 to 20,000.
Is preferred. The molar ratio of ammonium acrylate salt to methyl acrylate is preferably 0.1 or more and 0.9 or less. If the copolymer of ammonium acrylate and methyl acrylate is less than 0.01 parts by weight with respect to 100 parts by weight of cerium oxide particles, it tends to settle, and if it exceeds 5 parts by weight, a change in particle size distribution due to re-aggregation easily occurs. . Further, if the weight average molecular weight exceeds 20,000, a change with time in the particle size distribution due to reaggregation is likely to occur.

【0013】本発明のスラリーに分散される結晶粒界を
有する酸化セリウム粒子径の中央値は60〜1500nm
が好ましく、一次粒子(結晶子)径の中央値は30〜2
50nmが好ましい。結晶粒界を有する酸化セリウム粒子
径の中央値が60nm未満、又は一次粒子(結晶子)径の
中央値が30nm未満であれば、酸化珪素絶縁膜等の被研
磨面を高速に研磨することができ難くなる傾向があり、
結晶粒界を有する酸化セリウム粒子径の中央値が150
0nmを越える、又は一次粒子(結晶子)の中央値が25
0nmを越えると、酸化珪素絶縁膜等の被研磨面に傷が発
生し易くなる。結晶粒界を有する酸化セリウム粒子径の
最大値が3000nmを超えると、酸化珪素絶縁膜等の被
研磨面に傷が発生し易くなる。結晶粒界を有する酸化セ
リウム粒子は、全酸化セリウム粒子の5〜100体積%
であることが好ましく、5体積%未満の場合は酸化珪素
絶縁膜等の被研磨面に傷が発生し易くなる。上記の酸化
セリウム粒子では、一次粒子(結晶子)の最大径は60
0nm以下が好ましく、一次粒子(結晶子)径は10〜6
00nmであることが好ましい。一次粒子(結晶子)が6
00nmを越えると傷が発生し易く、10nm未満であると
研磨速度が小さくなる傾向にある。
The median diameter of cerium oxide particles having crystal grain boundaries dispersed in the slurry of the present invention is 60 to 1500 nm.
Is preferred, and the median value of primary particle (crystallite) diameter is 30 to 2
50 nm is preferred. If the median value of cerium oxide particles having crystal grain boundaries is less than 60 nm or the median value of primary particles (crystallites) is less than 30 nm, the surface to be polished such as a silicon oxide insulating film can be polished at high speed. Tends to be difficult to do,
The median diameter of cerium oxide particles having a grain boundary is 150.
It exceeds 0 nm, or the median value of primary particles (crystallites) is 25
If it exceeds 0 nm, scratches are likely to occur on the surface to be polished such as a silicon oxide insulating film. When the maximum diameter of cerium oxide particles having crystal grain boundaries exceeds 3000 nm, scratches are likely to occur on the surface to be polished such as a silicon oxide insulating film. The cerium oxide particles having a grain boundary are 5 to 100% by volume of the total cerium oxide particles.
Is preferable, and when it is less than 5% by volume, scratches are likely to occur on the surface to be polished such as a silicon oxide insulating film. In the above cerium oxide particles, the maximum diameter of primary particles (crystallites) is 60.
0 nm or less is preferable, and the primary particle (crystallite) diameter is 10 to 6
It is preferably 00 nm. 6 primary particles (crystallites)
If it exceeds 00 nm, scratches are likely to occur, and if it is less than 10 nm, the polishing rate tends to be low.

【0014】本発明のスラリーに分散される酸化セリウ
ム粒子のX線回折法で得られる(111)面による回折
強度aと(200)面による回折強度bは、それぞれ、
酸化セリウム粒子を粉末X線回折法で測定し、結果を横
軸に回折角、縦軸に回折線強度でプロットすることで
(111)面と(200)面の回折ピークの積分値とし
て求めることができ、これらのの比(積分強度比、a/
b)は、2.5以上であるが、3.00以上が好まし
い。a/bが小さくなりすぎると研磨速度が低くなりや
すい。また、a/bは、大きい方が研磨速度が大きくな
り好ましいが、この比が大きい酸化セリウム粒子は造り
にくいので、3.70以下であることが好ましい。
The diffraction intensity a by the (111) plane and the diffraction intensity b by the (200) plane obtained by the X-ray diffraction method of the cerium oxide particles dispersed in the slurry of the present invention are respectively:
Obtain the integrated value of the diffraction peaks of the (111) plane and the (200) plane by measuring the cerium oxide particles by the powder X-ray diffraction method and plotting the results with the diffraction angle on the horizontal axis and the diffraction line intensity on the vertical axis. And the ratio of these (integrated intensity ratio, a /
b) is 2.5 or more, preferably 3.00 or more. If a / b becomes too small, the polishing rate tends to be low. Further, the larger a / b is, the higher the polishing rate is, which is preferable. However, cerium oxide particles having a large ratio are difficult to form, so that it is preferably 3.70 or less.

【0015】本発明のスラリ−のpHは、7以上10以下
が好ましく、8以上9以下がより好ましい。
The pH of the slurry of the present invention is preferably 7 or more and 10 or less, more preferably 8 or more and 9 or less.

【0016】本発明の酸化セリウム研磨剤が使用される
無機絶縁膜の作製方法として、定圧CVD法、プラズマ
CVD法等が挙げられる。定圧CVD法による酸化珪素
絶縁膜形成は、Si源としてモノシラン:SiH4、酸
素源として酸素:O2を用いる。このSiH4−O2系酸
化反応を、400℃程度以下の低温で行わせることによ
り得られる。高温リフローによる表面平坦化を図るため
に、リン:Pをドープするときには、SiH4−O2−P
H3系反応ガスを用いることが好ましい。プラズマCD
法は、通常の熱平衡下では高温を必要とする化学反応が
低温でできる利点を有する。プラズマ発生法には、容量
結合型と誘導結合型の2つが挙げられる。反応ガスとし
ては、Si源としてSiH4、酸素源としてN2Oを用い
たSiH4−N2O系ガスとテトラエトキシシラン(TE
OS)を、Si源に用いたTEOS−O2系ガス(TE
OS−プラズマCVD法)が挙げられる。基板温度は2
50℃〜400℃、反応圧力は67〜400Paの範囲が
好ましい。このように、本発明の酸化珪素絶縁膜にはリ
ン、ホウ素等の元素がド−プされていても良い。
As a method for producing an inorganic insulating film in which the cerium oxide abrasive of the present invention is used, a constant pressure CVD method, a plasma CVD method and the like can be mentioned. The silicon oxide insulating film is formed by the constant pressure CVD method using monosilane: SiH4 as the Si source and oxygen: O2 as the oxygen source. It can be obtained by carrying out this SiH4—O2 type oxidation reaction at a low temperature of about 400 ° C. or lower. When phosphorus: P is doped to achieve surface flattening by high temperature reflow, SiH 4 --O 2 --P
It is preferable to use an H3 based reaction gas. Plasma CD
The method has the advantage that chemical reactions that require high temperatures under normal thermal equilibrium can occur at low temperatures. There are two plasma generation methods, a capacitive coupling type and an inductive coupling type. As the reaction gas, SiH4 was used as the Si source, and SiH4-N2O-based gas using N2O as the oxygen source and tetraethoxysilane (TE).
TEOS-O2-based gas (TE) used as the Si source.
OS-plasma CVD method). Substrate temperature is 2
The range of 50 to 400 ° C. and the reaction pressure of 67 to 400 Pa are preferable. As described above, the silicon oxide insulating film of the present invention may be doped with elements such as phosphorus and boron.

【0017】所定の基板として、半導体基板すなわち回
路素子とアルミニウム配線が形成された段階の半導体基
板、回路素子が形成された段階の半導体基板等の半導体
基板上に酸化珪素絶縁膜層が形成された基板等が使用で
きる。このような半導体基板上に形成された酸化珪素絶
縁膜層を、上記酸化セリウム研磨剤で研磨することによ
って、酸化珪素絶縁膜層表面の凹凸を解消し、半導体基
板全面に渡って平滑な面とする。ここで、研磨する装置
としては、半導体基板を保持するホルダーと研磨布(パ
ッド)を貼り付けた(回転数が変更可能なモータ等を取
り付けてある)定盤を有する一般的な研磨装置が使用で
きる。研磨布としては、一般的な不織布、発泡ポリウレ
タン、多孔質フッ素樹脂などが使用でき、特に制限がな
い。また、研磨布にはスラリーが溜まる様な溝加工を施
すことが好ましい。研磨条件には制限はないが、ホルダ
ーと定盤の回転速度は、半導体基板が飛び出さない様に
それぞれ100rpm以下の低回転が好ましく、半導体基
板にかける圧力は、研磨後に傷が発生しない様に1kg/c
m2以下が好ましい。研磨している間、研磨布にはスラリ
ーをポンプ等で連続的に供給する。この供給量に制限は
ないが、研磨布の表面が常にスラリーで覆われているこ
とが好ましい。
As a predetermined substrate, a silicon oxide insulating film layer is formed on a semiconductor substrate, that is, a semiconductor substrate in which a circuit element and aluminum wiring are formed, a semiconductor substrate in which a circuit element is formed, and the like. A substrate or the like can be used. By polishing the silicon oxide insulating film layer formed on such a semiconductor substrate with the cerium oxide abrasive, the unevenness of the surface of the silicon oxide insulating film layer is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. To do. Here, as a polishing device, a general polishing device having a holder for holding a semiconductor substrate and a surface plate to which a polishing cloth (pad) is attached (a motor or the like whose rotation speed is changeable) is used is used. it can. As the polishing cloth, general non-woven cloth, foamed polyurethane, porous fluororesin, etc. can be used without any particular limitation. Further, it is preferable that the polishing cloth is grooved so that the slurry is accumulated. The polishing conditions are not limited, but the rotation speed of the holder and the surface plate is preferably low rotation of 100 rpm or less so that the semiconductor substrate does not jump out, and the pressure applied to the semiconductor substrate is such that scratches do not occur after polishing. 1 kg / c
It is preferably m2 or less. During polishing, slurry is continuously supplied to the polishing cloth with a pump or the like. Although the supply amount is not limited, it is preferable that the surface of the polishing cloth is always covered with the slurry.

【0018】研磨終了後の半導体基板は、流水中で良く
洗浄後、スピンドライヤ等を用いて半導体基板上に付着
した水滴を払い落としてから乾燥させることが好まし
い。このようにして平坦化された酸化珪素絶縁膜層の上
に、第2層目のアルミニウム配線を形成し、その配線間
および配線上に再度上記方法により、酸化珪素絶縁膜を
形成後、上記酸化セリウム研磨剤を用いて研磨すること
によって、絶縁膜表面の凹凸を解消し、半導体基板全面
に渡って平滑な面とする。この工程を所定数繰り返すこ
とにより、所望の層数の半導体を製造する。
It is preferable that the semiconductor substrate after the polishing is thoroughly washed in running water, and then water droplets adhering to the semiconductor substrate are removed by using a spin dryer or the like and then dried. The aluminum wiring of the second layer is formed on the thus-planarized silicon oxide insulating film layer, and the silicon oxide insulating film is formed again between the wirings and on the wiring by the above method, and then the above-mentioned oxidation is performed. By polishing with a cerium abrasive, unevenness on the surface of the insulating film is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a semiconductor having a desired number of layers is manufactured.

【0019】本発明の酸化セリウム研磨剤は、半導体基
板に形成された酸化珪素絶縁膜だけでなく、所定の配線
を有する配線板に形成された酸化珪素絶縁膜、ガラス、
窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プ
リズム等の光学ガラス、ITO等の無機導電膜、ガラス
及び結晶質材料で構成される光集積回路・光スイッチン
グ素子・光導波路、光ファイバ−の端面、シンチレ−タ
等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ用L
EDサファイア基板、SiC、GaP、GaAS等の半
導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等
を研磨するために使用される。
The cerium oxide polishing agent of the present invention is applicable not only to a silicon oxide insulating film formed on a semiconductor substrate but also to a silicon oxide insulating film formed on a wiring board having predetermined wiring, glass,
Inorganic insulating film such as silicon nitride, optical glass such as photomask, lens and prism, inorganic conductive film such as ITO, optical integrated circuit composed of glass and crystalline material, optical switching element, optical waveguide, optical fiber End face, optical single crystal for scintillator, solid laser single crystal, blue laser L
It is used for polishing an ED sapphire substrate, a semiconductor single crystal such as SiC, GaP and GaAs, a glass substrate for a magnetic disk, a magnetic head and the like.

【0020】このように本発明において所定の基板と
は、酸化珪素絶縁膜が形成された半導体基板、酸化珪素
絶縁膜が形成された配線板、ガラス、窒化ケイ素等の無
機絶縁膜、フォトマスク・レンズ・プリズム等の光学ガ
ラス、ITO等の無機導電膜、ガラス及び結晶質材料で
構成される光集積回路・光スイッチング素子・光導波
路、光ファイバ−の端面、シンチレ−タ等の光学用単結
晶、固体レ−ザ単結晶、青色レ−ザ用LEDサファイア
基板、SiC、GaP、GaAS等の半導体単結晶、磁
気ディスク用ガラス基板、磁気ヘッド等を含む。
As described above, the predetermined substrate in the present invention means a semiconductor substrate on which a silicon oxide insulating film is formed, a wiring board on which a silicon oxide insulating film is formed, glass, an inorganic insulating film such as silicon nitride, a photomask, Optical glass such as lenses and prisms, inorganic conductive films such as ITO, optical integrated circuits, optical switching elements and optical waveguides composed of glass and crystalline materials, end faces of optical fibers, optical single crystals such as scintillators , A solid-state laser single crystal, a blue laser LED sapphire substrate, a semiconductor single crystal such as SiC, GaP, or GaAs, a magnetic disk glass substrate, and a magnetic head.

【0021】[0021]

【実施例】次に、実施例により本発明を説明する。 作製例1(酸化セリウム粒子の作製:その1) 炭酸セリウム水和物2kgを白金製容器に入れ、830℃
で1時間空気中で焼成することにより黄白色の粉末を約
1kg得た。この粉末をX線回折法で相同定を行ったとこ
ろ酸化セリウムであることを確認した。焼成粉末粒子径
は30〜100ミクロンであった。焼成粉末粒子表面を
走査型電子顕微鏡で観察したところ、酸化セリウムの粒
界が観察された。酸化セリウム粉末1kgをジェットミル
を用いて乾式粉砕を行った。こうして得られた多結晶体
の比表面積をBET法により測定した結果、10m2/gで
あることがわかった。
EXAMPLES Next, the present invention will be described with reference to examples. Preparation Example 1 (Preparation of Cerium Oxide Particles: Part 1) 2 kg of cerium carbonate hydrate was placed in a platinum container and heated to 830 ° C.
About 1 kg of yellowish white powder was obtained by firing in air for 1 hour. When this powder was subjected to phase identification by X-ray diffraction, it was confirmed to be cerium oxide. The particle size of the calcined powder was 30-100 microns. When the surface of the calcined powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. 1 kg of cerium oxide powder was dry-ground using a jet mill. The specific surface area of the thus obtained polycrystal was measured by the BET method and found to be 10 m2 / g.

【0022】作製例2(酸化セリウム粒子の作製:その
2) 炭酸セリウム水和物2kgを白金製容器に入れ、850℃
で1時間空気中で焼成することにより黄白色の粉末を約
1kg得た。この粉末をX線回折法で相同定を行ったとこ
ろ酸化セリウムであることを確認した。焼成粉末粒子径
は30〜100ミクロンであった。焼成粉末粒子表面を
走査型電子顕微鏡で観察したところ、酸化セリウムの粒
界が観察された。酸化セリウム粉末1kgをジェットミル
を用いて乾式粉砕を行った。こうして得られた多結晶体
の比表面積をBET法により測定した結果、12m2/gで
あることがわかった。
Preparation Example 2 (Preparation of Cerium Oxide Particles: Part 2) 2 kg of cerium carbonate hydrate was placed in a platinum container and heated to 850 ° C.
About 1 kg of yellowish white powder was obtained by firing in air for 1 hour. When this powder was subjected to phase identification by X-ray diffraction, it was confirmed to be cerium oxide. The particle size of the calcined powder was 30-100 microns. When the surface of the calcined powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. 1 kg of cerium oxide powder was dry-ground using a jet mill. As a result of measuring the specific surface area of the thus obtained polycrystal by the BET method, it was found to be 12 m2 / g.

【0023】作製例3(酸化セリウム粒子の作製:その
3) 炭酸セリウム水和物2kgを白金製容器に入れ、800℃
で2時間空気中で焼成することにより黄白色の粉末を約
1kg得た。この粉末をX線回折法で相同定を行ったとこ
ろ酸化セリウムであることを確認した。焼成粉末粒子径
は30〜100ミクロンであった。焼成粉末粒子表面を
走査型電子顕微鏡で観察したところ、酸化セリウムの粒
界が観察された。酸化セリウム粉末1kgをジェットミル
を用いて乾式粉砕を行った。こうして得られた多結晶体
の比表面積をBET法により測定した結果、17m2/gで
あることがわかった。
Preparation Example 3 (Preparation of Cerium Oxide Particles: Part 3) 2 kg of cerium carbonate hydrate was placed in a platinum container and heated to 800 ° C.
About 1 kg of yellowish white powder was obtained by firing in air for 2 hours. When this powder was subjected to phase identification by X-ray diffraction, it was confirmed to be cerium oxide. The particle size of the calcined powder was 30-100 microns. When the surface of the calcined powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. 1 kg of cerium oxide powder was dry-ground using a jet mill. The specific surface area of the thus obtained polycrystal was measured by the BET method, and it was found to be 17 m2 / g.

【0024】(酸化セリウムスラリーの作製)上記、酸
化セリウム粒子の作製例1〜3で作製した酸化セリウム
粒子1000gとアクリル酸とアクリル酸メチルを3:
1(モル比)で共重合した重量平均分子量10,000
のポリアクリル酸共重合体のアンモニウム塩水溶液(4
0重量%)23gと脱イオン水8977gを混合し、撹
拌をしながら超音波分散を行った。超音波周波数は40
kHzで、分散時間10分で分散を行った。得られたスラ
リーを1ミクロンフィルターでろ過し、さらに脱イオン
水を加えることにより5.0重量%の酸化セリウムスラ
リーを得た。酸化セリウムスラリーのpHは、作製例1〜
3のものについて、順に8.4、8.5及び8.5であ
った。研磨剤を6ヶ月間5℃〜40℃で保管した。
(Preparation of Cerium Oxide Slurry) 1000 g of the cerium oxide particles prepared in the above-mentioned preparation examples 1 to 3 of cerium oxide particles, acrylic acid and methyl acrylate were mixed at 3:
Weight average molecular weight of 10,000 (molar ratio)
Aqueous solution of ammonium salt of polyacrylic acid copolymer (4
0% by weight) (23 g) and deionized water (8977 g) were mixed and ultrasonically dispersed with stirring. Ultrasonic frequency is 40
Dispersion was carried out at kHz with a dispersion time of 10 minutes. The obtained slurry was filtered through a 1-micron filter, and deionized water was further added to obtain a 5.0 wt% cerium oxide slurry. The pH of the cerium oxide slurry is from Preparation Example 1 to
For No. 3, the values were 8.4, 8.5 and 8.5 in that order. The abrasive was stored for 6 months at 5 ° C to 40 ° C.

【0025】その後、攪拌により均一な濃度分布の酸化
セリウムスラリーに戻し、レーザー回折粒度分布測定を
行ったところ、作製直後と同一の粒度分布であることを
確認できた。BET法によるスラリー粒子の比表面積測
定の結果、作製例1〜3のものについて、順に10m2/
g、12m2/g及び17m2/gであった。また研磨時に攪拌
することにより、この酸化セリウムスラリーには濃度む
らが生じなかった。酸化セリウムスラリーの濃度はスラ
リーの重量中、酸化セリウム粒子の重量が占める割合か
ら求めた。酸化セリウム粒子の重量は、スラリーを15
0℃で加熱して水を蒸発させて残った固形分重量とし
た。
After that, the mixture was returned to a cerium oxide slurry having a uniform concentration distribution by stirring, and laser diffraction particle size distribution measurement was carried out. As a result, it was confirmed that the particle size distribution was the same as that immediately after preparation. As a result of measuring the specific surface area of the slurry particles by the BET method, for the preparation examples 1 to 3, 10 m2 /
g, 12 m2 / g and 17 m2 / g. By stirring during polishing, the cerium oxide slurry did not have uneven concentration. The concentration of the cerium oxide slurry was calculated from the ratio of the weight of the cerium oxide particles to the weight of the slurry. The weight of cerium oxide particles is 15
Heat at 0 ° C. to evaporate the water to the remaining solid weight.

【0026】(積分強度比の測定)上記、酸化セリウム
スラリーの作製で作製した3種類の酸化セリウムスラリ
ー20gを150℃で加熱して水を蒸発させて残った固
形分を得た。これを乳鉢で粉末にしたものを粉末X線回
折法で測定した。測定結果を横軸に回折角、縦軸に回折
線強度プロットすることで得られる、(111)面と
(200)面の回折ピークの積分値の比(積分強度比、
a/b)は、作製例1〜3のものについて、順に3.0
0、3.34及び3.70であった。X線回折の測定
は、リガク電機(株)製RAD−2Cを用いて行なった。
(Measurement of Integrated Strength Ratio) 20 g of the three types of cerium oxide slurries prepared in the above-mentioned preparation of cerium oxide slurries were heated at 150 ° C. to evaporate water to obtain the remaining solid content. What was made into a powder in a mortar was measured by a powder X-ray diffraction method. The ratio of the integrated values of the diffraction peaks of the (111) plane and the (200) plane obtained by plotting the measurement results on the horizontal axis and the diffraction line intensity on the vertical axis (integrated intensity ratio,
a / b) is 3.0 for Manufacturing Examples 1 to 3 in that order.
It was 0, 3.34 and 3.70. The measurement of X-ray diffraction was performed using RAD-2C manufactured by Rigaku Electric Co., Ltd.

【0027】(絶縁膜層の研磨)TEOS−プラズマC
VD法で作製した酸化珪素絶縁膜を形成させたSiウエ
ハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼
り付けた定盤上に、絶縁膜面を下にしてホルダーを載
せ、さらに加工荷重が300g/cm2になるように重しを
載せた。上記の酸化セリウムスラリーを脱イオン水で5
倍に希釈したスラリー(固形分:1重量%)を容器に入
れ、攪拌しながらポンプで配管を通じて定盤上に供給で
きるようにした。このとき、容器、配管内ともに沈降は
見られなかった。定盤上にスラリーを50cc/minの速度
で滴下しながら、定盤を30rpmで1分間回転させ、絶
縁膜を研磨した。研磨後ウエハをホルダーから取り外し
て、流水で良く洗浄後、超音波洗浄機によりさらに20
分間洗浄した。洗浄後、ウエハをスピンドライヤーで水
滴を除去し、120℃の乾燥機で10分間乾燥させた。
(Polishing of Insulating Film Layer) TEOS-Plasma C
Set the Si wafer on which the silicon oxide insulating film formed by the VD method is set, and place the holder with the insulating film face down on the surface plate to which the polishing pad made of porous urethane resin is attached. A weight was placed so that the weight became 300 g / cm2. The above cerium oxide slurry is deionized water to 5
A double-diluted slurry (solid content: 1% by weight) was put in a container, and it was possible to supply the slurry on a platen through a pipe with a pump while stirring. At this time, no sedimentation was observed in the container and the pipe. The insulating plate was polished by rotating the platen at 30 rpm for 1 minute while dropping the slurry on the platen at a rate of 50 cc / min. After polishing, remove the wafer from the holder and wash it thoroughly with running water.
Washed for minutes. After washing, water drops were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes.

【0028】光干渉式膜厚測定装置を用いて、研磨前後
の膜厚変化を測定した結果、この研磨により、作製例1
〜3のものについて、順にそれぞれ364nm、416nm
及び541nm(研磨速度は、作製例1〜3のものについ
て、順に364nm/min、416nm/min及び541nm/mi
n)の絶縁膜が削られ、ウエハ全面に渡って均一の厚み
になっていることがわかった。また、光学顕微鏡を用い
て絶縁膜表面を観察したところ、明確な傷は見られなか
った。
The change in film thickness before and after polishing was measured using an optical interference type film thickness measuring device.
-3 nm to 364 nm and 416 nm respectively
And 541 nm (for the polishing rates of Preparation Examples 1 to 3, 364 nm / min, 416 nm / min and 541 nm / mi in that order).
It was found that the insulating film of n) was shaved and the thickness was uniform over the entire surface of the wafer. Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was seen.

【0029】[0029]

【発明の効果】本発明の研磨剤によれば、酸化珪素絶縁
膜等の被研磨面を平坦に、高速に研磨することが可能と
なる。
According to the polishing agent of the present invention, the surface to be polished such as a silicon oxide insulating film can be polished flat and at high speed.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 X線回折法で得られる(111)面によ
る回折強度aと(200)面による回折強度bがa/b
の積分強度比で2.5以上である酸化セリウムを媒体に
分散させたスラリーを含む酸化セリウム研磨剤。
1. A diffraction intensity a by a (111) plane and a diffraction intensity b by a (200) plane obtained by an X-ray diffraction method are a / b.
A cerium oxide abrasive containing a slurry in which cerium oxide having an integrated intensity ratio of 2.5 or more is dispersed in a medium.
【請求項2】 スラリーが分散剤を含む請求項1記載の
酸化セリウム研磨剤。
2. The cerium oxide abrasive according to claim 1, wherein the slurry contains a dispersant.
【請求項3】 スラリーが媒体として水を含む請求項1
又は2記載の酸化セリウム研磨剤。
3. The slurry contains water as a medium.
Alternatively, the cerium oxide abrasive according to item 2.
【請求項4】 分散剤が水溶性有機高分子、水溶性陰イ
オン性界面活性剤、水溶性非イオン性界面活性剤及び水
溶性アミンから選ばれる少なくとも1種である請求項2
記載の酸化セリウム研磨剤。
4. The dispersant is at least one selected from water-soluble organic polymers, water-soluble anionic surfactants, water-soluble nonionic surfactants and water-soluble amines.
The cerium oxide abrasive described.
【請求項5】 pHが7以上10以下である請求項1〜
4のいずれかに記載の酸化セリウム研磨剤。
5. The method according to claim 1, wherein the pH is 7 or more and 10 or less.
The cerium oxide abrasive according to any one of 4 above.
【請求項6】 請求項1〜5のいずれかに記載の酸化セ
リウム研磨剤で、所定の基板を研磨することを特徴とす
る基板の研磨法。
6. A method of polishing a substrate, which comprises polishing a predetermined substrate with the cerium oxide abrasive according to any one of claims 1 to 5.
【請求項7】 所定の基板が酸化珪素絶縁膜の形成され
た半導体素子である請求項6記載の基板の研磨法。
7. The method of polishing a substrate according to claim 6, wherein the predetermined substrate is a semiconductor element having a silicon oxide insulating film formed thereon.
JP2002162313A 2002-06-04 2002-06-04 Cerium oxide abrasive and polishing method of substrate Pending JP2003051467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162313A JP2003051467A (en) 2002-06-04 2002-06-04 Cerium oxide abrasive and polishing method of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162313A JP2003051467A (en) 2002-06-04 2002-06-04 Cerium oxide abrasive and polishing method of substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP36498198A Division JP2000188270A (en) 1998-12-22 1998-12-22 Cerium oxide abrasive and method of grinding substrate

Publications (1)

Publication Number Publication Date
JP2003051467A true JP2003051467A (en) 2003-02-21

Family

ID=19194979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162313A Pending JP2003051467A (en) 2002-06-04 2002-06-04 Cerium oxide abrasive and polishing method of substrate

Country Status (1)

Country Link
JP (1) JP2003051467A (en)

Similar Documents

Publication Publication Date Title
JP4788586B2 (en) Abrasive and slurry
JP5023626B2 (en) Polishing method of cerium oxide slurry and substrate
JPH10106994A (en) Cerium oxide abrasive agent and polishing method of substrate
WO1998014987A1 (en) Cerium oxide abrasive and method of abrading substrates
JPH10154672A (en) Cerium oxide abrasive material and polishing method of substrate
JP2009182344A (en) Cerium oxide abrasive and method of polishing substrate
JP3480323B2 (en) Cerium oxide abrasive, substrate polishing method, and semiconductor device
JPH10106988A (en) Cerium oxide abrasive agent and polishing method of substrate
JPH10106990A (en) Cerium oxide abrasive material and polishing method of substrate
JP2000188270A (en) Cerium oxide abrasive and method of grinding substrate
JPH10106987A (en) Cerium oxide abrasive agent and polishing method of substrate
JPH10106991A (en) Cerium oxide abrasive powder, and polishing method of substrate
JPH10102038A (en) Cerium oxide abrasive and grinding of substrate
JPH10106989A (en) Cerium oxide abrasive agent and polishing method of substrate
JP2003051467A (en) Cerium oxide abrasive and polishing method of substrate
JPH10106992A (en) Cerium oxide abrasive agent and polishing method of substrate
JPH10106986A (en) Cerium oxide abrasive agent and polishing method of substrate
JP4788585B2 (en) Abrasive and slurry
JP2000186277A (en) Cerium oxide abrasive and method for polishing substrate
JP2004336082A (en) Cerium oxide abrasive and method of grinding substrate
JP2006148158A (en) Cerium oxide polishing material and substrate-polishing method
JP2000186276A (en) Cerium oxide abrasive and polishing method for substrate
JP4776519B2 (en) Abrasive and slurry
JP4776518B2 (en) Abrasive and slurry
JP2008132593A (en) Cerium oxide slurry, cerium oxide abrasive and base board polishing method