JP4204272B2 - Fuel cell electrode catalyst and fuel cell - Google Patents

Fuel cell electrode catalyst and fuel cell Download PDF

Info

Publication number
JP4204272B2
JP4204272B2 JP2002226648A JP2002226648A JP4204272B2 JP 4204272 B2 JP4204272 B2 JP 4204272B2 JP 2002226648 A JP2002226648 A JP 2002226648A JP 2002226648 A JP2002226648 A JP 2002226648A JP 4204272 B2 JP4204272 B2 JP 4204272B2
Authority
JP
Japan
Prior art keywords
fuel cell
carbon
catalyst
carrier
particle material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002226648A
Other languages
Japanese (ja)
Other versions
JP2004071253A (en
Inventor
久雄 加藤
徳彦 瀬戸山
喜章 福嶋
伸二 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2002226648A priority Critical patent/JP4204272B2/en
Publication of JP2004071253A publication Critical patent/JP2004071253A/en
Application granted granted Critical
Publication of JP4204272B2 publication Critical patent/JP4204272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用電極触媒及び燃料電池に関する。
【0002】
【従来の技術】
固体高分子電解質型燃料電池(PEFC)は、出力密度が高く、低温で作動し、有害物質を含む排気ガスをほとんど出さないので、従来の内燃機関に代わる輸送手段のエネルギー源として注目されている。
【0003】
PEFCの出力端子の理論電圧は1.23Vであるが、実際には種々の分極によりこの値からはほど遠い値しか得られていない。出力端子の電圧低下は、PEFCの効率低下を意味しており、更なる効率向上が求められるPEFCの実用性を高めるには分極を抑えて出力密度を向上することが望まれる。
【0004】
PEFCは、固体高分子電解質膜の一方の面にアノードを、もう一方の面にカソードを接合して構成され、たとえば、アノードには燃料としての水素、カソードには酸化剤としての酸素を供給して、アノードで燃料をプロトンに酸化し、カソードで酸素を水に還元して発電する。アノード、カソード共にカーボン等の担体にPt等の貴金属からなる触媒粒子を担持した微粉末からなる燃料電池用電極触媒が用いられている。
【0005】
ここで、PEFCのカソードは発電特性を決定する主因子であり、その活性向上は重要な課題である。触媒粒子として担持された金属のほか、担体自身の改良も有効な手段であると考える。
【0006】
更に燃料電池用電極触媒を構成する担体に対して担持される触媒粒子はPt等の高価な元素を有することが多く、その利用率が低いことがコスト上昇の一因となっている。
【0007】
【発明が解決しようとする課題】
ところで、従来の燃料電池に用いる担体の改良はオイルやアセチレンを燃焼して得られるファーネスブラック系カーボンの改良(表面改良等)に留まり、新規炭素材料の検討は殆ど行われていなかった。最近になり、カーボンナノファイバ、カーボンナノホーン等の新規材料が検討され、電子導電性向上、Ptの分散性向上等による触媒活性の向上が報告されている。
【0008】
従って本発明の目的は、新規な担体を用いることで、燃料電池に用いたときに従来の燃料電池用電極触媒よりも出力密度が高い燃料電池とすることができる燃料電池用電極触媒及び従来の燃料電池よりも出力密度が高い燃料電池を提供することにある。
【0009】
【課題を解決するための手段及び発明の効果】
上記課題を解決する目的で本発明者らは鋭意研究を行った結果、従来の燃料電池用電極触媒の問題点として▲1▼カーボンブラック等の炭素材料上にPt等の触媒粒子を担持するときに触媒粒子が低分散となること、▲2▼高比表面積の炭素材料は内部に空洞を有するので担持された触媒粒子の利用率が低くなること、▲3▼燃料電池用電極触媒を電極等に適用するときに、反応性物質(プロトン、電子、反応ガス)のパスが充分でなく、触媒粒子が有効に活用できない、ことを見出した。この問題を解決する本発明の燃料電池用電極触媒は、1〜100nmの細孔径分布における細孔容量の全体を基準として、2〜10nmの細孔径分布における細孔容量が80%以上である細孔を粒子内に有するカーボン粒子材料を一部に含み、カーボンブラック、活性炭及び/又はアセチレンブラックを含む炭素材料からなる担体と、該担体に担持された触媒粒子と、を有することを特徴とする(請求項1)。
【0010】
一般的な炭素材料と上述の粒径分布をもつカーボン粒子材料とを混合して用いることで、上記課題を解決できる。上述のカーボン粒子材料はメソポーラスカーボンの一種であり、一般的な炭素材料よりも細孔径分布が小さく且つ粒子径分布が揃っていることから、担持する触媒粒子の分散性が良く、且つ細孔内に担持された触媒粒子の無駄も低減できる。カーボン粒子材料以外の炭素材料を混合することにより、カーボン粒子材料を単独で使用した場合に反応ガスの拡散性が充分でない問題を解決でき、更には電子伝達のネットワークを効率よく形成することができ、燃料電池の内部抵抗を小さくすることができる。
【0011】
更に上記課題を解決する本発明の燃料電池は、固体高分子電解質膜と、上述のいずれかに記載の燃料電池用電極触媒を含み該固体電解質膜を狭持するガス拡散電極と、をもつ膜−電極接合体を有することを特徴とする(請求項2)。
【0012】
【発明の実施の形態】
(燃料電池用電極触媒)
本発明の燃料電池用電極触媒は1〜100nmの細孔径分布における細孔容量の全体を基準として、2〜10nmの細孔径分布における細孔容量が80%以上である細孔を粒子内に有するカーボン粒子材料を一部に含み、カーボンブラック、活性炭及び/又はアセチレンブラックを含む炭素材料からなる担体と、その担体に担持された触媒粒子とからなる。
【0013】
担体を構成する炭素材料はカーボン粒子材料を含、カーボンブラック、活性炭及び/又はアセチレンブラックとの混合物でる。カーボン粒子材料を含有することで担体に担持されるPt等からなる触媒粒子の凝集性を抑制できるので分散性が向上して、触媒粒子の効率的な利用ができる。
【0014】
カーボン粒子材料は細孔径が小さく且つよく制御されているので、細孔内に担持された触媒粒子が無駄になり難い。つまり、カーボンブラック等の高比表面積の炭素材料は一次粒子内部に比較的大きな空洞があり、この空洞内に担持された触媒粒子は電極反応に寄与できないからである。また、カーボン粒子材料単体に対して、それ以外の炭素材料を加えることで、燃料ガス等のガス拡散性が向上する。ガス拡散性が向上すると、燃料電池から大電流を取り出したときの電圧降下を抑制できる。特にカーボン粒子材料とカーボンブラックとの混合物からなる炭素材料を担体に用いると高性能な燃料電池用電極触媒を提供できる。
【0015】
更に、ナフィオン等のプロトン伝導性材料に本燃料電池用電極触媒を分散して作成した電極は、効率的にプロトン伝導パスが形成されてIRの値が低下するほか、詳細は明らかではないものの電極内の保水性が向上するここで、本明細書における炭素材料の細孔径分布を測定する方法としてはXRD及び窒素吸着法を採用した
【0016】
ここで、カーボン粒子材料と、それ以外の炭素材料との混合比は特に限定しないが質量比で1:9〜9:1の範囲が好ましく、1:1が特に好ましい。
【0017】
そして、担体は、その粒子径分布が2つ以上のピーク値をもつことが好ましい。粒子径の異なる粒子を混合することで、最終的に製造される燃料電池用電極触媒間で物理的に接触する点が増加して、電池反応に伴い生成する電子の導電パスを効率的に形成する結果、IRが小さくなる。2つ以上のピーク値は、その大きさの比が2以上、より好ましくは5以上である。ここでピーク値の大きさの比とは2つのうち粒子径の大きいピーク値を他方のピーク値で除した値である。担体の粒子径分布の測定はTEM又はSEM観察により行うことができる。
【0018】
特に粒子径分布が相対的に大きい炭素材料としてカーボン粒子材料を用いることで、より高性能な燃料電池用電極触媒を得ることができる。炭素材料の粒子径分布が2つ以上のピーク値をもつようにする方法としては異なる粒子径分布をもつ炭素材料を混合することで達成できる。異なる粒子径分布をもつ炭素材料を混合する場合には触媒粒子の担持の前後等、いつ混合を行っても良い。粒子径分布が異なる炭素材料(又は触媒粒子を担持した炭素材料)の混合は、両者を混合して振り混ぜる、ミリング等の単純な物理的方法にて行っても良いし、適正な溶媒中で超音波照射を行い分散させても良い。
【0019】
カーボン粒子材料を製造する方法としては特に限定しない。例えば、目的の細孔分布(メソポーラス)をもつシリカ、チタニア等の多孔質粒子に対して、ショ糖等の炭素含有分子、特に好ましくは炭水化物を吸着・含浸させた後に、不活性雰囲気下で炭素化する。炭水化物は脱水反応が進行しやすく好ましい。
その後、フッ酸や、NaOH/EtOH等によりシリカ等の鋳型となった粒子をを溶解・除去することでシリカ等の多孔質粒子を鋳型とするカーボン粒子材料が製造できる。例えば鋳型となる多孔質粒子としてシリカメソ多孔体のMCM−48が使用できる。
【0020】
担体に担持された触媒粒子は特に限定しない。例えば白金、ルテニウム、パラジウム、オスミウム、イリジウム、ロジウム、金、銀等の貴金属元素、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、W等の卑金属元素を含むことができる。担体と触媒粒子との質量比は特に限定しないが、5%〜80%程度とすることができる。
【0021】
担体に触媒粒子を担持する方法としては特に限定されず、公知の方法及びその改良方法等が適用できる。例えば、▲1▼触媒粒子を構成する元素(Pt等)のイオンを含有する溶液に担体を接触させて、担体にそれらの元素のイオンを吸着させた後に、そのイオンが吸着した担体を還元雰囲気下に保持して担体に吸着したイオンをPt等の元の金属に還元して触媒粒子とする方法、▲2▼それら元素のイオンを含有する溶液に担体を浸漬し、その溶液中で元素のイオンを還元することで担体に直接、触媒粒子を担持させる方法、▲3▼触媒粒子を構成する金属元素を物理的方法により、そのまま担体に担持させる方法等がある。
【0022】
具体的に▲1▼の方法は触媒粒子を構成する金属元素の陽イオンを担体に含浸させる含浸工程と、担体に含浸した金属元素の陽イオンを還元することで金属からなる触媒粒子を形成する還元工程とをもつ。含浸工程は、陽イオンを含む溶液に担体を浸漬した後に、浸漬した溶液の溶媒を乾固する蒸発乾固法及び溶液中の陽イオンの担体への吸着が平衡状態となるまで担体に吸着させる平衡吸着法や、陽イオンを含む溶液を担体に直接噴霧・乾燥するスプレー法等が採用できる。還元工程は、陽イオンを吸着させた担体に対して、水素ガス等の還元性をもつガスに接触させて陽イオンを金属に還元する。この場合に陽イオンを金属に還元している還元反応は、担体を加熱する加熱工程をもつことで効率的に進行する。具体的には陽イオンを含浸させた担体を乾燥してから、100〜800℃程度で、1〜4時間程度の条件で、水素気相還元する(水素をフローさせた管状炉内等で焼成する)ことにより陽イオンを金属に還元でき、担体に触媒活性をもつ金属を担持させることができる。
【0023】
具体的に▲2▼の方法は触媒粒子を構成する金属元素の陽イオンを含む溶液に担体を浸漬した後に、その陽イオンを還元することで金属微粒子を担体上に析出させて担持させる方法である。陽イオンを還元する方法としては還元剤を添加する化学的方法や、溶液の加熱等により還元する物理的方法及び両者を組み合わせる方法等がある。
【0024】
また、還元剤を混合する前に金属元素の陽イオンを含む溶液に水を混合してPt等の酸化物微粒子を析出させることが好ましい。例えばPt前駆体(Pt陽イオンを含む溶液)としてヘキサヒドロキソPt硝酸溶液を用いた場合に、水を加えることで硝酸が加水分解されてPt酸化物のコロイド粒子が生成して、微小な粒子が形成される。また、水に加えて(または水に代えて)硝酸、酢酸等の酸や、アルコール、アセトン、クロロホルム等の有機溶媒を加えることで、カーボン粉末等の担体の分散性を向上させたり生成する金属酸化物微粒子の粒子径を制御することができ好ましい。
【0025】
還元剤としては特に限定されず、通常の還元剤を通常の量で用いることができる。たとえば、水素化ホウ素ナトリウム等の水素化物、水素、非金属のイオン又は酸(ギ酸(ソーダ)等)、エタノール等のアルコール、低級酸化物および低級酸素塩、ヒドラジン、ホルムアルデヒド等のアルデヒドである。また、これらのうち、アルコール、ギ酸、ヒドラジン等は還元剤として加えた後にさらに加熱することでPt酸化物の還元を迅速に遂行できる。このようにして金属を担持した担体を、ろ過、乾燥等する。迅速に乾燥するために加熱工程をもつことがある。
【0026】
▲1▼及び▲2▼の方法で用いる陽イオンを含む溶液を例示する。触媒粒子を構成する金属元素のうち、Ptの陽イオンを含む溶液を例示すると、ヘキサヒドロキソPt亜硫酸溶液、ジニトロジアミノPt亜硫酸溶液、ヘキサヒドロキソPt亜硫酸溶液、2価Ptアンミン溶液、4価Ptアンミン溶液等のPtアンミン溶液、亜硫酸Pt溶液等が挙げられる。
【0027】
更に、担体に複数の金属元素を担持した場合には、このようにして担体に担持した元素を加熱して合金化する加熱工程をもつことで触媒粒子とすることができる。合金化における加熱工程は、特に限定されるものではなく、通常合金化に用いられる方法で行えばよい。
【0028】
(燃料電池)
本実施形態の燃料電池はPEFCである。本実施形態の燃料電池としては燃料電池セルを単独で又は複数積層したスタックを形成しているものである。燃料電池セルは固体高分子電解質膜と、前述の燃料電池用電極触媒を含みその固体高分子電解質膜を狭持するガス拡散電極とをもつ膜−電極接合体(MEA)を有し、更にMEAをセパレータで狭持している。
【0029】
固体電解質膜としては特に限定されずナフィオン等の一般的な固体高分子電解質膜(ペルフルオロスルホン酸系樹脂)が使用できる。ガス拡散電極は固体電解質により燃料電池用電極触媒間を結着した膜である。固体電解質膜の両面に燃料電池用電極触媒及び固体電解質膜とを混合して適正な溶媒でペースト状としたインクを塗布することで形成できる。本燃料電池のガス拡散電極は本発明の燃料電池用電極触媒を含むが、特にカソードに適用することが好ましい。
【0030】
高分子電解質膜を挟んだ両側の反応電極にそれぞれ燃料ガスと酸化剤ガスとを供給するガス供給装置がそれぞれ対応する側のセパレータから接続される。そして燃料ガスとしては水素ガスを酸化剤ガスとして空気をそれぞれ便宜的に規定する。MEAはその両面を更に拡散層で狭持することができる。
【0031】
拡散層はたとえば一般的なカーボン粉末と撥水性高分子粉末との混合物を用いることができる。固体電解質を含有させて形成することもできる。
【0032】
セパレータも一般的に使用されている材質、形態のものが使用できる。セパレータには流路が形成され、その流路には反応ガスを供給するためのガス供給装置が接続されると同時に、反応しなかった反応ガス及び発生した水を除去する手段とが接続される。
【0033】
【実施例】
カーボン粒子材料の調製)
・MCM−48の調製
カーボン粒子材料の鋳型となるCubic型シリカメソ多孔体(MCM−48)は、文献記載の方法で調製した[R.Ryo,S.H.Joo,and J.M.Kim,J.Phys.Chem.B103,7435(1999)]。
【0034】
シリカゲル粉末(ワコーゲルQ−63:和光純薬工業)と水酸化ナトリウムとをシリカ:水酸化ナトリウム:水=1:2:30のモル比で混合してケイ酸ナトリウム水溶液を得た。シリカゲル粉末の溶解を促進するために80℃の温水浴中で加熱撹拌してほぼ透明な溶液を得た。これをポリプロピレン容器中、室温下で1週間密栓放置することで完全に均一な透明溶液を得た。
【0035】
臭化ヘキサデシルトリメチルアンモニウム(C1633N(CH33Br)12.4g及びBrij30(C1225(OCH2CH24OH)2.2gを水169.4g中に加温溶解させた溶液を上述のケイ酸ナトリウム水溶液(133.76g)中に添加した後に直ちに密栓して激しく振とう混合した。混合物の組成はシリカ:臭化ヘキサデシルトリメチルアンモニウム:Brij30:水酸化ナトリウム:水=5.0:0.85:0.15:2.5:400のモル比での混合溶液である。
【0036】
この混合溶液を100℃の恒温層で2日間放置した後、混合溶液中に酢酸3.5gを撹拌しながら滴下した。その後、100℃の恒温層中で放置した生成物を熱ろ過してから溶存するナトリウムイオンをイオン交換水で洗浄した。これを100℃で乾燥後、550℃で6時間焼成することでCubic型シリカメソ多孔体(MCM−48)を得た。
【0037】
カーボン粒子材料の調製
カーボン粒子材料は、ほぼ文献記載の方法で調製した[R.Ryo,S.H.Joo,and S.Jun,J.Phys.Chem.B103,10670(1999)]。
【0038】
ショ糖12.5gと濃硫酸1.4gとを水60gに溶解し、この溶液と乾燥状態のMCM−48粉末10gとを混合した後に、室温下で12時間放置することでショ糖をMCM−48粒子の細孔中に含浸吸着させた。湿潤状態の試料を100℃で乾燥した後に、160℃まで昇温してショ糖の一部を脱水炭素化した。更にショ糖12.5gと濃硫酸0.7gとを水60gに溶解した溶液中に先の試料を混合し12時間放置した。湿潤状態の試料を100℃で乾燥した後に、160℃まで昇温してショ糖を脱水炭素化した。管状炉を用いて窒素気流中、900℃で更に加熱することで細孔内の有機物を完全に炭素化した。
【0039】
鋳型としたMCM−48粉末由来のシリカ骨格は、フッ酸により溶解除去した。具体的には46%フッ酸水溶液とエタノールとの混合溶液(体積比で1:1)に先の試料を室温下、12時間浸漬してシリカ骨格を溶解除去した。これをろ別して水−エタノール混合溶媒(体積比1:1)にて洗浄した。再度、水−エタノール混合溶媒に分散した後にろ別した粉末を室温で風乾することでカーボン粒子材料を得た。
【0040】
カーボン粒子材料の性状
XRD測定及び窒素吸着測定により、カーボン粒子材料の性状を調べた。XRD測定は理学電気製のRINT2200を用い、線源としてCuKαを用いた。窒素吸着測定はQuantachrome社製のAUTOSORB−1を用い、測定温度77.4Kにて測定した。また、カーボン粒子材料及びカーボンブラックの粒子径分布をTEM観察写真により測定した。
【0041】
結果を図1(XRD)及び図2(窒素吸着測定)に示す。図1から明らかなように、周期的細孔の存在に基づくピークが観察された。図2の結果から比表面積は1835m2/g(BET解析)、細孔容量は0.92mL/g(αs解析)、平均細孔径は2.9nm(αs解析)であることが解った。細孔径分布を図3に示す。図4にはカーボンブラックの細孔径分布を示す。
【0042】
カーボン粒子材料は10nm以上の細孔は殆ど存在せず、その分布が2〜3nmに集中している。カーボンブラックは測定した細孔径分布において満遍なく細孔が存在する。
【0043】
なお、図3及び4にはそれぞれの炭素材料に触媒粒子としてのPtを担持させた後の細孔径分布も合わせて示している。Ptの担持方法は後述する。また、細孔の存在比は炭素材料の質量あたりに規格化している。Pt担持後の細孔径分布の結果から、カーボン粒子材料は2〜3nmに集中していた細孔が大幅に減少しており、当初から存在する2〜3nmの細孔内にPt微粒子が担持されたことが推測できる。
【0044】
・担体への触媒粒子の担持
前述のカーボン粒子材料及びカーボンブラックについて、別々に40gずつ10Lの水中に分散させたカーボン分散液とした。このカーボン分散液に対して、白金を60g含有する亜硫酸系白金の2mol/L硫酸水溶液を加えてよく撹拌した。
【0045】
それぞれの分散液に30%過酸化水素水溶液2Lを撹拌しながら10時間かけて添加した。その後、95〜100℃まで加温し、その温度で2時間保持した。
室温まで冷却した後に、分散液をろ取した。ろ液のpHが5となるまで蒸留水で洗浄した。ろ取した生成物を100℃で6時間真空乾燥した。カーボン粒子材料及びカーボンブラックに対してそれぞれ触媒粒子としてのPtが担持された。Ptの担持量は双方共に全体に対して60質量%であった。
【0046】
(燃料電池の作成)
担体としてのカーボン粒子材料に触媒粒子を担持した燃料電池用電極触媒と、担体としてのカーボンブラックに触媒粒子を担持した燃料電池用電極触媒とを質量比で1:1で混合した。両者の燃料電池用電極触媒の混合は密閉容器中での振とうにより行った。両者を混合することで炭素材料としてのカーボン粒子材料及びカーボンブラックを担体としてもつ本発明の燃料電池用電極触媒が得られた。
【0047】
これにより本発明の燃料電池用電極触媒(試料1)、担体としてカーボン粒子材料を単独で使用した燃料電池用電極触媒(試料2)及び担体としてカーボンブラックを単独で使用した燃料電池用電極触媒(試料3)の3種類の燃料電池用電極触媒を得た。
【0048】
これら3種の燃料電池用電極触媒を用いて燃料電池を作成した。まず、燃料電池用電極触媒を固体高分子電解質のアルコール系溶液(NafionSE−20092)を用いてNafionとカーボンとの質量比で0.75:1で分散させてインク状の燃料電池用電極触媒をテフロン(商標)製の転写膜に塗布、乾燥し熱転写で固体電解質膜(ゴア40μm:ジャパンゴアテックス)に接合してガス拡散電極を固定しMEAとした。これは一般的にDecal法として公知の方法である。製造したMEAをセパレータで狭持して単電池を作成した。
【0049】
(評価試験)
試料1の燃料電池用電極触媒を用いた燃料電池(実施例1)、試料2の燃料電池用電極触媒を用いた燃料電池(比較例1)及び試料3の燃料電池用電極触媒を用いた燃料電池(比較例2)について、発電評価及び交流インピーダンス測定を行った。実施例1の燃料電池はカソードの燃料電池用電極触媒の量がPt換算で0.422mg/cm2、アノードが0.368mg/cm2であり、比較例1の燃料電池はカソードが0.369mg/cm2、アノードが0.362mg/cm2であり、比較例2の燃料電池はカソードが0.425mg/cm2、アノードが0.372mg/cm2であった。
【0050】
発電条件はアノード側に水素ガスを85℃の加湿温度で500mL/分、0.1MPaとなるように供給し、カソード側に空気を70℃の加湿温度で1000mL/分、0.1MPaとなるように供給した。発電評価及び交流インピーダンス測定は負荷に流す電流を変化させた場合の電圧変化及びIR変化を測定した。結果を図5〜図7に示す。
【0051】
実施例1及び比較例2の燃料電池に対して、比較例1の燃料電池は高電流域での電圧低下が大きい。IRの値は比較例2の燃料電池よりも小さいことから、カーボン粒子材料単独からなる試料2の燃料電池用電極触媒のガス拡散性が充分でないとを示唆している。カーボン粒子材料単独でのガス拡散性が充分でない理由を推測すると、▲1▼カーボン粒子材料が低ストラクチャであり、ガス拡散チャネルが効率よく形成されていないこと、▲2▼カーボン粒子材料は、ガス拡散性に好影響を与えると考えられている10nm以上の細孔が殆ど存在せず、さらに10nm以上の粒度分布を示す固体高分子電解質膜はメソ細孔にはいることができず、従ってカーボンに対して同じ質量比で固体高分子電解質を入れた場合、比較例で燃料電池用電極触媒間をつなぎ止める固体高分子電解質が過剰となる。そのために、プロトン伝導性は向上しIRは小さくなるものの、ガス拡散チャネルは固体高分子電解質により阻害されること、の2つが挙げられる。
【0052】
実施例1の燃料電池は比較例2の燃料電池よりもIRの値が1.5〜2.5mΩ小さい。また、比較例1及び2の燃料電池と比較して、低電流側で特異なプロファイルを示す。比較例1及び2の燃料電池のIRの値が低電流側で上昇するのは、高電流側と比較して反応による生成水が減少して、若干固体高分子電解質が乾燥気味となることが原因と推測できる。従って、実施例1の燃料電池は低電流側で乾燥の影響が少ない又は乾燥し難いと考えられる。
【0053】
以上まとめると、実施例1の燃料電池、すなわち、カーボン粒子材料とカーボンブラックとの混合物からなる炭素材料を担体として用いた燃料電池用電極触媒を用いた燃料電池は、▲1▼カーボン粒子材料単独で用いた比較例1の燃料電池のように、ガス拡散性を大きく損なわないこと、▲2▼固体高分子電解質によるプロトン伝導性パスが効率よく形成されること、▲3▼保水性が向上すること、▲4▼IRの値が全体的に低下すること、という利点がある。IRの値の差によって、中電流量域(0.5A/cm2)では実施例1の燃料電池が比較例2の燃料電池よりも端子電圧が10mV高い。
【0054】
また、3種の燃料電池用電極触媒を用い、端子電圧及びIRの値のPt量(電極での燃料電池用電極触媒の使用量)依存性を検討した。詳細は示さないが、すべての燃料電池用電極触媒について、Pt量が増加するにつれて、端子電圧は増加した。また、実施例1の燃料電池ではPt量の増加に伴いIRの値が減少するのに対して、比較例1及び2の燃料電池ではPt量の増加に伴いIRの値が増加した。ガス拡散電極の厚さ2〜3μm程度では、実施例1で用いた試料1は、比較例1、2とほぼ同じ値のIRとなる。ガス拡散電極の厚みがそれ以上となると、実施例1は比較例1、2よりもIRの値が1.5〜2mΩ小さくなる。これは、ガス拡散電極が厚くなるほどメソポーラスカーボンとそれ以外の炭素材料と混合することにより、プロトンや電子の移動抵抗が小さくなる効果が顕著になるためであると推測する。比較例1及び2で用いた試料2及び3では固体高分子電解質膜に塗布したガス拡散電極が厚くなるにつれて、プロトンや電子の移動抵抗が大きくなるためと考えられる。
【0055】
(MEAの観察)
実施例1、比較例1及び2のそれぞれの燃料電池に用いたMEAについて膜と垂直方向の断面を透過型電子顕微鏡(TEM)により観察した。結果を図8〜16に示す。TEM写真で特に黒色となる部分はPtである。
【0056】
図8〜10は比較例2(カーボンブラック)のものである。図8から図10となるにつれて観察倍率を高くしている。
【0057】
図11〜13は比較例1(カーボン粒子材料)のものである。図11から13となるにつれて倍率が高くなる。図11及び12では大きな黒色の部分が認められ、Ptの凝集が疑われるが、より高い拡大倍率の図13によると、凝集しているように見えるPtも、数nmの大きさで微細に分散されていることがわかる。但し、カーボン粒子材料間の接触はあまり密ではない。
【0058】
図14〜16は実施例1(カーボンブラックとカーボン粒子材料との混合物)のものである。図14から16となるにつれて倍率が高くなる。図から比較例1と比較例2とを合わせた性状が推測できる。すなわち、所々、Ptの凝集が認められると共に、非常に微小な大きさでPtが分散されている。また、粒子間の接触も非常に密となっている。しかし、Ptの凝集は100nm〜200nm程度と小さくなっており、Ptが有効に利用できることが推測できる。
【0059】
カーボン粒子材料にPtを担持した粒子の一部に大量のPtが担持されたものがあり、Ptの利用効率が充分でなくなるおそれがある。従って、今後Pt担持量を減少することで、Ptの利用効率を向上でき、カーボン粒子材料に対して、より少ないPt担持量で、より高い性能を発揮する燃料電池用電極触媒を提供できると推測できる。
【図面の簡単な説明】
【図1】実施例におけるカーボン粒子材料のXRDスペクトルである。
【図2】実施例におけるカーボン粒子材料の窒素吸着測定の結果を示したグラフである。
【図3】実施例におけるカーボン粒子材料の細孔径分布を示したグラフである。
【図4】実施例におけるカーボンブラックの細孔径分布を示したグラフである。
【図5】実施例1、比較例1及び2の各燃料電池の発電試験の結果を示したグラフである。
【図6】実施例1、比較例1及び2の各燃料電池のIRの電流密度依存性を示したグラフである。
【図7】図5の一部拡大図である。
【図8】比較例2の燃料電池のMEA断面のTEM写真である。
【図9】比較例2の燃料電池のMEA断面のTEM写真である。
【図10】比較例2の燃料電池のMEA断面のTEM写真である。
【図11】比較例1の燃料電池のMEA断面のTEM写真である。
【図12】比較例1の燃料電池のMEA断面のTEM写真である。
【図13】比較例1の燃料電池のMEA断面のTEM写真である。
【図14】実施例1の燃料電池のMEA断面のTEM写真である。
【図15】実施例1の燃料電池のMEA断面のTEM写真である。
【図16】実施例1の燃料電池のMEA断面のTEM写真である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode catalyst for a fuel cell and a fuel cell.
[0002]
[Prior art]
Solid polymer electrolyte fuel cells (PEFC) are attracting attention as an energy source for transportation instead of conventional internal combustion engines because they have high power density, operate at low temperatures, and emit almost no exhaust gas containing harmful substances. .
[0003]
The theoretical voltage of the output terminal of PEFC is 1.23V, but only a value far from this value is actually obtained due to various polarizations. The decrease in the voltage at the output terminal means a decrease in the efficiency of PEFC. In order to increase the practicality of PEFC that requires further improvement in efficiency, it is desired to suppress the polarization and increase the output density.
[0004]
The PEFC is configured by joining an anode to one surface of a solid polymer electrolyte membrane and a cathode to the other surface. For example, PEFC is supplied with hydrogen as a fuel and oxygen as an oxidant to the cathode. Then, the fuel is oxidized to protons at the anode, and oxygen is reduced to water at the cathode to generate power. A fuel cell electrode catalyst made of fine powder in which catalyst particles made of a noble metal such as Pt are supported on a carrier such as carbon is used for both the anode and the cathode.
[0005]
Here, the cathode of PEFC is a main factor that determines the power generation characteristics, and its activity improvement is an important issue. In addition to the metal supported as catalyst particles, improvement of the carrier itself is considered to be an effective means.
[0006]
Further, the catalyst particles supported on the carrier constituting the fuel cell electrode catalyst often have an expensive element such as Pt, and its low utilization factor contributes to an increase in cost.
[0007]
[Problems to be solved by the invention]
By the way, the improvement of the carrier used in the conventional fuel cell is limited to the improvement of the furnace black carbon obtained by burning oil and acetylene (surface improvement, etc.), and the investigation of the new carbon material has hardly been performed. Recently, new materials such as carbon nanofibers and carbon nanohorns have been studied, and improvements in catalytic activity due to improvements in electronic conductivity and Pt dispersibility have been reported.
[0008]
Accordingly, an object of the present invention is to provide a fuel cell electrode catalyst that can be used as a fuel cell having a higher output density than a conventional fuel cell electrode catalyst when used in a fuel cell, and a conventional carrier. The object is to provide a fuel cell having a higher power density than the fuel cell.
[0009]
[Means for Solving the Problems and Effects of the Invention]
In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result of conventional electrode catalysts for fuel cells, (1) when catalyst particles such as Pt are supported on a carbon material such as carbon black. (2) The high specific surface area carbon material has cavities inside, so the utilization rate of the supported catalyst particles is low, and (3) the fuel cell electrode catalyst is used as an electrode. It has been found that the path of reactive substances (protons, electrons, reactive gases) is not sufficient when applied to the catalyst, and the catalyst particles cannot be used effectively. The electrode catalyst for a fuel cell of the present invention that solves this problem is Carbon particle material having pores with a pore volume of 80% or more in the pore size distribution of 2 to 10 nm in the particles, based on the whole pore volume in the pore size distribution of 1 to 100 nm Partially included Carbon black, activated carbon and / or acetylene black And a catalyst particle supported on the carrier (claim 1).
[0010]
With general carbon materials Carbon particle material having the above particle size distribution The above problem can be solved by using a mixture of and. The above carbon particle material is Mesoporous carbon A kind of Since the pore size distribution is smaller than that of a general carbon material and the particle size distribution is uniform, the dispersibility of the supported catalyst particles is good, and the waste of the catalyst particles supported in the pores can be reduced. Carbon particle material By mixing carbon materials other than Carbon particle material When used alone, it is possible to solve the problem that the diffusibility of the reaction gas is not sufficient, and furthermore, it is possible to efficiently form an electron transfer network and to reduce the internal resistance of the fuel cell.
[0011]
Furthermore, the fuel cell of the present invention that solves the above problems is a solid High molecular A membrane-electrode assembly having an electrolyte membrane and a gas diffusion electrode including the fuel cell electrode catalyst according to any one of the above and sandwiching the solid electrolyte membrane (Claim 2). .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
(Electrocatalyst for fuel cell)
The electrode catalyst for fuel cells of the present invention is Carbon particle material having pores with a pore volume of 80% or more in the pore size distribution of 2 to 10 nm in the particles, based on the whole pore volume in the pore size distribution of 1 to 100 nm Partially included Carbon black, activated carbon and / or acetylene black And a catalyst particle supported on the carrier.
[0013]
The carbon material constituting the carrier is Carbon particle material Including Only , Carbon black, activated carbon And / or Acetylene black With In a mixture Ah The Carbon particle material Since the cohesiveness of the catalyst particles made of Pt or the like supported on the carrier can be suppressed by containing the catalyst, the dispersibility is improved and the catalyst particles can be efficiently used.
[0014]
Carbon particle material Since the pore diameter is small and well controlled, the catalyst particles supported in the pores are hardly wasted. That is, a carbon material having a high specific surface area such as carbon black has relatively large cavities inside the primary particles, and the catalyst particles supported in the cavities cannot contribute to the electrode reaction. Also, Carbon particle material Addition of other carbon materials to a single substance improves gas diffusivity such as fuel gas. When the gas diffusibility is improved, a voltage drop when a large current is taken out from the fuel cell can be suppressed. In particular Carbon particle material When a carbon material composed of a mixture of carbon black and carbon black is used as a support, a high-performance fuel cell electrode catalyst can be provided.
[0015]
Furthermore, the electrode prepared by dispersing the present fuel cell electrode catalyst in a proton conductive material such as Nafion is an electrode whose proton value is efficiently formed and the IR value is lowered, and the details are not clear. Improves water retention inside . Here, in this specification, Charcoal XRD and nitrogen adsorption methods are methods for measuring the pore size distribution of raw materials. It was adopted .
[0016]
here, Carbon particle material The mixing ratio with other carbon materials is not particularly limited, but is preferably in the range of 1: 9 to 9: 1 by mass ratio, particularly preferably 1: 1.
[0017]
The carrier preferably has a particle size distribution having two or more peak values. By mixing particles with different particle diameters, the number of points of physical contact between the electrode catalysts for the fuel cell that are finally produced increases, and the conductive path of the electrons generated by the cell reaction is efficiently formed. As a result, IR becomes small. The ratio of the magnitudes of two or more peak values is 2 or more, more preferably 5 or more. Here, the ratio of the magnitudes of the peak values is a value obtained by dividing the peak value having a large particle diameter out of the two by the other peak value. The particle size distribution of the carrier can be measured by TEM or SEM observation.
[0018]
Especially as a carbon material with a relatively large particle size distribution Carbon particle material By using this, a higher performance electrode catalyst for fuel cells can be obtained. The method of making the particle size distribution of the carbon material have two or more peak values can be achieved by mixing carbon materials having different particle size distributions. When mixing carbon materials having different particle size distributions, mixing may be performed at any time before and after the catalyst particles are supported. Mixing of carbon materials with different particle size distributions (or carbon materials supporting catalyst particles) may be performed by a simple physical method such as milling or mixing them in a proper solvent. Ultrasonic irradiation may be performed for dispersion.
[0019]
Carbon particle material The method for producing is not particularly limited. For example, after adsorbing and impregnating carbon-containing molecules such as sucrose, particularly preferably carbohydrates, to porous particles such as silica and titania having the desired pore distribution (mesoporous), carbon is added under an inert atmosphere. Turn into. Carbohydrates are preferred because the dehydration reaction proceeds easily.
After that, porous particles such as silica are used as a template by dissolving and removing particles that have become a template such as silica with hydrofluoric acid or NaOH / EtOH. Carbon particle material Can be manufactured. For example, silica mesoporous MCM-48 can be used as a porous particle as a template.
[0020]
The catalyst particles supported on the carrier are not particularly limited. For example, noble metal elements such as platinum, ruthenium, palladium, osmium, iridium, rhodium, gold and silver, base metal elements such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo and W Can be included. The mass ratio between the support and the catalyst particles is not particularly limited, but can be about 5% to 80%.
[0021]
The method for supporting the catalyst particles on the carrier is not particularly limited, and a known method and an improved method thereof can be applied. For example, (1) a carrier is brought into contact with a solution containing ions of elements constituting the catalyst particles (Pt, etc.), and the ions of those elements are adsorbed on the carrier, and then the carrier on which the ions are adsorbed is reduced in a reducing atmosphere. A method of reducing the ions adsorbed on the support held below to the original metal such as Pt to form catalyst particles, and (2) immersing the support in a solution containing the ions of these elements, There are a method of directly supporting catalyst particles on the support by reducing ions, and a method of supporting the metal elements constituting the catalyst particles directly on the support by a physical method.
[0022]
Specifically, in the method (1), a catalyst particle made of metal is formed by impregnating a carrier with a cation of a metal element constituting the catalyst particle and reducing the cation of the metal element impregnated on the carrier. A reduction process. In the impregnation step, after immersing the support in a solution containing cations, the evaporating / drying method of drying the solvent of the immersed solution and adsorbing the cation in the solution on the support until the adsorption to the support is in an equilibrium state. An equilibrium adsorption method or a spray method in which a solution containing a cation is directly sprayed and dried on a carrier can be employed. In the reduction step, the carrier on which the cation is adsorbed is brought into contact with a reducing gas such as hydrogen gas to reduce the cation to a metal. In this case, the reduction reaction in which the cation is reduced to the metal proceeds efficiently by having a heating step of heating the carrier. Specifically, after drying the support impregnated with the cation, hydrogen gas phase reduction is performed at about 100 to 800 ° C. for about 1 to 4 hours (calcination in a tubular furnace or the like in which hydrogen is flown). The cation can be reduced to a metal, and a metal having catalytic activity can be supported on the carrier.
[0023]
Specifically, the method (2) is a method in which the fine particles are deposited and supported on the support by immersing the support in a solution containing a cation of the metal element constituting the catalyst particles and then reducing the cation. is there. As a method of reducing cations, there are a chemical method of adding a reducing agent, a physical method of reducing by heating a solution, a method of combining both, and the like.
[0024]
Further, before mixing the reducing agent, it is preferable to deposit water in a solution containing a cation of a metal element to precipitate oxide fine particles such as Pt. For example, when a hexahydroxo Pt nitric acid solution is used as a Pt precursor (solution containing Pt cation), nitric acid is hydrolyzed by adding water to produce colloidal particles of Pt oxide, and fine particles are formed. It is formed. In addition to (or in place of) water, an acid such as nitric acid or acetic acid, or an organic solvent such as alcohol, acetone or chloroform improves the dispersibility of a carrier such as carbon powder or produces a metal It is preferable because the particle diameter of the oxide fine particles can be controlled.
[0025]
It does not specifically limit as a reducing agent, A normal reducing agent can be used in a normal quantity. For example, hydrides such as sodium borohydride, hydrogen, nonmetallic ions or acids (formic acid (soda), etc.), alcohols such as ethanol, lower oxides and lower oxygen salts, aldehydes such as hydrazine, formaldehyde and the like. Of these, alcohol, formic acid, hydrazine and the like can be rapidly reduced after being added as a reducing agent and further heated. Thus, the support | carrier which carry | supported the metal is filtered, dried, etc. May have a heating step to dry quickly.
[0026]
Examples of the solution containing cations used in the methods (1) and (2). Examples of a solution containing a cation of Pt among metal elements constituting the catalyst particles are hexahydroxo Pt sulfite solution, dinitrodiamino Pt sulfite solution, hexahydroxo Pt sulfite solution, divalent Pt ammine solution, and tetravalent Pt ammine solution. And Pt ammine solution, and a sulfite Pt solution.
[0027]
Furthermore, when a plurality of metal elements are supported on the support, catalyst particles can be obtained by having a heating step of heating and alloying the elements supported on the support in this way. The heating step in alloying is not particularly limited, and may be performed by a method usually used for alloying.
[0028]
(Fuel cell)
The fuel cell of this embodiment is PEFC. As the fuel cell of this embodiment, a stack in which fuel cells are singly or plurally stacked is formed. Fuel cell is solid High molecular An electrolyte membrane and a solid containing the fuel cell electrode catalyst described above High molecular A membrane-electrode assembly (MEA) having a gas diffusion electrode for sandwiching an electrolyte membrane is provided, and the MEA is sandwiched by a separator.
[0029]
The solid electrolyte membrane is not particularly limited, and a general solid polymer electrolyte membrane (perfluorosulfonic acid resin) such as Nafion can be used. The gas diffusion electrode is a membrane in which the fuel cell electrode catalyst is bound by a solid electrolyte. It can be formed by mixing a fuel cell electrode catalyst and a solid electrolyte membrane on both sides of the solid electrolyte membrane and applying paste-like ink with an appropriate solvent. The gas diffusion electrode of the present fuel cell includes the fuel cell electrode catalyst of the present invention, and is particularly preferably applied to the cathode.
[0030]
Gas supply devices for supplying fuel gas and oxidant gas to the reaction electrodes on both sides of the polymer electrolyte membrane are connected from the corresponding separators. As the fuel gas, air is defined for convenience, using hydrogen gas as an oxidant gas. The MEA can be further sandwiched between both sides by a diffusion layer.
[0031]
For the diffusion layer, for example, a mixture of general carbon powder and water-repellent polymer powder can be used. It can also be formed by containing a solid electrolyte.
[0032]
The separator can also use the material and form generally used. A flow path is formed in the separator, and a gas supply device for supplying a reaction gas is connected to the flow path, and at the same time, a means for removing the non-reacted reaction gas and generated water is connected. .
[0033]
【Example】
( Carbon particle material Preparation)
-Preparation of MCM-48
Carbon particle material Cubic-type silica mesoporous material (MCM-48) used as a template of [R. Ryo, S .; H. Joe, and J.A. M.M. Kim, J. et al. Phys. Chem. B103, 7435 (1999)].
[0034]
Silica gel powder (Wakogel Q-63: Wako Pure Chemical Industries) and sodium hydroxide were mixed at a molar ratio of silica: sodium hydroxide: water = 1: 2: 30 to obtain an aqueous sodium silicate solution. In order to promote dissolution of the silica gel powder, the mixture was heated and stirred in a warm water bath at 80 ° C. to obtain a substantially transparent solution. This was left tightly sealed in a polypropylene container at room temperature for 1 week to obtain a completely uniform transparent solution.
[0035]
Hexadecyltrimethylammonium bromide (C 16 H 33 N (CH Three ) Three Br) 12.4 g and Brij30 (C 12 H twenty five (OCH 2 CH 2 ) Four A solution obtained by heating and dissolving 2.2 g of OH in 169.4 g of water was added to the above-mentioned aqueous sodium silicate solution (133.76 g), and then immediately sealed and mixed with shaking vigorously. The composition of the mixture is a mixed solution in a molar ratio of silica: hexadecyltrimethylammonium bromide: Brij30: sodium hydroxide: water = 5.0: 0.85: 0.15: 2.5: 400.
[0036]
This mixed solution was allowed to stand in a constant temperature layer at 100 ° C. for 2 days, and then 3.5 g of acetic acid was added dropwise to the mixed solution with stirring. Thereafter, the product left in a constant temperature layer at 100 ° C. was subjected to hot filtration, and then dissolved sodium ions were washed with ion-exchanged water. This was dried at 100 ° C. and calcined at 550 ° C. for 6 hours to obtain a Cubic type silica mesoporous material (MCM-48).
[0037]
Carbon particle material Preparation of
Carbon particle material Was prepared almost according to the method described in the literature [R. Ryo, S .; H. Joe, and S.J. Jun, J. et al. Phys. Chem. B103, 10670 (1999)].
[0038]
12.5 g of sucrose and 1.4 g of concentrated sulfuric acid are dissolved in 60 g of water, and after mixing this solution with 10 g of MCM-48 powder in a dry state, sucrose is allowed to stand at room temperature for 12 hours to obtain sucrose. It was impregnated and adsorbed in the pores of 48 particles. After the wet sample was dried at 100 ° C., the temperature was raised to 160 ° C. and a part of sucrose was dehydrated and carbonized. Further, the previous sample was mixed in a solution obtained by dissolving 12.5 g of sucrose and 0.7 g of concentrated sulfuric acid in 60 g of water, and left for 12 hours. After the wet sample was dried at 100 ° C., the temperature was raised to 160 ° C. to dehydrate and carbonize sucrose. The organic matter in the pores was completely carbonized by further heating at 900 ° C. in a nitrogen stream using a tubular furnace.
[0039]
The silica skeleton derived from the MCM-48 powder used as a mold was dissolved and removed with hydrofluoric acid. Specifically, the silica skeleton was dissolved and removed by immersing the sample in a mixed solution of 46% aqueous hydrofluoric acid and ethanol (volume ratio of 1: 1) at room temperature for 12 hours. This was separated by filtration and washed with a water-ethanol mixed solvent (volume ratio 1: 1). Again, air-dry the filtered powder after dispersion in a water-ethanol mixed solvent at room temperature. Carbon particle material Got.
[0040]
Carbon particle material Properties of
By XRD measurement and nitrogen adsorption measurement, Carbon particle material The properties of were examined. XRD measurement used RINT2200 made by Rigaku Denki, and CuKα was used as a radiation source. Nitrogen adsorption measurement was performed at a measurement temperature of 77.4K using AUTOSORB-1 manufactured by Quantachrome. Also, Carbon particle material And the particle size distribution of carbon black was measured by a TEM observation photograph.
[0041]
The results are shown in FIG. 1 (XRD) and FIG. 2 (nitrogen adsorption measurement). As is clear from FIG. 1, a peak based on the presence of periodic pores was observed. From the result of FIG. 2, the specific surface area is 1835 m. 2 / G (BET analysis), the pore volume was 0.92 mL / g (αs analysis), and the average pore diameter was 2.9 nm (αs analysis). The pore size distribution is shown in FIG. FIG. 4 shows the pore size distribution of carbon black.
[0042]
Carbon particle material There are almost no pores of 10 nm or more, and the distribution is concentrated at 2 to 3 nm. Carbon black has uniform pores in the measured pore size distribution.
[0043]
3 and 4 also show the pore size distribution after Pt as catalyst particles is supported on each carbon material. A method for supporting Pt will be described later. Further, the abundance ratio of the pores is normalized per mass of the carbon material. From the results of pore size distribution after Pt loading, Carbon particle material The pores concentrated at 2 to 3 nm are greatly reduced, and it can be inferred that Pt fine particles were supported in the 2 to 3 nm pores existing from the beginning.
[0044]
・ Supporting catalyst particles on the carrier
The above Carbon particle material And about carbon black, it was set as the carbon dispersion liquid which was separately disperse | distributed 40g at a time in 10L of water. A 2 mol / L sulfuric acid aqueous solution of sulfite-based platinum containing 60 g of platinum was added to the carbon dispersion and stirred well.
[0045]
To each dispersion, 2 L of 30% hydrogen peroxide aqueous solution was added over 10 hours with stirring. Then, it heated to 95-100 degreeC and hold | maintained at the temperature for 2 hours.
After cooling to room temperature, the dispersion was collected by filtration. The filtrate was washed with distilled water until the pH of the filtrate reached 5. The product collected by filtration was vacuum-dried at 100 ° C. for 6 hours. Carbon particle material And Pt as catalyst particles were supported on carbon black and carbon black, respectively. The amount of Pt supported was 60% by mass with respect to the whole.
[0046]
(Fuel cell creation)
As carrier Carbon particle material A fuel cell electrode catalyst having catalyst particles supported thereon and a fuel cell electrode catalyst having catalyst particles supported on carbon black as a carrier were mixed at a mass ratio of 1: 1. Both electrode catalysts for fuel cells were mixed by shaking in a closed container. As a carbon material by mixing both Carbon particle material And the electrode catalyst for fuel cells of this invention which has carbon black as a support | carrier was obtained.
[0047]
As a result, the fuel cell electrode catalyst (sample 1) of the present invention is used as a carrier. Carbon particle material There were obtained three types of fuel cell electrode catalysts: a fuel cell electrode catalyst (sample 2) using a single catalyst and a fuel cell electrode catalyst (sample 3) using carbon black alone as a carrier.
[0048]
A fuel cell was prepared using these three types of fuel cell electrode catalysts. First, an electrode catalyst for a fuel cell is dispersed by using a solid polymer electrolyte alcoholic solution (NafionSE-20092) at a mass ratio of Nafion to carbon of 0.75: 1. It was applied to a transfer film made of Teflon (trademark), dried, and bonded to a solid electrolyte membrane (Gore 40 μm: Japan Gore-Tex) by thermal transfer to fix a gas diffusion electrode to obtain MEA. This is a method generally known as the Decal method. The manufactured MEA was sandwiched between separators to produce a single cell.
[0049]
(Evaluation test)
Fuel Cell Using Sample 1 Fuel Cell Electrode Catalyst (Example 1), Fuel Cell Using Sample 2 Fuel Cell Electrode Catalyst (Comparative Example 1), and Fuel Using Sample 3 Fuel Cell Electrode Catalyst The battery (Comparative Example 2) was subjected to power generation evaluation and AC impedance measurement. In the fuel cell of Example 1, the amount of the cathode fuel cell electrode catalyst is 0.422 mg / cm in terms of Pt. 2 The anode is 0.368 mg / cm 2 In the fuel cell of Comparative Example 1, the cathode is 0.369 mg / cm. 2 The anode is 0.362 mg / cm 2 In the fuel cell of Comparative Example 2, the cathode is 0.425 mg / cm. 2 The anode is 0.372 mg / cm 2 Met.
[0050]
The power generation conditions are such that hydrogen gas is supplied to the anode side at a humidification temperature of 85 ° C. so that the pressure is 500 mL / min and 0.1 MPa, and air is supplied to the cathode side at a humidification temperature of 70 ° C. so that the pressure is 1000 mL / min and 0.1 MPa. Supplied to. In power generation evaluation and AC impedance measurement, voltage change and IR change were measured when the current passed through the load was changed. The results are shown in FIGS.
[0051]
Compared to the fuel cells of Example 1 and Comparative Example 2, the fuel cell of Comparative Example 1 has a large voltage drop in the high current region. Since the value of IR is smaller than the fuel cell of Comparative Example 2, Carbon particle material It suggests that the gas diffusivity of the fuel cell electrode catalyst of Sample 2 consisting of a single sample is not sufficient. Carbon particle material Assuming that the gas diffusivity alone is not enough, (1) Carbon particle material Is a low structure and the gas diffusion channel is not formed efficiently, (2) Carbon particle material Has almost no pores of 10 nm or more which are considered to have a positive effect on gas diffusivity, and a solid polymer electrolyte membrane showing a particle size distribution of 10 nm or more cannot enter mesopores. Therefore, when the solid polymer electrolyte is added at the same mass ratio with respect to carbon, the solid polymer electrolyte for connecting the fuel cell electrode catalysts in the comparative example becomes excessive. For this reason, the proton conductivity is improved and the IR is reduced, but the gas diffusion channel is inhibited by the solid polymer electrolyte.
[0052]
The fuel cell of Example 1 has a smaller IR value by 1.5 to 2.5 mΩ than the fuel cell of Comparative Example 2. In addition, compared with the fuel cells of Comparative Examples 1 and 2, a unique profile is shown on the low current side. The IR value of the fuel cells of Comparative Examples 1 and 2 increases on the low current side because the water produced by the reaction decreases compared to the high current side, and the solid polymer electrolyte becomes slightly dry. It can be inferred. Therefore, it is considered that the fuel cell of Example 1 is less influenced by drying or difficult to dry on the low current side.
[0053]
In summary, the fuel cell of Example 1, that is, Carbon particle material A fuel cell using an electrode catalyst for a fuel cell using a carbon material comprising a mixture of carbon black and carbon black as a carrier is (1) Carbon particle material As in the fuel cell of Comparative Example 1 used alone, the gas diffusivity is not significantly impaired, (2) the proton conductive path is efficiently formed by the solid polymer electrolyte, and (3) the water retention is improved. (4) There is an advantage that the value of IR decreases as a whole. Due to the difference in the IR value, the terminal voltage of the fuel cell of Example 1 is 10 mV higher than the fuel cell of Comparative Example 2 in the medium current amount region (0.5 A / cm 2).
[0054]
In addition, using three types of fuel cell electrode catalysts, the dependence of the terminal voltage and IR value on the amount of Pt (the amount of fuel cell electrode catalyst used in the electrodes) was examined. Although details are not shown, for all fuel cell electrode catalysts, the terminal voltage increased as the amount of Pt increased. In the fuel cell of Example 1, the IR value decreased as the Pt amount increased, whereas in the fuel cells of Comparative Examples 1 and 2, the IR value increased as the Pt amount increased. When the thickness of the gas diffusion electrode is about 2 to 3 μm, the sample 1 used in Example 1 has an IR with substantially the same value as Comparative Examples 1 and 2. When the thickness of the gas diffusion electrode is more than that, the IR value of Example 1 is 1.5 to 2 mΩ smaller than those of Comparative Examples 1 and 2. This is presumed to be due to the effect of reducing proton and electron transfer resistance by mixing mesoporous carbon and other carbon materials as the gas diffusion electrode becomes thicker. In Samples 2 and 3 used in Comparative Examples 1 and 2, it is considered that the migration resistance of protons and electrons increases as the gas diffusion electrode applied to the solid polymer electrolyte membrane becomes thicker.
[0055]
(Observation of MEA)
For the MEAs used in the fuel cells of Example 1 and Comparative Examples 1 and 2, the cross section in the direction perpendicular to the membrane was observed with a transmission electron microscope (TEM). The results are shown in FIGS. The part that is particularly black in the TEM photograph is Pt.
[0056]
8 to 10 are those of Comparative Example 2 (carbon black). The observation magnification is increased from FIG. 8 to FIG.
[0057]
11 to 13 show Comparative Example 1 ( Carbon particle material )belongs to. The magnification increases as it becomes from FIG. 11 and 12, a large black portion is recognized and Pt aggregation is suspected, but according to FIG. 13 having a higher magnification, Pt that appears to be aggregated is also finely dispersed with a size of several nm. You can see that However, Carbon particle material The contact between them is not very close.
[0058]
14 to 16 show Example 1 (carbon black and Carbon particle material And a mixture thereof. As shown in FIGS. 14 to 16, the magnification increases. From the figure, the combined properties of Comparative Example 1 and Comparative Example 2 can be estimated. That is, in some places, aggregation of Pt is recognized and Pt is dispersed in a very small size. Also, the contact between the particles is very close. However, Pt aggregation is as small as about 100 nm to 200 nm, and it can be estimated that Pt can be used effectively.
[0059]
Carbon particle material In some cases, a large amount of Pt is supported on a part of the particles supporting Pt, and there is a possibility that the utilization efficiency of Pt is not sufficient. Therefore, Pt utilization efficiency can be improved by reducing the amount of Pt supported in the future. Carbon particle material On the other hand, it can be presumed that a fuel cell electrode catalyst that exhibits higher performance can be provided with a smaller amount of supported Pt.
[Brief description of the drawings]
FIG. 1 shows an example. Carbon particle material This is an XRD spectrum.
FIG. 2 in the embodiment Carbon particle material It is the graph which showed the result of nitrogen adsorption measurement of.
FIG. 3 in the embodiment Carbon particle material It is the graph which showed the pore diameter distribution.
FIG. 4 is a graph showing the pore size distribution of carbon black in Examples.
FIG. 5 is a graph showing the results of a power generation test of each fuel cell of Example 1 and Comparative Examples 1 and 2.
6 is a graph showing the current density dependence of IR of each fuel cell of Example 1 and Comparative Examples 1 and 2. FIG.
7 is a partially enlarged view of FIG. 5;
8 is a TEM photograph of an MEA cross section of a fuel cell of Comparative Example 2. FIG.
9 is a TEM photograph of an MEA cross section of a fuel cell of Comparative Example 2. FIG.
10 is a TEM photograph of an MEA cross section of a fuel cell of Comparative Example 2. FIG.
11 is a TEM photograph of an MEA cross section of a fuel cell of Comparative Example 1. FIG.
12 is a TEM photograph of an MEA cross section of the fuel cell of Comparative Example 1. FIG.
13 is a TEM photograph of an MEA cross section of the fuel cell of Comparative Example 1. FIG.
14 is a TEM photograph of an MEA cross section of the fuel cell of Example 1. FIG.
15 is a TEM photograph of an MEA cross section of the fuel cell of Example 1. FIG.
16 is a TEM photograph of an MEA cross section of the fuel cell of Example 1. FIG.

Claims (2)

1〜100nmの細孔径分布における細孔容量の全体を基準として、2〜10nmの細孔径分布における細孔容量が80%以上である細孔を粒子内に有するカーボン粒子材料を一部に含み、カーボンブラック、活性炭及び/又はアセチレンブラックを含む炭素材料からなる担体と、該担体に担持された触媒粒子と、を有することを特徴とする燃料電池用電極触媒。 Based on the total pore volume in the pore size distribution of 1 to 100 nm, viewed contains a portion of carbon particulate material having a pore pore volume is 80% or more in the pore size distribution of the 2~10nm in the particle , carbon black, activated carbon and / or a carrier consisting of acetylene black from including carbon material, fuel cell electrode catalyst of the catalyst particles supported on the carrier, characterized in that it has a. 固体高分子電解質膜と、請求項1に記載の燃料電池用電極触媒を含み該固体電解質膜を狭持するガス拡散電極と、をもつ膜−電極接合体を有することを特徴とする燃料電池。A fuel cell comprising a membrane-electrode assembly having a solid polymer electrolyte membrane and a gas diffusion electrode containing the fuel cell electrode catalyst according to claim 1 and sandwiching the solid electrolyte membrane.
JP2002226648A 2002-08-02 2002-08-02 Fuel cell electrode catalyst and fuel cell Expired - Lifetime JP4204272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226648A JP4204272B2 (en) 2002-08-02 2002-08-02 Fuel cell electrode catalyst and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226648A JP4204272B2 (en) 2002-08-02 2002-08-02 Fuel cell electrode catalyst and fuel cell

Publications (2)

Publication Number Publication Date
JP2004071253A JP2004071253A (en) 2004-03-04
JP4204272B2 true JP4204272B2 (en) 2009-01-07

Family

ID=32013930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226648A Expired - Lifetime JP4204272B2 (en) 2002-08-02 2002-08-02 Fuel cell electrode catalyst and fuel cell

Country Status (1)

Country Link
JP (1) JP4204272B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669750B1 (en) 2004-11-04 2007-01-16 삼성에스디아이 주식회사 Mesoporous carbon composite containing carbon nanotube
JPWO2006070635A1 (en) * 2004-12-27 2008-06-12 株式会社日本触媒 Membrane electrode assembly for polymer electrolyte fuel cell
JP2006202687A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Electrode catalyst for fuel cell of metal cluster
JP2006228502A (en) * 2005-02-16 2006-08-31 Mitsui Chemicals Inc Electrode catalyst for fuel cell, its manufacturing method, and electrode and fuel cell using the same
KR101213475B1 (en) 2005-08-20 2012-12-20 삼성에스디아이 주식회사 Mesoporous carbon composite, manufacturing method thereof, and fuel cell using the same
JPWO2007055411A1 (en) * 2005-11-14 2009-04-30 株式会社キャタラー Catalyst for fuel cell, electrode for fuel cell, and polymer electrolyte fuel cell having the same
KR100751350B1 (en) 2005-11-29 2007-08-22 삼성에스디아이 주식회사 Mesoporous carbon including heteroatom, manufacturing method thereof , and fuel cell using the same
JP2008041498A (en) * 2006-08-08 2008-02-21 Sharp Corp Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
US20100092830A1 (en) * 2007-02-01 2010-04-15 National Institute Of Advanced Industrial Science Electrode catalyst for a fuel cell, and fuel cell using the same
US9017837B2 (en) 2008-02-19 2015-04-28 Cabot Corporation High surface area graphitized carbon and processes for making same
WO2009119062A1 (en) * 2008-03-24 2009-10-01 三洋電機株式会社 Membrane-electrode assembly, fuel cell, and fuel cell system
JP5213499B2 (en) 2008-04-01 2013-06-19 新日鐵住金株式会社 Fuel cell
CN102197523B (en) 2008-10-22 2014-04-16 新日铁住金株式会社 Catalyst for solid polymer fuel cell, electrode for solid polymer fuel cell, and fuel cell
JP5728364B2 (en) * 2011-11-07 2015-06-03 日立造船株式会社 Method for producing metal supported catalyst and catalyst layer of fuel cell
JP5852548B2 (en) * 2012-06-12 2016-02-03 トヨタ自動車株式会社 Porous carbon and metal air batteries
EP2999039B1 (en) * 2013-05-16 2018-11-07 Toyota Jidosha Kabushiki Kaisha Electrode for fuel cell and method for manufacturing same
US10249881B2 (en) 2014-07-15 2019-04-02 Toray Industries, Inc. Electrode material for metal-air battery
KR102409766B1 (en) * 2014-09-16 2022-06-17 도레이 카부시키가이샤 Metal composite carbon material, fuel cell catalyst, fuel cell, hydrogen-occluding material, hydrogen tank, and production method for metal composite carbon material
CN107107032B (en) * 2014-12-25 2020-04-03 昭和电工株式会社 Catalyst carrier and method for producing same
KR102195891B1 (en) * 2015-05-29 2020-12-28 코오롱인더스트리 주식회사 CATHOD CATALYST LAYER FOR FUEL CELL, MANUFACTURING METHOD OF THE SAME AND Membrane-Electrode Assembly INCLUDING THE SAME
US11189843B2 (en) * 2018-04-13 2021-11-30 Panasonic Intellectual Property Management Co., Ltd. Membrane catalyst layer assembly of electrochemical device, membrane electrode assembly, electrochemical device, method for manufacturing membrane catalyst layer assembly of electrochemical device
JP7284776B2 (en) * 2021-03-30 2023-05-31 株式会社豊田中央研究所 Mesoporous carbon, electrode catalyst and catalyst layer for fuel cell

Also Published As

Publication number Publication date
JP2004071253A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP4204272B2 (en) Fuel cell electrode catalyst and fuel cell
KR100696463B1 (en) High concentration carbon impregnated catalyst, method for preparing the same, catalyst electrode using the same and fuel cell having the catalyst electrode
KR100612896B1 (en) Mesoporous carbon and method of producing the same
JP6461805B2 (en) Catalyst carbon powder, catalyst using the catalyst carbon powder, electrode catalyst layer, membrane electrode assembly, and fuel cell
JP4629699B2 (en) Supported catalyst and production method thereof, electrode and fuel cell using the same
KR100684854B1 (en) Catalyst for fuel cell, method for preparing same, amd membrane-electrode assembly for fuel cell comprising same
Zhang et al. Highly stable ternary tin–palladium–platinum catalysts supported on hydrogenated TiO 2 nanotube arrays for fuel cells
JP5021292B2 (en) Fuel cell
JP2007526616A (en) Fuel cell with less platinum, catalyst and method for producing the same
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
US8236724B2 (en) Catalyst-supporting particle, composite electrolyte, catalyst electrode for fuel cell, and fuel cell using the same, and methods for fabricating these
JP2007519165A (en) Nanostructured metal-carbon composite for electrode catalyst of fuel cell and production method thereof
JP2002083604A (en) Manufacturing method of catalyst carrying carbon nanofiber, slurry composition for fuel cell electrode, and fuel cell
KR102054609B1 (en) Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly and fuel cell using the carbon powder for fuel cell
CN108448138A (en) A kind of preparation method of Catalytic Layer full ordered structure fuel cell electrode and membrane electrode
JP2003109643A (en) Fuel cell
CN102723509B (en) Proton conductors, membrane electrode and preparation thereof is tieed up based on 3 of nanofiber array structure
JP5561250B2 (en) Support carbon material for catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
WO2016152506A1 (en) Carbon powder for fuel cell, catalyst using said carbon powder for fuel cell, electrode catalyst layer, membrane electrode assembly, and fuel cell
Li et al. Effect of synthesis conditions on the bifunctional electrocatalytic properties of Co 3 O 4/N-rGO for ORR and OER
JP2012212661A (en) Electrode catalyst layer for fuel cell, manufacturing method of electrode catalyst layer, membrane electrode assembly for fuel cell, and solid polymer fuel cell
KR101602413B1 (en) Preparation method of nanoporous silica/carbon catalyst support for fuel cell using rice hull, and direct methanol and polymer electrolyte fuel cell comprising the same
KR101900323B1 (en) Dual catalyst electrode comprising hydrophilic Pt-metal oxide having hollow structure and Pt-C, and membrane electrode assembly comprising the same
JP2009048826A (en) Electrode material for fuel cell and manufacturing method thereof, electrode for fuel cell, and fuel cell
KR20230140280A (en) Catalyst for Fuel Cell and Method for Fabricating the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4204272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term