JPWO2006070635A1 - Membrane electrode assembly for polymer electrolyte fuel cell - Google Patents

Membrane electrode assembly for polymer electrolyte fuel cell Download PDF

Info

Publication number
JPWO2006070635A1
JPWO2006070635A1 JP2006520467A JP2006520467A JPWO2006070635A1 JP WO2006070635 A1 JPWO2006070635 A1 JP WO2006070635A1 JP 2006520467 A JP2006520467 A JP 2006520467A JP 2006520467 A JP2006520467 A JP 2006520467A JP WO2006070635 A1 JPWO2006070635 A1 JP WO2006070635A1
Authority
JP
Japan
Prior art keywords
catalyst
polymer electrolyte
electrode assembly
fuel cell
membrane electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006520467A
Other languages
Japanese (ja)
Inventor
岡村 淳志
淳志 岡村
橋本 高明
高明 橋本
邦典 宮碕
邦典 宮碕
杉島 昇
昇 杉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Publication of JPWO2006070635A1 publication Critical patent/JPWO2006070635A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

本発明は、固体高分子型燃料電池において、液体燃料の電気化学的酸化によってホルムアルデヒドなどの部分酸化物が発生するのを抑制して、環境上の問題を解消するものである。本発明に係る固体高分子型燃料電池用の膜電極接合体は、アノードおよびカソードの少なくとも一方の触媒層中に、活性炭を構成成分とし、上記部分酸化物を分解するための副生物分解触媒を含有する点に最大の特徴を有する。The present invention eliminates environmental problems by suppressing the generation of partial oxides such as formaldehyde by electrochemical oxidation of liquid fuel in a polymer electrolyte fuel cell. The membrane electrode assembly for a polymer electrolyte fuel cell according to the present invention comprises a by-product decomposition catalyst for decomposing the partial oxide, comprising activated carbon as a constituent component in at least one of the anode and cathode catalyst layers. It has the greatest characteristics in terms of inclusion.

Description

本発明は、固体高分子型燃料電池用の膜電極接合体、および当該膜電極接合体を用いた固体高分子型燃料電池に関するものである。   The present invention relates to a membrane electrode assembly for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell using the membrane electrode assembly.

固体高分子型燃料電池は、アノードにおいて燃料から生じるプロトンを、カソードにおいて酸化剤により酸化し、発電する。この燃料としてはアルコール類などが用いられるが、発電時には燃料であるアルコール類が部分酸化され、アルデヒド類やカルボン酸類などが副生する。例えば、メタノールを燃料とする場合には、主にアノードにおいて、二酸化炭素の他にホルムアルデヒド、ギ酸、ギ酸メチルなどが副生することが知られている。これら副生物の中でも、特にホルムアルデヒドはシックハウス症候群を引き起こす有害化学物質であり、発電時におけるこれらの有害副生物の発生は極力抑制されることが望ましい。しかし、これら有害副生物抑制に向けた取り組みは、ほとんど為されていないのが実情である。   In a polymer electrolyte fuel cell, protons generated from fuel at an anode are oxidized by an oxidant at a cathode to generate electricity. Alcohols and the like are used as the fuel, but alcohols that are fuels are partially oxidized during power generation, and aldehydes and carboxylic acids are by-produced. For example, when methanol is used as a fuel, it is known that formaldehyde, formic acid, methyl formate and the like are by-produced in addition to carbon dioxide mainly at the anode. Among these by-products, formaldehyde is a harmful chemical substance that causes sick house syndrome, and it is desirable that the generation of these harmful by-products during power generation be suppressed as much as possible. However, the actual situation is that almost no efforts have been made to control these harmful by-products.

その数少ない先例として、特開2003−123777号公報には、触媒層に過酸化物分解触媒を添加した高分子電解質型燃料電池が開示されている。しかし当該技術における過酸化物分解触媒は、カーボンブラックやジルコニア等にルテニウム等を担持したものであり、実施例で用いられているものはカーボンブラックに金属を担持したもののみである。   As a few precedents, Japanese Patent Application Laid-Open No. 2003-123777 discloses a polymer electrolyte fuel cell in which a peroxide decomposition catalyst is added to a catalyst layer. However, the peroxide decomposition catalyst in the art is one in which ruthenium or the like is supported on carbon black, zirconia or the like, and the one used in the examples is only one in which a metal is supported on carbon black.

ところが、固体高分子型燃料電池の電極用触媒は、カーボンブラックに白金または白金−ルテニウムを担持したものが一般的である。よって、上記公報における過酸化物分解触媒は、従来の電極用触媒と全く区別することができない。それに加えて、本発明者らによる知見によれば、カーボンブラックに金属を担持した触媒では、固体高分子型燃料電池において、燃料が部分酸化された有害副生物の発生を抑制することはできない。   However, an electrode catalyst for a polymer electrolyte fuel cell is generally one in which platinum or platinum-ruthenium is supported on carbon black. Therefore, the peroxide decomposition catalyst in the above publication cannot be distinguished at all from conventional electrode catalysts. In addition, according to the knowledge of the present inventors, a catalyst in which a metal is supported on carbon black cannot suppress the generation of harmful by-products in which the fuel is partially oxidized in a solid polymer fuel cell.

上述した様に、高分子電解質型燃料電池において副生物を抑制するための技術は少なく、過酸化物を抑制するための触媒を有する燃料電池が開示されている程度である。しかし当該技術では、ホルムアルデヒドなどの副生物の発生を十分に低減することはできない。   As described above, there are few techniques for suppressing by-products in polymer electrolyte fuel cells, and only a fuel cell having a catalyst for suppressing peroxide is disclosed. However, this technique cannot sufficiently reduce the generation of by-products such as formaldehyde.

そこで本発明の目的は、メタノールなどの液体燃料を用いる固体高分子型燃料電池において、液体燃料の電気化学的酸化の際に副生する部分酸化物であるホルムアルデヒドなどの有害物質の発生を抑制できる固体高分子型燃料電池用膜電極接合体(MEA)と、当該MEAを用いた燃料電池を提供することにある。   Accordingly, an object of the present invention is to suppress the generation of harmful substances such as formaldehyde which is a partial oxide by-produced during the electrochemical oxidation of liquid fuel in a polymer electrolyte fuel cell using a liquid fuel such as methanol. An object of the present invention is to provide a membrane electrode assembly (MEA) for a polymer electrolyte fuel cell and a fuel cell using the MEA.

本発明者らは、上記課題を解決すべく、高分子電解質型燃料電池の発電時における有害副生物を効率的に分解できる触媒について鋭意研究を重ねた。その結果、活性炭を構成成分とする触媒がかかる特性に極めて優れることを見出して、本発明を完成した。   In order to solve the above-mentioned problems, the present inventors have made extensive studies on a catalyst that can efficiently decompose harmful by-products during power generation of a polymer electrolyte fuel cell. As a result, the present invention was completed by finding that a catalyst comprising activated carbon as a component is extremely excellent in such characteristics.

本発明の固体高分子型燃料電池用膜電極接合体は、高分子電解質膜と、その各面にそれぞれアノードおよびカソードを有し、
アノードとカソードは、それぞれ高分子電解質に接する側に触媒層を有し、
アノードおよびカソードの少なくとも一方の触媒層が、カーボンブラックに金属成分が担持された電極触媒に加え、活性炭を構成成分とする副生物分解触媒を含有することを特徴とする。
The membrane electrode assembly for a polymer electrolyte fuel cell of the present invention has a polymer electrolyte membrane, and an anode and a cathode on each side thereof,
The anode and the cathode each have a catalyst layer on the side in contact with the polymer electrolyte,
The catalyst layer of at least one of the anode and the cathode contains a by-product decomposition catalyst containing activated carbon as a constituent component in addition to an electrode catalyst in which a metal component is supported on carbon black.

また、本発明の固体高分子型燃料電池は、上記固体高分子型燃料電池用膜電極接合体を含むことを特徴とする。   Moreover, the polymer electrolyte fuel cell of the present invention includes the membrane electrode assembly for a polymer electrolyte fuel cell.

本発明の固体高分子型燃料電池用膜電極接合体(以下、単に「膜電極接合体」ということがある)では、液体燃料の電気化学的酸化の際における部分酸化物の副生が抑制されるので、有害物質による環境上の問題が解消される。よって、本発明の膜電極接合体とこれを用いた固体高分子型燃料電池は、家庭用や業務用の発電システム、および携帯機器や自動車の電源などに利用できるものとして、産業上非常に有用である。   In the membrane electrode assembly for a polymer electrolyte fuel cell of the present invention (hereinafter sometimes simply referred to as “membrane electrode assembly”), by-product formation of partial oxides during electrochemical oxidation of liquid fuel is suppressed. This eliminates environmental problems caused by harmful substances. Therefore, the membrane electrode assembly of the present invention and the polymer electrolyte fuel cell using the membrane electrode assembly are very useful industrially as those that can be used for power generation systems for home use and business use, and power sources for portable devices and automobiles. It is.

本発明の膜電極接合体の構成を示す模式図である。It is a schematic diagram which shows the structure of the membrane electrode assembly of this invention. 本発明の膜電極接合体の他の構成を示す模式図である。It is a schematic diagram which shows the other structure of the membrane electrode assembly of this invention.

本発明の固体高分子型燃料電池用膜電極接合体は、
高分子電解質膜と、その各面にそれぞれアノードおよびカソードを有し、
アノードとカソードは、それぞれ高分子電解質に接する側に触媒層を有し、
アノードおよびカソードの少なくとも一方の触媒層が、カーボンブラックに金属成分が担持された電極触媒に加え、活性炭を構成成分とする副生物分解触媒を含有することを特徴とする。
The membrane electrode assembly for a polymer electrolyte fuel cell of the present invention is
A polymer electrolyte membrane, and an anode and a cathode on each side thereof,
The anode and the cathode each have a catalyst layer on the side in contact with the polymer electrolyte,
The catalyst layer of at least one of the anode and the cathode contains a by-product decomposition catalyst containing activated carbon as a constituent component in addition to an electrode catalyst in which a metal component is supported on carbon black.

図1の通り、本発明の膜電極接合体は、少なくとも高分子電解質膜1と、その各面にアノード2およびカソード3を有し、アノード2とカソード3は、それぞれ高分子電解質膜1と接する側に触媒層4と5、およびガス拡散層を有する。   As shown in FIG. 1, the membrane electrode assembly of the present invention has at least a polymer electrolyte membrane 1 and an anode 2 and a cathode 3 on each side thereof, and the anode 2 and the cathode 3 are in contact with the polymer electrolyte membrane 1, respectively. On the side, catalyst layers 4 and 5 and a gas diffusion layer are provided.

上記構成要素のうち、「触媒層」を除いては、従来の一般的なものを用いることができる。例えば、高分子電解質膜は、パーフルオロスルホン酸イオン交換膜(商品名「ナフィオン(登録商標)」)などのフッ素樹脂系イオン交換膜を用いることができる。また、ガス拡散層は、優れたガス透過性と導電性を有するものとして、厚さ100〜300μm程度のカーボンペーパーやカーボンクロスを用いることができる。   Of the above components, conventional ones can be used except for the “catalyst layer”. For example, the polymer electrolyte membrane may be a fluororesin ion exchange membrane such as a perfluorosulfonic acid ion exchange membrane (trade name “Nafion (registered trademark)”). Further, as the gas diffusion layer, carbon paper or carbon cloth having a thickness of about 100 to 300 μm can be used as having excellent gas permeability and conductivity.

触媒層は、従来、電極触媒からなり、必要に応じて高分子電解質や撥水材などを均一混合したものであるが、本発明では、アノードおよびカソードの少なくとも一方の触媒層へ、さらに副生物分解触媒を添加する。但し、有害副生物は主にアノードで生成するため、好ましくは少なくともアノードの触媒層へ副生物分解触媒を添加する。   The catalyst layer is conventionally composed of an electrode catalyst, and a polymer electrolyte, a water repellent material, and the like are uniformly mixed as necessary. In the present invention, at least one of the anode and cathode catalyst layers is further mixed with a by-product. Add cracking catalyst. However, since harmful by-products are mainly generated at the anode, a by-product decomposition catalyst is preferably added to at least the catalyst layer of the anode.

触媒層に用いる高分子電解質は、高分子電解質膜と同様の材料を用いることができる。また、アノード電極触媒は、一般的には、白金、ルテニウム、パラジウム、モリブデン、タングステン、スズ、イリジウム、ロジウムなどの金属または合金をカーボンブラックに担持した触媒である。カソード電極触媒としては、一般的に白金などをカーボンブラックに担持した触媒が用いられている。さらに電極触媒として、カーボンナノチューブやカーボンナノホーンなどに上記金属成分を担持したものを添加してもよい。   The polymer electrolyte used for the catalyst layer can be the same material as the polymer electrolyte membrane. The anode electrode catalyst is generally a catalyst in which a metal or alloy such as platinum, ruthenium, palladium, molybdenum, tungsten, tin, iridium, or rhodium is supported on carbon black. As a cathode electrode catalyst, a catalyst in which platinum or the like is supported on carbon black is generally used. Further, as an electrode catalyst, carbon nanotubes or carbon nanohorns carrying the above metal component may be added.

ここで「カーボンブラック」とは、炭化水素ガス等の気相熱分解や不完全燃焼により生成する微粉の球状または鎖状の炭素である。その結晶子は、炭素6員環が30〜40個程度結合した網平面と呼ばれる集合体を最小単位とし、この網平面がファンデルワールス力で3〜5層ほぼ等間隔に積み重なったものである。この結晶子が1000〜2000個集合して一次粒子を形成し、さらに約2〜200個の一次粒子が相互に化学的・物理的に結合し、房状に凝集した形態(ストラクチャー)をとる。この様な形態から、カーボンブラックの細孔は、一次粒子間の空隙として形成される。また、カーボンブラックの一次粒子の大きさは、通常、直径10〜200nm程度である。   Here, “carbon black” is fine spherical or chain-like carbon produced by gas phase thermal decomposition or incomplete combustion of hydrocarbon gas or the like. The crystallite is an aggregate called a network plane in which about 30 to 40 carbon 6-membered rings are bonded to each other as a minimum unit, and this network plane is stacked at almost equal intervals by 3 to 5 layers by van der Waals force. . 1000 to 2000 crystallites aggregate to form primary particles, and about 2 to 200 primary particles are chemically and physically bonded to each other to form a clustered structure (structure). From such a form, the pores of carbon black are formed as voids between primary particles. The size of the primary particles of carbon black is usually about 10 to 200 nm in diameter.

その他、本発明の高分子電解質やアノードとカソードには、固体高分子型燃料電池の一般的な成分を有していてもよく、その様な膜電極接合体や燃料電池も本発明範囲に含まれる。   In addition, the polymer electrolyte or anode and cathode of the present invention may have general components of solid polymer fuel cells, and such membrane electrode assemblies and fuel cells are also included in the scope of the present invention. It is.

本発明の「副生物分解触媒」とは、液体燃料の電気化学的酸化の際に副生する部分酸化物を分解し得る触媒を意味する。ここで、「液体燃料の電気化学的酸化の際に副生する部分酸化物」(以下、単に「部分酸化物」ということもある。)とは、例えば、固体高分子型燃料電池のアノード側で起こる反応(アノード反応)(例えば、液体燃料としてメタノールを用いる場合、CH3OH+H2O → 6H++6e-+CO2 で示される反応)の際にアノード側で副生する部分酸化物を意味し、具体的には、例えば、ホルムアルデヒドなどのアルデヒド類やカルボン酸類などを挙げることができる。また、かかる部分酸化物は、空気極側で検出される場合もある。これは、燃料が高分子電解質膜を透過して空気極で部分酸化されたり、或いは燃料極側で生じた部分酸化物が高分子電解質膜を透過したものであると考えられる。The “by-product decomposition catalyst” of the present invention means a catalyst capable of decomposing a partial oxide by-produced during the electrochemical oxidation of a liquid fuel. Here, “partial oxide by-produced during electrochemical oxidation of liquid fuel” (hereinafter, also simply referred to as “partial oxide”) refers to, for example, the anode side of a polymer electrolyte fuel cell Means a partial oxide by-produced on the anode side during the reaction (anode reaction) that occurs in the reaction (for example, when methanol is used as the liquid fuel, a reaction represented by CH 3 OH + H 2 O → 6H + + 6e + CO 2 ) Specific examples include aldehydes such as formaldehyde and carboxylic acids. In addition, such a partial oxide may be detected on the air electrode side. This is considered that the fuel permeates the polymer electrolyte membrane and is partially oxidized at the air electrode, or the partial oxide generated on the fuel electrode side permeates the polymer electrolyte membrane.

「副生物分解触媒」は、少なくとも活性炭を構成成分とする。本発明者らによる知見によれば、電極触媒の他に副生物分解触媒として活性炭を添加することによって、有害な部分酸化物を顕著に抑制することができる。   The “byproduct decomposition catalyst” contains at least activated carbon as a constituent component. According to the knowledge by the present inventors, harmful partial oxides can be remarkably suppressed by adding activated carbon as a by-product decomposition catalyst in addition to the electrode catalyst.

副生物分解触媒は、部分酸化物を分解し得る金属成分を活性炭に担持したものが好ましい。   The byproduct decomposition catalyst is preferably one in which a metal component capable of decomposing a partial oxide is supported on activated carbon.

活性炭は、木炭などを十分に炭化した後に賦活処理することにより製造されるものである。その結晶子は、炭素が120°の角度で結合した網平面を基本骨格とし、この網平面が不規則に積層した構造(乱層構造)を有する。この結晶子がランダムに結合したものが活性炭であり、活性炭の細孔は、結晶子間の空隙として形成される。そのため、活性炭の表面積は、粒子の外表面に対して非常に大きなものとなる。また、構造上の違いから、活性炭はカーボンブラックのように直径10〜200nm程度の一次粒子が房状に結合した凝集形態とはならない。活性炭の粒子径は、ロッドミル、ボールミル、ジェットミルなどの粉砕機での粉砕の程度により決定され、通常、その粒子径はカーボンブラックよりも大きい。本願で用いる活性炭材料としては、直径1〜50μmのものが好適である。   Activated carbon is manufactured by performing an activation treatment after charcoal is sufficiently carbonized. The crystallite has a structure (turbulent structure) in which a network plane in which carbon is bonded at an angle of 120 ° is used as a basic skeleton, and the network plane is irregularly stacked. Activated carbon is obtained by randomly bonding the crystallites, and the pores of the activated carbon are formed as voids between the crystallites. Therefore, the surface area of the activated carbon is very large with respect to the outer surface of the particles. Further, due to the difference in structure, the activated carbon does not have an aggregated form in which primary particles having a diameter of about 10 to 200 nm are bound in a tuft shape like carbon black. The particle diameter of the activated carbon is determined by the degree of pulverization by a pulverizer such as a rod mill, ball mill, jet mill, etc., and the particle diameter is usually larger than that of carbon black. As the activated carbon material used in the present application, one having a diameter of 1 to 50 μm is suitable.

この様に、カーボンブラックと活性炭とは、構造や形態において著しく異なっている。   Thus, carbon black and activated carbon are remarkably different in structure and form.

副生物分解触媒の金属成分としては、例えば、白金、ルテニウム、パラジウム、イリジウム、ロジウム、オスミウム、金および銀から選ばれる少なくとも1つの元素、特に白金、ルテニウムおよびパラジウムから選ばれる2種以上の組合せが好適である。また、これら金属成分の形態は特に制限されず、金属、酸化物、水酸化物、あるいは合金などのいずれでもよい。上記金属成分は、その触媒量を活性炭に担持させればよく、その担持量は、通常1〜60質量%であり、好ましくは10〜30質量%である。金属成分の担持方法については特に制限はなく、一般の担持触媒の調製方法を用いることができる。   Examples of the metal component of the by-product decomposition catalyst include at least one element selected from platinum, ruthenium, palladium, iridium, rhodium, osmium, gold and silver, in particular, a combination of two or more selected from platinum, ruthenium and palladium. Is preferred. Moreover, the form of these metal components is not particularly limited, and any of metal, oxide, hydroxide, alloy, and the like may be used. The said metal component should just carry | support the catalyst amount on activated carbon, and the loading amount is 1-60 mass% normally, Preferably it is 10-30 mass%. There is no restriction | limiting in particular about the support method of a metal component, The preparation method of a general supported catalyst can be used.

副生物分解触媒で用いる活性炭としては、半径40Å以上100Å未満の細孔の容積(以下、単に「細孔容積」ということもある。)が0.05ml/g以上のものが好適である。かかる活性炭は、特に部分酸化物の分解効果に優れるからである。より好ましくは0.1ml/g以上、さらに0.2ml/g以上が好適である。しかし、当該細孔容積が大き過ぎると副生物分解触媒の嵩比重が小さくなり、結果として触媒層の厚みが大きくなり発電性能が低下するおそれがあるため、好ましくは0.5ml/g以下、より好ましくは0.4ml/g以下とする。   As the activated carbon used as the byproduct decomposition catalyst, those having a volume of pores having a radius of 40 mm or more and less than 100 mm (hereinafter sometimes simply referred to as “pore volume”) of 0.05 ml / g or more are suitable. This is because such activated carbon is particularly excellent in the decomposition effect of partial oxides. More preferably, it is 0.1 ml / g or more, and further 0.2 ml / g or more is suitable. However, if the pore volume is too large, the bulk specific gravity of the byproduct decomposition catalyst is reduced, and as a result, the thickness of the catalyst layer may be increased and the power generation performance may be reduced. Preferably it is 0.4 ml / g or less.

活性炭の細孔容積は、例えば、全自動ガス吸着装置(ベックマンコールター社製「オムニソープ360CXなど)を用い、窒素吸着法(77K、10.5Torr以下)にて測定し、得られた吸着等温線からBJH法により細孔容積を算出する。   The pore volume of the activated carbon is measured by a nitrogen adsorption method (77K, 10.5 Torr or less) using, for example, a fully automatic gas adsorption device (such as “Omni Soap 360CX” manufactured by Beckman Coulter, Inc.), and the obtained adsorption isotherm From the above, the pore volume is calculated by the BJH method.

細孔容積が0.05ml/g以上の活性炭は、木粉やヤシ殻などの活性炭原料を炭化する際の熱処理条件と賦活処理とを適宜組み合わせて細孔構造を制御することによって、容易に得ることができる。かかる賦活処理としては、例えば、塩化亜鉛溶液やリン酸溶液を用いる薬品賦活法や、水蒸気を用いるガス賦活法などを挙げることができる。また、細孔容積が0.05ml/g未満の活性炭に上記賦活処理を施してその細孔構造を制御することによって、0.05ml/g以上の細孔容積を有する活性炭材料とすることもできる。   Activated carbon having a pore volume of 0.05 ml / g or more is easily obtained by controlling the pore structure by appropriately combining heat treatment conditions and activation treatment when carbonizing activated carbon raw materials such as wood powder and coconut shells. be able to. Examples of the activation treatment include a chemical activation method using a zinc chloride solution or a phosphoric acid solution, a gas activation method using water vapor, and the like. Moreover, it can also be set as the activated carbon material which has the pore volume of 0.05 ml / g or more by performing the said activation process to activated carbon with a pore volume less than 0.05 ml / g, and controlling the pore structure. .

電極触媒と副生物分解触媒との割合は特に制限されないが、電極触媒:副生物分解触媒の質量比として1:0.2〜2の範囲、好ましくは1:0.5〜1.5となるようにするのがよい。また、触媒層の導電性を確保するために、カーボンブラックなどの導電性材料を必要量配合することが好ましい。具体的には、活性炭に対して10〜100質量%の導電性材料と共に触媒層を構成するようにするのが好ましい。   The ratio of the electrode catalyst to the byproduct decomposition catalyst is not particularly limited, but the mass ratio of the electrode catalyst to the byproduct decomposition catalyst is in the range of 1: 0.2 to 2, preferably 1: 0.5 to 1.5. It is better to do so. Moreover, in order to ensure the electroconductivity of a catalyst layer, it is preferable to mix | blend required amount of electroconductive materials, such as carbon black. Specifically, it is preferable to form the catalyst layer together with 10 to 100% by mass of the conductive material with respect to the activated carbon.

膜電極接合体における触媒層を、電極触媒を有する第一触媒層と、副生物分解触媒を有する第二触媒層に分割し、第一触媒層を高分子電解質膜と第二触媒層との間に配置する構成とすることも、本発明の好適な態様である。触媒層をこの様な構成にすることによって、副生物の低減効果をより一層高められるからである。   The catalyst layer in the membrane electrode assembly is divided into a first catalyst layer having an electrode catalyst and a second catalyst layer having a by-product decomposition catalyst, and the first catalyst layer is interposed between the polymer electrolyte membrane and the second catalyst layer. It is also a preferable aspect of the present invention to be arranged in the above. This is because the reduction effect of by-products can be further enhanced by configuring the catalyst layer in this way.

図2は、上記二層構造を模式的に表した図である。図中、1、2、3および5は図1でのものと同意義であるが、アノード2における触媒層を、高分子電解質膜1に接した第一触媒層41と、またこの第二触媒層41に接して設けた第二触媒層42から構成している。ここで、第一触媒層41はアノードの電極触媒を含み、また第二触媒層42は本発明の副生物分解触媒を含むように構成されている。   FIG. 2 is a diagram schematically showing the two-layer structure. In the figure, 1, 2, 3 and 5 have the same meaning as in FIG. 1, but the catalyst layer in the anode 2 is divided into a first catalyst layer 41 in contact with the polymer electrolyte membrane 1 and this second catalyst. The second catalyst layer 42 is provided in contact with the layer 41. Here, the first catalyst layer 41 includes an anode electrode catalyst, and the second catalyst layer 42 includes the byproduct decomposition catalyst of the present invention.

第一触媒層41と第二触媒層42との厚さの割合は特に限定されるものではないが、電極触媒と副生物分解触媒との割合(電極触媒:副生物分解触媒(質量比))が1:0.2〜2、好ましくは1:0.5〜1.5となるように構成するのがよい。なお、触媒層を2層構造とすることは、上記アノードの触媒層に限定されるものではなく、カソードの触媒層にも適用し得るものであるが、なかでもアノードの触媒層を2層構造とするのが好ましい。   The ratio of the thickness of the first catalyst layer 41 and the second catalyst layer 42 is not particularly limited, but the ratio of the electrode catalyst to the byproduct decomposition catalyst (electrode catalyst: byproduct decomposition catalyst (mass ratio)). Is preferably 1: 0.2 to 2, preferably 1: 0.5 to 1.5. The two-layer structure of the catalyst layer is not limited to the above-mentioned anode catalyst layer, but can also be applied to the cathode catalyst layer. In particular, the anode catalyst layer has a two-layer structure. Is preferable.

本発明の膜電極接合体は、常法に従って製造することができる。例えば、アノードおよびカソードの電極触媒と副生物分解触媒、および水やイソプロピルアルコールなどの有機溶媒を均一混合してペーストを調製し、これをカーボンペーパーなどのガス拡散層に塗布後、乾燥することによって、電極(アノードとカソード)を形成することができる。電極触媒等の他に、必要に応じて高分子電解質、導電性材料、撥水材、バインダーなど、固体高分子型燃料電池の電極の形成に用いられる一般的な成分を適宜選択し、用いることができる。つまり、本発明の膜電極接合体の電極は、任意の電極触媒と本発明の副生物分解触媒とを含む混合物を用い常法に従って形成することができる。各成分の配合割合は、一般的なものとすることができ特に制限されないが、例えば、電極触媒:副生物分解触媒の割合は、質量比で1:0.2〜2、好ましくは1:0.5〜1.5である。   The membrane electrode assembly of the present invention can be produced according to a conventional method. For example, a paste is prepared by uniformly mixing an anode and cathode electrode catalyst and a by-product decomposition catalyst, and an organic solvent such as water or isopropyl alcohol, and this is applied to a gas diffusion layer such as carbon paper and then dried. Electrodes (anode and cathode) can be formed. In addition to the electrode catalyst, etc., appropriately select and use general components used for the formation of solid polymer fuel cell electrodes, such as polymer electrolytes, conductive materials, water repellent materials, binders, etc. Can do. That is, the electrode of the membrane electrode assembly of the present invention can be formed according to a conventional method using a mixture containing an arbitrary electrode catalyst and the by-product decomposition catalyst of the present invention. The mixing ratio of each component can be general and is not particularly limited. For example, the ratio of electrode catalyst: byproduct decomposition catalyst is 1: 0.2 to 2, preferably 1: 0 in terms of mass ratio. .5 to 1.5.

本発明の電極層を図2に示す様な二層構造にする場合には、先ず電極触媒を含むペーストをガス拡散層に塗布して乾燥した後、その上へ副生物分解触媒を含むペーストを塗布し、乾燥させればよい。   When the electrode layer of the present invention has a two-layer structure as shown in FIG. 2, the paste containing the electrode catalyst is first applied to the gas diffusion layer and dried, and then the paste containing the by-product decomposition catalyst is applied thereon. What is necessary is just to apply | coat and dry.

得られたアノードとカソードは、高分子電解質膜を間に挟んでホットプレスすることによって、膜電極接合体とすることができる。この際、各電極において、触媒層が高分子電解質膜に接する様に配置する必要がある。また、ホットプレスにおける圧力や温度は、常法の条件に従えばよい。   The obtained anode and cathode can be made into a membrane electrode assembly by hot pressing with a polymer electrolyte membrane interposed therebetween. At this time, in each electrode, it is necessary to dispose the catalyst layer in contact with the polymer electrolyte membrane. Moreover, the pressure and temperature in a hot press should just follow the conditions of a conventional method.

得られた膜電極は、セパレータなどと共に、常法に従って固体高分子型燃料電池とすることができる。   The obtained membrane electrode can be made into a polymer electrolyte fuel cell according to a conventional method together with a separator and the like.

固体高分子型燃料電池は、メタノール、エタノール、ジメチルエーテルなどの含酸素炭化水素類など、一般的な作動温度(通常、室温から100℃程度)で液体として取り扱えるものを燃料とする。しかし従来の固体高分子型燃料電池では、これら燃料がアノード側で部分酸化されたり、或いは高分子電解質膜を透過した燃料がカソード側で部分酸化されたアルデヒド類やカルボン酸類が副生するという問題があった。   The polymer electrolyte fuel cell uses a fuel that can be handled as a liquid at a general operating temperature (usually from room temperature to 100 ° C.), such as oxygen-containing hydrocarbons such as methanol, ethanol, and dimethyl ether. However, in conventional polymer electrolyte fuel cells, these fuels are partially oxidized on the anode side, or aldehydes and carboxylic acids that are partially oxidized on the cathode side of the fuel that has permeated the polymer electrolyte membrane are by-produced. was there.

一方本発明の固体高分子型燃料電池では、アノードおよびカソードの少なくとも一方の触媒層に副生物分解触媒が添加されており、部分酸化物の発生を顕著に抑制できるので、環境やヒトに悪影響を与えない。よって、本発明の固体高分子型燃料電池は、携帯機器や自動車用の電源、或いは家庭用の発電システムなど、ヒトと密接な環境下における電源などにも適する。   On the other hand, in the polymer electrolyte fuel cell of the present invention, a by-product decomposition catalyst is added to at least one of the catalyst layers of the anode and the cathode, and the generation of partial oxides can be remarkably suppressed. Don't give. Therefore, the polymer electrolyte fuel cell of the present invention is also suitable for a power source in an environment close to humans, such as a power source for portable devices and automobiles, or a power generation system for home use.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。なお、本発明の副生物分解触媒は、下記の触媒調製例に従って調製した。   The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention. The byproduct decomposition catalyst of the present invention was prepared according to the following catalyst preparation example.

触媒調製例1
45μm以下にメッシュを揃えた活性炭(半径が40Å以上100Å未満の細孔の容積:0.27ml/g)に、ジニトロジアンミン白金と硝酸ルテニウムとの混合水溶液を含浸させた。次に、窒素雰囲気下90℃で乾燥した後、水素ガスを用いて300℃にて2時間還元処理を行って触媒Aを得た。この触媒Aにおける白金およびルテニウムの担持量は、それぞれ20質量%および10質量%であった。
Catalyst preparation example 1
Activated carbon having a mesh of 45 μm or less (volume of pores having a radius of 40 to 100 μm: 0.27 ml / g) was impregnated with a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate. Next, after drying at 90 ° C. in a nitrogen atmosphere, reduction treatment was performed at 300 ° C. for 2 hours using hydrogen gas to obtain Catalyst A. The supported amounts of platinum and ruthenium in the catalyst A were 20% by mass and 10% by mass, respectively.

触媒調製例2
45μm以下にメッシュを揃えた活性炭(半径が40Å以上100Å未満の細孔の容積:0.12ml/g)に、ジニトロジアンミン白金と硝酸ルテニウムとの混合水溶液を含浸させた。次に、窒素雰囲気下90℃で乾燥した後、水素ガスを用いて300℃にて2時間還元処理を行って触媒Bを得た。この触媒Bにおける白金およびルテニウムの担持量は、それぞれ20質量%および10質量%であった。
Catalyst preparation example 2
Activated carbon having a mesh of 45 μm or less (volume of pores having a radius of 40 to 100 μm: 0.12 ml / g) was impregnated with a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate. Next, after drying at 90 ° C. in a nitrogen atmosphere, reduction treatment was performed at 300 ° C. for 2 hours using hydrogen gas to obtain Catalyst B. The supported amounts of platinum and ruthenium in the catalyst B were 20% by mass and 10% by mass, respectively.

触媒調製例3
45μm以下にメッシュを揃えた活性炭(半径が40Å以上100Å未満の細孔の容積:0.06ml/g)に、ジニトロジアンミン白金と硝酸ルテニウムとの混合水溶液を含浸させた。次に、窒素雰囲気下90℃で乾燥した後、水素ガスを用いて300℃にて2時間還元処理を行って触媒Cを得た。この触媒Cにおける白金およびルテニウムの担持量は、それぞれ20質量%および10質量%であった。
Catalyst preparation example 3
Activated carbon having a mesh of 45 μm or less (volume of pores having a radius of 40 to 100 μm: 0.06 ml / g) was impregnated with a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate. Next, after drying at 90 ° C. in a nitrogen atmosphere, reduction treatment was performed at 300 ° C. for 2 hours using hydrogen gas to obtain Catalyst C. The supported amounts of platinum and ruthenium in the catalyst C were 20% by mass and 10% by mass, respectively.

触媒調製例4
45μm以下にメッシュを揃えた活性炭(半径が40Å以上100Å未満の細孔の容積:0.03ml/g)に、ジニトロジアンミン白金と硝酸ルテニウムとの混合水溶液を含浸させた。次に、窒素雰囲気下90℃で乾燥した後、水素ガスを用いて300℃にて2時間還元処理を行って触媒Dを得た。この触媒Dにおける白金およびルテニウムの担持量は、それぞれ20質量%および10質量%であった。
Catalyst preparation example 4
Activated carbon having a mesh of 45 μm or less (volume of pores having a radius of 40 to 100 μm: 0.03 ml / g) was impregnated with a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate. Next, after drying at 90 ° C. in a nitrogen atmosphere, a reduction treatment was performed using hydrogen gas at 300 ° C. for 2 hours to obtain Catalyst D. The supported amounts of platinum and ruthenium in the catalyst D were 20% by mass and 10% by mass, respectively.

触媒調製例5
45μm以下にメッシュを揃えた活性炭(半径が40Å以上100Å未満の細孔の容積:0.12ml/g)に、硝酸パラジウムとジニトロジアンミン白金との混合水溶液を含浸させた。次に、窒素雰囲気下90℃で乾燥した後、水素ガスを用いて300℃にて2時間還元処理を行って触媒Eを得た。この触媒Eにおけるパラジウムおよび白金の担持量は、それぞれ15質量%および15質量%であった。
Catalyst preparation example 5
Activated carbon having a mesh of 45 μm or less (volume of pores having a radius of 40 to 100 μm: 0.12 ml / g) was impregnated with a mixed aqueous solution of palladium nitrate and dinitrodiammine platinum. Next, after drying at 90 ° C. in a nitrogen atmosphere, reduction treatment was performed using hydrogen gas at 300 ° C. for 2 hours to obtain Catalyst E. The supported amounts of palladium and platinum in the catalyst E were 15% by mass and 15% by mass, respectively.

実施例1
触媒A、E−TEK製の白金−ルテニウム担持カーボンブラック(白金担持量:20質量%、ルテニウム担持量:10質量%、担体のカーボンブラックはCabot社製のバルカンXC−72)、5%ナフィオン溶液(アルドリッチ社製)、水およびイソプロピルアルコールを質量比で1:1:40:20:14にて混合し、均一に分散させて、触媒含有ペーストを調製した。これをカーボンペーパー(東レ社製)上に、白金−ルテニウムの合計担持量が1mg/cm2となるよう均一に塗布した後、15時間乾燥してアノードとした。また、E−TEK製の白金担持カーボンブラック(白金担持量:60質量%、担体のカーボンブラックはCabot社製のバルカンXC−72)、5%ナフィオン溶液(アルドリッチ社製)、水および10%ポリテトラフルオロエチレン溶液を質量比で1:20:10:5にて混合し、均一に分散させて、触媒含有ペーストを調製した。これをカーボンペーパー(東レ社製)上に、白金担持量が1mg/cm2となるように均一に塗布した後、15時間乾燥させてカソードとした。
Example 1
Catalyst A, platinum-ruthenium-supported carbon black made by E-TEK (platinum-supported amount: 20% by mass, ruthenium-supported amount: 10% by mass, carrier carbon black is Vulcan XC-72 manufactured by Cabot), 5% Nafion solution (Aldrich), water and isopropyl alcohol were mixed at a mass ratio of 1: 1: 40: 20: 14 and uniformly dispersed to prepare a catalyst-containing paste. This was uniformly coated on carbon paper (Toray Industries, Inc.) so that the total supported amount of platinum-ruthenium was 1 mg / cm 2, and then dried for 15 hours to obtain an anode. In addition, platinum-supported carbon black manufactured by E-TEK (platinum supported amount: 60% by mass, carbon black of the carrier is Vulcan XC-72 manufactured by Cabot), 5% Nafion solution (manufactured by Aldrich), water, and 10% poly A tetrafluoroethylene solution was mixed at a mass ratio of 1: 20: 10: 5 and dispersed uniformly to prepare a catalyst-containing paste. This was applied onto carbon paper (manufactured by Toray Industries, Inc.) uniformly so that the amount of platinum supported was 1 mg / cm 2, and then dried for 15 hours to form a cathode.

このようにして得られたカソードとアノードの間に有効電極面積が25cm2となるようにナフィオン117膜(DuPont社製)を挟み、触媒が塗布された面がナフィオン膜に接するように重ね合わせた後、130℃、100kg/cm2の条件で5分間ホットプレスして、膜電極接合体を製造した。この膜電極接合体を実験用燃料電池セルに組み込み、アノードに1mol/Lのメタノール水溶液を6ml/minで、またカソードには空気を1L/minで供給し、セル温度90℃で発電試験を行った。発電試験中のアノードおよびカソードで副生する部分酸化物(ホルムアルデヒド、ギ酸メチル、ギ酸)の量を次のようにして測定した。すなわち、上記の条件下、300mA/cm2の定電流で2時間保持し、アノードおよびカソードで副生する部分酸化物をそれぞれドライアイス・メタノールトラップにより捕集し、捕集質量を秤量した後に定量分析に供した。ホルムアルデヒド、ギ酸メチルはガスクロマトグラフ、ギ酸は高速液体クロマトグラフにて定量分析した。結果を表1に示す。A Nafion 117 membrane (manufactured by DuPont) was sandwiched between the cathode and anode thus obtained so that the effective electrode area was 25 cm 2, and the surfaces coated with the catalyst were overlapped so as to be in contact with the Nafion membrane. Thereafter, hot pressing was performed for 5 minutes under the conditions of 130 ° C. and 100 kg / cm 2 to manufacture a membrane electrode assembly. This membrane / electrode assembly was incorporated into an experimental fuel cell, a 1 mol / L aqueous methanol solution was supplied to the anode at 6 ml / min, and air was supplied to the cathode at 1 L / min. It was. The amount of partial oxides (formaldehyde, methyl formate, formic acid) by-produced at the anode and cathode during the power generation test was measured as follows. That is, under the above conditions, a constant current of 300 mA / cm 2 is maintained for 2 hours, and partial oxides by-produced at the anode and the cathode are collected by a dry ice / methanol trap, and the collected mass is weighed and quantitatively determined. It was used for analysis. Formaldehyde and methyl formate were quantitatively analyzed by gas chromatograph, and formic acid was quantitatively analyzed by high performance liquid chromatograph. The results are shown in Table 1.

比較例1
E−TEK製の白金−ルテニウム担持カーボンブラック(白金担持量:20質量%、ルテニウム担持量:10質量%、担体のカーボンブラックはCabot社製のバルカンXC−72)、5%ナフィオン溶液(アルドリッチ社製)、水およびイソプロピルアルコールを質量比で1:20:10:7にて混合し、均一に分散して、触媒含有ペーストを調製した。これをカーボンペーパー(東レ社製)上に、白金−ルテニウムの合計担持量が1mg/cm2となるよう均一に塗布した後、15時間乾燥させてアノードとした以外は実施例1と同様にして膜電極接合体を製造した。この膜電極接合体を用い、実施例1と同様にして、発電試験を行い副生する部分酸化物の定量分析を行った。結果を表1に示す。
Comparative Example 1
Platinum-ruthenium-supported carbon black made by E-TEK (platinum supported amount: 20% by mass, ruthenium supported amount: 10% by mass, carbon black of the carrier is Vulcan XC-72 manufactured by Cabot), 5% Nafion solution (Aldrich) Product), water and isopropyl alcohol were mixed at a mass ratio of 1: 20: 10: 7 and dispersed uniformly to prepare a catalyst-containing paste. This was applied onto carbon paper (manufactured by Toray Industries, Inc.) uniformly so that the total supported amount of platinum-ruthenium was 1 mg / cm 2, and then dried for 15 hours to obtain an anode. A membrane electrode assembly was produced. Using this membrane / electrode assembly, a power generation test was conducted in the same manner as in Example 1 to quantitatively analyze the partial oxide produced as a by-product. The results are shown in Table 1.

実施例2
触媒Aに替えて触媒Bを用いた以外は、実施例1と同様にして膜電極接合体を製造し、この膜電極接合体を用いて発電試験を行い、副生する部分酸化物の定量分析を行った。結果を表1に示す。
Example 2
A membrane electrode assembly was produced in the same manner as in Example 1 except that the catalyst B was used instead of the catalyst A, a power generation test was performed using this membrane electrode assembly, and quantitative analysis of the partial oxide produced as a by-product Went. The results are shown in Table 1.

実施例3
触媒Aに替えて触媒Cを用いた以外は、実施例1と同様にして膜電極接合体を製造し、この膜電極接合体を用いて発電試験を行い、副生する部分酸化物の定量分析を行った。結果を表1に示す。
Example 3
A membrane electrode assembly was produced in the same manner as in Example 1 except that the catalyst C was used in place of the catalyst A, and a power generation test was performed using this membrane electrode assembly to quantitatively analyze the partial oxide produced as a by-product. Went. The results are shown in Table 1.

実施例4
触媒Aに替えて触媒Dを用いた以外は、実施例1と同様にして膜電極接合体を製造し、この膜電極接合体を用いて発電試験を行い、副生する部分酸化物の定量分析を行った。結果を表1に示す。
Example 4
A membrane electrode assembly was produced in the same manner as in Example 1 except that the catalyst D was used in place of the catalyst A, and a power generation test was performed using this membrane electrode assembly to quantitatively analyze the partial oxide produced as a by-product. Went. The results are shown in Table 1.

実施例5
E−TEK製の白金−ルテニウム担持カーボンブラック(白金担持量:20質量%、ルテニウム担持量:10質量%、担体のカーボンブラックはCabot社製のバルカンXC−72)、5%ナフィオン溶液(アルドリッチ社製)、水およびイソプロピルアルコールを質量比で1:20:10:7にて混合し、均一に分散させて、触媒含有ペーストを調製した。これをカーボンペーパー(東レ社製)上に、白金担持量が1mg/cm2となるよう均一に塗布した後、15時間乾燥してアノードとした。また、触媒E、E−TEK製の白金担持カーボンブラック(白金担持量:60質量%、担体のカーボンブラックはCabot社製のバルカンXC−72)、5%ナフィオン溶液(アルドリッチ社製)、水および10%ポリテトラフルオロエチレン溶液を質量比で1:1:40:20:10にて混合し、均一に分散させて、触媒含有ペーストを調製した。これをカーボンペーパー(東レ社製)上に、白金担持量が1mg/cm2となるよう均一に塗布した後、15時間乾燥してカソードとした。
Example 5
Platinum-ruthenium-supported carbon black made by E-TEK (platinum supported amount: 20% by mass, ruthenium supported amount: 10% by mass, carbon black of the carrier is Vulcan XC-72 manufactured by Cabot), 5% Nafion solution (Aldrich) Product), water and isopropyl alcohol were mixed at a mass ratio of 1: 20: 10: 7 and dispersed uniformly to prepare a catalyst-containing paste. This was uniformly coated on carbon paper (manufactured by Toray Industries Inc.) so that the amount of platinum supported was 1 mg / cm 2, and then dried for 15 hours to obtain an anode. Catalyst E, platinum-supported carbon black manufactured by E-TEK (platinum supported amount: 60 mass%, carbon black of the carrier is Vulcan XC-72 manufactured by Cabot), 5% Nafion solution (manufactured by Aldrich), water and A 10% polytetrafluoroethylene solution was mixed at a mass ratio of 1: 1: 40: 20: 10 and uniformly dispersed to prepare a catalyst-containing paste. This was uniformly coated on carbon paper (manufactured by Toray Industries Inc.) so that the amount of platinum supported was 1 mg / cm 2, and then dried for 15 hours to form a cathode.

このようにして得られたカソードとアノードとを用い、実施例1と同様にして膜電極接合体を製造し、この膜電極接合体を用いて発電試験を行い、副生する部分酸化物の定量分析を行った。結果を表1に示す。   Using the thus obtained cathode and anode, a membrane / electrode assembly was produced in the same manner as in Example 1, and a power generation test was performed using this membrane / electrode assembly to determine the by-product partial oxide. Analysis was carried out. The results are shown in Table 1.

実施例6
この実施例では、触媒層を図2に示すような2層構造とし、第二触媒層42を本発明の副生物分解触媒を用いて形成した。すなわち、E−TEK製の白金−ルテニウム担持カーボンブラック(白金担持量:20質量%、ルテニウム担持量:10質量%、担体のカーボンブラックはCabot社製のバルカンXC−72)、5%ナフィオン溶液(アルドリッチ社製)、水およびイソプロピルアルコールを質量比で1:20:10:7にて混合し、均一に分散させて、触媒含有ペーストを調製した。これをカーボンペーパー(東レ社製)上に、白金−ルテニウム合計担持量が0.5mg/cm2となるよう均一に塗布した後、15時間乾燥して第一触媒層41を作製した。次に、触媒D、カーボンブラック(Cabot社製、バルカンXC−72)、水およびイソプロピルアルコールを質量比で1:20:10:7で混合し、均一に分散させて触媒含有ペーストを調製した。これを第一触媒層の上に、白金−ルテニウム合計担持量が1mg/cm2となるよう均一に塗布した後、15時間乾燥して第二触媒層42を形成し、2層構造を有するアノードを作製した。以下、アノードを上記2層構造とした以外は実施例1と同様にして膜電極接合体を作製し、その発電試験を行った。結果を表1に示す。
Example 6
In this embodiment, the catalyst layer has a two-layer structure as shown in FIG. 2, and the second catalyst layer 42 is formed using the byproduct decomposition catalyst of the present invention. That is, platinum-ruthenium-supported carbon black manufactured by E-TEK (platinum supported amount: 20% by mass, ruthenium supported amount: 10% by mass, carbon black of the carrier is Vulcan XC-72 manufactured by Cabot), 5% Nafion solution ( Aldrich), water and isopropyl alcohol were mixed at a mass ratio of 1: 20: 10: 7 and uniformly dispersed to prepare a catalyst-containing paste. This was uniformly coated on carbon paper (manufactured by Toray Industries Inc.) so that the total supported amount of platinum-ruthenium was 0.5 mg / cm 2, and then dried for 15 hours to produce the first catalyst layer 41. Next, catalyst D, carbon black (manufactured by Cabot, Vulcan XC-72), water and isopropyl alcohol were mixed at a mass ratio of 1: 20: 10: 7 and dispersed uniformly to prepare a catalyst-containing paste. This was uniformly coated on the first catalyst layer so that the total supported amount of platinum-ruthenium was 1 mg / cm 2, and then dried for 15 hours to form the second catalyst layer 42, whereby an anode having a two-layer structure Was made. Thereafter, a membrane / electrode assembly was produced in the same manner as in Example 1 except that the anode had the above two-layer structure, and the power generation test was performed. The results are shown in Table 1.

実施例7
触媒Dに替えて触媒Bを用いた以外は、実施例6と同様にして膜電極接合体を製造し、この膜電極接合体を用いて発電試験を行い、副生する部分酸化物の定量分析を行った。結果を表1に示す。
Example 7
A membrane / electrode assembly was produced in the same manner as in Example 6 except that catalyst B was used in place of catalyst D. A power generation test was performed using this membrane / electrode assembly, and quantitative analysis of by-product partial oxides was performed. Went. The results are shown in Table 1.

Figure 2006070635
Figure 2006070635

実施例1と比較例1とを比較すると、従来の膜電極接合体である比較例1では、発電実験においてアノード側にメタノールの部分酸化物であるホルムアルデヒド等が発生している。また、カソード側でもホルムアルデヒド等が生じているが、これは、おそらく燃料極で副生したメタノールの部分酸化物が高分子電解質膜を透過したものであるか、或いはメタノールが高分子電解質膜を透過しカソード側で部分酸化されたものと考えられる。一方、副生物分解触媒をアノードに添加した実施例1では、アノード側で発生するホルムアルデヒド等を顕著に低減しており、また、カソード側での副生物を検出限界以下に抑制している。よって、本発明の副生物分解触媒を触媒層に含む膜電極接合体を用いると、部分酸化物の副生を効果的に抑制できることが分かった。   Comparing Example 1 and Comparative Example 1, in Comparative Example 1, which is a conventional membrane electrode assembly, formaldehyde, which is a partial oxide of methanol, is generated on the anode side in a power generation experiment. Formaldehyde and the like are also generated on the cathode side. This is probably due to methanol partial oxide by-produced at the fuel electrode permeating the polymer electrolyte membrane or methanol permeating the polymer electrolyte membrane. However, it is thought that it was partially oxidized on the cathode side. On the other hand, in Example 1 in which a by-product decomposition catalyst was added to the anode, formaldehyde generated on the anode side was remarkably reduced, and the by-product on the cathode side was suppressed below the detection limit. Therefore, it has been found that by using a membrane electrode assembly containing the by-product decomposition catalyst of the present invention in the catalyst layer, the by-product of partial oxide can be effectively suppressed.

実施例1〜3の結果によれば、本発明の副生物分解触媒において、活性炭の半径40Å以上100Å未満の細孔容積が0.05ml/g以上であれば、より優れた副生物の発生抑制作用が得られ、当該細孔容積が大きい程その効果は高いことが明らかになった。   According to the results of Examples 1 to 3, in the by-product decomposition catalyst of the present invention, when the pore volume of the activated carbon having a radius of 40 mm or more and less than 100 mm is 0.05 ml / g or more, better generation of by-products is suppressed. It was clarified that the effect was higher as the pore volume was larger.

実施例5の結果の通り、本発明の副生物分解触媒をカソードの触媒層に添加した場合には、アノード側におけるホルムアルデヒド等の発生は抑制できないが、燃料極で副生したメタノールの部分酸化物が高分子電解質膜を透過したもの、或いは高分子電解質膜を透過したメタノールが部分酸化されたものと考えられるカソード側でのホルムアルデヒド等の発生を抑制できた。   As a result of Example 5, when the by-product decomposition catalyst of the present invention was added to the catalyst layer of the cathode, the generation of formaldehyde and the like on the anode side could not be suppressed, but the partial oxide of methanol by-produced at the fuel electrode Was able to suppress the generation of formaldehyde and the like on the cathode side, which was thought to have been permeated through the polymer electrolyte membrane, or methanol partially permeated through the polymer electrolyte membrane.

実施例4の結果によれば、半径40Å以上100Å未満の細孔容積が0.05ml/gより低い(0.03ml/g)活性炭を、アノードにおいて副生物分解触媒の材料として用いた場合でも、ホルムアルデヒド等の発生を抑制できた。しかしその効果は、当該細孔容積を0.05ml/gとして実施例1〜3に比べれば、低いものであった。   According to the results of Example 4, even when activated carbon having a pore volume with a radius of 40 mm or more and less than 100 mm is lower than 0.05 ml / g (0.03 ml / g) as a by-product decomposition catalyst material at the anode, Generation of formaldehyde and the like could be suppressed. However, the effect was low as compared with Examples 1 to 3 where the pore volume was 0.05 ml / g.

そこで実施例6として、触媒層を図2に示すような第一触媒層と第二触媒層とからなる2層構造とし、第二触媒層を本発明の副生物分解触媒で形成した膜電極接合体を用いたところ、上記細孔容積が0.05ml/g未満の活性炭を用いた場合でも、ホルムアルデヒド等の発生を顕著に抑制することができた。この結果は、この様な二層構造が優れた効果を示すことを実証するものである。   Therefore, as Example 6, a membrane electrode joint in which the catalyst layer has a two-layer structure including a first catalyst layer and a second catalyst layer as shown in FIG. 2, and the second catalyst layer is formed by the byproduct decomposition catalyst of the present invention. When the body was used, even when activated carbon having a pore volume of less than 0.05 ml / g was used, generation of formaldehyde and the like could be remarkably suppressed. This result demonstrates that such a two-layer structure exhibits an excellent effect.

また、実施例7の結果の通り、上記細孔容積が0.05ml/g以上である活性炭を用いた場合、触媒層を2層構造とすれば、より一層優れた効果が得られる。   Moreover, as the result of Example 7, when the activated carbon having a pore volume of 0.05 ml / g or more is used, a more excellent effect can be obtained if the catalyst layer has a two-layer structure.

Claims (6)

高分子電解質膜と、その各面にそれぞれアノードおよびカソードを有する固体高分子型燃料電池用膜電極接合体であって、
アノードとカソードは、それぞれ高分子電解質に接する側に触媒層を有し、
アノードおよびカソードの少なくとも一方の触媒層が、カーボンブラックに金属成分が担持された電極触媒に加え、活性炭を構成成分とする副生物分解触媒を含有することを特徴とする固体高分子型燃料電池用膜電極接合体。
A membrane electrode assembly for a polymer electrolyte fuel cell having a polymer electrolyte membrane and an anode and a cathode on each side thereof,
The anode and the cathode each have a catalyst layer on the side in contact with the polymer electrolyte,
For a polymer electrolyte fuel cell, wherein the catalyst layer of at least one of an anode and a cathode contains a by-product decomposition catalyst having activated carbon as a constituent component in addition to an electrode catalyst in which a metal component is supported on carbon black Membrane electrode assembly.
活性炭における半径40Å以上100Å未満の細孔容積が0.05ml/g以上である請求項1に記載の固体高分子型燃料電池用膜電極接合体。   2. The membrane electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the pore volume of the activated carbon having a radius of 40 mm or more and less than 100 mm is 0.05 ml / g or more. 活性炭における半径40Å以上100Å未満の細孔容積が0.2ml/g以上である請求項1に記載の固体高分子型燃料電池用膜電極接合体。   2. The membrane electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the pore volume of the activated carbon having a radius of 40 mm or more and less than 100 mm is 0.2 ml / g or more. 副生物分解触媒を含有する触媒層が、電極触媒を有する第一触媒層と、副生物分解触媒を有する第二触媒層に分割されており、第一触媒層が高分子電解質膜と第二触媒層との間に配置されているものである請求項1〜3のいずれかに記載の固体高分子型燃料電池用膜電極接合体。   The catalyst layer containing a by-product decomposition catalyst is divided into a first catalyst layer having an electrode catalyst and a second catalyst layer having a by-product decomposition catalyst, and the first catalyst layer is a polymer electrolyte membrane and a second catalyst. The membrane electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the membrane electrode assembly is disposed between the layers. 副生物分解触媒が、白金、ルテニウム、パラジウム、イリジウム、ロジウム、オスミウム、金および銀から選ばれる少なくとも1つの元素を活性炭に担持したものである請求項1〜4のいずれかに記載の固体高分子型燃料電池用膜電極接合体。   The solid polymer according to any one of claims 1 to 4, wherein the by-product decomposition catalyst is obtained by supporting at least one element selected from platinum, ruthenium, palladium, iridium, rhodium, osmium, gold and silver on activated carbon. Type membrane electrode assembly for fuel cell. 請求項1〜5のいずれかに記載の固体高分子型燃料電池用膜電極接合体を含む固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the membrane electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 5.
JP2006520467A 2004-12-27 2005-12-19 Membrane electrode assembly for polymer electrolyte fuel cell Pending JPWO2006070635A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004376953 2004-12-27
JP2004376953 2004-12-27
PCT/JP2005/023289 WO2006070635A1 (en) 2004-12-27 2005-12-19 Membrane electrode assembly for solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JPWO2006070635A1 true JPWO2006070635A1 (en) 2008-06-12

Family

ID=36614754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006520467A Pending JPWO2006070635A1 (en) 2004-12-27 2005-12-19 Membrane electrode assembly for polymer electrolyte fuel cell

Country Status (3)

Country Link
JP (1) JPWO2006070635A1 (en)
TW (1) TW200635116A (en)
WO (1) WO2006070635A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041498A (en) * 2006-08-08 2008-02-21 Sharp Corp Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP5087992B2 (en) * 2007-05-21 2012-12-05 トヨタ自動車株式会社 Fuel cell
WO2008153152A1 (en) * 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly, and membrane-electrode-(gas diffusion layer) assembly and solid polymer fuel cell each comprising the same
CN105142778B (en) * 2013-04-25 2017-11-10 日产自动车株式会社 Catalyst and electrode catalyst layer, membrane-electrode assembly and the fuel cell using the catalyst
WO2014175101A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Method for producing catalyst, electrode catalyst layer using said catalyst, membrane-electrode assembly, and fuel cell
JP6800608B2 (en) * 2016-05-17 2020-12-16 日清紡ホールディングス株式会社 Battery electrode, composition for battery electrode catalyst layer and battery
CN112952124B (en) * 2021-02-25 2022-10-14 中国科学院重庆绿色智能技术研究院 Microbial fuel cell anode based on multi-particle-size carbon material, preparation method thereof and microbial fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086193A (en) * 2001-09-13 2003-03-20 Tokuyama Corp Method of manufacturing gas diffusion electrode
JP2004214165A (en) * 2002-12-30 2004-07-29 Samsung Sdi Co Ltd Method of manufacturing electrode for fuel cell
JP2005135671A (en) * 2003-10-29 2005-05-26 Nissan Motor Co Ltd Electrode for fuel cell
JP2005339962A (en) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd Polymer membrane electrode jointed body, polymer electrolyte fuel cell and manufacturing method for polymer membrane electrode jointed body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008678A (en) * 2000-06-16 2002-01-11 Asahi Glass Co Ltd Solid polymer type fuel cell
JP4204272B2 (en) * 2002-08-02 2009-01-07 トヨタ自動車株式会社 Fuel cell electrode catalyst and fuel cell
JP4472943B2 (en) * 2003-05-16 2010-06-02 株式会社キャタラー Membrane electrode assembly
JP2005174836A (en) * 2003-12-12 2005-06-30 Nissan Motor Co Ltd Solid polymer fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086193A (en) * 2001-09-13 2003-03-20 Tokuyama Corp Method of manufacturing gas diffusion electrode
JP2004214165A (en) * 2002-12-30 2004-07-29 Samsung Sdi Co Ltd Method of manufacturing electrode for fuel cell
JP2005135671A (en) * 2003-10-29 2005-05-26 Nissan Motor Co Ltd Electrode for fuel cell
JP2005339962A (en) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd Polymer membrane electrode jointed body, polymer electrolyte fuel cell and manufacturing method for polymer membrane electrode jointed body

Also Published As

Publication number Publication date
WO2006070635A1 (en) 2006-07-06
TW200635116A (en) 2006-10-01

Similar Documents

Publication Publication Date Title
JP6387431B2 (en) Carbon supported catalyst
JP5425771B2 (en) catalyst
JP5556434B2 (en) Gas diffusion electrode and method for producing the same, membrane electrode assembly and method for producing the same
KR102189120B1 (en) Use of an anode catalyst layer
CA2910375A1 (en) Catalyst and electrode catalyst layer for fuel cell having the catalyst
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
KR20210006991A (en) Electrode catalyst, gas diffusion electrode formation composition, gas diffusion electrode, membrane-electrode assembly, and fuel cell stack
JPWO2006070635A1 (en) Membrane electrode assembly for polymer electrolyte fuel cell
JP2009026501A (en) Electrolyte membrane-electrode assembly
US20090068546A1 (en) Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
JP2010146770A (en) Anode catalyst layer of solid polymer fuel cell
JP2008077974A (en) Electrode
JP5432443B2 (en) Membrane electrode assembly and fuel cell
JP2005353408A (en) Fuel cell
JP5326585B2 (en) Method for producing metal catalyst-supported carbon powder
JP2003317737A (en) Fuel cell, catalyst electrode using it and solid electrolyte film
JP2007027064A (en) Catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell equipped with the same
JP2007242423A (en) Membrane-electrode assembly, and solid polymer fuel cell using this
JP2008140703A (en) Composition material for battery, and film containing the same
JP2009531810A (en) Fuel cell electrode catalyst with reduced amount of noble metal and solid polymer fuel cell having the same
JP2005141966A (en) Catalyst-carrying electrode, mea for fuel cell, and the fuel cell
JP2007250214A (en) Electrode catalyst and its manufacturing method
JP2005141920A (en) Catalyst carrying electrode
JP2008004402A (en) Anode for direct methanol fuel cell, and direct methanol fuel cell using it
WO2018069979A1 (en) Catalyst layer production method, catalyst layer, catalyst precursor, and catalyst precursor production method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726