WO2006070635A1 - Membrane electrode assembly for solid polymer fuel cell - Google Patents

Membrane electrode assembly for solid polymer fuel cell Download PDF

Info

Publication number
WO2006070635A1
WO2006070635A1 PCT/JP2005/023289 JP2005023289W WO2006070635A1 WO 2006070635 A1 WO2006070635 A1 WO 2006070635A1 JP 2005023289 W JP2005023289 W JP 2005023289W WO 2006070635 A1 WO2006070635 A1 WO 2006070635A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
polymer electrolyte
electrode assembly
fuel cell
membrane electrode
Prior art date
Application number
PCT/JP2005/023289
Other languages
French (fr)
Japanese (ja)
Inventor
Junji Okamura
Takaaki Hashimoto
Kuninori Miyazaki
Noboru Sugishima
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Priority to JP2006520467A priority Critical patent/JPWO2006070635A1/en
Publication of WO2006070635A1 publication Critical patent/WO2006070635A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a membrane electrode assembly for a polymer electrolyte fuel cell, and a polymer electrolyte fuel cell using the membrane electrode assembly.
  • protons generated from fuel in an anode are oxidized with an oxidant in a power sword and power is generated.
  • Alcohols and the like are used as this fuel, but the alcohol as a fuel is partially oxidized during power generation, and aldehydes and carboxylic acids are by-produced.
  • formaldehyde, formic acid, methyl formate, and the like are by-produced in addition to carbon dioxide and carbon dioxide mainly at the anode.
  • formaldehyde is a harmful chemical substance that causes sick house syndrome, and it is desirable that the generation of these by-products during power generation be suppressed as much as possible.
  • the actual situation is that most of these efforts to control harmful by-products have been made.
  • Japanese Patent Application Laid-Open No. 2003-123777 discloses a polymer electrolyte fuel cell in which a peroxide decomposition catalyst is added to a catalyst layer.
  • the peroxidic acid decomposition catalyst in this technology is a catalyst in which ruthenium or the like is supported on carbon black, zircoure or the like, and the catalyst used in the examples is only a catalyst in which metal is supported on carbon black.
  • a catalyst for an electrode of a polymer electrolyte fuel cell is generally one in which platinum or platinum-ruthenium is supported on carbon black. Therefore, the peroxide decomposition catalyst in the above publication cannot be completely distinguished from the conventional electrode catalyst.
  • a catalyst in which a metal is supported on carbon black suppresses the generation of harmful by-products in which the fuel is partially oxidized as compared with a solid polymer fuel cell. I can not do such a thing.
  • an object of the present invention is to formaldehyde, which is a partial oxide by-produced during the electrochemical oxidation of a liquid fuel, in a solid polymer fuel cell using a liquid fuel such as methanol. It is an object to provide a membrane electrode assembly (MEA) for polymer electrolyte fuel cells that can suppress the generation of harmful substances such as, and a fuel cell using the MEA.
  • MEA membrane electrode assembly
  • the inventors of the present invention have made extensive studies on a catalyst capable of efficiently decomposing harmful by-products during power generation in a polymer electrolyte fuel cell that solves the above problems. As a result, the present invention was completed by finding that a catalyst comprising activated carbon as a component is extremely excellent in such characteristics.
  • the membrane electrode assembly for a polymer electrolyte fuel cell of the present invention has a polymer electrolyte membrane, and an anode and a force sword on each side thereof,
  • the anode and force sword each have a catalyst layer on the side in contact with the polymer electrolyte, and at least one of the anode and force sword catalyst layers is added to an electrode catalyst in which a metal component is supported on carbon black, and activated carbon is a constituent component. It contains a by-product decomposition catalyst.
  • the polymer electrolyte fuel cell of the present invention includes the membrane electrode assembly for a polymer electrolyte fuel cell.
  • membrane electrode assembly for a polymer electrolyte fuel cell of the present invention (hereinafter sometimes simply referred to as “membrane electrode assembly”), the partial acid concentration during the electrochemical oxidation of the liquid fuel is determined. Since the by-product of soot is suppressed, environmental problems caused by harmful substances are eliminated. Therefore, the membrane electrode assembly of the present invention and the polymer electrolyte fuel cell using the same are very industrially regarded as being usable for power generation systems for home use and business use, as well as power supplies for portable devices and automobiles. Useful.
  • FIG. 1 is a schematic diagram showing a configuration of a membrane electrode assembly of the present invention.
  • FIG. 2 is a schematic view showing another configuration of the membrane / electrode assembly of the present invention.
  • the membrane electrode assembly for a polymer electrolyte fuel cell of the present invention comprises:
  • the polymer electrolyte membrane has an anode and a force sword on each side thereof, and the anode and the force sword each have a catalyst layer on the side in contact with the polymer electrolyte, and at least one catalyst layer of the anode and the force sword has
  • the electrode catalyst having a metal component supported on carbon black it contains a by-product decomposition catalyst containing activated carbon as a constituent.
  • the membrane / electrode assembly of the present invention has at least a polymer electrolyte membrane 1 and an anode 2 and a force sword 3 on each side thereof, and each of the anode 2 and the force sword 3 is a polymer.
  • the catalyst layers 4 and 5 and the gas diffusion layer are provided on the side in contact with the electrolyte membrane 1.
  • the polymer electrolyte membrane can be a fluorocoagulant ion exchange membrane such as a perfluorosulfonic acid ion exchange membrane (trade name “Nafion (registered trademark)”).
  • the gas diffusion layer carbon paper or carbon cloth having a thickness of about 100 to 300 ⁇ m can be used as having excellent gas permeability and conductivity.
  • the catalyst layer is conventionally composed of an electrode catalyst, and a force obtained by uniformly mixing a polymer electrolyte, a water repellent material, or the like as required.
  • a catalyst layer of an anode and a force sword Further, a by-product decomposition catalyst is added.
  • a by-product decomposition catalyst since harmful by-products are mainly generated at the anode, it is preferable to add a by-product decomposition catalyst to at least the catalyst layer of the anode.
  • the anode electrode catalyst is generally a catalyst in which a metal or alloy such as platinum, ruthenium, palladium, molybdenum, tungsten, tin, iridium, or rhodium is supported on carbon black.
  • a catalyst in which platinum or the like is supported on carbon black is generally used.
  • carbon nano tube or carbon nano horn or the like carrying the above metal component may be added.
  • carbon black refers to gas phase pyrolysis or incomplete combustion of hydrocarbon gas or the like.
  • the fine powder is spherical or chain-like carbon.
  • the crystallite consists of an assembly called a network plane consisting of about 30 to 40 carbon 6-membered rings, and this network plane is stacked almost evenly by 3-5 layers by van der Waals force. is there. 1000 to 2000 crystallites aggregate to form primary particles, and about 2 to 200 primary particles are chemically and physically bonded to each other to form a clustered structure (structure). From such a form, the pores of carbon black are formed as voids between primary particles.
  • the size of primary particles of carbon black is usually about 10 to 200 nm in diameter.
  • the polymer electrolyte, anode and force sword of the present invention include such membrane electrode assemblies and fuel cells that may have general components of solid polymer fuel cells. It is included in the scope of the present invention.
  • the “by-product decomposition catalyst” of the present invention means a catalyst capable of decomposing a partial oxide by-produced during the electrochemical oxidation of a liquid fuel.
  • partial oxide by-produced during electrochemical oxidation of liquid fuel means, for example, that of a polymer electrolyte fuel cell Reaction that takes place on the anode side (anode reaction) (for example, when methanol is used as the liquid fuel, it is expressed as CH OH + HO ⁇ 6H + + 6e— + CO
  • 3 2 2 reaction means a partial acid product formed as a by-product on the anode side, and specific examples include aldehydes such as formaldehyde and carboxylic acids.
  • aldehydes such as formaldehyde and carboxylic acids.
  • partial oxides may be detected on the air electrode side. This is thought to be because the fuel permeates the polymer electrolyte membrane and is partially oxidized at the air electrode, or the partial oxide generated on the fuel electrode side permeates the polymer electrolyte membrane.
  • Bossy-product decomposition catalyst includes at least activated carbon as a constituent component. According to the knowledge of the present inventors, harmful partial acid oxides can be remarkably suppressed by adding activated carbon as a by-product decomposition catalyst in addition to the electrode catalyst.
  • the by-product decomposition catalyst is preferably one in which a metal component capable of decomposing a partial oxide is supported on activated carbon.
  • Activated carbon is produced by performing an activation treatment after charcoal or the like is sufficiently carbonized.
  • the crystallite has a network plane in which carbons are bonded at an angle of 120 ° as a basic skeleton, and the network plane is irregularly laminated (L layer structure). This crystallite is randomly bonded This is activated carbon, and the pores of the activated carbon are formed as voids between crystallites. Therefore, the surface area of the activated carbon is very large relative to the outer surface of the particles.
  • activated carbon does not have an agglomerated form in which primary particles with a diameter of about 10 to 200 nm are bound in a tuft shape like carbon black.
  • the particle size of the activated carbon is determined by the degree of pulverization with a pulverizer such as a rod mill, ball mill, jet mill or the like, and the particle size is usually larger than that of carbon black.
  • a pulverizer such as a rod mill, ball mill, jet mill or the like
  • the particle size is usually larger than that of carbon black.
  • the activated carbon material used in the present application one having a diameter of 1 to 50 m is suitable.
  • carbon black and activated carbon are significantly different in structure and form.
  • the metal component of the byproduct decomposition catalyst is selected from, for example, platinum, ruthenium, palladium, iridium, rhodium, osmium, gold and silver power, in particular, white gold, ruthenium and palladium carbonate. A combination of two or more of these is preferred.
  • the form of these metal components is not particularly limited, and any of metal, oxide, hydroxide, alloy and the like may be used.
  • the metal component may be supported on the activated carbon by a catalytic amount.
  • the supported amount is usually 1 to 60% by mass, preferably 10 to 30% by mass. There is no particular limitation on the method for supporting the metal component, and a general method for preparing a supported catalyst can be used.
  • Activated carbon used as a by-product decomposition catalyst is preferably one having a pore volume with a radius of 40 A or more and less than 100 A (hereinafter sometimes simply referred to as “pore volume”) of 0.05 mlZg or more. Is. This is because the activated carbon is particularly excellent in the partial oxide decomposition effect. More preferred is 0.1 mlZg or more, and more preferred is 0.2 mlZg or more. However, if the pore volume is excessively large, the bulk specific gravity of the by-product decomposition catalyst is reduced, and as a result, the thickness of the catalyst layer may be increased and the power generation performance may be reduced. Therefore, it is preferably 0.5 mlZg or less, more preferably 0.4ml or less.
  • the pore volume of the activated carbon is measured by a nitrogen adsorption method (77K, 10.5 Torr or less) using, for example, a fully automatic gas adsorption device (such as "omni soap 360CX” manufactured by Beckman Coulter, Inc.), and the obtained adsorption Isothermal force Calculate pore volume by BJH method.
  • a nitrogen adsorption method 77K, 10.5 Torr or less
  • a fully automatic gas adsorption device such as "omni soap 360CX” manufactured by Beckman Coulter, Inc.
  • Activated carbon with a pore volume of 0.05mlZg or more carbonizes activated carbon raw materials such as wood powder and coconut shells. It can be easily obtained by controlling the pore structure by appropriately combining the heat treatment conditions and the activation treatment.
  • the powerful activation treatment include a chemical activation method using a zinc chloride solution and a phosphoric acid solution, and a gas activation method using water vapor.
  • the activated carbon material having a pore volume of 0.05 mlZg or more can be obtained by subjecting the activated carbon having a pore volume of less than 0.05 mlZg to the above activation treatment to control its pore structure.
  • the ratio of the electrode catalyst to the byproduct decomposition catalyst is not particularly limited, but the mass ratio of the electrode catalyst to the byproduct decomposition catalyst is in the range of 1: 0.2 to 2, preferably 1: 0.5 to 1. It is better to be 5.
  • a necessary amount of a conductive material such as carbon black is preferably blended.
  • the catalyst layer in the membrane electrode assembly is divided into a first catalyst layer having an electrode catalyst and a second catalyst layer having a byproduct decomposition catalyst, and the first catalyst layer is divided into a polymer electrolyte membrane and a second catalyst. It is also a preferred aspect of the present invention to be arranged between the layers. This is because the reduction effect of by-products can be further enhanced by making the catalyst layer in such a configuration.
  • FIG. 2 is a diagram schematically showing the two-layer structure.
  • 1, 2, 3 and 5 have the same meaning as in FIG. 1, but the catalyst layer in the anode 2 is divided into the first catalyst layer 41 in contact with the polymer electrolyte membrane 1 and the second catalyst.
  • the second catalyst layer 42 is provided in contact with the layer 41.
  • the first catalyst layer 41 includes an anode electrocatalyst
  • the second catalyst layer 42 includes the byproduct decomposition catalyst of the present invention.
  • the thickness ratio between the first catalyst layer 41 and the second catalyst layer 42 is not particularly limited, but the ratio between the electrode catalyst and the byproduct decomposition catalyst (electrode catalyst: byproduct decomposition catalyst (mass) The ratio)) is preferably 1: 0.2 to 2, preferably 1: 0.5 to 1.5.
  • the two-layer structure of the catalyst layer is not limited to the anode catalyst layer described above, and can be applied to a force sword catalyst layer. It is preferable to do.
  • the membrane electrode assembly of the present invention can be produced according to a conventional method.
  • anode and power sword electrocatalysts and byproduct decomposition catalysts, and water and isopropyl alcohol.
  • An electrode anode and force sword
  • An electrode can be formed by uniformly mixing any organic solvent to prepare a paste, applying the paste to a gas diffusion layer such as carbon paper, and drying.
  • general components used for forming electrodes of polymer electrolyte fuel cells such as polymer electrolytes, conductive materials, water repellent materials, and binders, are selected and used as necessary. be able to.
  • the electrode of the membrane electrode assembly of the present invention can be formed according to a conventional method using a mixture containing any electrode catalyst and the byproduct decomposition catalyst of the present invention.
  • the mixing ratio of each component can be general and is not particularly limited.
  • the ratio of the electrocatalyst to the by-product decomposition catalyst is 1: 0.2 to 2, preferably 1: 0.0 by mass ratio. 5 to 1.5.
  • the electrode layer of the present invention has a two-layer structure as shown in FIG. 2, first, a paste containing an electrode catalyst is applied to the gas diffusion layer and dried, and then a by-product decomposition catalyst thereon. Apply a paste containing and dry it.
  • the obtained anode and force sword can be formed into a membrane electrode assembly by hot pressing with a polymer electrolyte membrane interposed therebetween. At this time, in each electrode, it is necessary to dispose the catalyst layer in contact with the polymer electrolyte membrane. Moreover, the pressure and temperature in the hot press may be in accordance with ordinary conditions.
  • the obtained membrane electrode can be made into a polymer electrolyte fuel cell according to a conventional method together with a separator and the like.
  • a polymer electrolyte fuel cell is a fuel that can be handled as a liquid at a general operating temperature (usually about room temperature to 100 ° C), such as oxygen-containing hydrocarbons such as methanol, ethanol, and dimethyl ether.
  • oxygen-containing hydrocarbons such as methanol, ethanol, and dimethyl ether.
  • these fuels are partially oxidized on the anode side, or aldehydes and carboxylic acids partially oxidized on the fuel force S sword side that have permeated the polymer electrolyte membrane are by-produced. There was a problem.
  • the polymer electrolyte fuel cell of the present invention a by-product decomposition catalyst is added to at least one of the catalyst layers of the anode and the power sword, and generation of partial oxides can be remarkably suppressed. Does not adversely affect the environment or humans. Therefore, the polymer electrolyte fuel cell of the present invention is also suitable for a power source in an environment close to humans, such as a power source for portable devices and automobiles, or a household power generation system.
  • a power source in an environment close to humans, such as a power source for portable devices and automobiles, or a household power generation system.
  • the present invention will be described more specifically with reference to the following examples illustrating advantageous embodiments of the present invention.
  • the by-product decomposition catalyst of the present invention was prepared according to the following catalyst preparation example.
  • a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate was impregnated in activated carbon (radius force 0 A or more and less than 100 A pore volume: 0.27 mlZg) with a mesh of 45 ⁇ m or less.
  • activated carbon radius force 0 A or more and less than 100 A pore volume: 0.27 mlZg
  • a reduction treatment was performed using hydrogen gas at 300 ° C. for 2 hours to obtain Catalyst A.
  • the supported amounts of platinum and ruthenium on catalyst A were 20% by mass and 10% by mass, respectively.
  • a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate was impregnated in activated carbon (radius force 0 A or more and less than 100 A pore volume: 0.12 mlZg) with a mesh of 45 ⁇ m or less.
  • activated carbon radius force 0 A or more and less than 100 A pore volume: 0.12 mlZg
  • reduction treatment was performed using hydrogen gas at 300 ° C. for 2 hours to obtain Catalyst B.
  • the supported amounts of platinum and ruthenium on catalyst B were 20% by mass and 10% by mass, respectively.
  • a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate was impregnated in activated carbon (radius force 0 A or more and less than 100 A pore volume: 0.06 mlZg) with a mesh of 45 ⁇ m or less.
  • activated carbon radius force 0 A or more and less than 100 A pore volume: 0.06 mlZg
  • a reduction treatment was performed using hydrogen gas at 300 ° C. for 2 hours to obtain Catalyst C.
  • the supported amounts of platinum and ruthenium on catalyst C were 20% by mass and 10% by mass, respectively.
  • Activated carbon with a mesh aligned to 45 ⁇ m or less (pore volume with a radial force of 0 A or more and less than 100 A: 0.12 mlZg) was impregnated with a mixed aqueous solution of palladium nitrate and dinitrodiammine platinum.
  • reduction treatment was performed at 300 ° C. for 2 hours using hydrogen gas to obtain Catalyst E.
  • the supported amounts of palladium and platinum on the catalyst E were 15% by mass and 15% by mass, respectively.
  • Catalyst A E-TEK made of platinum-one ruthenium carrying carbon black (platinum content: 20 mass 0/0, ruthenium amount: 10 mass 0/0, the carrier of the carbon black is manufactured by Cabot Corporation Barka down XC 72 ), 5% naphthion solution (manufactured by Aldrich), water and isopropyl alcohol were mixed at a mass ratio of 1: 1: 40: 20: 14 and uniformly dispersed to prepare a catalyst-containing paste. This was uniformly coated on carbon paper (made by Torayen earth) so that the total supported amount of platinum-ruthenium was 1 mg / cm 2, and then dried for 15 hours to form an anode.
  • E-TEK platinum-supported carbon black (platinum support amount: 60% by mass, carbon black of the carrier is Cabot Vulcan XC-72), 5% Nafion solution (Aldrich), water and 10% poly A tetrafluoroethylene solution was mixed at a mass ratio of 1: 20: 10: 5 and dispersed uniformly to prepare a catalyst-containing paste. This was uniformly applied onto carbon paper (manufactured by Toray Industries Inc.) so that the amount of platinum supported was lmgZcm 2, and then dried for 15 hours to form a force sword.
  • the amount of partial oxides (formaldehyde, methyl formate, formic acid) by-produced at the anode and the power sword was measured as follows. In other words, under the above conditions, a constant current of 300 mAZcm 2 was maintained for 2 hours, and the partial acid oxides produced as a by-product at the anode and the power sword were each dried ice The sample was collected by a wrap, and the collected mass was weighed and then subjected to quantitative analysis. Formaldehyde and methyl formate were quantitatively analyzed by gas chromatograph, and formic acid was quantitatively analyzed by high performance liquid chromatograph. The results are shown in Table 1.
  • a membrane / electrode assembly was produced in the same manner as in Example 1 except that catalyst B was used instead of catalyst A, and a power generation test was performed using this membrane / electrode assembly to determine the by-product partial oxide. Analysis was carried out. The results are shown in Table 1.
  • a membrane / electrode assembly was produced in the same manner as in Example 1 except that catalyst C was used instead of catalyst A, and a power generation test was performed using this membrane / electrode assembly to determine the by-product partial oxide. Analysis was carried out. The results are shown in Table 1.
  • a membrane / electrode assembly was produced in the same manner as in Example 1 except that Catalyst D was used instead of Catalyst A, and a power generation test was performed using this membrane / electrode assembly to determine the by-product partial oxide. Analysis was carried out. The results are shown in Table 1.
  • E-TEK platinum - ruthenium carbon black (amount of platinum supported: 20 wt%, Le Te - ⁇ arm supporting amount: 10 mass 0/0, the carrier of the carbon black manufactured by Cabot Corporation of Vulcan XC- 72), 5% naphthion solution (manufactured by Aldrich), water and isopropyl alcohol were mixed at a mass ratio of 1: 20: 10: 7 and uniformly dispersed to prepare a catalyst-containing paste. This was uniformly coated on carbon paper (made by Torayen earth) so that the amount of platinum supported was lmgZcm 2, and then dried for 15 hours to form an anode.
  • the catalyst E, E- TEK made of platinum responsible lifting carbon black (amount of platinum supported: 60 wt 0/0, Vulcan XC 72 carbon black from Cabot Corporation of carrier) (manufactured by Aldrich) 5% Nafuion solution Then, water and a 10% polytetrafluoroethylene solution were mixed at a mass ratio of 1: 1: 40: 20: 10 and dispersed uniformly to prepare a catalyst-containing paste. This was uniformly applied onto carbon paper (manufactured by Toray Industries, Inc.) so that the amount of platinum supported was lmgZcm 2, and then dried for 15 hours to form a force sword.
  • the catalyst layer had a two-layer structure as shown in FIG. 2, and the second catalyst layer 42 was formed using the byproduct decomposition catalyst of the present invention. That is, platinum-ruthenium-supported carbon black made by E-TEK (platinum supported amount: 20% by mass, ruthenium supported amount: 10% by mass, carbon black of the carrier is Vulcan XC-72 manufactured by Cabot), 5% naphthion solution (Aldrich), water and isopropyl alcohol were mixed at a mass ratio of 1: 20: 10: 7 and dispersed uniformly to prepare a catalyst-containing paste.
  • E-TEK platinum supported amount: 20% by mass
  • ruthenium supported amount 10% by mass
  • carbon black of the carrier is Vulcan XC-72 manufactured by Cabot
  • 5% naphthion solution Aldrich
  • water and isopropyl alcohol were mixed at a mass ratio of 1: 20: 10: 7 and dispersed uniformly to prepare a catalyst-containing paste.
  • Example 7 A membrane / electrode assembly was produced in the same manner as in Example 6 except that catalyst ⁇ was used in place of catalyst D, and a power generation test was performed using this membrane / electrode assembly to determine the by-product partial oxide. Analysis was carried out. The results are shown in Table 1.
  • Comparative Example 1 which is a conventional membrane electrode assembly, formaldehyde or the like, which is a partial acid oxide of methanol, is generated on the anode side in a power generation experiment. ing. In addition, formaldehyde is also generated on the power sword side. This is probably because methanol partial acid oxide by-produced at the fuel electrode permeates the polymer electrolyte membrane. It is thought that methanol permeated the polymer electrolyte membrane and was partially oxidized on the force sword side.
  • Example 1 in which a by-product decomposition catalyst was added to the anode, formaldehyde generated on the anode side was remarkably reduced, and the by-product on the power sword side was suppressed below the detection limit. Therefore, when a membrane electrode assembly including the by-product decomposition catalyst of the present invention in the catalyst layer is used, it is possible to effectively suppress the by-production of partial acid oxides.
  • Example 5 As a result of Example 5, when the by-product decomposition catalyst of the present invention was added to the catalyst layer of the power sword, generation of formaldehyde and the like on the anode side could not be suppressed, but methanol produced as a by-product at the fuel electrode. The generation of formaldehyde and the like on the force sword side, which was thought to have been caused by the partial oxidation of the permeation of the polymer electrolyte membrane, or the partial permeation of the methanol permeated through the polymer electrolyte membrane, was suppressed.
  • Example 4 when activated carbon is used as the material for the byproduct decomposition catalyst at the anode, the pore volume having a radius of 40A or more and less than 100A is lower than 0.05mlZg (0.03ml / g). However, the generation of formaldehyde and the like could be suppressed. However, the effect was low as compared with Examples 1 to 3 with the pore volume being 0.05 mlZg.
  • the catalyst layer has a two-layer structure including a first catalyst layer and a second catalyst layer as shown in FIG. 2, and the second catalyst layer is formed by the byproduct decomposition catalyst of the present invention.
  • the membrane electrode assembly was used, the generation of formaldehyde and the like could be remarkably suppressed even when the activated carbon having a pore volume of less than 0.05 mlZg was used. This result demonstrates that such a two-layer structure has an excellent effect.
  • Example 7 when activated carbon having a pore volume of 0.05 mlZg or more is used, a more excellent effect can be obtained if the catalyst layer has a two-layer structure.

Abstract

This invention solves environmental problems of solid polymer fuel cells by suppressing formation of partial oxides such as formaldehyde by electrochemical oxidation of the liquid fuel. Specifically disclosed is a membrane electrode assembly for solid polymer fuel cells whose most significant feature is in that a byproduct decomposition catalyst containing activated carbon as a constituent is contained in the catalyst layer of at least one of the anode and cathode for decomposing the partial oxides.

Description

明 細 書  Specification
固体高分子型燃料電池用膜電極接合体  Membrane electrode assembly for polymer electrolyte fuel cell
技術分野  Technical field
[0001] 本発明は、固体高分子型燃料電池用の膜電極接合体、および当該膜電極接合体 を用いた固体高分子型燃料電池に関するものである。  [0001] The present invention relates to a membrane electrode assembly for a polymer electrolyte fuel cell, and a polymer electrolyte fuel cell using the membrane electrode assembly.
背景技術  Background art
[0002] 固体高分子型燃料電池は、アノードにおいて燃料から生じるプロトンを、力ソードに おいて酸化剤により酸化し、発電する。この燃料としてはアルコール類などが用いら れるが、発電時には燃料であるアルコール類が部分酸ィ匕され、アルデヒド類やカルボ ン酸類などが副生する。例えば、メタノールを燃料とする場合には、主にアノードにお いて、二酸ィ匕炭素の他にホルムアルデヒド、ギ酸、ギ酸メチルなどが副生することが 知られている。これら副生物の中でも、特にホルムアルデヒドはシックハウス症候群を 引き起こす有害化学物質であり、発電時におけるこれらの有害副生物の発生は極力 抑制されることが望ましい。しかし、これら有害副生物抑制に向けた取り組みは、ほと んど為されて ヽな 、のが実情である。  In a polymer electrolyte fuel cell, protons generated from fuel in an anode are oxidized with an oxidant in a power sword and power is generated. Alcohols and the like are used as this fuel, but the alcohol as a fuel is partially oxidized during power generation, and aldehydes and carboxylic acids are by-produced. For example, when methanol is used as a fuel, it is known that formaldehyde, formic acid, methyl formate, and the like are by-produced in addition to carbon dioxide and carbon dioxide mainly at the anode. Among these by-products, formaldehyde is a harmful chemical substance that causes sick house syndrome, and it is desirable that the generation of these by-products during power generation be suppressed as much as possible. However, the actual situation is that most of these efforts to control harmful by-products have been made.
[0003] その数少ない先例として、特開 2003— 123777号公報には、触媒層に過酸化物 分解触媒を添加した高分子電解質型燃料電池が開示されている。しかし当該技術 における過酸ィ匕物分解触媒は、カーボンブラックやジルコユア等にルテニウム等を担 持したものであり、実施例で用いられているものはカーボンブラックに金属を担持した もののみである。  [0003] As a few precedents, Japanese Patent Application Laid-Open No. 2003-123777 discloses a polymer electrolyte fuel cell in which a peroxide decomposition catalyst is added to a catalyst layer. However, the peroxidic acid decomposition catalyst in this technology is a catalyst in which ruthenium or the like is supported on carbon black, zircoure or the like, and the catalyst used in the examples is only a catalyst in which metal is supported on carbon black.
[0004] ところが、固体高分子型燃料電池の電極用触媒は、カーボンブラックに白金または 白金—ルテニウムを担持したものが一般的である。よって、上記公報における過酸ィ匕 物分解触媒は、従来の電極用触媒と全く区別することができない。それに加えて、本 発明者らによる知見によれば、カーボンブラックに金属を担持した触媒では、固体高 分子型燃料電池にぉ 、て、燃料が部分酸化された有害副生物の発生を抑制するこ とはできない。  [0004] However, a catalyst for an electrode of a polymer electrolyte fuel cell is generally one in which platinum or platinum-ruthenium is supported on carbon black. Therefore, the peroxide decomposition catalyst in the above publication cannot be completely distinguished from the conventional electrode catalyst. In addition, according to the findings by the present inventors, a catalyst in which a metal is supported on carbon black suppresses the generation of harmful by-products in which the fuel is partially oxidized as compared with a solid polymer fuel cell. I can not do such a thing.
発明の開示 [0005] 上述した様に、高分子電解質型燃料電池において副生物を抑制するための技術 は少なぐ過酸ィ匕物を抑制するための触媒を有する燃料電池が開示されている程度 である。しかし当該技術では、ホルムアルデヒドなどの副生物の発生を十分に低減す ることはできない。 Disclosure of the invention [0005] As described above, in the polymer electrolyte fuel cell, the technology for suppressing by-products is only to the extent that a fuel cell having a catalyst for suppressing peroxidic acid is disclosed. However, this technology cannot sufficiently reduce the generation of by-products such as formaldehyde.
[0006] そこで本発明の目的は、メタノールなどの液体燃料を用いる固体高分子型燃料電 池にお 1ヽて、液体燃料の電気化学的酸化の際に副生する部分酸化物であるホルム アルデヒドなどの有害物質の発生を抑制できる固体高分子型燃料電池用膜電極接 合体 (MEA)と、当該 MEAを用いた燃料電池を提供することにある。  [0006] Therefore, an object of the present invention is to formaldehyde, which is a partial oxide by-produced during the electrochemical oxidation of a liquid fuel, in a solid polymer fuel cell using a liquid fuel such as methanol. It is an object to provide a membrane electrode assembly (MEA) for polymer electrolyte fuel cells that can suppress the generation of harmful substances such as, and a fuel cell using the MEA.
[0007] 本発明者らは、上記課題を解決すベぐ高分子電解質型燃料電池の発電時にお ける有害副生物を効率的に分解できる触媒について鋭意研究を重ねた。その結果、 活性炭を構成成分とする触媒がかかる特性に極めて優れることを見出して、本発明 を完成した。 [0007] The inventors of the present invention have made extensive studies on a catalyst capable of efficiently decomposing harmful by-products during power generation in a polymer electrolyte fuel cell that solves the above problems. As a result, the present invention was completed by finding that a catalyst comprising activated carbon as a component is extremely excellent in such characteristics.
[0008] 本発明の固体高分子型燃料電池用膜電極接合体は、高分子電解質膜と、その各 面にそれぞれアノードおよび力ソードを有し、  [0008] The membrane electrode assembly for a polymer electrolyte fuel cell of the present invention has a polymer electrolyte membrane, and an anode and a force sword on each side thereof,
アノードと力ソードは、それぞれ高分子電解質に接する側に触媒層を有し、 アノードおよび力ソードの少なくとも一方の触媒層が、カーボンブラックに金属成分 が担持された電極触媒に加え、活性炭を構成成分とする副生物分解触媒を含有す ることを特徴とする。  The anode and force sword each have a catalyst layer on the side in contact with the polymer electrolyte, and at least one of the anode and force sword catalyst layers is added to an electrode catalyst in which a metal component is supported on carbon black, and activated carbon is a constituent component. It contains a by-product decomposition catalyst.
[0009] また、本発明の固体高分子型燃料電池は、上記固体高分子型燃料電池用膜電極 接合体を含むことを特徴とする。  [0009] The polymer electrolyte fuel cell of the present invention includes the membrane electrode assembly for a polymer electrolyte fuel cell.
[0010] 本発明の固体高分子型燃料電池用膜電極接合体 (以下、単に「膜電極接合体」と いうことがある)では、液体燃料の電気化学的酸ィ匕の際における部分酸ィ匕物の副生 が抑制されるので、有害物質による環境上の問題が解消される。よって、本発明の膜 電極接合体とこれを用いた固体高分子型燃料電池は、家庭用や業務用の発電シス テム、および携帯機器や自動車の電源などに利用できるものとして、産業上非常に 有用である。  [0010] In the membrane electrode assembly for a polymer electrolyte fuel cell of the present invention (hereinafter sometimes simply referred to as "membrane electrode assembly"), the partial acid concentration during the electrochemical oxidation of the liquid fuel is determined. Since the by-product of soot is suppressed, environmental problems caused by harmful substances are eliminated. Therefore, the membrane electrode assembly of the present invention and the polymer electrolyte fuel cell using the same are very industrially regarded as being usable for power generation systems for home use and business use, as well as power supplies for portable devices and automobiles. Useful.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明の膜電極接合体の構成を示す模式図である。 [図 2]本発明の膜電極接合体の他の構成を示す模式図である。 FIG. 1 is a schematic diagram showing a configuration of a membrane electrode assembly of the present invention. FIG. 2 is a schematic view showing another configuration of the membrane / electrode assembly of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明の固体高分子型燃料電池用膜電極接合体は、 [0012] The membrane electrode assembly for a polymer electrolyte fuel cell of the present invention comprises:
高分子電解質膜と、その各面にそれぞれアノードおよび力ソードを有し、 アノードと力ソードは、それぞれ高分子電解質に接する側に触媒層を有し、 アノードおよび力ソードの少なくとも一方の触媒層が、カーボンブラックに金属成分 が担持された電極触媒に加え、活性炭を構成成分とする副生物分解触媒を含有す ることを特徴とする。  The polymer electrolyte membrane has an anode and a force sword on each side thereof, and the anode and the force sword each have a catalyst layer on the side in contact with the polymer electrolyte, and at least one catalyst layer of the anode and the force sword has In addition to the electrode catalyst having a metal component supported on carbon black, it contains a by-product decomposition catalyst containing activated carbon as a constituent.
[0013] 図 1の通り、本発明の膜電極接合体は、少なくとも高分子電解質膜 1と、その各面に アノード 2および力ソード 3を有し、アノード 2と力ソード 3は、それぞれ高分子電解質 膜 1と接する側に触媒層 4と 5、およびガス拡散層を有する。  As shown in FIG. 1, the membrane / electrode assembly of the present invention has at least a polymer electrolyte membrane 1 and an anode 2 and a force sword 3 on each side thereof, and each of the anode 2 and the force sword 3 is a polymer. The catalyst layers 4 and 5 and the gas diffusion layer are provided on the side in contact with the electrolyte membrane 1.
[0014] 上記構成要素のうち、「触媒層」を除いては、従来の一般的なものを用いることがで きる。例えば、高分子電解質膜は、パーフルォロスルホン酸イオン交換膜 (商品名「 ナフイオン (登録商標)」)などのフッ素榭脂系イオン交換膜を用いることができる。ま た、ガス拡散層は、優れたガス透過性と導電性を有するものとして、厚さ 100〜300 μ m程度のカーボンペーパーやカーボンクロスを用いることができる。  [0014] Of the above-described components, a conventional general element can be used except for the "catalyst layer". For example, the polymer electrolyte membrane can be a fluorocoagulant ion exchange membrane such as a perfluorosulfonic acid ion exchange membrane (trade name “Nafion (registered trademark)”). In addition, as the gas diffusion layer, carbon paper or carbon cloth having a thickness of about 100 to 300 μm can be used as having excellent gas permeability and conductivity.
[0015] 触媒層は、従来、電極触媒からなり、必要に応じて高分子電解質や撥水材などを 均一混合したものである力 本発明では、アノードおよび力ソードの少なくとも一方の 触媒層へ、さらに副生物分解触媒を添加する。但し、有害副生物は主にアノードで 生成するため、好ましくは少なくともアノードの触媒層へ副生物分解触媒を添加する  [0015] The catalyst layer is conventionally composed of an electrode catalyst, and a force obtained by uniformly mixing a polymer electrolyte, a water repellent material, or the like as required. In the present invention, at least one catalyst layer of an anode and a force sword Further, a by-product decomposition catalyst is added. However, since harmful by-products are mainly generated at the anode, it is preferable to add a by-product decomposition catalyst to at least the catalyst layer of the anode.
[0016] 触媒層に用いる高分子電解質は、高分子電解質膜と同様の材料を用いることがで きる。また、アノード電極触媒は、一般的には、白金、ルテニウム、パラジウム、モリブ デン、タングステン、スズ、イリジウム、ロジウムなどの金属または合金をカーボンブラ ックに担持した触媒である。力ソード電極触媒としては、一般的に白金などをカーボン ブラックに担持した触媒が用いられている。さらに電極触媒として、カーボンナノチュ ーブゃカーボンナノホーンなどに上記金属成分を担持したものを添加してもよい。 [0016] As the polymer electrolyte used for the catalyst layer, the same material as the polymer electrolyte membrane can be used. The anode electrode catalyst is generally a catalyst in which a metal or alloy such as platinum, ruthenium, palladium, molybdenum, tungsten, tin, iridium, or rhodium is supported on carbon black. As a force sword electrode catalyst, a catalyst in which platinum or the like is supported on carbon black is generally used. Further, as an electrode catalyst, carbon nano tube or carbon nano horn or the like carrying the above metal component may be added.
[0017] ここで「カーボンブラック」とは、炭化水素ガス等の気相熱分解や不完全燃焼により 生成する微粉の球状または鎖状の炭素である。その結晶子は、炭素 6員環が 30〜4 0個程度結合した網平面と呼ばれる集合体を最小単位とし、この網平面がファンデル ワールス力で 3〜5層ほぼ等間隔に積み重なったものである。この結晶子が 1000〜 2000個集合して一次粒子を形成し、さらに約 2〜200個の一次粒子が相互に化学 的'物理的に結合し、房状に凝集した形態 (ストラクチャー)をとる。この様な形態から 、カーボンブラックの細孔は、一次粒子間の空隙として形成される。また、カーボンブ ラックの一次粒子の大きさは、通常、直径 10〜200nm程度である。 Here, “carbon black” refers to gas phase pyrolysis or incomplete combustion of hydrocarbon gas or the like. The fine powder is spherical or chain-like carbon. The crystallite consists of an assembly called a network plane consisting of about 30 to 40 carbon 6-membered rings, and this network plane is stacked almost evenly by 3-5 layers by van der Waals force. is there. 1000 to 2000 crystallites aggregate to form primary particles, and about 2 to 200 primary particles are chemically and physically bonded to each other to form a clustered structure (structure). From such a form, the pores of carbon black are formed as voids between primary particles. The size of primary particles of carbon black is usually about 10 to 200 nm in diameter.
[0018] その他、本発明の高分子電解質やアノードと力ソードには、固体高分子型燃料電 池の一般的な成分を有していてもよぐその様な膜電極接合体や燃料電池も本発明 範囲に含まれる。 [0018] In addition, the polymer electrolyte, anode and force sword of the present invention include such membrane electrode assemblies and fuel cells that may have general components of solid polymer fuel cells. It is included in the scope of the present invention.
[0019] 本発明の「副生物分解触媒」とは、液体燃料の電気化学的酸化の際に副生する部 分酸化物を分解し得る触媒を意味する。ここで、「液体燃料の電気化学的酸化の際 に副生する部分酸化物」(以下、単に「部分酸ィ匕物」ということもある。)とは、例えば、 固体高分子型燃料電池のアノード側で起こる反応 (アノード反応)(例えば、液体燃 料としてメタノールを用いる場合、 CH OH + H O → 6H+ + 6e— + CO で示される  The “by-product decomposition catalyst” of the present invention means a catalyst capable of decomposing a partial oxide by-produced during the electrochemical oxidation of a liquid fuel. Here, “partial oxide by-produced during electrochemical oxidation of liquid fuel” (hereinafter, also simply referred to as “partial oxide”) means, for example, that of a polymer electrolyte fuel cell Reaction that takes place on the anode side (anode reaction) (for example, when methanol is used as the liquid fuel, it is expressed as CH OH + HO → 6H + + 6e— + CO
3 2 2 反応)の際にアノード側で副生する部分酸ィ匕物を意味し、具体的には、例えば、ホル ムアルデヒドなどのアルデヒド類やカルボン酸類などを挙げることができる。また、かか る部分酸化物は、空気極側で検出される場合もある。これは、燃料が高分子電解質 膜を透過して空気極で部分酸化されたり、或 ヽは燃料極側で生じた部分酸ィ匕物が高 分子電解質膜を透過したものであると考えられる。  3 2 2 reaction) means a partial acid product formed as a by-product on the anode side, and specific examples include aldehydes such as formaldehyde and carboxylic acids. In addition, such partial oxides may be detected on the air electrode side. This is thought to be because the fuel permeates the polymer electrolyte membrane and is partially oxidized at the air electrode, or the partial oxide generated on the fuel electrode side permeates the polymer electrolyte membrane.
[0020] 「副生物分解触媒」は、少なくとも活性炭を構成成分とする。本発明者らによる知見 によれば、電極触媒の他に副生物分解触媒として活性炭を添加することによって、有 害な部分酸ィ匕物を顕著に抑制することができる。  [0020] "By-product decomposition catalyst" includes at least activated carbon as a constituent component. According to the knowledge of the present inventors, harmful partial acid oxides can be remarkably suppressed by adding activated carbon as a by-product decomposition catalyst in addition to the electrode catalyst.
[0021] 副生物分解触媒は、部分酸化物を分解し得る金属成分を活性炭に担持したものが 好ましい。  [0021] The by-product decomposition catalyst is preferably one in which a metal component capable of decomposing a partial oxide is supported on activated carbon.
[0022] 活性炭は、木炭などを十分に炭化した後に賦活処理することにより製造されるもの である。その結晶子は、炭素が 120° の角度で結合した網平面を基本骨格とし、この 網平面が不規則に積層した構造ほ L層構造)を有する。この結晶子がランダムに結合 したものが活性炭であり、活性炭の細孔は、結晶子間の空隙として形成される。その ため、活性炭の表面積は、粒子の外表面に対して非常に大きなものとなる。また、構 造上の違いから、活性炭はカーボンブラックのように直径 10〜200nm程度の一次粒 子が房状に結合した凝集形態とはならない。活性炭の粒子径は、ロッドミル、ボール ミル、ジェットミルなどの粉砕機での粉砕の程度により決定され、通常、その粒子径は カーボンブラックよりも大きい。本願で用いる活性炭材料としては、直径 1〜50 mの ものが好適である。 [0022] Activated carbon is produced by performing an activation treatment after charcoal or the like is sufficiently carbonized. The crystallite has a network plane in which carbons are bonded at an angle of 120 ° as a basic skeleton, and the network plane is irregularly laminated (L layer structure). This crystallite is randomly bonded This is activated carbon, and the pores of the activated carbon are formed as voids between crystallites. Therefore, the surface area of the activated carbon is very large relative to the outer surface of the particles. In addition, due to structural differences, activated carbon does not have an agglomerated form in which primary particles with a diameter of about 10 to 200 nm are bound in a tuft shape like carbon black. The particle size of the activated carbon is determined by the degree of pulverization with a pulverizer such as a rod mill, ball mill, jet mill or the like, and the particle size is usually larger than that of carbon black. As the activated carbon material used in the present application, one having a diameter of 1 to 50 m is suitable.
[0023] この様に、カーボンブラックと活性炭とは、構造や形態において著しく異なっている  [0023] Thus, carbon black and activated carbon are significantly different in structure and form.
[0024] 副生物分解触媒の金属成分としては、例えば、白金、ルテニウム、パラジウム、イリ ジゥム、ロジウム、オスミウム、金および銀力も選ばれる少なくとも 1つの元素、特に白 金、ルテニウムおよびパラジウムカゝら選ばれる 2種以上の組合せが好適である。また、 これら金属成分の形態は特に制限されず、金属、酸化物、水酸化物、あるいは合金 などのいずれでもよい。上記金属成分は、その触媒量を活性炭に担持させればよぐ その担持量は、通常 1〜60質量%であり、好ましくは 10〜30質量%である。金属成 分の担持方法については特に制限はなぐ一般の担持触媒の調製方法を用いること ができる。 [0024] The metal component of the byproduct decomposition catalyst is selected from, for example, platinum, ruthenium, palladium, iridium, rhodium, osmium, gold and silver power, in particular, white gold, ruthenium and palladium carbonate. A combination of two or more of these is preferred. In addition, the form of these metal components is not particularly limited, and any of metal, oxide, hydroxide, alloy and the like may be used. The metal component may be supported on the activated carbon by a catalytic amount. The supported amount is usually 1 to 60% by mass, preferably 10 to 30% by mass. There is no particular limitation on the method for supporting the metal component, and a general method for preparing a supported catalyst can be used.
[0025] 副生物分解触媒で用いる活性炭としては、半径 40 A以上 100 A未満の細孔の容 積 (以下、単に「細孔容積」ということもある。)が 0. 05mlZg以上のものが好適である 。カゝかる活性炭は、特に部分酸化物の分解効果に優れるからである。より好ましくは 0 . lmlZg以上、さらに 0. 2mlZg以上が好適である。しかし、当該細孔容積が大き過 ぎると副生物分解触媒の嵩比重が小さくなり、結果として触媒層の厚みが大きくなり 発電性能が低下するおそれがあるため、好ましくは 0. 5mlZg以下、より好ましくは 0 . 4mlZg以下とする。  [0025] Activated carbon used as a by-product decomposition catalyst is preferably one having a pore volume with a radius of 40 A or more and less than 100 A (hereinafter sometimes simply referred to as “pore volume”) of 0.05 mlZg or more. Is. This is because the activated carbon is particularly excellent in the partial oxide decomposition effect. More preferred is 0.1 mlZg or more, and more preferred is 0.2 mlZg or more. However, if the pore volume is excessively large, the bulk specific gravity of the by-product decomposition catalyst is reduced, and as a result, the thickness of the catalyst layer may be increased and the power generation performance may be reduced. Therefore, it is preferably 0.5 mlZg or less, more preferably 0.4ml or less.
[0026] 活性炭の細孔容積は、例えば、全自動ガス吸着装置 (ベックマンコールター社製「 ォムニソープ 360CXなど)を用い、窒素吸着法(77K、 10. 5Torr以下)にて測定し 、得られた吸着等温線力 BJH法により細孔容積を算出する。  [0026] The pore volume of the activated carbon is measured by a nitrogen adsorption method (77K, 10.5 Torr or less) using, for example, a fully automatic gas adsorption device (such as "omni soap 360CX" manufactured by Beckman Coulter, Inc.), and the obtained adsorption Isothermal force Calculate pore volume by BJH method.
[0027] 細孔容積が 0. 05mlZg以上の活性炭は、木粉やヤシ殻などの活性炭原料を炭化 する際の熱処理条件と賦活処理とを適宜組み合わせて細孔構造を制御することによ つて、容易に得ることができる。力かる賦活処理としては、例えば、塩化亜鉛溶液ゃリ ン酸溶液を用いる薬品賦活法や、水蒸気を用いるガス賦活法などを挙げることがで きる。また、細孔容積が 0. 05mlZg未満の活性炭に上記賦活処理を施してその細 孔構造を制御することによって、 0. 05mlZg以上の細孔容積を有する活性炭材料と することちでさる。 [0027] Activated carbon with a pore volume of 0.05mlZg or more carbonizes activated carbon raw materials such as wood powder and coconut shells. It can be easily obtained by controlling the pore structure by appropriately combining the heat treatment conditions and the activation treatment. Examples of the powerful activation treatment include a chemical activation method using a zinc chloride solution and a phosphoric acid solution, and a gas activation method using water vapor. Further, the activated carbon material having a pore volume of 0.05 mlZg or more can be obtained by subjecting the activated carbon having a pore volume of less than 0.05 mlZg to the above activation treatment to control its pore structure.
[0028] 電極触媒と副生物分解触媒との割合は特に制限されないが、電極触媒:副生物分 解触媒の質量比として 1 : 0. 2〜2の範囲、好ましくは 1 : 0. 5〜1. 5となるようにする のがよい。また、触媒層の導電性を確保するために、カーボンブラックなどの導電性 材料を必要量配合することが好ましい。具体的には、活性炭に対して 10〜: LOO質量 %の導電性材料と共に触媒層を構成するようにするのが好まし 、。  [0028] The ratio of the electrode catalyst to the byproduct decomposition catalyst is not particularly limited, but the mass ratio of the electrode catalyst to the byproduct decomposition catalyst is in the range of 1: 0.2 to 2, preferably 1: 0.5 to 1. It is better to be 5. In order to ensure the conductivity of the catalyst layer, a necessary amount of a conductive material such as carbon black is preferably blended. Specifically, it is preferable to form a catalyst layer together with a conductive material of 10 to LOO mass% with respect to activated carbon.
[0029] 膜電極接合体における触媒層を、電極触媒を有する第一触媒層と、副生物分解触 媒を有する第二触媒層に分割し、第一触媒層を高分子電解質膜と第二触媒層との 間に配置する構成とすることも、本発明の好適な態様である。触媒層をこの様な構成 にすることによって、副生物の低減効果をより一層高められるからである。  [0029] The catalyst layer in the membrane electrode assembly is divided into a first catalyst layer having an electrode catalyst and a second catalyst layer having a byproduct decomposition catalyst, and the first catalyst layer is divided into a polymer electrolyte membrane and a second catalyst. It is also a preferred aspect of the present invention to be arranged between the layers. This is because the reduction effect of by-products can be further enhanced by making the catalyst layer in such a configuration.
[0030] 図 2は、上記二層構造を模式的に表した図である。図中、 1、 2、 3および 5は図 1で のものと同意義であるが、アノード 2における触媒層を、高分子電解質膜 1に接した第 一触媒層 41と、またこの第二触媒層 41に接して設けた第二触媒層 42から構成して いる。ここで、第一触媒層 41はアノードの電極触媒を含み、また第二触媒層 42は本 発明の副生物分解触媒を含むように構成されて 、る。  FIG. 2 is a diagram schematically showing the two-layer structure. In the figure, 1, 2, 3 and 5 have the same meaning as in FIG. 1, but the catalyst layer in the anode 2 is divided into the first catalyst layer 41 in contact with the polymer electrolyte membrane 1 and the second catalyst. The second catalyst layer 42 is provided in contact with the layer 41. Here, the first catalyst layer 41 includes an anode electrocatalyst, and the second catalyst layer 42 includes the byproduct decomposition catalyst of the present invention.
[0031] 第一触媒層 41と第二触媒層 42との厚さの割合は特に限定されるものではないが、 電極触媒と副生物分解触媒との割合 (電極触媒:副生物分解触媒 (質量比))が 1: 0 . 2〜2、好ましくは 1 : 0. 5〜1. 5となるように構成するのがよい。なお、触媒層を 2層 構造とすることは、上記アノードの触媒層に限定されるものではなぐ力ソードの触媒 層にも適用し得るものである力 なかでもアノードの触媒層を 2層構造とするのが好ま しい。  [0031] The thickness ratio between the first catalyst layer 41 and the second catalyst layer 42 is not particularly limited, but the ratio between the electrode catalyst and the byproduct decomposition catalyst (electrode catalyst: byproduct decomposition catalyst (mass) The ratio)) is preferably 1: 0.2 to 2, preferably 1: 0.5 to 1.5. Note that the two-layer structure of the catalyst layer is not limited to the anode catalyst layer described above, and can be applied to a force sword catalyst layer. It is preferable to do.
[0032] 本発明の膜電極接合体は、常法に従って製造することができる。例えば、アノード および力ソードの電極触媒と副生物分解触媒、および水やイソプロピルアルコールな どの有機溶媒を均一混合してペーストを調製し、これをカーボンペーパーなどのガス 拡散層に塗布後、乾燥することによって、電極 (アノードと力ソード)を形成することが できる。電極触媒等の他に、必要に応じて高分子電解質、導電性材料、撥水材、バ インダーなど、固体高分子型燃料電池の電極の形成に用いられる一般的な成分を 適宜選択し、用いることができる。つまり、本発明の膜電極接合体の電極は、任意の 電極触媒と本発明の副生物分解触媒とを含む混合物を用い常法に従って形成する ことができる。各成分の配合割合は、一般的なものとすることができ特に制限されない 力 例えば、電極触媒:副生物分解触媒の割合は、質量比で 1 : 0. 2〜2、好ましくは 1 : 0. 5〜1. 5である。 [0032] The membrane electrode assembly of the present invention can be produced according to a conventional method. For example, anode and power sword electrocatalysts and byproduct decomposition catalysts, and water and isopropyl alcohol. An electrode (anode and force sword) can be formed by uniformly mixing any organic solvent to prepare a paste, applying the paste to a gas diffusion layer such as carbon paper, and drying. In addition to electrode catalysts, etc., general components used for forming electrodes of polymer electrolyte fuel cells, such as polymer electrolytes, conductive materials, water repellent materials, and binders, are selected and used as necessary. be able to. That is, the electrode of the membrane electrode assembly of the present invention can be formed according to a conventional method using a mixture containing any electrode catalyst and the byproduct decomposition catalyst of the present invention. The mixing ratio of each component can be general and is not particularly limited.For example, the ratio of the electrocatalyst to the by-product decomposition catalyst is 1: 0.2 to 2, preferably 1: 0.0 by mass ratio. 5 to 1.5.
[0033] 本発明の電極層を図 2に示す様な二層構造にする場合には、先ず電極触媒を含 むペーストをガス拡散層に塗布して乾燥した後、その上へ副生物分解触媒を含むぺ 一ストを塗布し、乾燥させればよい。  When the electrode layer of the present invention has a two-layer structure as shown in FIG. 2, first, a paste containing an electrode catalyst is applied to the gas diffusion layer and dried, and then a by-product decomposition catalyst thereon. Apply a paste containing and dry it.
[0034] 得られたアノードと力ソードは、高分子電解質膜を間に挟んでホットプレスすること によって、膜電極接合体とすることができる。この際、各電極において、触媒層が高 分子電解質膜に接する様に配置する必要がある。また、ホットプレスにおける圧力や 温度は、常法の条件に従えばよい。  [0034] The obtained anode and force sword can be formed into a membrane electrode assembly by hot pressing with a polymer electrolyte membrane interposed therebetween. At this time, in each electrode, it is necessary to dispose the catalyst layer in contact with the polymer electrolyte membrane. Moreover, the pressure and temperature in the hot press may be in accordance with ordinary conditions.
[0035] 得られた膜電極は、セパレータなどと共に、常法に従って固体高分子型燃料電池と することができる。  [0035] The obtained membrane electrode can be made into a polymer electrolyte fuel cell according to a conventional method together with a separator and the like.
[0036] 固体高分子型燃料電池は、メタノール、エタノール、ジメチルエーテルなどの含酸 素炭化水素類など、一般的な作動温度 (通常、室温から 100°C程度)で液体として取 り扱えるものを燃料とする。しかし従来の固体高分子型燃料電池では、これら燃料が アノード側で部分酸化されたり、或いは高分子電解質膜を透過した燃料力 S力ソード側 で部分酸化されたアルデヒド類やカルボン酸類が副生するという問題があった。  [0036] A polymer electrolyte fuel cell is a fuel that can be handled as a liquid at a general operating temperature (usually about room temperature to 100 ° C), such as oxygen-containing hydrocarbons such as methanol, ethanol, and dimethyl ether. And However, in conventional polymer electrolyte fuel cells, these fuels are partially oxidized on the anode side, or aldehydes and carboxylic acids partially oxidized on the fuel force S sword side that have permeated the polymer electrolyte membrane are by-produced. There was a problem.
[0037] 一方本発明の固体高分子型燃料電池では、アノードおよび力ソードの少なくとも一 方の触媒層に副生物分解触媒が添加されており、部分酸ィ匕物の発生を顕著に抑制 できるので、環境やヒトに悪影響を与えない。よって、本発明の固体高分子型燃料電 池は、携帯機器や自動車用の電源、或いは家庭用の発電システムなど、ヒトと密接な 環境下における電源などにも適する。 実施例 [0037] On the other hand, in the polymer electrolyte fuel cell of the present invention, a by-product decomposition catalyst is added to at least one of the catalyst layers of the anode and the power sword, and generation of partial oxides can be remarkably suppressed. Does not adversely affect the environment or humans. Therefore, the polymer electrolyte fuel cell of the present invention is also suitable for a power source in an environment close to humans, such as a power source for portable devices and automobiles, or a household power generation system. Example
[0038] 本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体 的に説明する。なお、本発明の副生物分解触媒は、下記の触媒調製例に従って調 製した。  [0038] The present invention will be described more specifically with reference to the following examples illustrating advantageous embodiments of the present invention. The by-product decomposition catalyst of the present invention was prepared according to the following catalyst preparation example.
[0039] 触媒調製例 1  [0039] Catalyst Preparation Example 1
45 μ m以下にメッシュを揃えた活性炭(半径力 0 A以上 100 A未満の細孔の容積 :0. 27mlZg)に、ジニトロジアンミン白金と硝酸ルテニウムとの混合水溶液を含浸さ せた。次に、窒素雰囲気下 90°Cで乾燥した後、水素ガスを用いて 300°Cにて 2時間 還元処理を行って触媒 Aを得た。この触媒 Aにおける白金およびルテニウムの担持 量は、それぞれ 20質量%および 10質量%であつた。  A mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate was impregnated in activated carbon (radius force 0 A or more and less than 100 A pore volume: 0.27 mlZg) with a mesh of 45 μm or less. Next, after drying at 90 ° C. in a nitrogen atmosphere, a reduction treatment was performed using hydrogen gas at 300 ° C. for 2 hours to obtain Catalyst A. The supported amounts of platinum and ruthenium on catalyst A were 20% by mass and 10% by mass, respectively.
[0040] 触媒調製例 2  [0040] Catalyst Preparation Example 2
45 μ m以下にメッシュを揃えた活性炭(半径力 0 A以上 100 A未満の細孔の容積 :0. 12mlZg)に、ジニトロジアンミン白金と硝酸ルテニウムとの混合水溶液を含浸さ せた。次に、窒素雰囲気下 90°Cで乾燥した後、水素ガスを用いて 300°Cにて 2時間 還元処理を行って触媒 Bを得た。この触媒 Bにおける白金およびルテニウムの担持 量は、それぞれ 20質量%および 10質量%であつた。  A mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate was impregnated in activated carbon (radius force 0 A or more and less than 100 A pore volume: 0.12 mlZg) with a mesh of 45 μm or less. Next, after drying at 90 ° C. in a nitrogen atmosphere, reduction treatment was performed using hydrogen gas at 300 ° C. for 2 hours to obtain Catalyst B. The supported amounts of platinum and ruthenium on catalyst B were 20% by mass and 10% by mass, respectively.
[0041] 触媒調製例 3  [0041] Catalyst Preparation Example 3
45 μ m以下にメッシュを揃えた活性炭(半径力 0 A以上 100 A未満の細孔の容積 :0. 06mlZg)に、ジニトロジアンミン白金と硝酸ルテニウムとの混合水溶液を含浸さ せた。次に、窒素雰囲気下 90°Cで乾燥した後、水素ガスを用いて 300°Cにて 2時間 還元処理を行って触媒 Cを得た。この触媒 Cにおける白金およびルテニウムの担持 量は、それぞれ 20質量%および 10質量%であつた。  A mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate was impregnated in activated carbon (radius force 0 A or more and less than 100 A pore volume: 0.06 mlZg) with a mesh of 45 μm or less. Next, after drying at 90 ° C. in a nitrogen atmosphere, a reduction treatment was performed using hydrogen gas at 300 ° C. for 2 hours to obtain Catalyst C. The supported amounts of platinum and ruthenium on catalyst C were 20% by mass and 10% by mass, respectively.
[0042] 触媒調製例 4  [0042] Catalyst Preparation Example 4
45 μ m以下にメッシュを揃えた活性炭(半径力 0 A以上 100 A未満の細孔の容積 :0. 03mlZg)に、ジニトロジアンミン白金と硝酸ルテニウムとの混合水溶液を含浸さ せた。次に、窒素雰囲気下 90°Cで乾燥した後、水素ガスを用いて 300°Cにて 2時間 還元処理を行って触媒 Dを得た。この触媒 Dにおける白金およびルテニウムの担持 量は、それぞれ 20質量%および 10質量%であつた。 [0043] 触媒調製例 5 A mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate was impregnated in activated carbon (radius force 0 A or more and less than 100 A pore volume: 0.03 mlZg) with a mesh of 45 μm or less. Next, after drying at 90 ° C. in a nitrogen atmosphere, a reduction treatment was performed using hydrogen gas at 300 ° C. for 2 hours to obtain Catalyst D. The supported amounts of platinum and ruthenium on catalyst D were 20% by mass and 10% by mass, respectively. [0043] Catalyst Preparation Example 5
45 μ m以下にメッシュを揃えた活性炭(半径力 0 A以上 100 A未満の細孔の容積 : 0. 12mlZg)に、硝酸パラジウムとジニトロジアンミン白金との混合水溶液を含浸さ せた。次に、窒素雰囲気下 90°Cで乾燥した後、水素ガスを用いて 300°Cにて 2時間 還元処理を行って触媒 Eを得た。この触媒 Eにおけるパラジウムおよび白金の担持量 は、それぞれ 15質量%および 15質量%であつた。  Activated carbon with a mesh aligned to 45 μm or less (pore volume with a radial force of 0 A or more and less than 100 A: 0.12 mlZg) was impregnated with a mixed aqueous solution of palladium nitrate and dinitrodiammine platinum. Next, after drying at 90 ° C. in a nitrogen atmosphere, reduction treatment was performed at 300 ° C. for 2 hours using hydrogen gas to obtain Catalyst E. The supported amounts of palladium and platinum on the catalyst E were 15% by mass and 15% by mass, respectively.
[0044] 実施例 1  [0044] Example 1
触媒 A、 E—TEK製の白金一ルテニウム担持カーボンブラック(白金担持量: 20質 量0 /0、ルテニウム担持量: 10質量0 /0、担体のカーボンブラックは Cabot社製のバルカ ン XC— 72)、 5%ナフイオン溶液(アルドリッチ社製)、水およびイソプロピルアルコー ルを質量比で 1 : 1 :40 : 20 : 14にて混合し、均一に分散させて、触媒含有ペーストを 調製した。これをカーボンペーパー (東レネ土製)上に、白金—ルテニウムの合計担持 量が lmg/cm2となるよう均一に塗布した後、 15時間乾燥してアノードとした。また、 E— TEK製の白金担持カーボンブラック(白金担持量: 60質量%、担体のカーボン ブラックは Cabot社製のバルカン XC— 72)、 5%ナフイオン溶液 (アルドリッチ社製) 、水および 10%ポリテトラフルォロエチレン溶液を質量比で 1: 20: 10: 5にて混合し、 均一に分散させて、触媒含有ペーストを調製した。これをカーボンペーパー (東レ社 製)上に、白金担持量が lmgZcm2となるように均一に塗布した後、 15時間乾燥させ て力ソードとした。 Catalyst A, E-TEK made of platinum-one ruthenium carrying carbon black (platinum content: 20 mass 0/0, ruthenium amount: 10 mass 0/0, the carrier of the carbon black is manufactured by Cabot Corporation Barka down XC 72 ), 5% naphthion solution (manufactured by Aldrich), water and isopropyl alcohol were mixed at a mass ratio of 1: 1: 40: 20: 14 and uniformly dispersed to prepare a catalyst-containing paste. This was uniformly coated on carbon paper (made by Torayen earth) so that the total supported amount of platinum-ruthenium was 1 mg / cm 2, and then dried for 15 hours to form an anode. In addition, E-TEK platinum-supported carbon black (platinum support amount: 60% by mass, carbon black of the carrier is Cabot Vulcan XC-72), 5% Nafion solution (Aldrich), water and 10% poly A tetrafluoroethylene solution was mixed at a mass ratio of 1: 20: 10: 5 and dispersed uniformly to prepare a catalyst-containing paste. This was uniformly applied onto carbon paper (manufactured by Toray Industries Inc.) so that the amount of platinum supported was lmgZcm 2, and then dried for 15 hours to form a force sword.
[0045] このようにして得られた力ソードとアノードの間に有効電極面積が 25cm2となるように ナフイオン 117膜 (DuPont社製)を挟み、触媒が塗布された面がナフイオン膜に接 するように重ね合わせた後、 130°C、 lOOkgZcm2の条件で 5分間ホットプレスして、 膜電極接合体を製造した。この膜電極接合体を実験用燃料電池セルに組み込み、 アノードに ImolZLのメタノール水溶液を 6mlZminで、また力ソードには空気を 1L Zminで供給し、セル温度 90°Cで発電試験を行った。発電試験中のアノードおよび 力ソードで副生する部分酸ィ匕物(ホルムアルデヒド、ギ酸メチル、ギ酸)の量を次のよう にして測定した。すなわち、上記の条件下、 300mAZcm2の定電流で 2時間保持し 、アノードおよび力ソードで副生する部分酸ィ匕物をそれぞれドライアイス 'メタノールト ラップにより捕集し、捕集質量を秤量した後に定量分析に供した。ホルムアルデヒド、 ギ酸メチルはガスクロマトグラフ、ギ酸は高速液体クロマトグラフにて定量分析した。 結果を表 1に示す。 [0045] effective electrode area during the thus obtained force Sword and anode sandwich the Nafuion 117 membrane (DuPont Co.) so that the 25 cm 2, the surface of the catalyst is applied to contact the Nafuion film Then, the membrane electrode assembly was manufactured by hot pressing for 5 minutes under the conditions of 130 ° C. and lOOkgZcm 2 . This membrane / electrode assembly was assembled in an experimental fuel cell, and a power generation test was conducted at a cell temperature of 90 ° C with an ImolZL methanol aqueous solution supplied at 6 mlZmin to the anode and air at 1 L Zmin. During the power generation test, the amount of partial oxides (formaldehyde, methyl formate, formic acid) by-produced at the anode and the power sword was measured as follows. In other words, under the above conditions, a constant current of 300 mAZcm 2 was maintained for 2 hours, and the partial acid oxides produced as a by-product at the anode and the power sword were each dried ice The sample was collected by a wrap, and the collected mass was weighed and then subjected to quantitative analysis. Formaldehyde and methyl formate were quantitatively analyzed by gas chromatograph, and formic acid was quantitatively analyzed by high performance liquid chromatograph. The results are shown in Table 1.
[0046] 比較例 1 [0046] Comparative Example 1
E—TEK製の白金—ルテニウム担持カーボンブラック(白金担持量: 20質量%、ル テ-ゥム担持量: 10質量0 /0、担体のカーボンブラックは Cabot社製のバルカン XC— 72)、 5%ナフイオン溶液(アルドリッチ社製)、水およびイソプロピルアルコールを質 量比で 1 : 20 : 10 : 7にて混合し、均一に分散して、触媒含有ペーストを調製した。こ れをカーボンペーパー (東レネ土製)上に、白金—ルテニウムの合計担持量が lmgZc m2となるよう均一に塗布した後、 15時間乾燥させてアノードとした以外は実施例 1と 同様にして膜電極接合体を製造した。この膜電極接合体を用い、実施例 1と同様に して、発電試験を行い副生する部分酸ィ匕物の定量分析を行った。結果を表 1に示す Manufactured by E-TEK platinum - ruthenium carbon black (amount of platinum supported: 20 wt%, Le Te - © arm supporting amount: 10 mass 0/0, the carrier of the carbon black is manufactured by Cabot Corporation Vulcan XC 72), 5 % Catalyst solution (Aldrich), water and isopropyl alcohol were mixed at a mass ratio of 1: 20: 10: 7 and dispersed uniformly to prepare a catalyst-containing paste. This was applied onto carbon paper (made of Torayen earth) uniformly so that the total supported amount of platinum-ruthenium was lmgZcm 2 and then dried for 15 hours to obtain an anode, which was the same as in Example 1. A membrane electrode assembly was produced. Using this membrane / electrode assembly, in the same manner as in Example 1, a power generation test was performed, and a quantitative analysis of by-product partial oxides was performed. The results are shown in Table 1.
[0047] 実施例 2 [0047] Example 2
触媒 Aに替えて触媒 Bを用いた以外は、実施例 1と同様にして膜電極接合体を製 造し、この膜電極接合体を用いて発電試験を行い、副生する部分酸化物の定量分 析を行った。結果を表 1に示す。  A membrane / electrode assembly was produced in the same manner as in Example 1 except that catalyst B was used instead of catalyst A, and a power generation test was performed using this membrane / electrode assembly to determine the by-product partial oxide. Analysis was carried out. The results are shown in Table 1.
[0048] 実施例 3 [0048] Example 3
触媒 Aに替えて触媒 Cを用いた以外は、実施例 1と同様にして膜電極接合体を製 造し、この膜電極接合体を用いて発電試験を行い、副生する部分酸化物の定量分 析を行った。結果を表 1に示す。  A membrane / electrode assembly was produced in the same manner as in Example 1 except that catalyst C was used instead of catalyst A, and a power generation test was performed using this membrane / electrode assembly to determine the by-product partial oxide. Analysis was carried out. The results are shown in Table 1.
[0049] 実施例 4 [0049] Example 4
触媒 Aに替えて触媒 Dを用いた以外は、実施例 1と同様にして膜電極接合体を製 造し、この膜電極接合体を用いて発電試験を行い、副生する部分酸化物の定量分 析を行った。結果を表 1に示す。  A membrane / electrode assembly was produced in the same manner as in Example 1 except that Catalyst D was used instead of Catalyst A, and a power generation test was performed using this membrane / electrode assembly to determine the by-product partial oxide. Analysis was carried out. The results are shown in Table 1.
[0050] 実施例 5 [0050] Example 5
E—TEK製の白金—ルテニウム担持カーボンブラック(白金担持量: 20質量%、ル テ-ゥム担持量: 10質量0 /0、担体のカーボンブラックは Cabot社製のバルカン XC— 72)、 5%ナフイオン溶液(アルドリッチ社製)、水およびイソプロピルアルコールを質 量比で 1 : 20 : 10 : 7にて混合し、均一に分散させて、触媒含有ペーストを調製した。 これをカーボンペーパー(東レネ土製)上に、白金担持量が lmgZcm2となるよう均一 に塗布した後、 15時間乾燥してアノードとした。また、触媒 E、 E— TEK製の白金担 持カーボンブラック(白金担持量: 60質量0 /0、担体のカーボンブラックは Cabot社製 のバルカン XC— 72)、 5%ナフイオン溶液 (アルドリッチ社製)、水および 10%ポリテ トラフルォロエチレン溶液を質量比で 1: 1 :40 : 20 : 10にて混合し、均一に分散させ て、触媒含有ペーストを調製した。これをカーボンペーパー (東レ社製)上に、白金担 持量が lmgZcm2となるよう均一に塗布した後、 15時間乾燥して力ソードとした。 Manufactured by E-TEK platinum - ruthenium carbon black (amount of platinum supported: 20 wt%, Le Te - © arm supporting amount: 10 mass 0/0, the carrier of the carbon black manufactured by Cabot Corporation of Vulcan XC- 72), 5% naphthion solution (manufactured by Aldrich), water and isopropyl alcohol were mixed at a mass ratio of 1: 20: 10: 7 and uniformly dispersed to prepare a catalyst-containing paste. This was uniformly coated on carbon paper (made by Torayen earth) so that the amount of platinum supported was lmgZcm 2, and then dried for 15 hours to form an anode. Moreover, the catalyst E, E- TEK made of platinum responsible lifting carbon black (amount of platinum supported: 60 wt 0/0, Vulcan XC 72 carbon black from Cabot Corporation of carrier) (manufactured by Aldrich) 5% Nafuion solution Then, water and a 10% polytetrafluoroethylene solution were mixed at a mass ratio of 1: 1: 40: 20: 10 and dispersed uniformly to prepare a catalyst-containing paste. This was uniformly applied onto carbon paper (manufactured by Toray Industries, Inc.) so that the amount of platinum supported was lmgZcm 2, and then dried for 15 hours to form a force sword.
[0051] このようにして得られた力ソードとアノードとを用い、実施例 1と同様にして膜電極接 合体を製造し、この膜電極接合体を用いて発電試験を行い、副生する部分酸化物の 定量分析を行った。結果を表 1に示す。  [0051] Using the force sword and the anode thus obtained, a membrane electrode assembly was produced in the same manner as in Example 1, and a power generation test was performed using this membrane electrode assembly to produce a by-product. Quantitative analysis of oxides was performed. The results are shown in Table 1.
[0052] 実施例 6  [0052] Example 6
この実施例では、触媒層を図 2に示すような 2層構造とし、第二触媒層 42を本発明 の副生物分解触媒を用いて形成した。すなわち、 E— TEK製の白金—ルテニウム担 持カーボンブラック(白金担持量: 20質量%、ルテニウム担持量: 10質量%、担体の カーボンブラックは Cabot社製のバルカン XC— 72)、 5%ナフイオン溶液(アルドリツ チ社製)、水およびイソプロピルアルコールを質量比で 1: 20: 10: 7にて混合し、均一 に分散させて、触媒含有ペーストを調製した。これをカーボンペーパー (東レ社製)上 に、白金一ルテニウム合計担持量が 0. 5mgZcm2となるよう均一に塗布した後、 15 時間乾燥して第一触媒層 41を作製した。次に、触媒 D、カーボンブラック (Cabot社 製、バルカン XC— 72)、水およびイソプロピルアルコールを質量比で 1: 20: 10: 7で 混合し、均一に分散させて触媒含有ペーストを調製した。これを第一触媒層の上に、 白金—ルテニウム合計担持量が lmgZcm2となるよう均一に塗布した後、 15時間乾 燥して第二触媒層 42を形成し、 2層構造を有するアノードを作製した。以下、アノード を上記 2層構造とした以外は実施例 1と同様にして膜電極接合体を作製し、その発電 試験を行った。結果を表 1に示す。 In this example, the catalyst layer had a two-layer structure as shown in FIG. 2, and the second catalyst layer 42 was formed using the byproduct decomposition catalyst of the present invention. That is, platinum-ruthenium-supported carbon black made by E-TEK (platinum supported amount: 20% by mass, ruthenium supported amount: 10% by mass, carbon black of the carrier is Vulcan XC-72 manufactured by Cabot), 5% naphthion solution (Aldrich), water and isopropyl alcohol were mixed at a mass ratio of 1: 20: 10: 7 and dispersed uniformly to prepare a catalyst-containing paste. This was coated on carbon paper (manufactured by Toray Industries, Inc.) uniformly so that the total supported amount of platinum and ruthenium was 0.5 mgZcm 2, and then dried for 15 hours to produce the first catalyst layer 41. Next, catalyst D, carbon black (Valkan XC-72, manufactured by Cabot), water and isopropyl alcohol were mixed at a mass ratio of 1: 20: 10: 7 and dispersed uniformly to prepare a catalyst-containing paste. This was uniformly coated on the first catalyst layer so that the total supported amount of platinum-ruthenium was lmgZcm 2, and then dried for 15 hours to form the second catalyst layer 42, whereby an anode having a two-layer structure was formed. Produced. Thereafter, a membrane / electrode assembly was prepared in the same manner as in Example 1 except that the anode had the above two-layer structure, and the power generation test was performed. The results are shown in Table 1.
[0053] 実施例 7 触媒 Dに替えて触媒 Βを用いた以外は、実施例 6と同様にして膜電極接合体を製 造し、この膜電極接合体を用いて発電試験を行い、副生する部分酸化物の定量分 析を行った。結果を表 1に示す。 [0053] Example 7 A membrane / electrode assembly was produced in the same manner as in Example 6 except that catalyst Β was used in place of catalyst D, and a power generation test was performed using this membrane / electrode assembly to determine the by-product partial oxide. Analysis was carried out. The results are shown in Table 1.
[表 1][table 1]
Figure imgf000013_0001
[0055] 実施例 1と比較例 1とを比較すると、従来の膜電極接合体である比較例 1では、発 電実験においてアノード側にメタノールの部分酸ィ匕物であるホルムアルデヒド等が発 生している。また、力ソード側でもホルムアルデヒド等が生じている力 これは、おそら く燃料極で副生したメタノールの部分酸ィ匕物が高分子電解質膜を透過したものであ るか、或!ヽはメタノールが高分子電解質膜を透過し力ソード側で部分酸化されたもの と考えられる。一方、副生物分解触媒をアノードに添加した実施例 1では、アノード側 で発生するホルムアルデヒド等を顕著に低減しており、また、力ソード側での副生物を 検出限界以下に抑制している。よって、本発明の副生物分解触媒を触媒層に含む 膜電極接合体を用いると、部分酸ィ匕物の副生を効果的に抑制できることが分力つた
Figure imgf000013_0001
[0055] When Example 1 and Comparative Example 1 are compared, in Comparative Example 1, which is a conventional membrane electrode assembly, formaldehyde or the like, which is a partial acid oxide of methanol, is generated on the anode side in a power generation experiment. ing. In addition, formaldehyde is also generated on the power sword side. This is probably because methanol partial acid oxide by-produced at the fuel electrode permeates the polymer electrolyte membrane. It is thought that methanol permeated the polymer electrolyte membrane and was partially oxidized on the force sword side. On the other hand, in Example 1 in which a by-product decomposition catalyst was added to the anode, formaldehyde generated on the anode side was remarkably reduced, and the by-product on the power sword side was suppressed below the detection limit. Therefore, when a membrane electrode assembly including the by-product decomposition catalyst of the present invention in the catalyst layer is used, it is possible to effectively suppress the by-production of partial acid oxides.
[0056] 実施例 1〜3の結果によれば、本発明の副生物分解触媒において、活性炭の半径 40A以上 100 A未満の細孔容積が 0. 05mlZg以上であれば、より優れた副生物 の発生抑制作用が得られ、当該細孔容積が大きい程その効果は高いことが明らかに なった。 [0056] According to the results of Examples 1 to 3, in the byproduct decomposition catalyst of the present invention, if the pore volume of activated carbon having a radius of 40A or more and less than 100A is 0.05mlZg or more, a better byproduct It was clarified that the effect of suppressing the generation was obtained, and that the larger the pore volume, the higher the effect.
[0057] 実施例 5の結果の通り、本発明の副生物分解触媒を力ソードの触媒層に添加した 場合には、アノード側におけるホルムアルデヒド等の発生は抑制できないが、燃料極 で副生したメタノールの部分酸ィ匕物が高分子電解質膜を透過したもの、或いは高分 子電解質膜を透過したメタノールが部分酸化されたものと考えられる力ソード側での ホルムアルデヒド等の発生を抑制できた。  [0057] As a result of Example 5, when the by-product decomposition catalyst of the present invention was added to the catalyst layer of the power sword, generation of formaldehyde and the like on the anode side could not be suppressed, but methanol produced as a by-product at the fuel electrode. The generation of formaldehyde and the like on the force sword side, which was thought to have been caused by the partial oxidation of the permeation of the polymer electrolyte membrane, or the partial permeation of the methanol permeated through the polymer electrolyte membrane, was suppressed.
[0058] 実施例 4の結果によれば、半径 40A以上 100A未満の細孔容積が 0. 05mlZgよ り低い (0. 03ml/g)活性炭を、アノードにおいて副生物分解触媒の材料として用い た場合でも、ホルムアルデヒド等の発生を抑制できた。しかしその効果は、当該細孔 容積を 0. 05mlZgとして実施例 1〜3に比べれば、低いものであった。  [0058] According to the results of Example 4, when activated carbon is used as the material for the byproduct decomposition catalyst at the anode, the pore volume having a radius of 40A or more and less than 100A is lower than 0.05mlZg (0.03ml / g). However, the generation of formaldehyde and the like could be suppressed. However, the effect was low as compared with Examples 1 to 3 with the pore volume being 0.05 mlZg.
[0059] そこで実施例 6として、触媒層を図 2に示すような第一触媒層と第二触媒層とからな る 2層構造とし、第二触媒層を本発明の副生物分解触媒で形成した膜電極接合体を 用いたところ、上記細孔容積が 0. 05mlZg未満の活性炭を用いた場合でも、ホルム アルデヒド等の発生を顕著に抑制することができた。この結果は、この様な二層構造 が優れた効果を示すことを実証するものである。 また、実施例 7の結果の通り、上記細孔容積が 0. 05mlZg以上である活性炭を用 いた場合、触媒層を 2層構造とすれば、より一層優れた効果が得られる。 Therefore, as Example 6, the catalyst layer has a two-layer structure including a first catalyst layer and a second catalyst layer as shown in FIG. 2, and the second catalyst layer is formed by the byproduct decomposition catalyst of the present invention. When the membrane electrode assembly was used, the generation of formaldehyde and the like could be remarkably suppressed even when the activated carbon having a pore volume of less than 0.05 mlZg was used. This result demonstrates that such a two-layer structure has an excellent effect. Further, as the result of Example 7, when activated carbon having a pore volume of 0.05 mlZg or more is used, a more excellent effect can be obtained if the catalyst layer has a two-layer structure.

Claims

請求の範囲 The scope of the claims
[1] 高分子電解質膜と、その各面にそれぞれアノードおよび力ソードを有する固体高分 子型燃料電池用膜電極接合体であって、  [1] A membrane electrode assembly for a solid polymer fuel cell having a polymer electrolyte membrane and an anode and a force sword on each side thereof,
アノードと力ソードは、それぞれ高分子電解質に接する側に触媒層を有し、 アノードおよび力ソードの少なくとも一方の触媒層が、カーボンブラックに金属成分 が担持された電極触媒に加え、活性炭を構成成分とする副生物分解触媒を含有す ることを特徴とする固体高分子型燃料電池用膜電極接合体。  The anode and force sword each have a catalyst layer on the side in contact with the polymer electrolyte, and at least one of the anode and force sword catalyst layers is added to an electrode catalyst in which a metal component is supported on carbon black, and activated carbon is a constituent component. A membrane electrode assembly for a polymer electrolyte fuel cell, comprising a by-product decomposition catalyst as described above.
[2] 活性炭における半径 40A以上 100A未満の細孔容積が 0. 05mlZg以上である 請求項 1に記載の固体高分子型燃料電池用膜電極接合体。  [2] The membrane electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the pore volume of the activated carbon having a radius of 40A or more and less than 100A is 0.05mlZg or more.
[3] 活性炭における半径 40A以上 100A未満の細孔容積が 0. 2mlZg以上である請 求項 1に記載の固体高分子型燃料電池用膜電極接合体。 [3] The membrane electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the pore volume of the activated carbon having a radius of 40 A or more and less than 100 A is 0.2 mlZg or more.
[4] 副生物分解触媒を含有する触媒層が、電極触媒を有する第一触媒層と、副生物分 解触媒を有する第二触媒層に分割されており、第一触媒層が高分子電解質膜と第 二触媒層との間に配置されているものである請求項 1〜3のいずれかに記載の固体 高分子型燃料電池用膜電極接合体。 [4] The catalyst layer containing the byproduct decomposition catalyst is divided into a first catalyst layer having an electrode catalyst and a second catalyst layer having a byproduct decomposition catalyst, and the first catalyst layer is a polymer electrolyte membrane. The membrane electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the membrane electrode assembly is disposed between the first catalyst layer and the second catalyst layer.
[5] 副生物分解触媒が、白金、ルテニウム、パラジウム、イリジウム、ロジウム、オスミウム[5] By-product decomposition catalyst is platinum, ruthenium, palladium, iridium, rhodium, osmium
、金および銀カゝら選ばれる少なくとも 1つの元素を活性炭に担持したものである請求 項 1〜4のいずれかに記載の固体高分子型燃料電池用膜電極接合体。 The membrane electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 4, wherein at least one element selected from gold, silver and the like is supported on activated carbon.
[6] 請求項 1〜5のいずれかに記載の固体高分子型燃料電池用膜電極接合体を含む 固体高分子型燃料電池。 [6] A polymer electrolyte fuel cell comprising the membrane electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 5.
PCT/JP2005/023289 2004-12-27 2005-12-19 Membrane electrode assembly for solid polymer fuel cell WO2006070635A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006520467A JPWO2006070635A1 (en) 2004-12-27 2005-12-19 Membrane electrode assembly for polymer electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004376953 2004-12-27
JP2004-376953 2004-12-27

Publications (1)

Publication Number Publication Date
WO2006070635A1 true WO2006070635A1 (en) 2006-07-06

Family

ID=36614754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023289 WO2006070635A1 (en) 2004-12-27 2005-12-19 Membrane electrode assembly for solid polymer fuel cell

Country Status (3)

Country Link
JP (1) JPWO2006070635A1 (en)
TW (1) TW200635116A (en)
WO (1) WO2006070635A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041498A (en) * 2006-08-08 2008-02-21 Sharp Corp Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2008288134A (en) * 2007-05-21 2008-11-27 Toyota Motor Corp Fuel cell
WO2008153152A1 (en) * 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly, and membrane-electrode-(gas diffusion layer) assembly and solid polymer fuel cell each comprising the same
WO2014175107A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
WO2014175101A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Method for producing catalyst, electrode catalyst layer using said catalyst, membrane-electrode assembly, and fuel cell
JP2017208204A (en) * 2016-05-17 2017-11-24 日清紡ホールディングス株式会社 Battery electrode, composition for battery electrode catalyst layer, and battery
CN112952124A (en) * 2021-02-25 2021-06-11 中国科学院重庆绿色智能技术研究院 Microbial fuel cell anode based on multi-particle-size carbon material, preparation method thereof and microbial fuel cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008678A (en) * 2000-06-16 2002-01-11 Asahi Glass Co Ltd Solid polymer type fuel cell
JP2004071253A (en) * 2002-08-02 2004-03-04 Toyota Motor Corp Electrocatalyst for fuel cell and fuel cell
JP2004214165A (en) * 2002-12-30 2004-07-29 Samsung Sdi Co Ltd Method of manufacturing electrode for fuel cell
JP2004342505A (en) * 2003-05-16 2004-12-02 Cataler Corp Membrane electrode assembly
JP2005135671A (en) * 2003-10-29 2005-05-26 Nissan Motor Co Ltd Electrode for fuel cell
JP2005174836A (en) * 2003-12-12 2005-06-30 Nissan Motor Co Ltd Solid polymer fuel cell
JP2005339962A (en) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd Polymer membrane electrode jointed body, polymer electrolyte fuel cell and manufacturing method for polymer membrane electrode jointed body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749630B2 (en) * 2001-09-13 2011-08-17 株式会社トクヤマ Manufacturing method of gas diffusion electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008678A (en) * 2000-06-16 2002-01-11 Asahi Glass Co Ltd Solid polymer type fuel cell
JP2004071253A (en) * 2002-08-02 2004-03-04 Toyota Motor Corp Electrocatalyst for fuel cell and fuel cell
JP2004214165A (en) * 2002-12-30 2004-07-29 Samsung Sdi Co Ltd Method of manufacturing electrode for fuel cell
JP2004342505A (en) * 2003-05-16 2004-12-02 Cataler Corp Membrane electrode assembly
JP2005135671A (en) * 2003-10-29 2005-05-26 Nissan Motor Co Ltd Electrode for fuel cell
JP2005174836A (en) * 2003-12-12 2005-06-30 Nissan Motor Co Ltd Solid polymer fuel cell
JP2005339962A (en) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd Polymer membrane electrode jointed body, polymer electrolyte fuel cell and manufacturing method for polymer membrane electrode jointed body

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041498A (en) * 2006-08-08 2008-02-21 Sharp Corp Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2008288134A (en) * 2007-05-21 2008-11-27 Toyota Motor Corp Fuel cell
WO2008153152A1 (en) * 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly, and membrane-electrode-(gas diffusion layer) assembly and solid polymer fuel cell each comprising the same
JP2009021236A (en) * 2007-06-15 2009-01-29 Sumitomo Chemical Co Ltd Membrane-electrode assembly, membrane-electrode-gas diffusion layer assembly having the same, and solid polymer fuel cell
WO2014175107A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
WO2014175101A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Method for producing catalyst, electrode catalyst layer using said catalyst, membrane-electrode assembly, and fuel cell
JP5998276B2 (en) * 2013-04-25 2016-09-28 日産自動車株式会社 Method for producing catalyst, and electrode catalyst layer, membrane electrode assembly and fuel cell using the catalyst
JP6008044B2 (en) * 2013-04-25 2016-10-19 日産自動車株式会社 Fuel cell catalyst, electrode catalyst layer using the fuel cell catalyst, membrane electrode assembly, and fuel cell
JP2017208204A (en) * 2016-05-17 2017-11-24 日清紡ホールディングス株式会社 Battery electrode, composition for battery electrode catalyst layer, and battery
CN112952124A (en) * 2021-02-25 2021-06-11 中国科学院重庆绿色智能技术研究院 Microbial fuel cell anode based on multi-particle-size carbon material, preparation method thereof and microbial fuel cell

Also Published As

Publication number Publication date
TW200635116A (en) 2006-10-01
JPWO2006070635A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
US9548500B2 (en) Carbon supported catalyst
JP5425771B2 (en) catalyst
US7589043B2 (en) Supported catalyst, electrode using the supported catalyst and fuel cell including the electrode
JP5556434B2 (en) Gas diffusion electrode and method for producing the same, membrane electrode assembly and method for producing the same
KR102613427B1 (en) Catalysts for electrodes, compositions for forming gas diffusion electrodes, gas diffusion electrodes, membrane-electrode assemblies, and fuel cell stacks
EP3734728A1 (en) Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell
JP5458503B2 (en) Method for producing electrolyte membrane-electrode assembly
JP2007307554A (en) Supported catalyst, its manufacturing method, electrode using this, and fuel cell
WO2006070635A1 (en) Membrane electrode assembly for solid polymer fuel cell
JP2009026501A (en) Electrolyte membrane-electrode assembly
US20090068546A1 (en) Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
JP2008077974A (en) Electrode
JP2005353408A (en) Fuel cell
KR20060104821A (en) Catalyst for fuel cell, preparation method thereof, and fuel cell system comprising the same
US20080113256A1 (en) Membrane electrode assembly for fuel cell, method of preparing same, and fuel cell system including the same
JP2007242423A (en) Membrane-electrode assembly, and solid polymer fuel cell using this
JP2003317737A (en) Fuel cell, catalyst electrode using it and solid electrolyte film
JP2008140703A (en) Composition material for battery, and film containing the same
JP4534590B2 (en) Solid oxide fuel cell
Kolary-Zurowska et al. Activation of methanol-tolerant carbon-supported RuSe x electrocatalytic nanoparticles towards more efficient oxygen reduction
JP2005141920A (en) Catalyst carrying electrode
JP2006079917A (en) Mea for fuel cell, and fuel cell using this
JP2008004402A (en) Anode for direct methanol fuel cell, and direct methanol fuel cell using it
JP2007250214A (en) Electrode catalyst and its manufacturing method
JP2009151980A (en) Diffusion electrode for fuel cell, and electrolyte membrane-electrode assembly

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006520467

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05816570

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5816570

Country of ref document: EP