JP2004342505A - Membrane electrode assembly - Google Patents

Membrane electrode assembly Download PDF

Info

Publication number
JP2004342505A
JP2004342505A JP2003139019A JP2003139019A JP2004342505A JP 2004342505 A JP2004342505 A JP 2004342505A JP 2003139019 A JP2003139019 A JP 2003139019A JP 2003139019 A JP2003139019 A JP 2003139019A JP 2004342505 A JP2004342505 A JP 2004342505A
Authority
JP
Japan
Prior art keywords
catalyst
supported
platinum
anode
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003139019A
Other languages
Japanese (ja)
Other versions
JP4472943B2 (en
Inventor
Tomoaki Terada
智明 寺田
Toshiharu Tabata
寿晴 田端
Nobuo Yoshitoshi
信雄 吉年
Tatsuya Kawahara
竜也 川原
Souzaburo Ohashi
聡三郎 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp filed Critical Cataler Corp
Priority to JP2003139019A priority Critical patent/JP4472943B2/en
Publication of JP2004342505A publication Critical patent/JP2004342505A/en
Application granted granted Critical
Publication of JP4472943B2 publication Critical patent/JP4472943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane electrode assembly for a solid polymer fuel cell in which high battery voltage can be realized even in the case humidification amount is reduced. <P>SOLUTION: The membrane electrode assembly 1 for the solid polymer fuel cell is equipped with an anode 2, a cathode 3 opposed to the anode 2, and a proton conductive solid electrolyte layer 4 interposed between these. The anode 2 contains a first carrying catalyst 5a in which at least one side 51a of platinum and platinum alloy is carried by a carbon carrier 52a of particle shape and a second carrying catalyst 5b in which at least one 51b of platinum and platinum alloy is carried by a hydrophilic carrier 52b of particle shape having a hydrophilic property higher than the above carbon carrier 52a, and the weight ratio of the second carrying catalyst 5b against the first carrying catalyst 5a is within 0.01 to 0.30. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池用の膜電極接合体に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、その主要部として、プロトン電導性固体電解質層を一対の電極層で挟んでなる膜電極接合体を備えている。それら電極層,すなわちアノード及びカソード,は、ガス拡散性の触媒層であり、白金または白金合金を粒子状のカーボン担体に担持してなる担持触媒とプロトン電導性固体電解質とを含んでいる。
【0003】
この膜電極接合体は、アノードに水素ガスを供給するとともにカソードに酸素ガス,典型的には空気,を供給すると、アノードとカソードとの間に起電力を生じる。より詳細には、アノードでは、白金の触媒としての作用により水素が酸化されて、プロトンと電子とを生じる。ここで生じた電子はカーボン担体などを導体路としてアノードから外部回路へと取り出され、プロトンはアノードからプロトン電導性固体電解質層を経由してカソードへと移動する。カソードに到達したプロトンは、白金の触媒としての作用により、外部回路からカーボン担体などを導体路として供給される電子及び酸素と反応して水を生じる。固体高分子型燃料電池は、このような現象を利用して、水素ガスと酸素ガスとから電気エネルギーを生成する。
【0004】
上述の現象を効率的に生じさせるためには、プロトン電導性固体電解質を常に湿潤状態に維持する必要がある。そこで、固体高分子型燃料電池システムには、水素ガス及び酸素ガスを加湿するための加湿器を設けている。
【0005】
また、通常、プロトンは、水素イオン(H)としてではなく、オキソニウムイオン(H)としてアノードからカソードへと移動し、その移動の際にさらなる水分子を同伴する。他方、カソードでは、水素と酸素との反応生成物として水を生じる。すなわち、上述した発電を続けると、アノードでは水が不足し、カソードでは水が余剰する。そこで、固体高分子型燃料電池システムでは、上記のように加湿器を設けてプロトン電導性固体電解質の水分管理を行うのに加え、カソードから余剰水が速やかに排出され得る構成を採用している(例えば、以下の特許文献1を参照のこと)。
【0006】
ところで、近年、固体高分子型燃料電池システムには、その小型化が要求されている。そのため、加湿器にも、より小型であること,すなわち、より容量の小さなもの,であることが望まれる。
【0007】
しかしながら、容量の小さな加湿器を使用すると、プロトン電導性固体電解質層やアノードで水分が不足しがちになる。そのため、電池電圧が低下するという問題を生じる。
【0008】
【特許文献1】
特開平8−227716号公報
【0009】
【発明が解決しようとする課題】
本発明の目的は、加湿量を低減した場合であっても高い電池電圧を実現可能な固体高分子型燃料電池用の膜電極接合体を提供することにある。
【0010】
【課題を解決するための手段】
本発明によると、アノードと、前記アノードに対向したカソードと、それらの間に介在したプロトン電導性固体電解質層とを具備し、前記アノードは、白金及び白金合金の少なくとも一方を粒子状のカーボン担体に担持してなる第1担持触媒と、白金及び白金合金の少なくとも一方を前記カーボン担体よりも親水性が高い粒子状の親水性担体に担持してなる第2担持触媒とを含有し、前記第1担持触媒に対する前記第2担持触媒の重量比は0.01乃至0.30の範囲内にあることを特徴とする固体高分子型燃料電池用の膜電極接合体が提供される。
【0011】
また、本発明によると、アノードと、前記アノードに対向したカソードと、それらの間に介在したプロトン電導性固体電解質層とを具備し、前記アノードは、白金及び白金合金の少なくとも一方を粒子状のカーボン担体に担持してなる担持触媒と、前記カーボン担体よりも親水性が高い親水性粒子とを含有し、前記担持触媒に対する前記親水性粒子の重量比は0.01乃至0.30の範囲内にあることを特徴とする固体高分子型燃料電池用の膜電極接合体が提供される。
【0012】
親水性担体や親水性粒子は、ゼオライト及びチタニアの少なくとも一方であってもよい。
第2担持触媒の白金担持量は80重量%以下であってもよい。
【0013】
カソードは、白金及び白金合金の少なくとも一方を粒子状のカーボン担体に担持してなる第3担持触媒を含有していてもよい。この第3担持触媒は、例えば、白金及び白金合金の少なくとも一方を粒子状のカーボン担体に担持してなるとともに比表面積が300m/g乃至1000m/gの範囲内にある高比表面積担持触媒と、白金及び白金合金の少なくとも一方を粒子状のカーボン担体に担持してなるとともに比表面積が高比表面積担持触媒の比表面積よりも50m/g以上小さく且つ50m/g乃至250m/gの範囲内にある低比表面積担持触媒とを混合してなるものであってもよい。この場合、高比表面積担持触媒に対する低比表面積担持触媒の重量比を0.01乃至0.30の範囲内として、第3担持触媒の比表面積を225m/g乃至1000m/gの範囲内としてもよい。
【0014】
なお、以下、簡略化のため、「白金及び白金合金の少なくとも一方」を「白金触媒」と呼ぶこととする。また、ここで使用する用語「担持量」または「白金担持量」は白金触媒のそれを担持した担持触媒に対する割合を意味し、用語「比表面積」はBET吸着等温式を利用して得られる比表面積(BET比表面積)を意味している。
【0015】
【発明の実施の形態】
以下、本発明の実施形態について、図面を参照しながら説明する。
図1は、本発明の一実施形態に係る固体高分子型燃料電池用の膜電極接合体を概略的に示す断面図である。
【0016】
この膜電極接合体1は、アノード2及びカソード3と、それらの間に介在したプロトン電導性固体電解質層4とを備えている。
【0017】
アノード2は、白金触媒,すなわち白金及び白金合金の少なくとも一方,51aを粒子状のカーボン担体52aに担持してなる第1担持触媒5aと、白金触媒51bを粒子状の親水性担体52bに担持してなる第2担持触媒5bと、プロトン電導性固体電解質6とを含んでいる。他方、カソード3は、白金触媒51cを粒子状のカーボン担体52cに担持してなる第3担持触媒5cと、プロトン電導性固体電解質6とを含んでいる。また、プロトン電導性固体電解質層4は、プロトン電導性固体電解質6を含んでいる。
【0018】
この膜電極接合体1において、親水性担体52bは、カーボン担体52aよりも親水性が高い。そのため、膜電極接合体1のアノード2は、担持触媒として第1担持触媒5aのみを用いたアノードに比べ、保水性に優れている。すなわち、アノード2に先の構造を採用すると、オキソニウムイオンのアノード2からカソード3への移動に同伴する水分子の量を低減することができ、アノード2を常に十分な湿潤状態に維持することができる。
【0019】
但し、アノード2における第1担持触媒5aに対する第2担持触媒5bの重量比が小さい場合、アノードの保水性を向上させる効果が顕著には現われない。そこで、本実施形態では、アノード2における第1担持触媒5aに対する第2担持触媒5bの重量比を0.01以上とする。
【0020】
また、アノード2における第1担持触媒5aに対する第2担持触媒5bの重量比が大きい場合、水分子に対する親和性が過剰に高くなり、アノード2からプロトン電導性固体電解質層4への水の供給やオキソニウムイオンのアノード2からカソード3への移動が妨げられることがある。加えて、親水性担体52bは一般には絶縁体であるため、アノード2における第1担持触媒5aに対する第2担持触媒5bの重量比が大きい場合、アノード2中を電子が流れ難くなることがある。そこで、本実施形態では、アノード2における第1担持触媒5aに対する第2担持触媒5bの重量比を0.30以下とする。
【0021】
このように、本実施形態では、オキソニウムイオン及び電子の移動を殆んど妨げることなく、アノード2及びプロトン電導性固体電解質層4を常に十分な湿潤状態に維持するとともに、オキソニウムイオンのアノード2からカソード3への移動に同伴する水分子の量を低減することができる。したがって、本実施形態によると、加湿量を低減した場合であっても高い電池電圧を実現可能となる。
【0022】
本実施形態において、アノード2における第1担持触媒5aに対する第2担持触媒5bの重量比は、0.05乃至0.25の範囲内にあることが好ましい。この場合、低加湿時により高い電池電圧が得られる。
【0023】
白金触媒51a乃至51cとしては、白金を使用してもよく、或いは、白金合金を使用してもよく、或いは、それらを混合して使用してもよい。白金と合金を形成して白金触媒51a乃至51cとして使用可能な元素としては、例えば、白金以外の白金族、金、コバルト、クロム、ニッケル、鉄、モリブデン、タングステン、レニウム、アルミニウム、珪素、亜鉛及び錫などを挙げることができる。また、白金触媒51a乃至51cとして白金合金を使用する場合、それらに占める白金の割合は、通常、30原子%乃至90原子%程度とする。
【0024】
白金触媒51a乃至51cの平均粒径は、1nm乃至5nm程度であることが好ましい。白金触媒51a乃至51cの平均粒径を1nm以上とすると、それらの凝集を抑制することができる。また、白金触媒51a乃至51cの平均粒径を5nm以下とすると、それらの比表面積が大きくなり、その触媒としての能力を十分に引き出すことができる。
【0025】
担持触媒5a,5cの白金担持量は、5重量%乃至80重量%程度とすることが望ましく、20重量%乃至80重量%程度とすることがより望ましい。白金担持量が先の下限値以上である場合、固体高分子型燃料電池の電流電圧特性を向上させるうえで有利である。また、白金担持量が約80重量%以下である場合、白金触媒51a乃至51cの比表面積を高めるうえで有利であり、また、コストの観点でも有利である。
【0026】
担持触媒5bの白金担持量は、約80重量%以下であることが好ましく、約50重量%以下であることがより好ましい。担持触媒5bの担持量が先の上限値以下である場合、白金触媒51a乃至51cの比表面積を高めるうえで有利であり且つコストの観点でも有利である。さらに、担持触媒5bの担持量を先の上限値以下とすると、親水性担体52bの白金触媒51bから露出した表面が十分に広くなる。そのため、担持触媒5aに対する担持触媒5bの重量比が小さい場合であっても、アノード2の保水性を十分に高めることができる。
【0027】
また、担持触媒5bの白金担持量は、約5重量%以上であることが好ましい。この場合、より効率的に水素を酸化することができ、したがって、より高い電池電圧を実現することができる。
【0028】
カーボン担体52a,52cとしては、例えば、カーボンブラックや活性炭などを使用することができる。また、親水性担体52bとしては、例えば、ゼオライトやチタニアなどを使用することができる。
これら担体52a乃至52cとしては、通常、平均粒径が約100nm以下のものを使用する。
【0029】
第3担持触媒5cのBET比表面積は、225m/g乃至1000m/gの範囲内にあることが望ましく、300m/g乃至700m/gの範囲内にあることがより望ましい。特に、第3担持触媒5cとして、以下に説明するようにBET比表面積がより大きな高比表面積担持触媒とBET比表面積がより小さな低比表面積担持触媒とを混合したものを使用した場合、カソード3から余剰水を速やかに排出させることができる。
【0030】
すなわち、例えば、BET比表面積が300m/g乃至1000m/gの範囲内にある高比表面積担持触媒70重量部と、BET比表面積がそれよりも50m/g以上小さく且つ50m/g乃至250m/gの範囲内にある低比表面積担持触媒1重量部乃至30重量部とを混合することにより、BET比表面積が225m/g乃至775m/gの範囲内にある担持触媒を得る。このような担持触媒を第3担持触媒5cとして使用すると、カソード3から余剰水を速やかに排出させることができる。
【0031】
或いは、BET比表面積が300m/g乃至1000m/gの範囲内にある高比表面積担持触媒99重量部と、BET比表面積がそれよりも50m/g以上小さく且つ50m/g乃至250m/gの範囲内にある低比表面積担持触媒1重量部とを混合することにより、BET比表面積が297m/g乃至993m/gの範囲内にある担持触媒を得る。このような担持触媒を第3担持触媒5cとして使用すると、カソード3から余剰水をより速やかに排出させることができる。
【0032】
アノード2、カソード3及びプロトン電導性固体電解質層4中のプロトン電導性固体電解質6は水を含んでいる。プロトン電導性固体電解質6としては、例えば、−SO 基を有するプロトン電導性固体電解質を使用することができる。そのようなプロトン電導性固体電解質としては、例えばナフィオンに代表される以下の構造式に示すようなパーフルオロスルホン酸イオノマーを使用することが好ましい。また、図1に示す膜電極接合体1では、アノード2とカソード3とプロトン電導性固体電解質層4とに同種のプロトン電導性固体電解質6を使用してもよく、或いは、それらには互いに異なる種類のプロトン電導性固体電解質6を使用してもよい。
【0033】
【化1】

Figure 2004342505
【0034】
なお、上記の実施形態では、親水性担体52bに白金触媒51bを担持させたが、親水性担体52bに白金触媒51bを担持させない場合であっても上述した効果を得ることができる。すなわち、親水性担体52bは白金触媒51bを担持していない親水性粒子としてアノード2中に存在していてもよい。
【0035】
【実施例】
以下、本発明の実施例について説明する。
・触媒粉末[A−1]の調製
以下の方法により、カソード3に使用する第3担持触媒5cを調製した。
まず、比表面積が約1000m/gの市販のカーボン粉末5.0gを0.2Lの純水中に分散させた。次いで、この分散液中に、5.0gの白金を含むヘキサヒドロキソ白金硝酸溶液を滴下した。さらに1Lの純水を滴下した後、分散液を濾過した。
【0036】
次に、濾過ケークを洗浄し、再度、1Lの純水中に分散させた。次いで、この分散液中に0.01Nのアンモニア水溶液を約5mL添加してpHを約9に調節し、これに、還元剤として、4gの水素化硼素ナトリウムを純水中に溶解してなる溶液を滴下した。その後、この分散液を濾過し、得られた濾過ケークを80℃で48時間乾燥させた。
【0037】
以上のようにして、白金51cをカーボン担体52cに担持してなる担持量が50.0重量%の担持触媒5cを得た。以下、この担持触媒5cを触媒粉末[A−1]と呼ぶ。なお、この触媒粉末[A−1]は、カソード3に含まれる第3担持触媒5cのうちの高比表面積担持触媒として利用する。
【0038】
・触媒粉末[B−1]乃至[B−6]の調製
以下の方法により、アノード2に使用する第1担持触媒5aを調製した。
すなわち、比表面積が約1000m/gの市販のカーボン粉末5.0gの代わりに比表面積が約250m/gの市販のカーボン粉末7.0gを使用し且つヘキサヒドロキソ白金硝酸溶液中の白金含量を3.0gとしたこと以外は、触媒粉末[A−1]に関して上述したのと同様の方法により、白金51aをカーボン担体52aに担持してなる担持量が30.0重量%の担持触媒5aを得た。以下、この担持触媒5aを触媒粉末[B−1]と呼ぶ。
【0039】
次に、カーボン担体52aの量とヘキサヒドロキソ白金硝酸溶液中の白金濃度とを適宜変更したこと以外は触媒粉末[B−1]に関して上述したのと同様の方法により、白金51aの担持量が0重量%、10重量%、50重量%、70重量%、90重量%の担持触媒5aを得た。以下、これら担持触媒5aを、それぞれ、触媒粉末[B−2]乃至[B−6]と呼ぶ。
【0040】
なお、これら触媒粉末[B−1]乃至[B−6]は、アノード2に含まれる第1担持触媒5aとして利用する。また、これら触媒粉末[B−1]乃至[B−6]は、カソード3に含まれる第3担持触媒5cのうちの低比表面積担持触媒としても利用する。
【0041】
・触媒粉末[C−1]乃至[C−6]の調製
以下の方法により、アノード2に使用する第2担持触媒5bを調製した。
まず、ゼオライト担体52bとして、Alに対するSiOのモル比が10程度のモルデナイト型ゼオライトを準備した。このゼオライトをカーボン粉末の代わりに使用し且つヘキサヒドロキソ白金硝酸溶液中の白金含量を3.0gとしたこと以外は、触媒粉末[A−1]に関して上述したのと同様の方法により、白金51bをゼオライト担体52bに担持してなる担持量が30.0重量%の担持触媒5bを得た。以下、この担持触媒5bを触媒粉末[C−1]と呼ぶ。
【0042】
次に、ゼオライト担体52bの量とヘキサヒドロキソ白金硝酸溶液中の白金濃度とを適宜変更したこと以外は触媒粉末[C−1]に関して上述したのと同様の方法により、白金51bの担持量が0重量%、10重量%、50重量%、70重量%、90重量%の担持触媒5bを得た。以下、これら担持触媒5bを、それぞれ、触媒粉末[C−2]乃至[C−6]と呼ぶ。
【0043】
・触媒粉末の物性測定
先の方法により調製した触媒粉末[A−1],[B−1]乃至[B−6],[C−1]乃至[C−6]について、約39℃の温度のもとX線回折計により白金の(111)面のX線回折ピークを測定し、その半価幅から白金触媒51a乃至51cの平均粒径を算出した。また、触媒粉末[A−1],[B−1]乃至[B−6],[C−1]乃至[C−6]について、BET比表面積を調べた。その結果を以下の表1に示す。
【0044】
【表1】
Figure 2004342505
【0045】
・カソード用触媒層[D−0]の作製
以下の方法によりカソード3に用いる触媒層を作製した。
【0046】
まず、触媒粉末[A−1]のみを有機溶剤中に添加し、それを超音波ホモジナイザで有機溶剤中に均一に分散させた。次いで、この分散液をテフロンシート上に塗布し、この塗膜を乾燥させることにより、電極面積1cm当りの触媒目付量が0.4mgの触媒層を得た。以下、この触媒層を、触媒層[D−0]と呼ぶ。
【0047】
・カソード用触媒層[D−1]乃至[D−6]の作製
以下の方法によりカソード3に用いる触媒層を作製した。
【0048】
まず、100重量部の触媒粉末[A−1]と15重量部の触媒粉末[B−1]とを有機溶剤中に添加し、それらを超音波ホモジナイザで有機溶剤中に均一に分散させた。次いで、この分散液をテフロンシート上に塗布し、この塗膜を乾燥させることにより、電極面積1cm当りの触媒目付量が0.4mgの触媒層を得た。以下、この触媒層を、触媒層[D−1]と呼ぶ。
【0049】
次に、100重量部の触媒粉末[A−1]に対し、1重量部、5重量部、10重量部、30重量部、40重量部の触媒粉末[B−1]を使用したこと以外は、触媒層[D−1]に関して説明したのと同様の方法により、電極面積1cm当りの触媒目付量が0.4mgの触媒層を得た。以下、これら触媒層を、触媒層[D−2]乃至[D−6]と呼ぶ。
【0050】
・カソード用触媒層[D−7]乃至[D−11]の作製
以下の方法によりカソード3に用いる触媒層を作製した。
【0051】
まず、100重量部の触媒粉末[A−1]と15重量部の触媒粉末[B−2]とを有機溶剤中に添加し、それらを超音波ホモジナイザで有機溶剤中に均一に分散させた。次いで、この分散液をテフロンシート上に塗布し、この塗膜を乾燥させることにより、電極面積1cm当りの触媒目付量が0.4mgの触媒層を得た。以下、この触媒層を、触媒層[D−7]と呼ぶ。
【0052】
次に、触媒粉末[B−2]の代わりに触媒粉末[B−3]乃至[B−6]を使用したこと以外は、触媒層[D−7]に関して説明したのと同様の方法により、電極面積1cm当りの触媒目付量が0.4mgの触媒層を得た。以下、これら触媒層を、触媒層[D−8]乃至[D−11]と呼ぶ。
【0053】
・アノード用触媒層[E−0]の作製
以下の方法によりアノード2に用いる触媒層を作製した。
【0054】
まず、触媒粉末[B−1]のみを有機溶剤中に添加し、それを超音波ホモジナイザで有機溶剤中に均一に分散させた。次いで、この分散液をテフロンシート上に塗布し、この塗膜を乾燥させることにより、電極面積1cm当りの触媒目付量が0.5mgの触媒層を得た。以下、この触媒層を、触媒層[E−0]と呼ぶ。
【0055】
・アノード用触媒層[E−1]乃至[E−6]の作製
以下の方法によりアノード2に用いる触媒層を作製した。
【0056】
まず、100重量部の触媒粉末[B−1]と15重量部の触媒粉末[C−1]とを有機溶剤中に添加し、それらを超音波ホモジナイザで有機溶剤中に均一に分散させた。次いで、この分散液をテフロンシート上に塗布し、この塗膜を乾燥させることにより、電極面積1cm当りの触媒目付量が0.5mgの触媒層を得た。以下、この触媒層を、触媒層[E−1]と呼ぶ。
【0057】
次に、100重量部の触媒粉末[B−1]に対し、1重量部、5重量部、10重量部、30重量部、40重量部の触媒粉末[C−1]を使用したこと以外は、触媒層[E−1]に関して説明したのと同様の方法により、電極面積1cm当りの触媒目付量が0.5mgの触媒層を得た。以下、これら触媒層を、触媒層[E−2]乃至[E−6]と呼ぶ。
【0058】
・アノード用触媒層[E−7]乃至[E−11]の作製
以下の方法によりアノード2に用いる触媒層を作製した。
【0059】
まず、100重量部の触媒粉末[B−1]と15重量部の触媒粉末[C−2]とを有機溶剤中に添加し、それらを超音波ホモジナイザで有機溶剤中に均一に分散させた。次いで、この分散液をテフロンシート上に塗布し、この塗膜を乾燥させることにより、電極面積1cm当りの触媒目付量が0.5mgの触媒層を得た。以下、この触媒層を、触媒層[E−7]と呼ぶ。
【0060】
次に、触媒粉末[C−2]の代わりに触媒粉末[C−3]乃至[C−6]を使用したこと以外は、触媒層[E−7]に関して説明したのと同様の方法により、電極面積1cm当りの触媒目付量が0.5mgの触媒層を得た。以下、これら触媒層を、触媒層[E−8]乃至[E−11]と呼ぶ。
【0061】
このようにして得られた各触媒層の組成を以下の表2及び表3に纏める。
【0062】
【表2】
Figure 2004342505
【0063】
【表3】
Figure 2004342505
【0064】
・膜電極接合体の作製
カソード3に触媒層[D−0]乃至[D−11]の何れかを使用するとともに、アノード2に触媒層[E−0]乃至[E−11]の何れかを使用した複数の膜電極接合体1を作製した。具体的には、触媒層[D−m]と触媒層[E−n]とをプロトン電導性固体電解質層4を介してホットプレスにより貼り合せた。
【0065】
・膜電極接合体の評価
上記の膜電極接合体1について、以下の方法で特性を評価した。
【0066】
すなわち、まず、カソード3に触媒層[D−0]を使用し且つアノード2に触媒層[E−0]を使用した膜電極接合体1を測定用セルに組み込み、アノード2には所定の流量で水素ガスを供給し、カソード3には所定の流量で空気を供給した。このような条件のもと、フル加湿時の電流電圧特性と低加湿時の電流電圧特性とを測定した。なお、水素ガス及び空気への加湿は、それらガスを温水中にバブリングさせることにより行った。また、水素ガス加湿用及び空気加湿用の温水の温度は、以下の表4に示すように設定した。
【0067】
【表4】
Figure 2004342505
【0068】
図2は、カソード3に触媒層[D−0]を使用し且つアノード2に触媒層[E−0]を使用した膜電極接合体1について得られた電流電圧特性を示すグラフである。図中、横軸は電流密度を示し、縦軸は電池電圧を示している。また、図中、曲線11はフル加湿時に得られた電流電圧特性を示し、曲線12は低加湿時に得られた電流電圧特性を示している。
【0069】
電流密度が0.5A/cmである場合の電池電圧を比較すると、図2に示すように、この膜電極接合体1の電池電圧は、フル加湿時では約0.78Vと十分に高いが、低加湿時では約0.72Vにまで低下している。すなわち、カソード3に触媒層[D−0]を使用し且つアノード2に触媒層[E−0]を使用した膜電極接合体1では、加湿量を低減した場合に高い電池電圧を実現することができない。
【0070】
次に、カソード3に触媒層[D−0]を使用し且つアノード2に触媒層[E−0]乃至[E−6]の何れかを使用した各膜電極接合体1について、先と同様の条件のもとで、フル加湿時の電流電圧特性と低加湿時の電流電圧特性とを測定した。
【0071】
図2に、カソード3に触媒層[D−0]を使用し且つアノード2に触媒層[E−1]を使用した膜電極接合体1について得られたフル加湿時の電流電圧特性及び低加湿時の電流電圧特性をそれぞれ曲線13,14で示す。図2に示すように、カソード3に触媒層[D−0]を使用し且つアノード2に触媒層[E−1]を使用した膜電極接合体1では、フル加湿時の電流電圧特性と低加湿時の電流電圧特性とは殆んど等しかった。また、フル加湿時の電流電圧特性と低加湿時の電流電圧特性との差は、触媒粉末[B−1]に対する触媒粉末[C−1]の重量比が大きいほど小さくなる傾向にあった。
【0072】
次いで、フル加湿時の電流電圧特性及び低加湿時の電流電圧特性から電流密度が0.5A/cmである場合の電池電圧を求め、それらの比較を行った。
【0073】
図3は、アノード2の組成と低加湿時の電池電圧との関係を示すグラフである。図中、横軸は、アノード2中における触媒粉末[B−1]に対する触媒粉末[C−1]の重量比を百分率で示している。アノード2の保水性は、この重量比が大きいほど高くなる。また、図中、縦軸は、低加湿時に電流密度を0.5A/cmとした場合の電池電圧を示している。
【0074】
図3に示すように、触媒粉末[B−1]に対する触媒粉末[C−1]の重量比が1%乃至30%の範囲内にある場合、低加湿時に十分に高い電池電圧が得られた。特に、触媒粉末[B−1]に対する触媒粉末[C−1]の重量比が約5%乃至約25%の範囲内にある場合、低加湿時であっても極めて高い電池電圧が得られた。
【0075】
次に、カソード3に触媒層[D−0]乃至[D−6]の何れかを使用し且つアノード2に触媒層[E−1]を使用した各膜電極接合体1について、先と同様の条件のもとで、フル加湿時の電流電圧特性と低加湿時の電流電圧特性とを測定した。
【0076】
このようにして得られたフル加湿時の電流電圧特性及び低加湿時の電流電圧特性とを比較したところ、何れの膜電極接合体1でも、カソード3に触媒層[D−0]を使用し且つアノード2に触媒層[E−0]を使用した場合ほど、低加湿時に電池電圧が低下することはなかった。
【0077】
また、フル加湿時の電流電圧特性及び低加湿時の電流電圧特性から電流密度が0.5A/cmである場合の電池電圧を求め、それらの比較を行った。
【0078】
図4は、カソード3の組成と低加湿時の電池電圧との関係を示すグラフである。図中、横軸は、カソード3中における触媒粉末[A−1]に対する触媒粉末[B−1]の重量比を百分率で示しており、縦軸は、低加湿時に電流密度を0.5A/cmとした場合の電池電圧を示している。
【0079】
図4に示すように、触媒粉末[A−1]に対する触媒粉末[B−1]の重量比が1%乃至30%の範囲内にある場合、低加湿時により高い電池電圧が得られた。特に、触媒粉末[A−1]に対する触媒粉末[B−1]の重量比が約5%乃至約25%の範囲内にある場合、極めて高い電池電圧が得られた。
【0080】
次に、カソード3に触媒層[D−1]及び[D−7]乃至[D−11]の何れかを使用し且つアノード2に触媒層[E−1]を使用した各膜電極接合体1について、先と同様の条件のもとで、フル加湿時の電流電圧特性と低加湿時の電流電圧特性とを測定した。
【0081】
このようにして得られたフル加湿時の電流電圧特性及び低加湿時の電流電圧特性とを比較したところ、何れの膜電極接合体1でも、カソード3に触媒層[D−0]を使用し且つアノード2に触媒層[E−0]を使用した場合ほど、低加湿時に電池電圧が低下することはなかった。
【0082】
また、フル加湿時の電流電圧特性及び低加湿時の電流電圧特性から電流密度が0.5A/cmである場合の電池電圧を求め、それらの比較を行った。
【0083】
図5は、カソード3に含まれる低比表面積担持触媒の白金担持量と低加湿時の電池電圧との関係を示すグラフである。図中、横軸は、カソード3に含まれる低比表面積担持触媒の白金担持量を示しており、縦軸は、低加湿時に電流密度を0.5A/cmとした場合の電池電圧を示している。
【0084】
図5に示すように、低比表面積担持触媒の白金担持量が約5重量%乃至約80重量%の範囲内にある場合に高い電池電圧が得られた。特に、低比表面積担持触媒の白金担持量が約5重量%乃至約80重量%の範囲内にある場合により高い電池電圧が得られ、約20重量%乃至約70重量%の範囲内にある場合に極めて高い電池電圧が得られた。
【0085】
次に、カソード3に触媒層[D−1]を使用し且つアノード2に触媒層[E−1]及び[E−7]乃至[E−11]の何れかを使用した各膜電極接合体1について、先と同様の条件のもとで、フル加湿時の電流電圧特性と低加湿時の電流電圧特性とを測定した。
【0086】
このようにして得られたフル加湿時の電流電圧特性及び低加湿時の電流電圧特性とを比較したところ、何れの膜電極接合体1でも、カソード3に触媒層[D−0]を使用し且つアノード2に触媒層[E−0]を使用した場合ほど、低加湿時に電池電圧が低下することはなかった。
【0087】
また、フル加湿時の電流電圧特性及び低加湿時の電流電圧特性から電流密度が0.5A/cmである場合の電池電圧を求め、それらの比較を行った。
【0088】
図6は、アノード2に含まれる親水性担持触媒5bの白金担持量と低加湿時の電池電圧との関係を示すグラフである。図中、横軸は、アノード2に含まれる親水性担持触媒5bの白金担持量を示しており、縦軸は、低加湿時に電流密度を0.5A/cmとした場合の電池電圧を示している。
【0089】
図6に示すように、アノード2に含まれる親水性担持触媒5bの白金担持量が約80重量%以下である場合に高い電池電圧が得られた。特に、アノード2に含まれる親水性担持触媒5bの白金担持量が約5重量%乃至約80重量%の範囲内にある場合により高い電池電圧が得られ、約5重量%乃至約50重量%の範囲内にある場合に極めて高い電池電圧が得られた。
【0090】
【発明の効果】
以上説明したように、本発明によると、加湿量を低減した場合であっても高い電池電圧を実現可能な固体高分子型燃料電池用の膜電極接合体が提供される。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る固体高分子型燃料電池用の膜電極接合体を概略的に示す断面図。
【図2】本発明の実施例に係る膜電極接合体について得られた電流電圧特性を示すグラフ。
【図3】アノードの組成と低加湿時の電池電圧との関係を示すグラフ。
【図4】カソードの組成と低加湿時の電池電圧との関係を示すグラフ。
【図5】カソードに含まれる低比表面積担持触媒の白金担持量と低加湿時の電池電圧との関係を示すグラフ。
【図6】アノードに含まれる親水性担持触媒の白金担持量と低加湿時の電池電圧との関係を示すグラフ。
【符号の説明】
1…膜電極接合体、2…アノード、3…カソード、4…プロトン電導性固体電解質層、5a…担持触媒、5b…担持触媒、5c…担持触媒、6…プロトン電導性固体電解質、11…曲線、12…曲線、13…曲線、14…曲線、51a…白金触媒、51b…白金触媒、51c…白金触媒、52a…カーボン担体、52b…親水性担体、52c…カーボン担体。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a membrane electrode assembly for a polymer electrolyte fuel cell.
[0002]
[Prior art]
The polymer electrolyte fuel cell includes, as a main part thereof, a membrane electrode assembly in which a proton conductive solid electrolyte layer is sandwiched between a pair of electrode layers. The electrode layers, that is, the anode and the cathode, are gas diffusion catalyst layers, and include a supported catalyst comprising platinum or a platinum alloy supported on a particulate carbon carrier and a proton-conductive solid electrolyte.
[0003]
This membrane electrode assembly generates an electromotive force between the anode and the cathode when hydrogen gas is supplied to the anode and oxygen gas, typically air, is supplied to the cathode. More specifically, at the anode, hydrogen is oxidized by the action of platinum as a catalyst to produce protons and electrons. The electrons generated here are taken out from the anode to an external circuit using a carbon carrier or the like as a conductor path, and the protons move from the anode to the cathode via the proton conductive solid electrolyte layer. The protons that have reached the cathode react with the electrons and oxygen supplied from the external circuit through a carbon carrier or the like as conductor paths by the action of platinum as a catalyst to produce water. The polymer electrolyte fuel cell utilizes such a phenomenon to generate electric energy from hydrogen gas and oxygen gas.
[0004]
In order for the above phenomenon to occur efficiently, it is necessary to keep the proton conductive solid electrolyte in a wet state at all times. Therefore, the polymer electrolyte fuel cell system is provided with a humidifier for humidifying the hydrogen gas and the oxygen gas.
[0005]
Usually, protons are hydrogen ions (H+), But not as an oxonium ion (H3O+) From the anode to the cathode, entraining additional water molecules during the transfer. On the other hand, at the cathode, water is produced as a reaction product of hydrogen and oxygen. That is, when the above-described power generation is continued, water is insufficient at the anode and water is excessive at the cathode. Therefore, in the polymer electrolyte fuel cell system, in addition to providing a humidifier as described above to manage the water content of the proton-conductive solid electrolyte, a configuration is adopted in which excess water can be quickly discharged from the cathode. (For example, see Patent Document 1 below).
[0006]
By the way, in recent years, the polymer electrolyte fuel cell system has been required to be downsized. Therefore, it is desired that the humidifier also be smaller, that is, smaller in capacity.
[0007]
However, when a humidifier having a small capacity is used, moisture tends to be insufficient in the proton conductive solid electrolyte layer and the anode. Therefore, there is a problem that the battery voltage decreases.
[0008]
[Patent Document 1]
JP-A-8-227716
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a membrane / electrode assembly for a polymer electrolyte fuel cell capable of realizing a high battery voltage even when the humidification amount is reduced.
[0010]
[Means for Solving the Problems]
According to the present invention, an anode, a cathode facing the anode, and a proton-conductive solid electrolyte layer interposed therebetween are provided, and the anode has at least one of platinum and a platinum alloy in a particulate carbon support. And a second supported catalyst comprising at least one of platinum and a platinum alloy supported on a particulate hydrophilic carrier having a higher hydrophilicity than the carbon carrier. A weight ratio of the second supported catalyst to the first supported catalyst is in a range of 0.01 to 0.30, and a membrane electrode assembly for a polymer electrolyte fuel cell is provided.
[0011]
Further, according to the present invention, an anode, a cathode opposed to the anode, and a proton conductive solid electrolyte layer interposed between the anode, the anode, at least one of platinum and a platinum alloy in the form of particles It contains a supported catalyst supported on a carbon carrier and hydrophilic particles having higher hydrophilicity than the carbon carrier, and the weight ratio of the hydrophilic particles to the supported catalyst is in the range of 0.01 to 0.30. And a membrane electrode assembly for a polymer electrolyte fuel cell.
[0012]
The hydrophilic carrier and the hydrophilic particles may be at least one of zeolite and titania.
The amount of platinum supported on the second supported catalyst may be 80% by weight or less.
[0013]
The cathode may contain a third supported catalyst in which at least one of platinum and a platinum alloy is supported on a particulate carbon carrier. The third supported catalyst has, for example, at least one of platinum and a platinum alloy supported on a particulate carbon carrier and has a specific surface area of 300 m.2/ G to 1000m2/ G, a catalyst having a high specific surface area in the range of at least one of platinum and a platinum alloy supported on a particulate carbon support, and having a specific surface area 50 m larger than the specific surface area of the high specific surface area supported catalyst.2/ G or more and 50m2/ G to 250m2/ G of low specific surface area supported catalyst. In this case, the weight ratio of the low specific surface area supported catalyst to the high specific surface area supported catalyst is in the range of 0.01 to 0.30, and the specific surface area of the third supported catalyst is 225 m.2/ G to 1000m2/ G.
[0014]
Hereinafter, for simplification, "at least one of platinum and a platinum alloy" is referred to as "platinum catalyst". As used herein, the term “supported amount” or “platinum supported amount” means the ratio of the platinum catalyst to the supported catalyst supporting the platinum catalyst, and the term “specific surface area” refers to the ratio obtained using the BET adsorption isotherm. It means the surface area (BET specific surface area).
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing a membrane electrode assembly for a polymer electrolyte fuel cell according to an embodiment of the present invention.
[0016]
The membrane electrode assembly 1 includes an anode 2 and a cathode 3 and a proton conductive solid electrolyte layer 4 interposed therebetween.
[0017]
The anode 2 has a platinum catalyst, that is, a first supported catalyst 5a in which at least one of platinum and a platinum alloy, 51a is supported on a particulate carbon carrier 52a, and a platinum catalyst 51b supported on a particulate hydrophilic carrier 52b. And a proton-conductive solid electrolyte 6. On the other hand, the cathode 3 includes a third supported catalyst 5c in which a platinum catalyst 51c is supported on a particulate carbon carrier 52c, and a proton-conductive solid electrolyte 6. Further, the proton conductive solid electrolyte layer 4 includes a proton conductive solid electrolyte 6.
[0018]
In the membrane electrode assembly 1, the hydrophilic carrier 52b has higher hydrophilicity than the carbon carrier 52a. Therefore, the anode 2 of the membrane electrode assembly 1 is superior in water retention as compared with an anode using only the first supported catalyst 5a as a supported catalyst. That is, when the above-described structure is adopted for the anode 2, the amount of water molecules accompanying the movement of oxonium ions from the anode 2 to the cathode 3 can be reduced, and the anode 2 can always be kept in a sufficiently wet state. Can be.
[0019]
However, when the weight ratio of the second supported catalyst 5b to the first supported catalyst 5a in the anode 2 is small, the effect of improving the water retention of the anode does not appear remarkably. Therefore, in the present embodiment, the weight ratio of the second supported catalyst 5b to the first supported catalyst 5a in the anode 2 is set to 0.01 or more.
[0020]
When the weight ratio of the second supported catalyst 5b to the first supported catalyst 5a in the anode 2 is large, the affinity for water molecules becomes excessively high, and the supply of water from the anode 2 to the proton conductive solid electrolyte layer 4 can be prevented. The movement of oxonium ions from the anode 2 to the cathode 3 may be hindered. In addition, since the hydrophilic carrier 52b is generally an insulator, when the weight ratio of the second supported catalyst 5b to the first supported catalyst 5a in the anode 2 is large, electrons may not easily flow through the anode 2. Therefore, in the present embodiment, the weight ratio of the second supported catalyst 5b to the first supported catalyst 5a in the anode 2 is set to 0.30 or less.
[0021]
As described above, in the present embodiment, the anode 2 and the proton-conducting solid electrolyte layer 4 are always kept in a sufficiently wet state without substantially hindering the transfer of oxonium ions and electrons, and the oxonium ion anode The amount of water molecules accompanying the movement from 2 to the cathode 3 can be reduced. Therefore, according to the present embodiment, a high battery voltage can be realized even when the humidification amount is reduced.
[0022]
In the present embodiment, the weight ratio of the second supported catalyst 5b to the first supported catalyst 5a in the anode 2 is preferably in the range of 0.05 to 0.25. In this case, a higher battery voltage can be obtained during low humidification.
[0023]
As the platinum catalysts 51a to 51c, platinum may be used, a platinum alloy may be used, or a mixture thereof may be used. Examples of elements which can be used as platinum catalysts 51a to 51c by forming an alloy with platinum include platinum group other than platinum, gold, cobalt, chromium, nickel, iron, molybdenum, tungsten, rhenium, aluminum, silicon, zinc, and the like. Tin etc. can be mentioned. When platinum alloys are used as the platinum catalysts 51a to 51c, the proportion of platinum in them is usually about 30 to 90 atomic%.
[0024]
The average particle size of the platinum catalysts 51a to 51c is preferably about 1 nm to 5 nm. When the average particle size of the platinum catalysts 51a to 51c is 1 nm or more, aggregation of the platinum catalysts can be suppressed. Further, when the average particle size of the platinum catalysts 51a to 51c is 5 nm or less, their specific surface areas are increased, and the ability as the catalyst can be sufficiently brought out.
[0025]
The supported amount of platinum in the supported catalysts 5a and 5c is preferably about 5% to 80% by weight, more preferably about 20% to 80% by weight. When the amount of supported platinum is equal to or greater than the lower limit, it is advantageous in improving the current-voltage characteristics of the polymer electrolyte fuel cell. Further, when the amount of supported platinum is about 80% by weight or less, it is advantageous in increasing the specific surface area of the platinum catalysts 51a to 51c, and is also advantageous in terms of cost.
[0026]
The supported amount of platinum of the supported catalyst 5b is preferably about 80% by weight or less, and more preferably about 50% by weight or less. When the supported amount of the supported catalyst 5b is equal to or less than the above upper limit, it is advantageous in increasing the specific surface area of the platinum catalysts 51a to 51c, and is also advantageous in terms of cost. Further, when the supported amount of the supported catalyst 5b is equal to or less than the upper limit, the surface of the hydrophilic carrier 52b exposed from the platinum catalyst 51b becomes sufficiently large. Therefore, even when the weight ratio of the supported catalyst 5b to the supported catalyst 5a is small, the water retention of the anode 2 can be sufficiently increased.
[0027]
Further, the supported amount of platinum of the supported catalyst 5b is preferably about 5% by weight or more. In this case, hydrogen can be oxidized more efficiently, and thus a higher battery voltage can be realized.
[0028]
As the carbon carriers 52a and 52c, for example, carbon black or activated carbon can be used. In addition, as the hydrophilic carrier 52b, for example, zeolite, titania, or the like can be used.
As these carriers 52a to 52c, those having an average particle diameter of about 100 nm or less are usually used.
[0029]
The BET specific surface area of the third supported catalyst 5c is 225 m2/ G to 1000m2/ G within a range of 300 m2/ G to 700m2/ G is more preferable. In particular, as described below, when a mixture of a high specific surface area supported catalyst having a larger BET specific surface area and a low specific surface area supported catalyst having a smaller BET specific surface area is used as the third supported catalyst 5c, the cathode 3 From which excess water can be quickly discharged.
[0030]
That is, for example, the BET specific surface area is 300 m2/ G to 1000m2/ G of the supported catalyst having a high specific surface area in the range of 50 g / g and a BET specific surface area of 50 m2/ G or more and 50m2/ G to 250m2/ G of 1 to 30 parts by weight of a low specific surface area supported catalyst having a BET specific surface area of 225 m / g.2/ G to 775m2/ G of supported catalyst is obtained. When such a supported catalyst is used as the third supported catalyst 5c, surplus water can be quickly discharged from the cathode 3.
[0031]
Alternatively, the BET specific surface area is 300 m2/ G to 1000m2/ G of the high specific surface area supported catalyst in the range of 50 g / g and a BET specific surface area of 50 m2/ G or more and 50m2/ G to 250m2/ G of the catalyst having a low specific surface area in the range of 297 m 2 / g.2/ G to 993m2/ G of supported catalyst is obtained. When such a supported catalyst is used as the third supported catalyst 5c, surplus water can be discharged from the cathode 3 more quickly.
[0032]
The proton conductive solid electrolyte 6 in the anode 2, the cathode 3, and the proton conductive solid electrolyte layer 4 contains water. As the proton conductive solid electrolyte 6, for example, -SO3 Proton conductive solid electrolytes having groups can be used. As such a proton conductive solid electrolyte, it is preferable to use, for example, a perfluorosulfonic acid ionomer represented by the following structural formula represented by Nafion. In the membrane electrode assembly 1 shown in FIG. 1, the same kind of proton conductive solid electrolyte 6 may be used for the anode 2, the cathode 3, and the proton conductive solid electrolyte layer 4, or they may be different from each other. Different types of proton conductive solid electrolytes 6 may be used.
[0033]
Embedded image
Figure 2004342505
[0034]
In the above embodiment, the platinum catalyst 51b is supported on the hydrophilic carrier 52b. However, the above-described effects can be obtained even when the platinum catalyst 51b is not supported on the hydrophilic carrier 52b. That is, the hydrophilic carrier 52b may be present in the anode 2 as hydrophilic particles that do not carry the platinum catalyst 51b.
[0035]
【Example】
Hereinafter, examples of the present invention will be described.
-Preparation of catalyst powder [A-1]
The third supported catalyst 5c used for the cathode 3 was prepared by the following method.
First, the specific surface area is about 1000m2/ G of commercially available carbon powder of 5.0 g / g was dispersed in 0.2 L of pure water. Next, a hexahydroxo platinum nitrate solution containing 5.0 g of platinum was dropped into this dispersion. After further dropping 1 L of pure water, the dispersion was filtered.
[0036]
Next, the filter cake was washed and dispersed again in 1 L of pure water. Next, about 5 mL of 0.01N ammonia aqueous solution is added to this dispersion to adjust the pH to about 9, and a solution obtained by dissolving 4 g of sodium borohydride as a reducing agent in pure water. Was dropped. Thereafter, the dispersion was filtered, and the obtained filter cake was dried at 80 ° C. for 48 hours.
[0037]
As described above, a supported catalyst 5c in which the platinum 51c was supported on the carbon carrier 52c and the supported amount was 50.0% by weight was obtained. Hereinafter, this supported catalyst 5c is referred to as catalyst powder [A-1]. The catalyst powder [A-1] is used as a high specific surface area supported catalyst among the third supported catalysts 5c included in the cathode 3.
[0038]
-Preparation of catalyst powders [B-1] to [B-6]
The first supported catalyst 5a used for the anode 2 was prepared by the following method.
That is, the specific surface area is about 1000 m2/ G commercial carbon powder of 5.0 g instead of 5.0 g2/ G of commercially available carbon powder of 7.0 g / g and a platinum content in the hexahydroxo platinum nitrate solution of 3.0 g, by the same method as described above for the catalyst powder [A-1]. A supported catalyst 5a having a loading of 30.0% by weight of platinum 51a supported on a carbon carrier 52a was obtained. Hereinafter, this supported catalyst 5a is referred to as catalyst powder [B-1].
[0039]
Next, except that the amount of the carbon carrier 52a and the platinum concentration in the hexahydroxo platinum nitrate solution were appropriately changed, the carried amount of the platinum 51a was reduced to 0 by the same method as described above for the catalyst powder [B-1]. %, 10%, 50%, 70%, and 90% by weight of the supported catalyst 5a were obtained. Hereinafter, these supported catalysts 5a are referred to as catalyst powders [B-2] to [B-6], respectively.
[0040]
These catalyst powders [B-1] to [B-6] are used as the first supported catalyst 5a included in the anode 2. Further, these catalyst powders [B-1] to [B-6] are also used as a low specific surface area supported catalyst among the third supported catalysts 5c included in the cathode 3.
[0041]
-Preparation of catalyst powders [C-1] to [C-6]
The second supported catalyst 5b used for the anode 2 was prepared by the following method.
First, Al is used as the zeolite carrier 52b.2O3SiO against2A mordenite zeolite having a molar ratio of about 10 was prepared. Except that this zeolite was used in place of the carbon powder and that the platinum content in the hexahydroxoplatinum nitric acid solution was 3.0 g, platinum 51b was converted in the same manner as described above for the catalyst powder [A-1]. A supported catalyst 5b having a supported amount of 30.0% by weight supported on the zeolite carrier 52b was obtained. Hereinafter, this supported catalyst 5b is referred to as catalyst powder [C-1].
[0042]
Next, except that the amount of the zeolite carrier 52b and the platinum concentration in the hexahydroxo platinum nitrate solution were appropriately changed, the carried amount of the platinum 51b was reduced to 0 by the same method as described above for the catalyst powder [C-1]. %, 10%, 50%, 70%, and 90% by weight of the supported catalyst 5b were obtained. Hereinafter, these supported catalysts 5b are referred to as catalyst powders [C-2] to [C-6], respectively.
[0043]
・ Measurement of physical properties of catalyst powder
X-ray diffraction of the catalyst powders [A-1], [B-1] to [B-6], [C-1] to [C-6] prepared by the above method at a temperature of about 39 ° C. The X-ray diffraction peak of the (111) plane of platinum was measured with a meter, and the average particle size of the platinum catalysts 51a to 51c was calculated from the half width. The BET specific surface areas of the catalyst powders [A-1], [B-1] to [B-6], and [C-1] to [C-6] were examined. The results are shown in Table 1 below.
[0044]
[Table 1]
Figure 2004342505
[0045]
・ Preparation of catalyst layer for cathode [D-0]
A catalyst layer used for the cathode 3 was produced by the following method.
[0046]
First, only the catalyst powder [A-1] was added to an organic solvent, and the mixture was uniformly dispersed in the organic solvent with an ultrasonic homogenizer. Next, this dispersion was applied on a Teflon sheet, and the coating was dried to obtain an electrode area of 1 cm.2A catalyst layer having a catalyst weight per unit area of 0.4 mg was obtained. Hereinafter, this catalyst layer is referred to as a catalyst layer [D-0].
[0047]
Preparation of Cathode Catalyst Layers [D-1] to [D-6]
A catalyst layer used for the cathode 3 was produced by the following method.
[0048]
First, 100 parts by weight of the catalyst powder [A-1] and 15 parts by weight of the catalyst powder [B-1] were added to an organic solvent, and they were uniformly dispersed in the organic solvent with an ultrasonic homogenizer. Next, this dispersion was applied on a Teflon sheet, and the coating was dried to obtain an electrode area of 1 cm.2A catalyst layer having a catalyst weight per unit area of 0.4 mg was obtained. Hereinafter, this catalyst layer is referred to as a catalyst layer [D-1].
[0049]
Next, except that 1 part by weight, 5 parts by weight, 10 parts by weight, 30 parts by weight, and 40 parts by weight of the catalyst powder [B-1] were used for 100 parts by weight of the catalyst powder [A-1]. According to the same method as described for the catalyst layer [D-1], the electrode area is 1 cm.2A catalyst layer having a catalyst weight per unit area of 0.4 mg was obtained. Hereinafter, these catalyst layers are referred to as catalyst layers [D-2] to [D-6].
[0050]
Preparation of Cathode Catalyst Layers [D-7] to [D-11]
A catalyst layer used for the cathode 3 was produced by the following method.
[0051]
First, 100 parts by weight of the catalyst powder [A-1] and 15 parts by weight of the catalyst powder [B-2] were added to an organic solvent, and they were uniformly dispersed in the organic solvent with an ultrasonic homogenizer. Next, this dispersion was applied on a Teflon sheet, and the coating was dried to obtain an electrode area of 1 cm.2A catalyst layer having a catalyst weight per unit area of 0.4 mg was obtained. Hereinafter, this catalyst layer is referred to as a catalyst layer [D-7].
[0052]
Next, except that the catalyst powders [B-3] to [B-6] were used instead of the catalyst powder [B-2], a method similar to that described for the catalyst layer [D-7] was used. Electrode area 1cm2A catalyst layer having a catalyst weight per unit area of 0.4 mg was obtained. Hereinafter, these catalyst layers are referred to as catalyst layers [D-8] to [D-11].
[0053]
・ Preparation of anode catalyst layer [E-0]
A catalyst layer used for the anode 2 was produced by the following method.
[0054]
First, only the catalyst powder [B-1] was added to an organic solvent, and the mixture was uniformly dispersed in the organic solvent with an ultrasonic homogenizer. Next, this dispersion was applied on a Teflon sheet, and the coating was dried to obtain an electrode area of 1 cm.2A catalyst layer having a catalyst weight per unit area of 0.5 mg was obtained. Hereinafter, this catalyst layer is referred to as a catalyst layer [E-0].
[0055]
・ Preparation of anode catalyst layers [E-1] to [E-6]
A catalyst layer used for the anode 2 was produced by the following method.
[0056]
First, 100 parts by weight of the catalyst powder [B-1] and 15 parts by weight of the catalyst powder [C-1] were added to an organic solvent, and they were uniformly dispersed in the organic solvent with an ultrasonic homogenizer. Next, this dispersion was applied on a Teflon sheet, and the coating was dried to obtain an electrode area of 1 cm.2A catalyst layer having a catalyst weight per unit area of 0.5 mg was obtained. Hereinafter, this catalyst layer is referred to as a catalyst layer [E-1].
[0057]
Next, except that 1 part by weight, 5 parts by weight, 10 parts by weight, 30 parts by weight, and 40 parts by weight of the catalyst powder [C-1] were used for 100 parts by weight of the catalyst powder [B-1]. According to the same method as described for the catalyst layer [E-1], the electrode area is 1 cm.2A catalyst layer having a catalyst weight per unit area of 0.5 mg was obtained. Hereinafter, these catalyst layers are referred to as catalyst layers [E-2] to [E-6].
[0058]
・ Preparation of anode catalyst layers [E-7] to [E-11]
A catalyst layer used for the anode 2 was produced by the following method.
[0059]
First, 100 parts by weight of the catalyst powder [B-1] and 15 parts by weight of the catalyst powder [C-2] were added to an organic solvent, and they were uniformly dispersed in the organic solvent with an ultrasonic homogenizer. Next, this dispersion was applied on a Teflon sheet, and the coating was dried to obtain an electrode area of 1 cm.2A catalyst layer having a catalyst weight per unit area of 0.5 mg was obtained. Hereinafter, this catalyst layer is referred to as a catalyst layer [E-7].
[0060]
Next, except that the catalyst powders [C-3] to [C-6] were used instead of the catalyst powder [C-2], a method similar to that described for the catalyst layer [E-7] was used. Electrode area 1cm2A catalyst layer having a catalyst weight per unit area of 0.5 mg was obtained. Hereinafter, these catalyst layers are referred to as catalyst layers [E-8] to [E-11].
[0061]
The compositions of the respective catalyst layers thus obtained are summarized in Tables 2 and 3 below.
[0062]
[Table 2]
Figure 2004342505
[0063]
[Table 3]
Figure 2004342505
[0064]
・ Preparation of membrane electrode assembly
A plurality of membrane electrodes using any one of the catalyst layers [D-0] to [D-11] for the cathode 3 and using any one of the catalyst layers [E-0] to [E-11] for the anode 2 The joined body 1 was produced. Specifically, the catalyst layer [D-m] and the catalyst layer [E-n] were bonded to each other by hot pressing via the proton-conductive solid electrolyte layer 4.
[0065]
・ Evaluation of membrane electrode assembly
The characteristics of the above membrane electrode assembly 1 were evaluated by the following methods.
[0066]
That is, first, the membrane electrode assembly 1 using the catalyst layer [D-0] for the cathode 3 and the catalyst layer [E-0] for the anode 2 is incorporated into a measurement cell. To supply hydrogen gas, and air was supplied to the cathode 3 at a predetermined flow rate. Under such conditions, the current-voltage characteristics at full humidification and the current-voltage characteristics at low humidification were measured. The humidification of the hydrogen gas and the air was performed by bubbling those gases into warm water. The temperatures of the hot water for hydrogen gas humidification and air humidification were set as shown in Table 4 below.
[0067]
[Table 4]
Figure 2004342505
[0068]
FIG. 2 is a graph showing current-voltage characteristics obtained for the membrane electrode assembly 1 using the catalyst layer [D-0] for the cathode 3 and the catalyst layer [E-0] for the anode 2. In the figure, the horizontal axis indicates current density, and the vertical axis indicates battery voltage. In the figure, a curve 11 shows a current-voltage characteristic obtained at the time of full humidification, and a curve 12 shows a current-voltage characteristic obtained at the time of low humidification.
[0069]
Current density 0.5A / cm2As shown in FIG. 2, the battery voltage of the membrane electrode assembly 1 is sufficiently high at about 0.78 V at full humidification, but is about 0.72 V at low humidification. Down to. That is, in the membrane electrode assembly 1 using the catalyst layer [D-0] for the cathode 3 and the catalyst layer [E-0] for the anode 2, a high battery voltage can be realized when the humidification amount is reduced. Can not.
[0070]
Next, the membrane electrode assembly 1 using the catalyst layer [D-0] for the cathode 3 and any one of the catalyst layers [E-0] to [E-6] for the anode 2 is the same as described above. Under the above conditions, the current-voltage characteristics at full humidification and the current-voltage characteristics at low humidification were measured.
[0071]
FIG. 2 shows current-voltage characteristics and low humidification at full humidification obtained for the membrane electrode assembly 1 using the catalyst layer [D-0] for the cathode 3 and the catalyst layer [E-1] for the anode 2. The current-voltage characteristics at the time are shown by curves 13 and 14, respectively. As shown in FIG. 2, in the membrane electrode assembly 1 using the catalyst layer [D-0] for the cathode 3 and the catalyst layer [E-1] for the anode 2, the current-voltage characteristics at the time of full humidification and the low The current-voltage characteristics during humidification were almost equal. Further, the difference between the current-voltage characteristics at the time of full humidification and the current-voltage characteristics at the time of low humidification tended to be smaller as the weight ratio of the catalyst powder [C-1] to the catalyst powder [B-1] was larger.
[0072]
Next, the current density was 0.5 A / cm based on the current-voltage characteristics at full humidification and the current-voltage characteristics at low humidification.2, And the comparison was made.
[0073]
FIG. 3 is a graph showing the relationship between the composition of the anode 2 and the battery voltage at low humidification. In the figure, the horizontal axis represents the weight ratio of the catalyst powder [C-1] to the catalyst powder [B-1] in the anode 2 in percentage. The water retention of the anode 2 increases as the weight ratio increases. In the figure, the vertical axis indicates the current density at the time of low humidification of 0.5 A / cm2Shows the battery voltage in the case where.
[0074]
As shown in FIG. 3, when the weight ratio of the catalyst powder [C-1] to the catalyst powder [B-1] was in the range of 1% to 30%, a sufficiently high battery voltage was obtained at low humidification. . In particular, when the weight ratio of the catalyst powder [C-1] to the catalyst powder [B-1] was in the range of about 5% to about 25%, an extremely high battery voltage was obtained even at low humidification. .
[0075]
Next, each membrane electrode assembly 1 using any one of the catalyst layers [D-0] to [D-6] for the cathode 3 and the catalyst layer [E-1] for the anode 2 is the same as described above. Under the above conditions, the current-voltage characteristics at full humidification and the current-voltage characteristics at low humidification were measured.
[0076]
The current-voltage characteristics at the time of full humidification and the current-voltage characteristics at the time of low humidification thus obtained were compared. As a result, the catalyst layer [D-0] was used for the cathode 3 in any of the membrane electrode assemblies 1. In addition, as compared with the case where the catalyst layer [E-0] was used for the anode 2, the battery voltage did not decrease at low humidification.
[0077]
The current density was 0.5 A / cm based on the current-voltage characteristics at full humidification and the current-voltage characteristics at low humidification.2, And the comparison was made.
[0078]
FIG. 4 is a graph showing the relationship between the composition of the cathode 3 and the battery voltage during low humidification. In the figure, the horizontal axis represents the weight ratio of the catalyst powder [B-1] to the catalyst powder [A-1] in the cathode 3 in percentage, and the vertical axis represents the current density at low humidification of 0.5 A /. cm2Shows the battery voltage in the case where.
[0079]
As shown in FIG. 4, when the weight ratio of the catalyst powder [B-1] to the catalyst powder [A-1] was in the range of 1% to 30%, a higher battery voltage was obtained at low humidification. In particular, when the weight ratio of the catalyst powder [B-1] to the catalyst powder [A-1] was in the range of about 5% to about 25%, an extremely high battery voltage was obtained.
[0080]
Next, each membrane electrode assembly using the catalyst layer [D-1] or any one of [D-7] to [D-11] for the cathode 3 and using the catalyst layer [E-1] for the anode 2 Regarding Sample No. 1, the current-voltage characteristics at the time of full humidification and the current-voltage characteristics at the time of low humidification were measured under the same conditions as above.
[0081]
When the current-voltage characteristics at the time of full humidification and the current-voltage characteristics at the time of low humidification thus obtained were compared, in any of the membrane electrode assemblies 1, the catalyst layer [D-0] was used for the cathode 3. In addition, as compared with the case where the catalyst layer [E-0] was used for the anode 2, the battery voltage did not decrease at low humidification.
[0082]
The current density was 0.5 A / cm based on the current-voltage characteristics at full humidification and the current-voltage characteristics at low humidification.2, And the comparison was made.
[0083]
FIG. 5 is a graph showing the relationship between the amount of platinum supported on the low specific surface area supported catalyst contained in the cathode 3 and the battery voltage during low humidification. In the figure, the horizontal axis represents the amount of platinum carried on the low specific surface area supported catalyst contained in the cathode 3, and the vertical axis represents the current density at low humidification of 0.5 A / cm.2Shows the battery voltage in the case where.
[0084]
As shown in FIG. 5, a high battery voltage was obtained when the amount of supported platinum of the low specific surface area supported catalyst was in the range of about 5% by weight to about 80% by weight. In particular, when the supported amount of platinum of the low specific surface area supported catalyst is in the range of about 5% to about 80% by weight, a higher battery voltage is obtained, An extremely high battery voltage was obtained.
[0085]
Next, each membrane electrode assembly using the catalyst layer [D-1] for the cathode 3 and any one of the catalyst layers [E-1] and [E-7] to [E-11] for the anode 2 Regarding Sample No. 1, the current-voltage characteristics at the time of full humidification and the current-voltage characteristics at the time of low humidification were measured under the same conditions as above.
[0086]
The current-voltage characteristics at the time of full humidification and the current-voltage characteristics at the time of low humidification thus obtained were compared. As a result, the catalyst layer [D-0] was used for the cathode 3 in any of the membrane electrode assemblies 1. In addition, as compared with the case where the catalyst layer [E-0] was used for the anode 2, the battery voltage did not decrease at low humidification.
[0087]
The current density was 0.5 A / cm based on the current-voltage characteristics at full humidification and the current-voltage characteristics at low humidification.2, And the comparison was made.
[0088]
FIG. 6 is a graph showing the relationship between the amount of platinum supported on the hydrophilic supported catalyst 5b contained in the anode 2 and the battery voltage during low humidification. In the figure, the horizontal axis indicates the amount of platinum supported on the hydrophilic supported catalyst 5b contained in the anode 2, and the vertical axis indicates the current density at low humidification of 0.5 A / cm.2Shows the battery voltage in the case where.
[0089]
As shown in FIG. 6, a high battery voltage was obtained when the amount of platinum supported on the hydrophilic supported catalyst 5b contained in the anode 2 was about 80% by weight or less. In particular, when the amount of platinum supported on the hydrophilic supported catalyst 5b included in the anode 2 is in the range of about 5% by weight to about 80% by weight, a higher battery voltage is obtained, and about 5% by weight to about 50% by weight is obtained. An extremely high battery voltage was obtained when it was within the range.
[0090]
【The invention's effect】
As described above, according to the present invention, there is provided a membrane / electrode assembly for a polymer electrolyte fuel cell capable of realizing a high battery voltage even when the humidification amount is reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a membrane electrode assembly for a polymer electrolyte fuel cell according to an embodiment of the present invention.
FIG. 2 is a graph showing current-voltage characteristics obtained for a membrane electrode assembly according to an example of the present invention.
FIG. 3 is a graph showing the relationship between the composition of the anode and the battery voltage at low humidification.
FIG. 4 is a graph showing the relationship between the composition of the cathode and the battery voltage during low humidification.
FIG. 5 is a graph showing the relationship between the amount of platinum supported on the low specific surface area supported catalyst contained in the cathode and the battery voltage during low humidification.
FIG. 6 is a graph showing the relationship between the amount of platinum supported on the hydrophilic supported catalyst contained in the anode and the battery voltage during low humidification.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Membrane electrode assembly, 2 ... Anode, 3 ... Cathode, 4 ... Proton conductive solid electrolyte layer, 5a ... Supported catalyst, 5b ... Supported catalyst, 5c ... Supported catalyst, 6 ... Proton conductive solid electrolyte, 11 ... Curve , 12 ... Curve, 13 ... Curve, 14 ... Curve, 51a ... Platinum catalyst, 51b ... Platinum catalyst, 51c ... Platinum catalyst, 52a ... Carbon carrier, 52b ... Hydrophilic carrier, 52c ... Carbon carrier.

Claims (5)

アノードと、前記アノードに対向したカソードと、それらの間に介在したプロトン電導性固体電解質層とを具備し、
前記アノードは、白金及び白金合金の少なくとも一方を粒子状のカーボン担体に担持してなる第1担持触媒と、白金及び白金合金の少なくとも一方を前記カーボン担体よりも親水性が高い粒子状の親水性担体に担持してなる第2担持触媒とを含有し、前記第1担持触媒に対する前記第2担持触媒の重量比は0.01乃至0.30の範囲内にあることを特徴とする固体高分子型燃料電池用の膜電極接合体。
An anode, a cathode facing the anode, and a proton conductive solid electrolyte layer interposed therebetween,
The anode has a first supported catalyst in which at least one of platinum and a platinum alloy is supported on a particulate carbon carrier, and a particulate hydrophilic catalyst in which at least one of platinum and a platinum alloy has higher hydrophilicity than the carbon carrier. A second supported catalyst supported on a carrier, wherein the weight ratio of the second supported catalyst to the first supported catalyst is in the range of 0.01 to 0.30. Electrode assembly for portable fuel cells.
前記親水性担体はゼオライト及びチタニアの少なくとも一方であることを特徴とする請求項1に記載の膜電極接合体。The membrane electrode assembly according to claim 1, wherein the hydrophilic carrier is at least one of zeolite and titania. 前記第2担持触媒の白金担持量は80重量%以下であることを特徴とする請求項1または請求項2に記載の膜電極接合体。3. The membrane electrode assembly according to claim 1, wherein the amount of platinum supported on the second supported catalyst is 80% by weight or less. 4. 前記カソードは、白金及び白金合金の少なくとも一方を粒子状のカーボン担体に担持してなるとともに比表面積が300m/g乃至1000m/gの範囲内にある高比表面積担持触媒と、白金及び白金合金の少なくとも一方を粒子状のカーボン担体に担持してなるとともに比表面積が前記高比表面積担持触媒の比表面積よりも50m/g以上小さく且つ50m/g乃至250m/gの範囲内にある低比表面積担持触媒とを、前記高比表面積担持触媒に対する前記低比表面積担持触媒の重量比を0.01乃至0.30の範囲内として混合してなる、比表面積が225m/g乃至1000m/gの範囲内にある第3担持触媒を含有したことを特徴とする請求項1乃至請求項3の何れか1項に記載の膜電極接合体。The catalyst comprises a catalyst having a high specific surface area having at least one of platinum and a platinum alloy supported on a particulate carbon support and having a specific surface area in a range of 300 m 2 / g to 1000 m 2 / g; At least one of the alloys is supported on a particulate carbon support, and the specific surface area is at least 50 m 2 / g smaller than the specific surface area of the high specific surface area supported catalyst and within a range of 50 m 2 / g to 250 m 2 / g. A low specific surface area supported catalyst is mixed with the high specific surface area supported catalyst at a weight ratio of the low specific surface area supported catalyst to 0.01 to 0.30, and the specific surface area is 225 m 2 / g or more. the membrane electrode assembly according to any one of claims 1 to 3, characterized in that contained a third supported catalyst is in the range of 1000 m 2 / g. アノードと、前記アノードに対向したカソードと、それらの間に介在したプロトン電導性固体電解質層とを具備し、
前記アノードは、白金及び白金合金の少なくとも一方を粒子状のカーボン担体に担持してなる担持触媒と、前記カーボン担体よりも親水性が高い親水性粒子とを含有し、前記担持触媒に対する前記親水性粒子の重量比は0.01乃至0.30の範囲内にあることを特徴とする固体高分子型燃料電池用の膜電極接合体。
An anode, a cathode facing the anode, and a proton conductive solid electrolyte layer interposed therebetween,
The anode contains a supported catalyst in which at least one of platinum and a platinum alloy is supported on a particulate carbon carrier, and hydrophilic particles having a higher hydrophilicity than the carbon carrier. A membrane electrode assembly for a polymer electrolyte fuel cell, wherein the weight ratio of the particles is in the range of 0.01 to 0.30.
JP2003139019A 2003-05-16 2003-05-16 Membrane electrode assembly Expired - Fee Related JP4472943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139019A JP4472943B2 (en) 2003-05-16 2003-05-16 Membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139019A JP4472943B2 (en) 2003-05-16 2003-05-16 Membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2004342505A true JP2004342505A (en) 2004-12-02
JP4472943B2 JP4472943B2 (en) 2010-06-02

Family

ID=33528229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139019A Expired - Fee Related JP4472943B2 (en) 2003-05-16 2003-05-16 Membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP4472943B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070635A1 (en) * 2004-12-27 2006-07-06 Nippon Shokubai Co., Ltd. Membrane electrode assembly for solid polymer fuel cell
JP2006210135A (en) * 2005-01-28 2006-08-10 Sony Corp Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
WO2006112368A1 (en) * 2005-04-15 2006-10-26 Nippon Shokubai Co., Ltd. Electrode catalyst for fuel cell and process for producing the same
JP2007273107A (en) * 2006-03-30 2007-10-18 Toyota Motor Corp Fuel electrode for fuel cell and fuel cell equipped with it
WO2009123274A1 (en) 2008-04-01 2009-10-08 新日本製鐵株式会社 Fuel cell
JP2009238556A (en) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd Catalyst layer for polymer electrolyte fuel cell
WO2010047415A1 (en) 2008-10-22 2010-04-29 新日本製鐵株式会社 Catalyst for solid polymer furl cell, electrode for solid polymer furl cell, and fuel cell
JP2012138297A (en) * 2010-12-27 2012-07-19 Toshiba Fuel Cell Power Systems Corp Solid polymer electrolyte fuel battery and method of manufacturing the same
KR101333733B1 (en) 2013-07-26 2013-11-27 건국대학교 산학협력단 A method for preparing Pt-ZSM-5
WO2014010278A1 (en) 2012-07-11 2014-01-16 昭和電工株式会社 Method for operating fuel cell, and electric-power generating device
JP2016505193A (en) * 2012-08-29 2016-02-18 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー Colloidal dispersions containing noble metal particles and acidic ionomer components and methods for their production and use
US9947937B2 (en) 2014-12-25 2018-04-17 Showa Denko K.K. Catalyst carrier and method for producing the same
US10005066B2 (en) 2014-11-28 2018-06-26 Showa Denko K.K. Catalyst carrier and method for producing the same
US10096841B2 (en) 2014-12-25 2018-10-09 Showa Denko K.K. Catalyst carrier, method for producing catalyst carrier, and use of catalyst carrier
DE102018214809B4 (en) 2017-09-13 2024-05-02 Toyota Jidosha Kabushiki Kaisha Negative electrode for a lithium ion secondary cell, lithium ion secondary cell and method for producing a lithium ion secondary cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070635A1 (en) * 2004-12-27 2006-07-06 Nippon Shokubai Co., Ltd. Membrane electrode assembly for solid polymer fuel cell
JP2006210135A (en) * 2005-01-28 2006-08-10 Sony Corp Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
WO2006112368A1 (en) * 2005-04-15 2006-10-26 Nippon Shokubai Co., Ltd. Electrode catalyst for fuel cell and process for producing the same
JP2007273107A (en) * 2006-03-30 2007-10-18 Toyota Motor Corp Fuel electrode for fuel cell and fuel cell equipped with it
JP2009238556A (en) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd Catalyst layer for polymer electrolyte fuel cell
WO2009123274A1 (en) 2008-04-01 2009-10-08 新日本製鐵株式会社 Fuel cell
US9735433B2 (en) 2008-04-01 2017-08-15 Nippon Steel & Sumitomo Metal Corporation Fuel cell
WO2010047415A1 (en) 2008-10-22 2010-04-29 新日本製鐵株式会社 Catalyst for solid polymer furl cell, electrode for solid polymer furl cell, and fuel cell
US8999606B2 (en) 2008-10-22 2015-04-07 Nippon Steel & Sumitomo Metal Corporation Solid polymer type fuel cell catalyst, solid polymer type fuel cell electrode, and fuel cell
JP2012138297A (en) * 2010-12-27 2012-07-19 Toshiba Fuel Cell Power Systems Corp Solid polymer electrolyte fuel battery and method of manufacturing the same
WO2014010278A1 (en) 2012-07-11 2014-01-16 昭和電工株式会社 Method for operating fuel cell, and electric-power generating device
KR20150032302A (en) 2012-07-11 2015-03-25 쇼와 덴코 가부시키가이샤 Method for operating fuel cell, and electric-power generating device
JP2016505193A (en) * 2012-08-29 2016-02-18 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー Colloidal dispersions containing noble metal particles and acidic ionomer components and methods for their production and use
KR101333733B1 (en) 2013-07-26 2013-11-27 건국대학교 산학협력단 A method for preparing Pt-ZSM-5
US10005066B2 (en) 2014-11-28 2018-06-26 Showa Denko K.K. Catalyst carrier and method for producing the same
US9947937B2 (en) 2014-12-25 2018-04-17 Showa Denko K.K. Catalyst carrier and method for producing the same
US10096841B2 (en) 2014-12-25 2018-10-09 Showa Denko K.K. Catalyst carrier, method for producing catalyst carrier, and use of catalyst carrier
DE102018214809B4 (en) 2017-09-13 2024-05-02 Toyota Jidosha Kabushiki Kaisha Negative electrode for a lithium ion secondary cell, lithium ion secondary cell and method for producing a lithium ion secondary cell

Also Published As

Publication number Publication date
JP4472943B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
EP2958173B1 (en) Catalyst for solid polymer fuel cells and method for producing same
JP4472943B2 (en) Membrane electrode assembly
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
JP2006190686A (en) Pt/ru alloy catalyst, its manufacturing method, electrode for fuel cell, and fuel cell
WO2007114525A1 (en) Method for manufacturing electrode catalyst for fuel cell
EP3641035A1 (en) Electrode catalyst of electrochemical device, electrode catalyst layer of electrochemical device, membrane electrode assembly of electrochemical device, electrochemical device, method for manufacturing electrode catalyst of electrochemical device, and method for manufacturing membrane electrode assembly of electrochemical device
JP6315348B2 (en) Catalyst layer for fuel cell and fuel cell
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP6141741B2 (en) Fuel cell electrode catalyst and method for producing the same
JP2003157857A (en) Electrode catalyst body for fuel cell, air electrode for fuel cell using it, and evaluating method of its catalystic activity
JP6222530B2 (en) Catalyst layer for fuel cell and fuel cell
JP2000268828A (en) Solid highpolymer type fuel cell
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP5669432B2 (en) Membrane electrode assembly, fuel cell, and fuel cell activation method
JP2002015745A (en) Solid polymer fuel cell
EP4299177A1 (en) Electrode catalyst, manufacturing method therefor, and fuel cell
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JPH1092441A (en) Solid high molecular type fuel cell
JP7116665B2 (en) catalyst layer
JPWO2019177060A1 (en) Electrode catalyst for fuel cells and fuel cells using them
Yano et al. Temperature dependence of oxygen reduction activity at Nafion-coated Pt/graphitized carbon black catalysts prepared by the nanocapsule method
JP2006269368A (en) Electrode for fuel cell and its manufacturing method
JPH10214630A (en) Solid polymer type fuel cell
JP2022138872A (en) Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees