WO2006112368A1 - Electrode catalyst for fuel cell and process for producing the same - Google Patents

Electrode catalyst for fuel cell and process for producing the same Download PDF

Info

Publication number
WO2006112368A1
WO2006112368A1 PCT/JP2006/307862 JP2006307862W WO2006112368A1 WO 2006112368 A1 WO2006112368 A1 WO 2006112368A1 JP 2006307862 W JP2006307862 W JP 2006307862W WO 2006112368 A1 WO2006112368 A1 WO 2006112368A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
catalyst
supported
fuel cell
surface area
Prior art date
Application number
PCT/JP2006/307862
Other languages
French (fr)
Japanese (ja)
Inventor
Junji Okamura
Kuninori Miyazaki
Koichi Yamamoto
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Priority to JP2007526845A priority Critical patent/JPWO2006112368A1/en
Publication of WO2006112368A1 publication Critical patent/WO2006112368A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrode catalyst for a fuel cell and a method for producing the same.
  • a fuel cell is basically a power generator that generates electric power by electrochemically reacting hydrogen and oxygen. Therefore, although carbon dioxide is produced in the process of producing hydrogen, which is a fuel, most of the others are generated only by electricity, water and heat, and harmful nitrogen oxides and Sulfur oxides are not emitted. In addition, the power generation efficiency is extremely high because the loss of thermal energy and kinetic energy is small as in other power generation systems. Therefore, the fuel cell is expected as an extremely clean and efficient power generation system.
  • Fuel cells can be classified according to electrolyte types into phosphoric acid fuel cells, molten carbonate fuel cells, solid polymer fuel cells, solid oxide fuel cells, and the like. Among them, the polymer electrolyte fuel cell can generate power in a lower temperature range than other fuel cells and can be easily downsized. There is a possibility that it can be applied to various applications such as a portable power source.
  • a polymer electrolyte fuel cell has an anode and a cathode on both sides of a polymer electrolyte membrane such as perfluorosulfonic acid ion exchange resin that has ion conductivity but does not have electron conductivity.
  • the formed membrane electrode assembly is used as a basic unit.
  • Each electrode includes a catalyst layer containing a polymer electrolyte exhibiting hydrogen ion conductivity and a catalyst on the polymer electrolyte membrane side, and a gas diffusion layer having both air permeability and conductivity on the outside thereof.
  • This gas diffusion layer is made of, for example, carbon paper or carbon cross treated with water repellent treatment with polytetrafluoroethylene (PTFE) or the like.
  • PTFE polytetrafluoroethylene
  • a catalyst in which a noble metal such as platinum is supported on a conductive carrier such as carbon black has become the mainstream.
  • the content of the noble metal in the electrode catalyst layer may be increased.
  • the catalyst layer In order to increase the precious metal content, it is necessary to increase the coating amount of the electrode catalyst, resulting in a thick catalyst layer. When the catalyst layer becomes thicker, the diffusibility of fuel and oxygen in the layer is lowered, which causes a problem that the catalyst performance is lowered.
  • an attempt is made to increase the amount of noble metal supported on the conductive support aggregation of noble metal particles tends to occur, the performance corresponding to the increase in the amount of noble metal supported cannot be improved, and sufficient catalytic activity cannot be obtained. Problems arise.
  • Japanese Patent Application Laid-Open No. 9-167620 discloses a catalyst in which white metal is supported on a conductive support on which Si or the like is deposited.
  • Japanese Patent Application Laid-Open No. 10-334925 describes a catalyst in which platinum and ruthenium are supported and the size of their crystal particles is defined.
  • Japanese Patent Application Laid-Open No. 2000-12043 describes a catalyst in which platinum and ruthenium are supported and their crystal structure is defined.
  • Japanese Patent Laid-Open No. 2004-335252 discloses an electrode catalyst in which the average particle size and the amount of platinum to be supported are defined.
  • an object of the present invention is to provide an electrode catalyst having excellent catalytic performance that can reliably obtain a fuel cell exhibiting power generation performance commensurate with such increase when the content of noble metal in the catalyst layer is increased. is there.
  • Another object of the present invention is to provide a method for producing the electrode catalyst, an electrode composition for a fuel cell using the electrode catalyst, and a fuel cell.
  • the present inventors have conducted intensive research on the cause of the case where sufficient power generation performance may not be obtained even if the amount and surface area of the noble metal to be supported are defined. As a result, even if a large amount of noble metal having a small particle size and a large surface area is supported on the support, the surface area of the support on which the noble metal particles are supported and the surface area of the noble metal do not satisfy specific conditions. It was found that the catalyst performance was not fully exhibited.
  • the present inventors By examining the relationship between the surface area of the precious metal and the surface area of the carrier, not only by the surface area of the genus, we have clarified experimentally the conditions under which the performance of the catalyst components can be fully demonstrated, and the electrode catalyst that satisfies these conditions has excellent power generation performance As a result, the present invention has been completed.
  • the fuel cell electrode catalyst of the present invention is a fuel cell electrode catalyst comprising a conductive carrier carrying a noble metal as a catalyst component,
  • the amount of noble metal supported is 70 to 90% by mass, the apparent surface area (S1) of the supported noble metal is 25 to 60m 2 Zg, and the apparent surface area (S1) of the supported noble metal and the conductive carrier
  • the ratio (S1ZS2) to the apparent surface area (S2) is 0.02Zl to 0.1LZl.
  • a fuel cell electrode catalyst composition of the present invention comprises the above fuel cell electrode catalyst and a polymer electrolyte, and the fuel cell of the present invention comprises the fuel cell electrode catalyst composition. It has the electrode formed by.
  • a noble metal salt compound is added to a support slurry and then added to a reducing agent to reduce a water-soluble noble metal compound such as a noble metal salt into a noble metal.
  • a reducing agent formic acid is generally used, but there is an example in which sodium borohydride is used.
  • sodium borohydride is used.
  • Another object of the present invention is to apply a method capable of reliably producing a fuel cell electrode catalyst having high power generation performance.
  • the present inventors diligently studied the production conditions of a fuel cell electrode catalyst. As a result, when the water-soluble noble metal compound is reduced and supported on the carrier, the aggregation is achieved by using sodium borohydride as a reducing agent and appropriately adjusting the pH of the reaction mixture when it is added. It was found that the noble metal can be properly supported on the support while suppressing the above.
  • a method for producing a fuel cell electrode catalyst according to the present invention comprises:
  • a fuel cell electrode catalyst that satisfies the requirements of the present invention (hereinafter sometimes simply referred to as “electrode catalyst”) can reliably exhibit excellent catalytic performance. This is thought to be because the precious metal component loading is as high as 70% by mass or more and fine noble metal particles do not condense, that is, they are supported on a conductive carrier with high dispersibility. . Therefore, the use of the electrode catalyst of the present invention makes it possible to form a catalyst layer having a high activity with a large amount of noble metal supported and excellent in the diffusibility of the reactant (fuel). High power can be obtained.
  • the present invention is extremely useful industrially as a fuel cell can be further commercialized.
  • the fuel cell electrode catalyst of the present invention comprises:
  • any support having sufficient conductivity to function as a support for an electrode catalyst can be used.
  • conductivity Examples thereof include conductive carbon materials such as carbon black, activated carbon, graphite, and carbon fiber.
  • conductive carbon black and activated carbon are preferably used.
  • the specific surface area of the conductive support is preferably 1000 to 4000 m 2 / g so that the performance of the noble metal component is sufficiently exhibited even when the noble metal loading is increased to 70 to 90% by mass.
  • the “noble metal” of the present invention may be any noble metal generally used for an electrode catalyst. Examples thereof include platinum, ruthenium, iridium, rhodium, palladium, gold and silver. These can be used alone or in combination of two or more. Of these, platinum or a combination of platinum and ruthenium is preferably used.
  • the electrode catalyst of the present invention may contain a metal element other than a noble metal as a catalyst component.
  • a metal element other than a noble metal for example, manganese, rhenium, tantalum, cerium, lanthanum, indium, conoleto, nickel, tungsten, niobium, gallium, silicon, titanium, etc. are included in the form of metals or oxides. But, okay. These can be used alone or in combination of two or more. Of these, manganese, indium, niobium, lanthanum, cerium, silicon and titanium are preferably used. By adding these, higher catalyst performance can be obtained.
  • the amount of the noble metal supported relative to the total of the conductive support and the noble metal is 70 to 90% by mass, preferably 70 to 85% by mass. If the amount of noble metal supported is 70% by mass or more, high battery performance can be expected. In addition, if it is 90% by mass or less, the ratio of the noble metal to the conductive support does not become too high, and the apparent surface area of the conductive support in the electrode catalyst is kept moderate. The condition related to a certain ratio (S1ZS2) is easily satisfied, and the battery performance can be improved.
  • the amount of the metal component other than the noble metal that may be optionally used is not particularly limited and can be appropriately determined. Usually, it is 0.5 to 4% by mass, preferably 1 to 3% by mass, based on the total mass of the electrocatalyst (support + noble metal + metal component).
  • the “apparent surface area (S1) of the supported noble metal” in the electrode catalyst of the present invention is the surface area of the supported noble metal per unit mass of the electrode catalyst.
  • the surface area is filled with supported noble metals. It does not include the surface area of noble metals that are not exposed on the surface and cannot function as a catalyst, such as those that are present inside the aggregate when they are gathered. Further, since the surface area is a surface area per electrode catalyst, it can be expressed as m 2 Zg-catalyst. Here, it is simply expressed as m 2 Zg including the scope of claims.
  • the “surface area (S1) of the supported noble metal” of the present invention is measured by the following method for measuring the amount of carbon monoxide (CO) pulse adsorption. Since carbon monoxide is selectively adsorbed on the supported noble metal and not adsorbed on the conductive support or other metal oxides, the apparent surface area of the supported noble metal in the electrode catalyst is determined according to the CO pulse adsorption measurement method. Can be measured.
  • Pretreatment conditions Treated in a helium stream at 150 ° C for 15 minutes ⁇ Reduced in a mixture of hydrogen (5%) and helium at 150 ° C for 15 minutes ⁇ Treated in a rim stream at 150 ° C for 15 minutes ⁇ Decrease to 50 ° C
  • Adsorption measurement temperature 50 ° C
  • the apparent surface area (S1) of the supported noble metal in the electrode catalyst is 25 to 60 m 2 Z g, preferably 25 to 45 m 2 / g. If the apparent surface area of the supported noble metal is 25 m 2 / g or more, sufficient catalytic performance can be obtained. If one method is used to make the noble metal fine particles in a state exceeding 60 m 2 Zg, the interaction with the support surface becomes strong and the catalyst performance is adversely affected.
  • the “apparent surface area (S2) of the conductive support” of the present invention refers to the unit mass of the electrode catalyst in the surface region on the support that can be assumed not to be covered with noble metal particles in the electrode catalyst.
  • the apparent surface area (S2) is also, but it is capable of representation as well as m 2 Zg- catalyst and an apparent surface area of the supported noble metal (S1), simply referred to as m 2 Zg.
  • the apparent surface area (S2) of the conductive carrier is defined by the following formula.
  • the apparent surface area (S 1) of the supported noble metal and the apparent surface area (S2) of the support are expressed as it (Sl / S2) i 0.02 / 1-1 to 0.1 / 1, preferably ⁇ or 0.004 1 to 0.1.
  • this ratio (S1ZS2) is 0.02Z1 or more, the electrode catalyst of the present invention can be prepared without using a support having a high specific surface area with a small volume specific gravity and having significantly developed pores.
  • the distance between the noble metal particles on the electrode catalyst can be kept moderate, and the stability of the noble metal fine particles can be maintained to prevent aggregation and improve the catalyst performance.
  • the ratio (S1ZS2) of the present invention is an index indicating the dispersibility of the supported noble metal on the support.
  • this ratio is in the range of 0.02 to 0.1 Zl, it can be said that the noble metal is supported on the support with high dispersibility.
  • the catalytic performance of the electrode catalyst of the present invention is high and the diffusibility of the reactant is excellent.
  • a catalyst layer can be formed.
  • the electrocatalyst of the present invention is suitably used as an electrode catalyst for a polymer electrolyte fuel cell among the powers that can be used as an electrode catalyst for any fuel cell.
  • the electrode catalyst of the present invention is used in a polymer electrolyte fuel cell, in addition to the fuel cell electrode catalyst according to the present invention, a polymer electrolyte is blended to produce a polymer electrolyte fuel cell.
  • the electrode catalyst composition is as follows.
  • the polymer electrolyte has a role of delivering protons generated from the fuel by the catalytic reaction to the polymer electrolyte membrane.
  • fluorine resin having sulfonic acid groups such as naphthion (manufactured by DuPont), Flemion (manufactured by Asahi Kasei Co., Ltd.), and Ashbeck (manufactured by Asahi Glass Co., Ltd.), and inorganic substances such as tandastenoic acid and phosphotungstic acid. Can be used.
  • the ratio of the polymer electrolyte in the electrode composition of the present invention may be appropriately determined so as to obtain the necessary proton conductivity when used as an electrode.
  • electrocatalyst 10 What is necessary is just to mix
  • An electrode layer can be produced from the above-described electrocatalyst composition according to the present invention to provide an electrode for a polymer electrolyte fuel cell.
  • the electrodes (anode and force sword) of the polymer electrolyte fuel cell consist of a catalyst layer on the polymer electrolyte side and a gas diffusion layer on the outside thereof.
  • this gas diffusion layer carbon paper or carbon cloth having a thickness of about 100 to 300 m is used as having excellent gas permeability and conductivity.
  • an electrode when an electrode is formed from the electrode composition of the present invention, a conductive carbon material, a water repellent material, a binder, or the like is added to the electrode catalyst or polymer electrolyte of the present invention as necessary, and water or An electrode can be formed by preparing a paste by uniformly mixing with an organic solvent such as isopropyl alcohol, applying the paste to a gas diffusion layer such as carbon paper, and drying.
  • an organic solvent such as isopropyl alcohol
  • the obtained anode and force sword can be formed into a membrane electrode assembly by hot pressing with a polymer electrolyte membrane interposed therebetween. At this time, in each electrode, it is necessary to dispose the catalyst layer in contact with the polymer electrolyte membrane. Moreover, the pressure and temperature in the hot press may be in accordance with ordinary conditions.
  • the obtained membrane / electrode assembly can be made into a polymer electrolyte fuel cell according to a conventional method together with a separator and the like.
  • the solid polymer fuel cell of the present invention thus obtained has extremely high power generation performance because it has a high performance electrode catalyst. Therefore, the polymer electrolyte fuel cell of the present invention is suitable for portable devices, automobile power supplies, household power generation systems, and the like.
  • the fuel cell electrode catalyst of the present invention can be produced, for example, by a method including the following steps.
  • a conductive carrier suspension is obtained by suspending a conductive carrier in water.
  • the water-soluble noble metal compound used in the above step (b) is not particularly limited, but examples of the water-soluble compound of platinum and ruthenium include dinitrodiammine white. Examples thereof include gold, platinum chloride, ruthenium nitrate, and ruthenium chloride.
  • the amount of sodium borohydride added an amount capable of reducing the noble metal compound dissolved in the aqueous solution to a metal and supporting it on the carrier may be used.
  • 0.1-: LO mass%, preferably 1-5 mass% is added as an aqueous solution.
  • the noble metal compound aqueous solution or sodium borohydride is added to the suspension, and the subsequent reduction of the noble metal compound is performed with sufficient stirring of the suspension.
  • These series of operations are preferably performed at a temperature of 0 to 100 ° C, preferably 30 to 70 ° C.
  • the pH of the suspension is adjusted so as not to exceed 7. That is, sodium borohydride is added while maintaining the pH of the suspension at 7 or lower.
  • sodium borohydride is added, the pH of the suspension shifts to alkaline with the progress of the reduction reaction, but if the reduction treatment is performed under conditions where the pH exceeds 7, the reason is not clear, but precipitation occurs. Aggregation of the precious metal particles is likely to occur, and it becomes difficult to support the precious metal particles on the conductive support in a highly dispersed state.
  • sodium borohydride as a water-soluble reducing agent, it is preferable to add an acid as appropriate so that the pH of the suspension does not exceed 7, preferably 4. .
  • an acid inorganic acids, such as nitric acid, hydrochloric acid, phosphoric acid, boric acid, can be used, for example.
  • water-soluble reducing agents make sure that the pH of the suspension does not exceed 7, preferably 4! /.
  • the noble metal compound is directly reduced with the water-soluble reducing agent in the suspension to form noble metal particles in the suspension, and the pH of the suspension does not exceed 7. Therefore, even when the loading amount of the noble metal is 70% by mass or more, the aggregation of the noble metal particles can be prevented, and an electrode catalyst in which the noble metal particles are supported on the conductive support can be obtained.
  • platinum and ruthenium are used as the noble metals, platinum and ruthenium are alloyed in the suspension. Therefore, according to the method of the present invention, platinum and ruthenium are electrically conductive as an alloy of both. It becomes possible to make it carry
  • the powder is filtered off and dried to obtain the electrode catalyst of the present invention.
  • the drying temperature is preferably 120 ° C or less.
  • Carbon black as a carrier (Cabot, BP2000, BET specific surface area: 1500 m 2 / g) 2. Og was suspended in lOOmL of pure water to obtain a suspension. In a state where the suspension was stirred, a mixed aqueous solution of di-trodiaminemine platinum and ruthenium nitrate was added so as to be 3.07 g and 1.59 g in terms of platinum and ruthenium, respectively. Next, after adjusting the liquid volume to 300 mL with pure water, 470 mL of a 5% by mass aqueous sodium borohydride solution was dropped while stirring the mixed solution, and platinum and luteyu dissolved in the suspension were dropped. The precursor was reduced.
  • Example of catalyst preparation except that a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate was added so that it would be 5.27 g and 2.73 g in terms of platinum and ruthenium, respectively, and the 5% by mass aqueous sodium borohydride solution was 800 mL.
  • Example of catalyst preparation except that a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate was added so that it would be 1.98 g and 1.02 g in terms of platinum and ruthenium, respectively, and the 5 mass% sodium borohydride aqueous solution was changed to 200 mL.
  • the apparent noble metal surface area of the supported noble metal on catalyst c calculated by the CO pulse adsorption measurement method, was 42 m 2 Zg. Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S1ZS2) of the supported noble metal.
  • Example of catalyst preparation except that a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate was added to give platinum and ruthenium equivalents of 1.32 g and 0.68 g, respectively, and the 5 mass% sodium borohydride aqueous solution was changed to 200 mL.
  • the apparent noble metal surface area of the supported noble metal on catalyst d calculated by the CO pulse adsorption amount measurement method, was 43 m 2 Zg. Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S1ZS2) of the supported noble metal.
  • the apparent noble metal surface area of the supported noble metal in catalyst e calculated by the CO pulse adsorption amount measurement method, was 30 m 2 / g. Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S1ZS2) of the supported noble metal.
  • Carbon black as a carrier (Cabot Corporation, BP2000, BET specific surface area: 1500 m 2 / g) 2. Og was suspended in lOOmL of pure water to obtain a suspension. In a state where the suspension was stirred, a mixed aqueous solution of di-throdianmine platinum and ruthenium nitrate was added so as to be 3.07 g and 1.59 g in terms of platinum and ruthenium, respectively. Subsequently, carbon black black platinum and a ruthenium compound were supported by evaporating to dryness while maintaining at 80 to 90 ° C. in a nitrogen stream using a rotary evaporator. The obtained powder was dried at 110 ° C. and subjected to reduction treatment at 300 ° C.
  • the apparent noble metal surface area of the supported noble metal at catalyst h calculated by the CO pulse adsorption measurement method, was 19 m 2 Zg. Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S1ZS2) of the supported noble metal.
  • catalyst i was prepared.
  • the apparent noble metal surface area of the supported noble metal on catalyst i calculated by the CO pulse adsorption amount measurement method was 13 m 2 Zg.
  • Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S1ZS2) of the supported noble metal.
  • Carbon black as a carrier (Cabot Corporation, BP2000, BET specific surface area 1500 m 2 / g) l. 87 g was suspended in lOOmL of pure water to obtain a suspension. While stirring this suspension, a mixed water solution of dinitrodiammineplatinum, ruthenium nitrate and indium nitrate was added so that it would be 3.07 g, 1.59 g and 0.13 g in terms of platinum, ruthenium and indium, respectively. .
  • the apparent noble metal surface area of the supported noble metal on catalyst j was 26 m 2 Zg.
  • Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S 1 / S2) of the supported noble metal.
  • the catalyst was prepared in the same manner as in Catalyst Preparation Example 1, except that the aqueous solution of nitric acid was used to force the suspension so that the pH did not exceed 7 (as a result, the pH of the suspension exceeded 7).
  • k was prepared.
  • Test example A single cell electrode of a solid polymer fuel cell was prepared using the catalysts a to k (c to e and g to i for comparison) obtained in Catalyst Preparation Examples 1 to 10, and the cell characteristics were measured.
  • the single cell electrode was prepared as follows.
  • Catalyst sample prepared in catalyst preparation example 0.25 g 5% perfluorosulfonic acid resin solution (Aldrich) 1. Add to 6 g and mix, add pure water to this mixed solution and add the whole To 7.2 mL. Next, the mixture was uniformly dispersed by an ultrasonic disperser to prepare a catalyst-containing paste. This was uniformly coated on carbon paper (made by Torayen earth) so that the supported amount of platinum and ruthenium was 1.5 mg / cm 2, and then dried for 15 hours to obtain an anode.
  • E—TEK's platinum-supported carbon black platinum supported amount: 60% by weight, carbon black, Cabot, VulcanXC72
  • platinum supported amount 60% by weight, carbon black, Cabot, VulcanXC72
  • perfluorosulfonic acid resin solution (Aldrich) 1.
  • a Nafion 112 membrane (manufactured by Dupont) is sandwiched between the force sword obtained above and the anode so that the effective electrode area is 5 cm 2 so that the surface coated with the catalyst is in contact with the naphthion membrane.
  • a single cell electrode was made by hot pressing for 5 minutes at 130 ° C, lOOkg / cm 2 .
  • the single cell electrode prepared as described above was incorporated in the experimental fuel cell, maintained at a cell temperature of 30 ° C, 5% methanol aqueous solution at the anode, 6 mL, and oxygen gas as the power sword.
  • the voltage generated between both electrodes at 40 mAZcm 2 was measured.
  • Table 1 it has shown that it is excellent as a battery characteristic, so that a voltage is high.
  • the underline indicates that it is outside the scope of the present invention.
  • the supported amount of noble metal is less than 70% by mass, the apparent surface area of the supported noble metal in each catalyst is 25 to 60m 2 Zg and the ratio (S1ZS2) is in the range of 0.02 / 1 to 0.1 lZl.
  • the resulting voltage is reduced (see Catalysts c, d, e). This is because when a catalyst with a small amount of noble metal is applied on a single paper, the amount of coating increases, and as a result, the catalyst layer becomes thicker, and the diffusibility of reactants (such as methanol and water) decreases. Considered for
  • the amount of noble metal supported is 70 to 90% by mass, the apparent surface area of the supported noble metal in each catalyst is 25 to 60m 2 Zg, and the ratio (S1ZS2) is in the range of 0.02 / 1 to 0.1 lZl.
  • High voltage can be obtained only with an electrocatalyst that satisfies all conditions (see Catalysts a, b, f, j, k)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

This invention provides an electrode catalyst having excellent catalytic performance that, even when a large amount of noble metal particles are supported on a carrier, can surely provide a fuel cell having high power generation performance. The electrode catalyst for a fuel cell comprises a noble metal as a catalyst component supported on an electrically conductive carrier and is characterized in that the amount of the noble metal supported based on the total of the electrically conductive carrier and the noble metal is 70 to 90% by mass, the apparent surface area (S1) of the noble metal supported is 25 to 60 m2/g, and the ratio between the apparent surface area (S1) of the noble metal supported and the apparent surface area (S2) of the electrically conductive carrier, i.e., S1/S2, is 0.02/1 to 0.1/1.

Description

明 細 書  Specification
燃料電池用電極触媒およびその製造方法  Fuel cell electrode catalyst and method for producing the same
技術分野  Technical field
[0001] 本発明は、燃料電池用の電極触媒とその製造方法に関するものである。  [0001] The present invention relates to an electrode catalyst for a fuel cell and a method for producing the same.
背景技術  Background art
[0002] 燃料電池は、基本的には水素と酸素を電気化学的に反応させることにより電力を発 生させる発電器である。従って、燃料である水素を生産する過程で二酸ィ匕炭素が生 じるものの、他に発生するのはほとんど電力、水と熱のみであり、火力発電システムの 様に有害な窒素酸化物や硫黄酸化物は排出されない。その上、他の発電システム の様に熱エネルギーや運動エネルギーのロスが少な 、ため、発電効率が極めて高 い。よって、燃料電池は、極めてクリーンで効率的な発電システムとして期待されてい る。  A fuel cell is basically a power generator that generates electric power by electrochemically reacting hydrogen and oxygen. Therefore, although carbon dioxide is produced in the process of producing hydrogen, which is a fuel, most of the others are generated only by electricity, water and heat, and harmful nitrogen oxides and Sulfur oxides are not emitted. In addition, the power generation efficiency is extremely high because the loss of thermal energy and kinetic energy is small as in other power generation systems. Therefore, the fuel cell is expected as an extremely clean and efficient power generation system.
[0003] 燃料電池は、電解質の種類から、リン酸型燃料電池、溶融炭酸型燃料電池、固体 高分子型燃料電池、固体酸化物型燃料電池などに分類することができる。その中で も固体高分子型燃料電池は、他の燃料電池より低!ヽ温度領域にお!ヽて発電させるこ とができ、小型化が容易なことから、自動車用電源、家庭用電源、携帯用電源など種 々の用途に適用できる可能性がある。  [0003] Fuel cells can be classified according to electrolyte types into phosphoric acid fuel cells, molten carbonate fuel cells, solid polymer fuel cells, solid oxide fuel cells, and the like. Among them, the polymer electrolyte fuel cell can generate power in a lower temperature range than other fuel cells and can be easily downsized. There is a possibility that it can be applied to various applications such as a portable power source.
[0004] 固体高分子型燃料電池は、パーフルォロスルホン酸イオン交換榭脂など、イオン導 電性を有する一方で電子伝導性を有しない高分子電解質膜の両面にアノードとカソ ードが形成されている膜電極接合体を基本単位とする。各電極は、高分子電解質膜 側に水素イオン導電性を示す高分子電解質と触媒とを含む触媒層と、その外側に通 気性と導電性を併せ持つガス拡散層からなる。このガス拡散層は、例えば、ポリテトラ フルォロエチレン(PTFE)などで撥水処理を施したカーボンペーパーやカーボンク ロス等で構成される。また、各電極における電極触媒としては、カーボンブラックなど の導電性担体に白金などの貴金属を担持したものが主流となっている。  [0004] A polymer electrolyte fuel cell has an anode and a cathode on both sides of a polymer electrolyte membrane such as perfluorosulfonic acid ion exchange resin that has ion conductivity but does not have electron conductivity. The formed membrane electrode assembly is used as a basic unit. Each electrode includes a catalyst layer containing a polymer electrolyte exhibiting hydrogen ion conductivity and a catalyst on the polymer electrolyte membrane side, and a gas diffusion layer having both air permeability and conductivity on the outside thereof. This gas diffusion layer is made of, for example, carbon paper or carbon cross treated with water repellent treatment with polytetrafluoroethylene (PTFE) or the like. In addition, as an electrode catalyst in each electrode, a catalyst in which a noble metal such as platinum is supported on a conductive carrier such as carbon black has become the mainstream.
[0005] 燃料電池の性能向上のためには、電極触媒層における貴金属の含有量を増加さ せればよい。しかし、貴金属の担持量が少ない電極触媒を用いる場合、触媒層にお ける貴金属の含有量を増加させるためには、電極触媒の塗布量を多くする必要があ り、結果として触媒層が厚くなる。触媒層が厚くなると層内での燃料や酸素の拡散性 が低下し、力えって触媒性能が低下するとの問題が生じる。また、導電性担体への貴 金属担持量を増加させようとすると貴金属粒子の凝集が生じ易くなり、貴金属担持量 の増量に見合った性能の向上が図られず、十分な触媒活性が得られないとの問題 が生じる。 [0005] In order to improve the performance of the fuel cell, the content of the noble metal in the electrode catalyst layer may be increased. However, when using an electrode catalyst with a small amount of precious metal, the catalyst layer In order to increase the precious metal content, it is necessary to increase the coating amount of the electrode catalyst, resulting in a thick catalyst layer. When the catalyst layer becomes thicker, the diffusibility of fuel and oxygen in the layer is lowered, which causes a problem that the catalyst performance is lowered. In addition, if an attempt is made to increase the amount of noble metal supported on the conductive support, aggregation of noble metal particles tends to occur, the performance corresponding to the increase in the amount of noble metal supported cannot be improved, and sufficient catalytic activity cannot be obtained. Problems arise.
[0006] 従来、燃料電池の性能向上を期した様々な電極触媒やその製造方法が開発され ている。例えば特開平 9— 167620号公報には、 Si等を被着させた導電性担体へ白 金を担持した触媒が開示されている。特開平 10— 334925号公報には、白金とルテ 二ゥムが担持されており、それらの結晶粒子の大きさが規定された触媒が記載されて いる。特開 2000— 12043号公報には、白金とルテニウムが担持されており、それら の結晶構造が規定された触媒が記載されている。また、特開 2004— 335252号公 報には、担持されるべき白金の平均粒径と担持量が規定された電極触媒が開示され ている。  [0006] Conventionally, various electrode catalysts and methods for producing the same have been developed with the aim of improving the performance of fuel cells. For example, Japanese Patent Application Laid-Open No. 9-167620 discloses a catalyst in which white metal is supported on a conductive support on which Si or the like is deposited. Japanese Patent Application Laid-Open No. 10-334925 describes a catalyst in which platinum and ruthenium are supported and the size of their crystal particles is defined. Japanese Patent Application Laid-Open No. 2000-12043 describes a catalyst in which platinum and ruthenium are supported and their crystal structure is defined. Japanese Patent Laid-Open No. 2004-335252 discloses an electrode catalyst in which the average particle size and the amount of platinum to be supported are defined.
発明の開示  Disclosure of the invention
[0007] 上述した様に、燃料電池の性能向上を期した電極触媒として、様々なものが開発さ れている。これらの中には、貴金属の担持量や表面積を考慮したものもある。ところが 、貴金属の担持量等を規定しても、得られた電極触媒の性能にはばらつきが見られ る場合があるなど、更なる改良が必要であった。  [0007] As described above, various electrode catalysts for improving the performance of fuel cells have been developed. Some of these take into consideration the loading amount and surface area of the noble metal. However, even if the amount of noble metal supported is specified, further improvement is required, for example, the performance of the obtained electrocatalyst may vary.
[0008] そこで本発明の目的は、触媒層における貴金属の含有量を増やした場合、かかる 増量に見合う発電性能を示す燃料電池が確実に得られる触媒性能に優れた電極触 媒を提供することにある。また、本発明は、当該電極触媒の製造方法、当該電極触 媒を用いた燃料電池用電極組成物と燃料電池を提供することも目的とする。  [0008] Therefore, an object of the present invention is to provide an electrode catalyst having excellent catalytic performance that can reliably obtain a fuel cell exhibiting power generation performance commensurate with such increase when the content of noble metal in the catalyst layer is increased. is there. Another object of the present invention is to provide a method for producing the electrode catalyst, an electrode composition for a fuel cell using the electrode catalyst, and a fuel cell.
[0009] 本発明者らは、担持すべき貴金属の担持量と表面積を規定しても、十分な発電性 能が得られない場合がある原因について、特に鋭意研究を重ねた。その結果、たと え粒子径が小さく表面積の大きい貴金属を多量に担体へ担持させたとしても、貴金 属粒子が担持される担体の表面積と貴金属の表面積が特定の条件を満足しない場 合には、触媒性能が十分に発揮されないことが分かった。そこで本発明者らは、貴金 属の表面積等のみでなぐ貴金属表面積と担体の表面積との関係について検討して 触媒成分の性能が十分に発揮される条件を実験的に明らかにし、当該条件を満た す電極触媒は優れた発電性能を確実に発揮できることを見出して、本発明を完成し た。 [0009] The present inventors have conducted intensive research on the cause of the case where sufficient power generation performance may not be obtained even if the amount and surface area of the noble metal to be supported are defined. As a result, even if a large amount of noble metal having a small particle size and a large surface area is supported on the support, the surface area of the support on which the noble metal particles are supported and the surface area of the noble metal do not satisfy specific conditions. It was found that the catalyst performance was not fully exhibited. Therefore, the present inventors By examining the relationship between the surface area of the precious metal and the surface area of the carrier, not only by the surface area of the genus, we have clarified experimentally the conditions under which the performance of the catalyst components can be fully demonstrated, and the electrode catalyst that satisfies these conditions has excellent power generation performance As a result, the present invention has been completed.
[0010] 本発明の燃料電池用電極触媒は、導電性担体に触媒成分として貴金属を担持し てなる燃料電池用電極触媒であって、  [0010] The fuel cell electrode catalyst of the present invention is a fuel cell electrode catalyst comprising a conductive carrier carrying a noble metal as a catalyst component,
導電性担体と貴金属の合計に対する貴金属の担持量が 70〜90質量%、担持貴 金属の見掛け表面積 (S1)が 25〜60m2Zg、さらに、担持貴金属の見掛け表面積( S1)と導電性担体の見掛け表面積 (S2)との比(S1ZS2)が 0. 02Zl〜0. lZlで あることを特徴とする。 The amount of noble metal supported is 70 to 90% by mass, the apparent surface area (S1) of the supported noble metal is 25 to 60m 2 Zg, and the apparent surface area (S1) of the supported noble metal and the conductive carrier The ratio (S1ZS2) to the apparent surface area (S2) is 0.02Zl to 0.1LZl.
[0011] 本発明の燃料電池用電極触媒組成物は、上記燃料電池用電極触媒および高分 子電解質を含有するものであり、また、本発明の燃料電池は、当該燃料電池用電極 触媒組成物により形成された電極を有するものである。  [0011] A fuel cell electrode catalyst composition of the present invention comprises the above fuel cell electrode catalyst and a polymer electrolyte, and the fuel cell of the present invention comprises the fuel cell electrode catalyst composition. It has the electrode formed by.
[0012] また、従来、電極触媒の製造方法として、担体スラリーへ貴金属塩ィ匕合物を加えた 上で還元剤と加え、貴金属塩などの水溶性貴金属化合物を還元して貴金属とし、こ れを担体へ担持させる技術が知られて ヽる。カゝかる還元剤としてはギ酸等が一般的 であるが、水素化ホウ素ナトリウムが使われた例もある。しかし、これら従来の製造方 法では、貴金属の担持量を増やした場合に貴金属が担体上へ適切に担持されず、 十分な触媒性能が発揮できな 、ことがあった。  [0012] Conventionally, as a method for producing an electrode catalyst, a noble metal salt compound is added to a support slurry and then added to a reducing agent to reduce a water-soluble noble metal compound such as a noble metal salt into a noble metal. There are known techniques for loading a carrier onto a carrier. As a reducing agent, formic acid is generally used, but there is an example in which sodium borohydride is used. However, in these conventional production methods, when the amount of noble metal supported is increased, the noble metal is not properly supported on the support, and sufficient catalyst performance may not be exhibited.
[0013] そこで、本発明のもう 1つの目的は、発電性能の高い燃料電池用電極触媒を確実 に製造できる方法を適用することにある。  [0013] Accordingly, another object of the present invention is to apply a method capable of reliably producing a fuel cell electrode catalyst having high power generation performance.
[0014] 本発明者らは、上記課題を解決すべく燃料電池用電極触媒の製造条件につき鋭 意検討した。その結果、水溶性貴金属化合物を還元して担体へ担持するに当たり、 還元剤として水素化ホウ素ナトリウムを用い、且つこれを添加する際における反応混 合液の pHを適切に調整することによって、その凝集を抑制しつつ貴金属を担体上へ 適切に担持できることを見出した。  [0014] In order to solve the above-mentioned problems, the present inventors diligently studied the production conditions of a fuel cell electrode catalyst. As a result, when the water-soluble noble metal compound is reduced and supported on the carrier, the aggregation is achieved by using sodium borohydride as a reducing agent and appropriately adjusting the pH of the reaction mixture when it is added. It was found that the noble metal can be properly supported on the support while suppressing the above.
[0015] 即ち、本発明に係る燃料電池用電極触媒の製造方法は、  That is, a method for producing a fuel cell electrode catalyst according to the present invention comprises:
導電性担体粒子を水中に懸濁させ、得られる懸濁液に水溶性貴金属化合物を添 加する工程;および Suspend the conductive carrier particles in water and add a water-soluble noble metal compound to the resulting suspension. A step of applying; and
次いで、水溶性還元剤として水素化ホウ素ナトリウムを懸濁液へ添加することにより 水溶性貴金属化合物を還元して、貴金属粒子を導電性担体粒子上に担持させるェ 程;を含み、  A step of reducing the water-soluble noble metal compound by adding sodium borohydride to the suspension as a water-soluble reducing agent and supporting the noble metal particles on the conductive carrier particles;
水素化ホウ素ナトリウムを、懸濁液の pHが 7を超えな 、ように調整しながら添加する ことを特徴とする。  It is characterized by adding sodium borohydride while adjusting so that the pH of the suspension does not exceed 7.
[0016] 本発明の要件を満たす燃料電池用電極触媒 (以下、単に「電極触媒」ということもあ る)は、優れた触媒性能を確実に発揮することができる。これは、貴金属成分の担持 量が 70質量%以上と高い上に、微細な貴金属粒子が凝縮を起こすことがない、つま り、高い分散性をもって導電性担体上に担持されているためと考えられる。よって、本 発明の電極触媒を用いれば、貴金属担持量が多ぐ高活性であり、しかも反応物質( 燃料)の拡散性に優れた触媒層を形成することが可能となり、その結果、安定した高 い電力を得ることが可能となる。  [0016] A fuel cell electrode catalyst that satisfies the requirements of the present invention (hereinafter sometimes simply referred to as "electrode catalyst") can reliably exhibit excellent catalytic performance. This is thought to be because the precious metal component loading is as high as 70% by mass or more and fine noble metal particles do not condense, that is, they are supported on a conductive carrier with high dispersibility. . Therefore, the use of the electrode catalyst of the present invention makes it possible to form a catalyst layer having a high activity with a large amount of noble metal supported and excellent in the diffusibility of the reactant (fuel). High power can be obtained.
[0017] また、本発明の方法によれば、貴金属粒子の凝集を効果的に防止しつつ、担体へ 担持することができる。そのため、貴金属量が多く高活性な電極触媒を製造すること ができる。  [0017] Further, according to the method of the present invention, it is possible to support the noble metal particles on the carrier while effectively preventing aggregation of the noble metal particles. Therefore, a highly active electrode catalyst with a large amount of noble metal can be produced.
[0018] よって、本発明は、燃料電池の実用化をより一層進行させ得るものとして、産業上 極めて有用である。  [0018] Therefore, the present invention is extremely useful industrially as a fuel cell can be further commercialized.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 本発明の燃料電池用電極触媒は、 [0019] The fuel cell electrode catalyst of the present invention comprises:
導電性担体に触媒成分として貴金属を担持してなる燃料電池用電極触媒であって 導電性担体と貴金属の合計に対する貴金属の担持量が 70〜90質量%、担持貴 金属の見掛け表面積 (S1)が 25〜60m2Zg、さらに、担持貴金属の見掛け表面積( S1)と導電性担体の見掛け表面積 (S2)との比(S1ZS2)が 0. 02Zl〜0. lZlで あることを特徴とする。 A fuel cell electrode catalyst in which a noble metal is supported on a conductive support as a catalyst component, the amount of noble metal supported is 70 to 90% by mass relative to the total of the conductive support and the noble metal, and the apparent surface area (S1) of the supported noble metal is 25~60m 2 Zg, further characterized in that the ratio of the apparent surface area of the supported noble metal and (S1) of the conductive support and an apparent surface area (S2) (S1ZS2) is 0. 02Zl~0. lZl.
[0020] 本発明の「導電性担体」としては、電極触媒の担体として機能するに十分な導電性 を有する担体であればいずれも使用することができる。具体的には、例えば、導電性 のカーボンブラック、活性炭、グラフアイト、炭素繊維などの導電性炭素材料を挙げる ことができる。これらのなかでも、導電性カーボンブラックや活性炭が好適に用いられ る。また、導電性担体の比表面積としては、貴金属担持量を 70〜90質量%まで高め た場合でも、貴金属成分の性能が十分に発揮されるように、 1000〜4000m2/gが 好適である。 [0020] As the "conductive support" of the present invention, any support having sufficient conductivity to function as a support for an electrode catalyst can be used. Specifically, for example, conductivity Examples thereof include conductive carbon materials such as carbon black, activated carbon, graphite, and carbon fiber. Among these, conductive carbon black and activated carbon are preferably used. Further, the specific surface area of the conductive support is preferably 1000 to 4000 m 2 / g so that the performance of the noble metal component is sufficiently exhibited even when the noble metal loading is increased to 70 to 90% by mass.
[0021] 本発明の「貴金属」としては、電極触媒に一般に用いられている貴金属であればい ずれでもよぐ例えば、白金、ルテニウム、イリジウム、ロジウム、パラジウム、金および 銀を挙げることができる。これらは単独でも、あるいは 2種以上組み合わせて使用する ことができる。なかでも、白金、あるいは白金とルテニウムとの組合せが好適に用いら れる。  The “noble metal” of the present invention may be any noble metal generally used for an electrode catalyst. Examples thereof include platinum, ruthenium, iridium, rhodium, palladium, gold and silver. These can be used alone or in combination of two or more. Of these, platinum or a combination of platinum and ruthenium is preferably used.
[0022] 本発明の電極触媒は、触媒成分として、貴金属以外の金属元素を含んでいてもよ い。具体的には、例えば、マンガン、レニウム、タンタル、セリウム、ランタン、インジゥ ム、コノ レト、ニッケル、タングステン、ニオブ、ガリウム、ケィ素、チタンなどを、金属ま たは酸ィ匕物の形態で含んで 、てもよ 、。これらは単独でも或いは 2種以上を組み合 わせて使用することもできる。なかでも、マンガン、インジウム、ニオブ、ランタン、セリ ゥム、ケィ素およびチタンが好適に用いられる。これらを添加すること〖こより、より高い 触媒性能を得ることができる。  [0022] The electrode catalyst of the present invention may contain a metal element other than a noble metal as a catalyst component. Specifically, for example, manganese, rhenium, tantalum, cerium, lanthanum, indium, conoleto, nickel, tungsten, niobium, gallium, silicon, titanium, etc. are included in the form of metals or oxides. But, okay. These can be used alone or in combination of two or more. Of these, manganese, indium, niobium, lanthanum, cerium, silicon and titanium are preferably used. By adding these, higher catalyst performance can be obtained.
[0023] 本発明では、導電性担体と貴金属の合計に対する上記貴金属の担持量を 70〜90 質量%、好ましくは 70〜85質量%とする。貴金属の担持量が、 70質量%以上であ れば高い電池性能が期待できる。また、 90質量%以下であれば、導電性担体に対 する貴金属の割合が高くなり過ぎないため、電極触媒における導電性担体の見掛け 表面積が適度に保たれることから、本発明の規定要件である比(S1ZS2)に係わる 条件が満たされ易くなり、電池性能を高めることができる。  In the present invention, the amount of the noble metal supported relative to the total of the conductive support and the noble metal is 70 to 90% by mass, preferably 70 to 85% by mass. If the amount of noble metal supported is 70% by mass or more, high battery performance can be expected. In addition, if it is 90% by mass or less, the ratio of the noble metal to the conductive support does not become too high, and the apparent surface area of the conductive support in the electrode catalyst is kept moderate. The condition related to a certain ratio (S1ZS2) is easily satisfied, and the battery performance can be improved.
[0024] 上記任意に使用してもよい貴金属以外の金属成分の担持量は、特に限定されるも のではなく適宜決定することができる。通常、電極触媒の総質量 (担体 +貴金属 +金 属成分)に対し、 0. 5〜4質量%であり、好ましくは 1〜3質量%である。  [0024] The amount of the metal component other than the noble metal that may be optionally used is not particularly limited and can be appropriately determined. Usually, it is 0.5 to 4% by mass, preferably 1 to 3% by mass, based on the total mass of the electrocatalyst (support + noble metal + metal component).
[0025] 本発明の電極触媒における「担持貴金属の見掛け表面積 (S1)」とは、電極触媒の 単位質量当たりの担持貴金属の表面積である。当該表面積には、担持貴金属が凝 集している場合に凝集体の内部に存在しているものなど、表面に露出しておらず触 媒機能を発揮できない貴金属の表面積は含まれない。また、当該表面積は、電極触 媒当たりの表面積であるので m2Zg—触媒と表記し得るものであるが、ここでは、特 許請求の範囲も含めて単に m2Zgと表記する。本発明の「担持貴金属の表面積 (S1 )」は、下記の一酸ィ匕炭素(CO)パルス吸着量測定法により測定したものである。一 酸化炭素は、担持貴金属へ選択的に吸着されて導電性担体や他の金属酸化物等 へは吸着されないことから、 COパルス吸着量測定法によれば、電極触媒における担 持貴金属の見掛け表面積を測定することができる。 The “apparent surface area (S1) of the supported noble metal” in the electrode catalyst of the present invention is the surface area of the supported noble metal per unit mass of the electrode catalyst. The surface area is filled with supported noble metals. It does not include the surface area of noble metals that are not exposed on the surface and cannot function as a catalyst, such as those that are present inside the aggregate when they are gathered. Further, since the surface area is a surface area per electrode catalyst, it can be expressed as m 2 Zg-catalyst. Here, it is simply expressed as m 2 Zg including the scope of claims. The “surface area (S1) of the supported noble metal” of the present invention is measured by the following method for measuring the amount of carbon monoxide (CO) pulse adsorption. Since carbon monoxide is selectively adsorbed on the supported noble metal and not adsorbed on the conductive support or other metal oxides, the apparent surface area of the supported noble metal in the electrode catalyst is determined according to the CO pulse adsorption measurement method. Can be measured.
[0026] COパルス吸着量測定法 [0026] CO pulse adsorption measurement method
装置:日本ベル株式会社製、触媒分析装置 BEL— CAT  Device: Nippon Bell Co., Ltd., catalyst analyzer BEL—CAT
前処理条件: 150°Cにて 15分間ヘリゥム気流中で処理→ 150°Cで 15分間水素(5 %)一ヘリウム混合ガス気流中で還元処理→150°Cで 15分間へリム気流中で処理→ 50°Cまで降温  Pretreatment conditions: Treated in a helium stream at 150 ° C for 15 minutes → Reduced in a mixture of hydrogen (5%) and helium at 150 ° C for 15 minutes → Treated in a rim stream at 150 ° C for 15 minutes → Decrease to 50 ° C
吸着測定温度: 50°C  Adsorption measurement temperature: 50 ° C
サンプル量: 10〜20mg程度  Sample amount: About 10-20mg
本発明では、電極触媒における担持貴金属の見掛け表面積 (S1)を 25〜60m2Z g、好ましくは 25〜45m2/gとする。担持貴金属の見掛け表面積が 25m2/g以上で あれば、十分な触媒性能が得られる。その一方法で 60m2Zgを超えるような状態に 貴金属を微粒子化すると担体表面との相互作用が強くなり、触媒性能に悪影響がで るため好ましくない。 In the present invention, the apparent surface area (S1) of the supported noble metal in the electrode catalyst is 25 to 60 m 2 Z g, preferably 25 to 45 m 2 / g. If the apparent surface area of the supported noble metal is 25 m 2 / g or more, sufficient catalytic performance can be obtained. If one method is used to make the noble metal fine particles in a state exceeding 60 m 2 Zg, the interaction with the support surface becomes strong and the catalyst performance is adversely affected.
[0027] 本発明の「導電性担体の見掛け表面積 (S2)」とは、電極触媒において、貴金属粒 子により被覆されていないと想定し得る、担体上の表面領域の、電極触媒の単位質 量当たりの導電性担体の表面積 (m2Zg)である。当該見掛け表面積 (S2)も、担持 貴金属の見掛け表面積 (S1)と同様に m2Zg—触媒と表記し得るものであるが、単に m2Zgと表記する。導電性担体の見掛け表面積 (S2)は、下記式により定義される。 The “apparent surface area (S2) of the conductive support” of the present invention refers to the unit mass of the electrode catalyst in the surface region on the support that can be assumed not to be covered with noble metal particles in the electrode catalyst. The surface area (m 2 Zg) of the conductive support. The apparent surface area (S2) is also, but it is capable of representation as well as m 2 Zg- catalyst and an apparent surface area of the supported noble metal (S1), simply referred to as m 2 Zg. The apparent surface area (S2) of the conductive carrier is defined by the following formula.
[0028] S2 = S3 X (100-M) ÷ 100  [0028] S2 = S3 X (100-M) ÷ 100
S3:担体自体の BET比表面積 (m2Zg) S3: BET specific surface area of the carrier itself (m 2 Zg)
M:導電性担体と貴金属の合計に対する貴金属の担持量 (質量%) 従って、本発明の規定要件の 1つである比(S1ZS2)は、下記式により算出される M: Amount of precious metal supported on the total of the conductive support and precious metal (% by mass) Therefore, the ratio (S1ZS2), which is one of the prescription requirements of the present invention, is calculated by the following equation.
[0029] S1/S2 = S1/[S3 X (100-M) ÷ 100] [0029] S1 / S2 = S1 / [S3 X (100-M) ÷ 100]
本発明における、担持貴金属の見掛け表面積 (S 1)と担体の見掛け表面積 (S2)と の it (Sl/S2) iま 0. 02/1〜0. 1/1、好ましく ίま 0. 04/1〜0. 1/1である。この 比(S1ZS2)が 0. 02Z1以上であれば、細孔が著しく発達した嵩比重の小さい高比 表面積の担体を用いなくとも本発明の電極触媒を調製することができる。その結果、 電極における触媒層が厚くなり過ぎることがな 、ために、触媒層における燃料や酸素 等の拡散性を維持することができ、触媒性能を高めることができる。一方、 0. 1Z1以 下であれば、電極触媒上における貴金属粒子間の距離を適度に保つことができ、貴 金属微粒子の安定性を維持して凝集を防ぎ、触媒性能を高めることが可能になる。  In the present invention, the apparent surface area (S 1) of the supported noble metal and the apparent surface area (S2) of the support are expressed as it (Sl / S2) i 0.02 / 1-1 to 0.1 / 1, preferably ί or 0.004 1 to 0.1. When this ratio (S1ZS2) is 0.02Z1 or more, the electrode catalyst of the present invention can be prepared without using a support having a high specific surface area with a small volume specific gravity and having significantly developed pores. As a result, since the catalyst layer in the electrode does not become too thick, the diffusibility of fuel, oxygen, etc. in the catalyst layer can be maintained, and the catalyst performance can be enhanced. On the other hand, if it is 0.1Z1 or less, the distance between the noble metal particles on the electrode catalyst can be kept moderate, and the stability of the noble metal fine particles can be maintained to prevent aggregation and improve the catalyst performance. Become.
[0030] 本発明の比(S1ZS2)は、担持貴金属の担体上への分散性を示す指標となるもの である。この比が 0. 02Zl〜0. lZlの範囲にある本発明の電極触媒は、貴金属が 高い分散性をもって担体上に担持されているということができる。つまり、貴金属の担 持量が高い上に貴金属粒子は凝集などを起こすことなく担体上に高度に分散されて いるので、本発明の電極触媒の触媒性能が高ぐしかも反応物質の拡散性に優れた 触媒層を形成することができる。  [0030] The ratio (S1ZS2) of the present invention is an index indicating the dispersibility of the supported noble metal on the support. In the electrocatalyst of the present invention in which this ratio is in the range of 0.02 to 0.1 Zl, it can be said that the noble metal is supported on the support with high dispersibility. In other words, since the amount of noble metal supported is high and the noble metal particles are highly dispersed on the support without causing aggregation, the catalytic performance of the electrode catalyst of the present invention is high and the diffusibility of the reactant is excellent. A catalyst layer can be formed.
[0031] 本発明の電極触媒は、いずれの燃料電池の電極触媒として使用することができる 力 なかでも固体高分子型燃料電池用電極触媒として好適に用いられる。  [0031] The electrocatalyst of the present invention is suitably used as an electrode catalyst for a polymer electrolyte fuel cell among the powers that can be used as an electrode catalyst for any fuel cell.
[0032] 本発明の電極触媒を固体高分子型燃料電池で用いる場合には、本発明に係る燃 料電池用電極触媒の他に、高分子電解質を配合して、固体高分子型燃料電池用の 電極触媒組成物とする。  [0032] When the electrode catalyst of the present invention is used in a polymer electrolyte fuel cell, in addition to the fuel cell electrode catalyst according to the present invention, a polymer electrolyte is blended to produce a polymer electrolyte fuel cell. The electrode catalyst composition is as follows.
[0033] 高分子電解質は、触媒反応により燃料から生じたプロトンを高分子電解質膜へ送 達する役割を有する。例えば、ナフイオン (デュポン社製)、フレミオン (旭化成 (株)製 )、ァシブレック (旭硝子 (株)製)などのスルホン酸基を有するフッ素榭脂や、タンダス テン酸、リンタングステン酸などの無機物などを使用することができる。  [0033] The polymer electrolyte has a role of delivering protons generated from the fuel by the catalytic reaction to the polymer electrolyte membrane. For example, fluorine resin having sulfonic acid groups such as naphthion (manufactured by DuPont), Flemion (manufactured by Asahi Kasei Co., Ltd.), and Ashbeck (manufactured by Asahi Glass Co., Ltd.), and inorganic substances such as tandastenoic acid and phosphotungstic acid. Can be used.
[0034] 本発明の電極組成物における高分子電解質の割合については、電極としたときに 必要なプロトン伝導性とが得られるように適宜決定すればよい。例えば、電極触媒 10 0質量部に対して高分子電解質を 10〜200質量部の割合で適宜配合すればよい。 [0034] The ratio of the polymer electrolyte in the electrode composition of the present invention may be appropriately determined so as to obtain the necessary proton conductivity when used as an electrode. For example, electrocatalyst 10 What is necessary is just to mix | blend a polymer electrolyte suitably in the ratio of 10-200 mass parts with respect to 0 mass parts.
[0035] 上記の本発明に係る電極触媒組成物により電極層を製造し、固体高分子型燃料 電池の電極とすることができる。固体高分子型燃料電池の電極 (アノードと力ソード) は、高分子電解質側の触媒層と、その外側のガス拡散層カゝらなる。このガス拡散層と しては、優れたガス透過性と導電性を有するものとして、厚さ 100〜300 m程度の カーボンペーパーやカーボンクロスが用いられる。よって、本発明の電極組成物によ り電極を形成する場合には、本発明の電極触媒や高分子電解質へ、必要に応じて 導電性炭素材料、撥水材ゃバインダーなどを加え、水やイソプロピルアルコールなど の有機溶媒と均一混合してペーストを調製し、これをカーボンペーパーなどのガス拡 散層に塗布後、乾燥することによって、電極を形成することができる。 [0035] An electrode layer can be produced from the above-described electrocatalyst composition according to the present invention to provide an electrode for a polymer electrolyte fuel cell. The electrodes (anode and force sword) of the polymer electrolyte fuel cell consist of a catalyst layer on the polymer electrolyte side and a gas diffusion layer on the outside thereof. As this gas diffusion layer, carbon paper or carbon cloth having a thickness of about 100 to 300 m is used as having excellent gas permeability and conductivity. Therefore, when an electrode is formed from the electrode composition of the present invention, a conductive carbon material, a water repellent material, a binder, or the like is added to the electrode catalyst or polymer electrolyte of the present invention as necessary, and water or An electrode can be formed by preparing a paste by uniformly mixing with an organic solvent such as isopropyl alcohol, applying the paste to a gas diffusion layer such as carbon paper, and drying.
[0036] 得られたアノードと力ソードは、高分子電解質膜を間に挟んでホットプレスすること によって、膜電極接合体とすることができる。この際、各電極において、触媒層が高 分子電解質膜に接する様に配置する必要がある。また、ホットプレスにおける圧力や 温度は、常法の条件に従えばよい。 [0036] The obtained anode and force sword can be formed into a membrane electrode assembly by hot pressing with a polymer electrolyte membrane interposed therebetween. At this time, in each electrode, it is necessary to dispose the catalyst layer in contact with the polymer electrolyte membrane. Moreover, the pressure and temperature in the hot press may be in accordance with ordinary conditions.
[0037] 得られた膜電極接合体は、セパレータなどと共に、常法に従って固体高分子型燃 料電池とすることができる。こうして得られた本発明の固体高分子型燃料電池は、高 性能の電極触媒を有することから発電性能に極めて優れる。よって、本発明の固体 高分子型燃料電池は、携帯機器や自動車用の電源、或いは家庭用の発電システム などに適するものである。 [0037] The obtained membrane / electrode assembly can be made into a polymer electrolyte fuel cell according to a conventional method together with a separator and the like. The solid polymer fuel cell of the present invention thus obtained has extremely high power generation performance because it has a high performance electrode catalyst. Therefore, the polymer electrolyte fuel cell of the present invention is suitable for portable devices, automobile power supplies, household power generation systems, and the like.
[0038] 本発明の燃料電池用電極触媒は、例えば、次の工程を含む方法により製造するこ とがでさる。 [0038] The fuel cell electrode catalyst of the present invention can be produced, for example, by a method including the following steps.
(a)導電性担体を水に懸濁させて導電性担体懸濁液を得る。  (a) A conductive carrier suspension is obtained by suspending a conductive carrier in water.
(b)上記懸濁液に水溶性貴金属化合物を添加して溶解させる。  (b) A water-soluble noble metal compound is added and dissolved in the suspension.
(c)上記懸濁液へ水溶性還元剤として水素化ホウ素ナトリウムを添加し、懸濁液中で 上記貴金属化合物を還元して、貴金属粒子を析出させる。析出した貴金属粒子は、 実質的にその全量が導電性担体上に担持される。  (c) Sodium borohydride is added as a water-soluble reducing agent to the suspension, and the noble metal compound is reduced in the suspension to precipitate noble metal particles. The deposited noble metal particles are substantially entirely supported on the conductive support.
[0039] 上記工程 (b)で用いる水溶性貴金属化合物は、特に限定されるものではないが、 例えば、白金およびルテニウムの水溶性ィ匕合物の例としては、ジニトロジアンミン白 金、塩化白金、硝酸ルテニウム、塩化ルテニウムなどを挙げることができる。水素化ホ ゥ素ナトリウムの添加量については、水溶液に溶解している貴金属化合物を金属に 還元して担体に担持し得る量を用いればよい。通常、 0. 1〜: LO質量%、好ましくは 1 〜5質量%の水溶液として添加する。 [0039] The water-soluble noble metal compound used in the above step (b) is not particularly limited, but examples of the water-soluble compound of platinum and ruthenium include dinitrodiammine white. Examples thereof include gold, platinum chloride, ruthenium nitrate, and ruthenium chloride. Regarding the amount of sodium borohydride added, an amount capable of reducing the noble metal compound dissolved in the aqueous solution to a metal and supporting it on the carrier may be used. Usually, 0.1-: LO mass%, preferably 1-5 mass% is added as an aqueous solution.
[0040] 懸濁液への貴金属化合物水溶液や水素化ホウ素ナトリウムの添加、それに続く貴 金属化合物の還元は懸濁液の十分な攪拌下に行うのが好ましい。これら一連の操作 は、 0〜100°C、好ましくは 30〜70°Cの温度で行うのが好ましい。  [0040] It is preferable that the noble metal compound aqueous solution or sodium borohydride is added to the suspension, and the subsequent reduction of the noble metal compound is performed with sufficient stirring of the suspension. These series of operations are preferably performed at a temperature of 0 to 100 ° C, preferably 30 to 70 ° C.
[0041] なお、本発明では、水素化ホウ素ナトリウムを用いて貴金属化合物を還元するに当 たり、懸濁液の pHが 7を超えないように調整する。即ち、懸濁液の pHを 7以下に維持 しつつ水素化ホウ素ナトリウムを添加する。水素化ホウ素ナトリウムを添加する場合、 還元反応の進行とともに懸濁液の pHがアルカリ性に移行するが、 pHが 7を超えるよ うな条件で還元処理を行うと、その理由は明らかではないが、析出した貴金属粒子の 凝集が起こりやすくなり、貴金属粒子を高分散状態で導電性担体上に担持させること が困難となる。従って、水溶性還元剤として水素化ホウ素ナトリウムを使用するときに は、適宜、酸を添カ卩して、懸濁液の pHが 7、好ましくは 4を超えないようにするのが好 ましい。上記酸としては、例えば、硝酸、塩酸、リン酸、ホウ酸などの無機酸を用いる ことができる。その他の水溶性還元剤を用いるときも、懸濁液の pHが 7、好ましくは 4 を超えな 、ようにするのがよ!/、。  [0041] In the present invention, when reducing the noble metal compound using sodium borohydride, the pH of the suspension is adjusted so as not to exceed 7. That is, sodium borohydride is added while maintaining the pH of the suspension at 7 or lower. When sodium borohydride is added, the pH of the suspension shifts to alkaline with the progress of the reduction reaction, but if the reduction treatment is performed under conditions where the pH exceeds 7, the reason is not clear, but precipitation occurs. Aggregation of the precious metal particles is likely to occur, and it becomes difficult to support the precious metal particles on the conductive support in a highly dispersed state. Therefore, when using sodium borohydride as a water-soluble reducing agent, it is preferable to add an acid as appropriate so that the pH of the suspension does not exceed 7, preferably 4. . As said acid, inorganic acids, such as nitric acid, hydrochloric acid, phosphoric acid, boric acid, can be used, for example. When using other water-soluble reducing agents, make sure that the pH of the suspension does not exceed 7, preferably 4! /.
[0042] 本発明の方法によれば、懸濁液中で水溶性還元剤により貴金属化合物を直接還 元し懸濁液中で貴金属粒子を生成させ、さらに懸濁液の pHが 7を超えないように調 整するため、貴金属の担持量を 70質量%以上としても、貴金属粒子の凝集を防止し 、貴金属粒子が分散性よく導電性担体に担持された電極触媒を得ることができる。な お、貴金属として、白金とルテニウムとを用いる場合、懸濁液中で白金とルテニウムと の合金化が起こるので、本発明の方法によれば、白金とルテニウムとを両者の合金と して導電性担体に担持させることが可能となる。なお、この合金化は 100°C以下の温 度で行われるので、貴金属粒子の凝集を防止することができる。  [0042] According to the method of the present invention, the noble metal compound is directly reduced with the water-soluble reducing agent in the suspension to form noble metal particles in the suspension, and the pH of the suspension does not exceed 7. Therefore, even when the loading amount of the noble metal is 70% by mass or more, the aggregation of the noble metal particles can be prevented, and an electrode catalyst in which the noble metal particles are supported on the conductive support can be obtained. When platinum and ruthenium are used as the noble metals, platinum and ruthenium are alloyed in the suspension. Therefore, according to the method of the present invention, platinum and ruthenium are electrically conductive as an alloy of both. It becomes possible to make it carry | support to a property support | carrier. This alloying is performed at a temperature of 100 ° C or lower, so that aggregation of noble metal particles can be prevented.
[0043] 反応終了後、粉体を濾別し、乾燥することにより、本発明の電極触媒が得られる。  [0043] After completion of the reaction, the powder is filtered off and dried to obtain the electrode catalyst of the present invention.
乾燥温度は 120°C以下が好ま 、。 実施例 The drying temperature is preferably 120 ° C or less. Example
[0044] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実 施例により制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に変 更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含ま れる。  [0044] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as well as the present invention. It is also possible to carry out with addition, and they are all included in the technical scope of the present invention.
[0045] 触媒調製例 1  [0045] Catalyst Preparation Example 1
担体であるカーボンブラック(キャボット社製、 BP2000、 BET比表面積: 1500m2 /g) 2. Ogを、 lOOmLの純水中に懸濁して懸濁液を得た。この懸濁液を攪拌した状 態で、白金およびルテニウム換算でそれぞれ 3. 07gおよび 1. 59gとなるように、ジ- トロジアンミン白金および硝酸ルテニウムの混合水溶液を添カ卩した。次いで、純水に て液量を 300mLに調節した後、当該混合液を攪拌しつつ、 5質量%の水素化ホウ 素ナトリウム水溶液 470mLを滴下し、懸濁液中に溶解している白金およびルテユウ ム前駆体を還元した。なお、この際、 10質量%硝酸水溶液を添加して、懸濁液の pH 力^を超えないように調整した。そして、析出した白金およびルテニウム微粒子の全 量をカーボンブラック上に担持させた。このようにして得られた粉末を濾別し、純水に て十分に洗浄した後、窒素雰囲気下、 110°Cにて乾燥して触媒 aを調製した。 Carbon black as a carrier (Cabot, BP2000, BET specific surface area: 1500 m 2 / g) 2. Og was suspended in lOOmL of pure water to obtain a suspension. In a state where the suspension was stirred, a mixed aqueous solution of di-trodiaminemine platinum and ruthenium nitrate was added so as to be 3.07 g and 1.59 g in terms of platinum and ruthenium, respectively. Next, after adjusting the liquid volume to 300 mL with pure water, 470 mL of a 5% by mass aqueous sodium borohydride solution was dropped while stirring the mixed solution, and platinum and luteyu dissolved in the suspension were dropped. The precursor was reduced. At this time, a 10 mass% nitric acid aqueous solution was added to adjust the suspension so that the pH power of the suspension was not exceeded. The total amount of precipitated platinum and ruthenium fine particles was supported on carbon black. The powder thus obtained was filtered off, washed thoroughly with pure water, and then dried at 110 ° C. in a nitrogen atmosphere to prepare catalyst a.
[0046] 触媒 aを分析したところ、その組成は、質量換算で、白金:ルテニウム:カーボンブラ ック =46. 1 : 23. 9 : 30であった。また、 COパルス吸着量測定法により算出された、 触媒 aにおける担持貴金属の見掛け表面積は、 34m2Zgであった。また、担体自体 の BET比表面積(1500mソ g)と、貴金属の担持量 (70質量%)から、電極触媒に おける導電性担体の見掛け表面積 (S2)を算出した。貴金属担持量、担持貴金属の 表面積および比(S1ZS2)をまとめて表 1に示す。なお、白金およびルテニウムが合 金化していることは、 X線回折分析により確認した。 [0046] When the catalyst a was analyzed, its composition was platinum: ruthenium: carbon black = 46.1: 13.9.30 in terms of mass. Further, the apparent surface area of the supported noble metal in the catalyst a calculated by the CO pulse adsorption amount measuring method was 34 m 2 Zg. The apparent surface area (S2) of the conductive support in the electrode catalyst was calculated from the BET specific surface area (1500 mg) of the support itself and the amount of noble metal supported (70% by mass). Table 1 summarizes the precious metal loading, surface area and ratio (S1ZS2) of the precious metal supported. It was confirmed by X-ray diffraction analysis that platinum and ruthenium were alloyed.
[0047] 触媒調製例 2  [0047] Catalyst Preparation Example 2
白金およびルテニウム換算でそれぞれ 5. 27gおよび 2. 73gとなるようにジニトロジ アンミン白金および硝酸ルテニウムの混合水溶液を添加し、また、 5質量%の水素化 ホウ素ナトリウム水溶液を 800mLとした以外は触媒調製例 1と同様にして、触媒 bを 調製した。得られた触媒 bを分析したところ、その組成は、質量換算で、白金:ルテ- ゥム:カーボンブラック = 52. 7: 27. 3 : 20であった。 COパルス吸着量測定法により 算出された、触媒 bにおける担持貴金属の見掛け貴金属表面積は 29m2/gであった 。貴金属担持量、担持貴金属の表面積および比(S1ZS2)をまとめて表 1に示す。 Example of catalyst preparation, except that a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate was added so that it would be 5.27 g and 2.73 g in terms of platinum and ruthenium, respectively, and the 5% by mass aqueous sodium borohydride solution was 800 mL. Catalyst b was prepared in the same manner as in 1. When the obtained catalyst b was analyzed, the composition was platinum: Um: carbon black = 52. 7: 27. 3:20. The apparent noble metal surface area of the supported noble metal on catalyst b, calculated by the CO pulse adsorption amount measurement method, was 29 m 2 / g. Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S1ZS2) of the supported noble metal.
[0048] 触媒調製例 3  [0048] Catalyst Preparation Example 3
白金およびルテニウム換算でそれぞれ 1. 98gおよび 1. 02gとなるようにジニトロジ アンミン白金および硝酸ルテニウムの混合水溶液を添加し、また、 5質量%の水素化 ホウ素ナトリウム水溶液を 200mLとした以外は触媒調製例 1と同様にして、触媒 cを 調製した。得られた触媒 cを分析したところ、その組成は、質量換算で、白金:ルテ- ゥム:カーボンブラック =40 : 20:40であった。 COパルス吸着量測定法により算出さ れた、触媒 cにおける担持貴金属の見掛け貴金属表面積は 42m2Zgであった。貴金 属担持量、担持貴金属の表面積および比(S1ZS2)をまとめて表 1に示す。 Example of catalyst preparation, except that a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate was added so that it would be 1.98 g and 1.02 g in terms of platinum and ruthenium, respectively, and the 5 mass% sodium borohydride aqueous solution was changed to 200 mL. Catalyst c was prepared in the same manner as in 1. When the obtained catalyst c was analyzed, the composition was platinum: luteum: carbon black = 40: 20: 40 in terms of mass. The apparent noble metal surface area of the supported noble metal on catalyst c, calculated by the CO pulse adsorption measurement method, was 42 m 2 Zg. Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S1ZS2) of the supported noble metal.
[0049] 触媒調製例 4  [0049] Catalyst Preparation Example 4
白金およびルテニウム換算でそれぞれ 1. 32gおよび 0. 68gとなるようにジニトロジ アンミン白金および硝酸ルテニウムの混合水溶液を添加し、また、 5質量%の水素化 ホウ素ナトリウム水溶液を 200mLとした以外は触媒調製例 1と同様にして、触媒 dを 調製した。得られた触媒 dを分析したところ、その組成は、質量換算で、白金:ルテ- ゥム:カーボンブラック = 32. 9 : 17. 1 : 50であった。 COパルス吸着量測定法により 算出された、触媒 dにおける担持貴金属の見掛け貴金属表面積は 43m2Zgであった 。貴金属担持量、担持貴金属の表面積および比(S1ZS2)をまとめて表 1に示す。 Example of catalyst preparation except that a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate was added to give platinum and ruthenium equivalents of 1.32 g and 0.68 g, respectively, and the 5 mass% sodium borohydride aqueous solution was changed to 200 mL. Catalyst d was prepared in the same manner as in 1. When the obtained catalyst d was analyzed, its composition was platinum: ruthenium: carbon black = 32.9: 17.1: 50 in terms of mass. The apparent noble metal surface area of the supported noble metal on catalyst d, calculated by the CO pulse adsorption amount measurement method, was 43 m 2 Zg. Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S1ZS2) of the supported noble metal.
[0050] 触媒調製例 5  [0050] Catalyst preparation example 5
白金およびルテニウム換算でそれぞれ 0. 57gおよび 0. 29gとなるようにジニトロジ アンミン白金および硝酸ルテニウムの混合溶液を添加し、また、 5質量%の水素化ホ ゥ素ナトリウム水溶液を 86mLとした以外は触媒調製例 1と同様にして、触媒 eを調製 した。得られた触媒 eを分析したところ、その組成は、質量換算で、白金:ルテニウム: カーボンブラック = 20: 10 : 70であった。 COパルス吸着量測定法により算出された、 触媒 eにおける担持貴金属の見掛け貴金属表面積は 30m2/gであった。貴金属担 持量、担持貴金属の表面積および比(S1ZS2)をまとめて表 1に示す。 A catalyst except that a mixed solution of dinitrodiammineplatinum and ruthenium nitrate was added so that it would be 0.57 g and 0.29 g in terms of platinum and ruthenium, respectively, and the 5 mass% sodium hydrogen hydride aqueous solution was changed to 86 mL. Catalyst e was prepared in the same manner as in Preparation Example 1. When the obtained catalyst e was analyzed, the composition was platinum: ruthenium: carbon black = 20: 10: 70 in terms of mass. The apparent noble metal surface area of the supported noble metal in catalyst e, calculated by the CO pulse adsorption amount measurement method, was 30 m 2 / g. Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S1ZS2) of the supported noble metal.
[0051] 触媒調製例 6 2. 5質量%の水素化ホウ素ナトリウム水溶液 470mLを用いた以外は触媒調製例 1 と同様にして、触媒 fを調製した。得られた触媒 fを分析したところ、その組成は、質量 換算で、白金:ルテニウム:カーボンブラック =46. 1 ; 23. 9 : 30であった。 COパルス 吸着量測定法により算出された、触媒 fにおける担持貴金属の見掛け貴金属表面積 は 42m2/gであった。貴金属担持量、担持貴金属の表面積および比(S1/S2)をま とめて表 1に示す。 [0051] Catalyst Preparation Example 6 2. Catalyst f was prepared in the same manner as in Catalyst Preparation Example 1, except that 470 mL of 5% by mass aqueous sodium borohydride solution was used. When the obtained catalyst f was analyzed, the composition was platinum: ruthenium: carbon black = 46.1; 23.9: 30 in terms of mass. The apparent noble metal surface area of the supported noble metal on catalyst f, calculated by the CO pulse adsorption measurement method, was 42 m 2 / g. Table 1 summarizes the precious metal loading, surface area and ratio (S1 / S2) of the precious metal supported.
[0052] 触媒調製例 7  [0052] Catalyst Preparation Example 7
1. 25質量%の水素化ホウ素ナトリウム水溶液 470mLを用いた以外は触媒調製例 1と同様にして、触媒 gを調製した。得られた触媒 gを分析したところ、その組成は、質 量換算で、白金:ルテニウム:カーボンブラック =46. 1 : 23. 9 : 30であった。 COパ ルス吸着量測定法により算出された、触媒 gにおける担持貴金属の見掛け貴金属表 面積は 55m2Zgであった。貴金属担持量、担持貴金属の表面積および比(S1ZS2 )をまとめて表 1に示す。 1. Catalyst g was prepared in the same manner as in Catalyst Preparation Example 1 except that 470 mL of a 25% by mass aqueous sodium borohydride solution was used. When the obtained catalyst g was analyzed, the composition thereof was platinum: ruthenium: carbon black = 46.1: 13.9.30 in terms of mass. The apparent noble metal surface area of the supported noble metal in catalyst g, calculated by the CO pulse adsorption amount measurement method, was 55 m 2 Zg. Table 1 summarizes the precious metal loading, surface area and ratio (S1ZS2) of the precious metal supported.
[0053] 触媒調製例 8  [0053] Catalyst Preparation Example 8
担体であるカーボンブラック(キャボット社製、 BP2000、 BET比表面積: 1500m2 /g) 2. Ogを lOOmLの純水中に懸濁して懸濁液を得た。この懸濁液を攪拌した状 態で、白金およびルテニウム換算でそれぞれ 3. 07gおよび 1. 59gとなるようにジ-ト ロジアンミン白金および硝酸ルテニウムの混合水溶液を添カ卩した。次いで、ロータリ 一エバポレータを用いて窒素気流中、 80〜90°Cに保持して蒸発乾固させて、カー ボンブラック〖こ白金およびルテニウム化合物を担持させた。得られた粉末を 110°Cに て乾燥し、水素含有ガスを用いて 300°Cにて 2時間還元処理を行い、触媒 hを調製し た。得られた触媒 hを分析したところ、その組成は、質量換算で、白金:ルテニウム:力 一ボンブラック =46. 1 : 23. 9 : 30であった。 COパルス吸着量測定法により算出さ れた、触媒 hにおける担持貴金属の見掛け貴金属表面積は 19m2Zgであった。貴金 属担持量、担持貴金属の表面積および比(S1ZS2)をまとめて表 1に示す。 Carbon black as a carrier (Cabot Corporation, BP2000, BET specific surface area: 1500 m 2 / g) 2. Og was suspended in lOOmL of pure water to obtain a suspension. In a state where the suspension was stirred, a mixed aqueous solution of di-throdianmine platinum and ruthenium nitrate was added so as to be 3.07 g and 1.59 g in terms of platinum and ruthenium, respectively. Subsequently, carbon black black platinum and a ruthenium compound were supported by evaporating to dryness while maintaining at 80 to 90 ° C. in a nitrogen stream using a rotary evaporator. The obtained powder was dried at 110 ° C. and subjected to reduction treatment at 300 ° C. for 2 hours using a hydrogen-containing gas to prepare catalyst h. The obtained catalyst h was analyzed, and its composition was, in terms of mass, platinum: ruthenium: force one bon black = 46.1: 23.9: 30. The apparent noble metal surface area of the supported noble metal at catalyst h, calculated by the CO pulse adsorption measurement method, was 19 m 2 Zg. Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S1ZS2) of the supported noble metal.
[0054] 触媒調製例 9  [0054] Catalyst Preparation Example 9
白金およびルテニウム換算でそれぞれ 5. 27gおよび 2. 73gとなるようにジニトロジ アンミン白金および硝酸ルテニウムの混合水溶液を添加した以外は触媒調製例 8と 同様にして、触媒 iを調製した。得られた触媒 iを分析したところ、その組成は、質量換 算で、白金:ルテニウム:カーボンブラック = 52. 7 : 27. 3 : 20であった。 COパルス吸 着量測定法により算出された、触媒 iにおける担持貴金属の見掛け貴金属表面積は 13m2Zgであった。貴金属担持量、担持貴金属の表面積および比(S1ZS2)をまと めて表 1に示す。 Except for adding a mixed aqueous solution of dinitrodiammineplatinum and ruthenium nitrate to 5.27 g and 2.73 g in terms of platinum and ruthenium, respectively, Similarly, catalyst i was prepared. The obtained catalyst i was analyzed, and its composition was, in terms of mass, platinum: ruthenium: carbon black = 52.7: 27.3: 20. The apparent noble metal surface area of the supported noble metal on catalyst i calculated by the CO pulse adsorption amount measurement method was 13 m 2 Zg. Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S1ZS2) of the supported noble metal.
[0055] 触媒調製例 10  [0055] Catalyst Preparation Example 10
担体であるカーボンブラック(キャボット社製、 BP2000、 BET比表面積 1500m2/ g) l. 87gを lOOmLの純水中に懸濁して懸濁液を得た。この懸濁液を攪拌した状態 で、白金、ルテニウムおよびインジウム換算でそれぞれ 3. 07g、 1. 59gおよび 0. 13 gとなるようにジニトロジアンミン白金、硝酸ルテニウムおよび硝酸インジウムの混合水 溶液を添加した。次いで、純水にて液量を 300mLに調節した後、当該混合液を攪 拌しつつ、 5質量%の水素化ホウ素ナトリウム水溶液 470mLを滴下し、水溶液中に 溶解している触媒成分全量をカーボンブラック上に担持させた。なお、この際、 10質 量%硝酸水溶液を添カ卩して、懸濁液の pHが 7を超えないように調整した。このように して得られた粉末を濾別し、純水にて十分に洗浄した後、窒素雰囲気下、 110°Cに て乾燥して触媒 jを調製した。得られた触媒 jを分析したところ、その組成は、質量換 算で、白金:ルテニウム:インジウム:カーボンブラック =46. 1 : 23. 9 : 2 : 28であった 。 COパルス吸着量測定法により算出された、触媒 jにおける担持貴金属の見掛け貴 金属表面積は 26m2Zgであった。貴金属担持量、担持貴金属の表面積および比(S 1/S2)をまとめて表 1に示す。 Carbon black as a carrier (Cabot Corporation, BP2000, BET specific surface area 1500 m 2 / g) l. 87 g was suspended in lOOmL of pure water to obtain a suspension. While stirring this suspension, a mixed water solution of dinitrodiammineplatinum, ruthenium nitrate and indium nitrate was added so that it would be 3.07 g, 1.59 g and 0.13 g in terms of platinum, ruthenium and indium, respectively. . Next, after adjusting the liquid volume to 300 mL with pure water, 470 mL of a 5% by mass aqueous sodium borohydride solution was added dropwise while stirring the mixed liquid, and the total amount of the catalyst components dissolved in the aqueous solution was carbonized. Supported on black. At this time, a 10% by mass aqueous nitric acid solution was added to adjust the pH of the suspension so as not to exceed 7. The powder thus obtained was filtered, washed thoroughly with pure water, and then dried at 110 ° C. in a nitrogen atmosphere to prepare catalyst j. The obtained catalyst j was analyzed, and its composition was, in terms of mass, platinum: ruthenium: indium: carbon black = 46.1: 23.9: 2: 28. The apparent noble metal surface area of the supported noble metal on catalyst j, calculated by the CO pulse adsorption measurement method, was 26 m 2 Zg. Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S 1 / S2) of the supported noble metal.
[0056] 触媒調製例 11  [0056] Catalyst Preparation Example 11
懸濁液の pHが 7を超えな 、ように硝酸水溶液を添カ卩しな力つた (結果として、懸濁 液の pHは 7を超えた)以外は触媒調製例 1と同様にして、触媒 kを調製した。得られ た触媒 kを分析したところ、その組成は、質量換算で、白金:ルテニウム:カーボンブラ ック =46. 1 : 23. 9 : 30であった。 COパルス吸着量測定法により算出された、触媒 k における担持貴金属の見掛け担持貴金属の表面積は 30m2/gであった。貴金属担 持量、担持貴金属の表面積および比(S1ZS2)をまとめて表 1に示す。 The catalyst was prepared in the same manner as in Catalyst Preparation Example 1, except that the aqueous solution of nitric acid was used to force the suspension so that the pH did not exceed 7 (as a result, the pH of the suspension exceeded 7). k was prepared. When the obtained catalyst k was analyzed, the composition was platinum: ruthenium: carbon black = 46.1: 13.9.30 in terms of mass. The apparent surface area of the supported noble metal at catalyst k, calculated by the CO pulse adsorption measurement method, was 30 m 2 / g. Table 1 summarizes the amount of noble metal supported, the surface area and ratio (S1ZS2) of the supported noble metal.
[0057] 試験例 触媒調製例 1〜10で得られた触媒 a〜k (c〜e、 g〜iは比較用)を用いて固体高分 子型燃料電池の単セル電極を作成し、電池特性を測定した。単セル電極は以下の ようにして作成した。 [0057] Test example A single cell electrode of a solid polymer fuel cell was prepared using the catalysts a to k (c to e and g to i for comparison) obtained in Catalyst Preparation Examples 1 to 10, and the cell characteristics were measured. The single cell electrode was prepared as follows.
[0058] (1)単セル電極の作成  [0058] (1) Creation of single cell electrode
触媒調製例にて作成した触媒試料 0. 25gを 5%パーフルォロスルホン酸榭脂溶液 (アルドリッチ社製) 1. 6gにカ卩えて混合し、この混合溶液に純水を添加して全体を 7. 2mLとした。次いで、超音波分散機により均一に分散し、触媒含有ペーストを作成し た。これをカーボンペーパー (東レネ土製)上に白金一ルテニウム担持量が 1. 5mg/c m2となるように均一に塗布した後、 15時間乾燥させてアノードとした。 Catalyst sample prepared in catalyst preparation example 0.25 g 5% perfluorosulfonic acid resin solution (Aldrich) 1. Add to 6 g and mix, add pure water to this mixed solution and add the whole To 7.2 mL. Next, the mixture was uniformly dispersed by an ultrasonic disperser to prepare a catalyst-containing paste. This was uniformly coated on carbon paper (made by Torayen earth) so that the supported amount of platinum and ruthenium was 1.5 mg / cm 2, and then dried for 15 hours to obtain an anode.
[0059] 別途、 E— TEK社製の白金担持カーボンブラック(白金担持量: 60質量%、カーボ ンブラック、キャボット社製、 VulcanXC72) 0. 2gを 5%パーフルォロスルホン酸榭脂 溶液 (アルドリッチ社製) 1. 6gに加えて混合し、この混合溶液に純水を添加して全体 を 7. 2mLとした。次いで、超音波分散機により均一に分散し、触媒含有ペーストを作 成した。これをカーボンペーパー (東レネ土製)上に白金担持量が 1. OmgZcm2となる ように均一に塗布した後、 15時間乾燥させて力ソードとした。 [0059] Separately, E—TEK's platinum-supported carbon black (platinum supported amount: 60% by weight, carbon black, Cabot, VulcanXC72) 0.2 g of 5% perfluorosulfonic acid resin solution ( (Aldrich) 1. Add to 6 g and mix, and add pure water to this mixture to make 7.2 mL. Subsequently, it was uniformly dispersed by an ultrasonic disperser to prepare a catalyst-containing paste. This was uniformly applied on carbon paper (made by Torayen earth) so that the amount of platinum supported was 1. OmgZcm 2, and then dried for 15 hours to form a force sword.
[0060] 上記で得られた力ソードとアノード間に、有効電極面積が 5cm2となるようにナフィォ ン 112膜 (Dupont社製)を挟んで、触媒が塗布された面がナフイオン膜に接するよう に重ね合わせ、 130°C、 lOOkg/cm2, 5分間ホットプレスして単セル電極を作成し た。 [0060] A Nafion 112 membrane (manufactured by Dupont) is sandwiched between the force sword obtained above and the anode so that the effective electrode area is 5 cm 2 so that the surface coated with the catalyst is in contact with the naphthion membrane. A single cell electrode was made by hot pressing for 5 minutes at 130 ° C, lOOkg / cm 2 .
[0061] (2)電池特性の測定  [0061] (2) Measurement of battery characteristics
電池特性の測定は、上記のようにして作成した単セル電極を実験用燃料電池セル に組み込み、セル温度 30°Cに保持し、アノードに 5%メタノール水溶液を 6mLZmi n、力ソードには酸素ガスを 0. 3LZminで供給して電流電圧特性を測定することで 行った。 40mAZcm2における両電極間に生じる電圧を測定した。結果を表 1に示す 。なお、電圧が高いほど電池特性として優れていることを示している。また、下線は本 発明の範囲外であることを示す。 To measure the battery characteristics, the single cell electrode prepared as described above was incorporated in the experimental fuel cell, maintained at a cell temperature of 30 ° C, 5% methanol aqueous solution at the anode, 6 mL, and oxygen gas as the power sword. Was supplied at 0.3LZmin and the current-voltage characteristics were measured. The voltage generated between both electrodes at 40 mAZcm 2 was measured. The results are shown in Table 1. In addition, it has shown that it is excellent as a battery characteristic, so that a voltage is high. The underline indicates that it is outside the scope of the present invention.
[0062] [表 1] 貴金属の担持量 担持貴金属の [0062] [Table 1] Precious metal loading amount
触媒 S1 /S2 電圧 (V)  Catalyst S1 / S2 voltage (V)
(質量%) 見掛け表面積 (m2/g) (Mass%) Apparent surface area (m 2 / g)
a 70 34 0.076/1 0.380 b 80 29 0.097/1 0.380 c (比較用) 60 42 0.070/1 0.376 d (比較用) 50 43 0.057/1 0.372 e (比較用) 30 30 0.029/1 0.365 f 70 42 0.093/1 0.380 g (比較用) 70 55 0.122/1 0.375 h (比較用) 70 19 0.042/1 0.370 i (比較用) 80 13 0.043/1 0.368 j 70 26 0.058/1 0.382 k 70 30 0.067/1 0.378 上記結果力も次のことがわかる。  a 70 34 0.076 / 1 0.380 b 80 29 0.097 / 1 0.380 c (for comparison) 60 42 0.070 / 1 0.376 d (for comparison) 50 43 0.057 / 1 0.372 e (for comparison) 30 30 0.029 / 1 0.365 f 70 42 0.093 / 1 0.380 g (for comparison) 70 55 0.122 / 1 0.375 h (for comparison) 70 19 0.042 / 1 0.370 i (for comparison) 80 13 0.043 / 1 0.368 j 70 26 0.058 / 1 0.382 k 70 30 0.067 / 1 0.378 The above results also show the following.
(1)貴金属の担持量が 70質量%未満では、各触媒における担持貴金属の見掛け表 面積が 25〜60m2Zg、比(S1ZS2)が 0. 02/1~0. lZlの範囲にあっても、得ら れる電圧が低下する (触媒 c、 d、 e参照)。これは、貴金属担持量の少ない触媒を力 一ボンペーパー上に塗布しょうとすると塗布量が多くなり、その結果として触媒層が 厚くなるため、反応物質 (メタノールや水など)の拡散性が低下するためと考えられる (1) If the supported amount of noble metal is less than 70% by mass, the apparent surface area of the supported noble metal in each catalyst is 25 to 60m 2 Zg and the ratio (S1ZS2) is in the range of 0.02 / 1 to 0.1 lZl. The resulting voltage is reduced (see Catalysts c, d, e). This is because when a catalyst with a small amount of noble metal is applied on a single paper, the amount of coating increases, and as a result, the catalyst layer becomes thicker, and the diffusibility of reactants (such as methanol and water) decreases. Considered for
(2)貴金属の担持量が 70〜90質量%、各触媒における担持貴金属の見掛け表面 積が 25〜60m2Zgの範囲にあっても、比(S1ZS2)が 0. lZlを超えると、得られる 電圧が低下する (触媒 g参照)。 (2) Even if the supported amount of noble metal is 70-90% by mass and the apparent surface area of the supported noble metal in each catalyst is in the range of 25-60m 2 Zg, it can be obtained if the ratio (S1ZS2) exceeds 0.1 lZl. Voltage drops (see Catalyst g).
(3)貴金属の担持量を増力!]させるために、従来の方法に従って貴金属を担体上に担 持させると、各触媒における担持貴金属の見掛け表面積が 25m2Zg未満となって、 得られる電圧が低下する (触媒 h、 i参照)。 (3) Increase the load of precious metals! Therefore, when the noble metal is supported on the support according to the conventional method, the apparent surface area of the supported noble metal in each catalyst becomes less than 25 m 2 Zg, and the obtained voltage decreases (see catalysts h and i).
(4)貴金属の担持量が 70〜90質量%、各触媒における担持貴金属の見掛け表面 積が 25〜60m2Zg、比(S1ZS2)が 0. 02/1~0. lZlの範囲にあるとの全ての 条件を満たす電極触媒によってのみ、高い電圧が得られる (触媒 a、 b、 f、 j、 k参照)(4) The amount of noble metal supported is 70 to 90% by mass, the apparent surface area of the supported noble metal in each catalyst is 25 to 60m 2 Zg, and the ratio (S1ZS2) is in the range of 0.02 / 1 to 0.1 lZl. High voltage can be obtained only with an electrocatalyst that satisfies all conditions (see Catalysts a, b, f, j, k)
。これは、貴金属の担持量が高くても、その見掛け表面積が 25〜60m2Zgの状態で 担持されており、かつ、これら貴金属粒子が担体上に一定以上の間隔を保って分散 担持されて ヽるためと考えられる。 (5)触媒成分として、貴金属に加え、マンガン、インジウム、ニオブ、ランタン、セリウム 、ケィ素およびチタン力 選ばれた少なくとも 1種の元素を含有させることによりさらに 高!ヽ電圧が得られる (触媒 j参照)。 . This is because even if the amount of noble metal supported is high, the apparent surface area is supported in a state of 25 to 60 m 2 Zg, and these noble metal particles are dispersed and supported on the support with a certain interval or more. It is thought to be for this purpose. (5) As a catalyst component, in addition to noble metals, manganese, indium, niobium, lanthanum, cerium, silicon, and titanium power are further increased by containing at least one selected element! A soot voltage is obtained (see Catalyst j).

Claims

請求の範囲 The scope of the claims
[1] 導電性担体に触媒成分として貴金属を担持してなる燃料電池用電極触媒であって 導電性担体と貴金属の合計に対する貴金属の担持量が 70〜90質量%、担持貴 金属の見掛け表面積 (S1)が 25〜60m2Zg、さらに、担持貴金属の見掛け表面積( S1)と導電性担体の見掛け表面積 (S2)との比(S1ZS2)が 0. 02Zl〜0. lZlで あることを特徴とする燃料電池用電極触媒。 [1] A fuel cell electrode catalyst in which a noble metal is supported as a catalyst component on a conductive support, the amount of noble metal supported is 70 to 90% by mass relative to the total of the conductive support and the noble metal, and the apparent surface area of the supported noble metal ( S1) is 25 to 60 m 2 Zg, and the ratio (S1ZS2) of the apparent surface area (S1) of the supported noble metal to the apparent surface area (S2) of the conductive support is 0.02 Zl to 0.1 lZl. Fuel cell electrode catalyst.
[2] 貴金属が白金およびルテニウムである請求項 1に記載の燃料電池用電極触媒。 [2] The fuel cell electrode catalyst according to [1], wherein the noble metals are platinum and ruthenium.
[3] 請求項 1または 2に記載の燃料電池用電極触媒および高分子電解質を含有する燃 料電池用電極触媒組成物。 [3] A fuel cell electrode catalyst composition comprising the fuel cell electrode catalyst according to claim 1 or 2 and a polymer electrolyte.
[4] 請求項 3に記載の燃料電池用電極触媒組成物により形成された電極を有する燃料 電池。 [4] A fuel cell having an electrode formed from the electrode catalyst composition for a fuel cell according to claim 3.
[5] 燃料電池用電極触媒を製造する方法であって、  [5] A method for producing an electrode catalyst for a fuel cell, comprising:
導電性担体粒子を水中に懸濁させ、得られる懸濁液に水溶性貴金属化合物を添 加する工程;および  Suspending conductive carrier particles in water and adding a water-soluble noble metal compound to the resulting suspension; and
次いで、水溶性還元剤として水素化ホウ素ナトリウムを懸濁液へ添加することにより 水溶性貴金属化合物を還元して、貴金属粒子を導電性担体粒子上に担持させるェ 程;を含み、  A step of reducing the water-soluble noble metal compound by adding sodium borohydride to the suspension as a water-soluble reducing agent and supporting the noble metal particles on the conductive carrier particles;
水素化ホウ素ナトリウムを、懸濁液の pHが 7を超えな 、ように調整しながら添加する ことを特徴とする燃料電池用電極触媒の製造方法。  A method for producing an electrode catalyst for a fuel cell, comprising adding sodium borohydride while adjusting so that the pH of the suspension does not exceed 7.
PCT/JP2006/307862 2005-04-15 2006-04-13 Electrode catalyst for fuel cell and process for producing the same WO2006112368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007526845A JPWO2006112368A1 (en) 2005-04-15 2006-04-13 Fuel cell electrode catalyst and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-118600 2005-04-15
JP2005118600 2005-04-15

Publications (1)

Publication Number Publication Date
WO2006112368A1 true WO2006112368A1 (en) 2006-10-26

Family

ID=37115090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307862 WO2006112368A1 (en) 2005-04-15 2006-04-13 Electrode catalyst for fuel cell and process for producing the same

Country Status (3)

Country Link
JP (1) JPWO2006112368A1 (en)
TW (1) TW200642149A (en)
WO (1) WO2006112368A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104373A1 (en) * 2008-02-18 2009-08-27 株式会社 東芝 Fuel cell and electronic device
JP2019505376A (en) * 2016-01-29 2019-02-28 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited catalyst
US10326147B2 (en) 2013-04-18 2019-06-18 Toyota Jidosha Kabushiki Kaisha Catalyst for fuel cells and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630664B2 (en) * 1976-11-05 1981-07-16
JP2003129102A (en) * 2001-08-04 2003-05-08 Omg Ag & Co Kg Powder of platinum and platinum alloy with high surface area and low chlorine content, and process for preparing the same
JP2004342505A (en) * 2003-05-16 2004-12-02 Cataler Corp Membrane electrode assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630664B2 (en) * 1976-11-05 1981-07-16
JP2003129102A (en) * 2001-08-04 2003-05-08 Omg Ag & Co Kg Powder of platinum and platinum alloy with high surface area and low chlorine content, and process for preparing the same
JP2004342505A (en) * 2003-05-16 2004-12-02 Cataler Corp Membrane electrode assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104373A1 (en) * 2008-02-18 2009-08-27 株式会社 東芝 Fuel cell and electronic device
US10326147B2 (en) 2013-04-18 2019-06-18 Toyota Jidosha Kabushiki Kaisha Catalyst for fuel cells and method for producing the same
JP2019505376A (en) * 2016-01-29 2019-02-28 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited catalyst
JP7101119B2 (en) 2016-01-29 2022-07-14 ジョンソン マッセイ ハイドロジェン テクノロジーズ リミテッド catalyst
US11404701B2 (en) 2016-01-29 2022-08-02 Johnson Matthey Fuel Cells Limited Catalyst

Also Published As

Publication number Publication date
TW200642149A (en) 2006-12-01
JPWO2006112368A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
Naik et al. Two-dimensional oxygen-deficient TiO2 nanosheets-supported Pt nanoparticles as durable catalyst for oxygen reduction reaction in proton exchange membrane fuel cells
JP4571098B2 (en) Supported catalyst, method for producing supported catalyst, electrode and fuel cell using supported catalyst
Feng et al. Electrocatalytic properties of PdCeOx/C anodic catalyst for formic acid electrooxidation
EP1164651A1 (en) Electrode catalyst for polymer electrolyte fuel cell and method for its production
JP5209474B2 (en) Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles
KR100868756B1 (en) Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
US20080020924A1 (en) Method of fabricating platinum alloy electrocatalysts for membrane fuel cell applications
JP2001357857A (en) Solid high polymer type fuel cell and its manufacturing method
CN1318873A (en) Preparation of nanometer electrical catalyst for protein exchange film fuel cell
KR20090034354A (en) Membrane comprising an electrocatalyst containing palladium and ruthenium
US10003084B2 (en) Metal nanoparticle-graphene composites and methods for their preparation and use
JP2003036859A (en) Solid polymer type fuel cell and its fabrication method
JP6141741B2 (en) Fuel cell electrode catalyst and method for producing the same
Fu et al. 3D robust carbon aerogels immobilized with Pd3Pb nanoparticles for oxygen reduction catalysis
JP2006210135A (en) Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
Urbańczyk et al. NiPt sinter as a promising electrode for methanol electrocatalytic oxidation
JP2003157857A (en) Electrode catalyst body for fuel cell, air electrode for fuel cell using it, and evaluating method of its catalystic activity
CN103191757B (en) PdNiW/C ternary alloy nano catalyst and preparation method thereof
Zignani et al. Investigation of a Pt3Sn/C electro-catalyst in a direct ethanol fuel cell operating at low temperatures for portable applications
JP2007194200A (en) Catalyst for fuel cell, electrode for fuel cell, membrane-electrode assembly and fuel cell
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
CN111788728B (en) Electrode catalyst for fuel cell and fuel cell using the same
WO2006112368A1 (en) Electrode catalyst for fuel cell and process for producing the same
JP2005085607A (en) Anode catalyst for fuel cell, and its manufacturing method
Rocco et al. Synthesis of PtCo/ZSM-5/C electrocatalyst and electrochemical activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526845

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731798

Country of ref document: EP

Kind code of ref document: A1