JP5561250B2 - Support carbon material for catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same - Google Patents

Support carbon material for catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same Download PDF

Info

Publication number
JP5561250B2
JP5561250B2 JP2011152795A JP2011152795A JP5561250B2 JP 5561250 B2 JP5561250 B2 JP 5561250B2 JP 2011152795 A JP2011152795 A JP 2011152795A JP 2011152795 A JP2011152795 A JP 2011152795A JP 5561250 B2 JP5561250 B2 JP 5561250B2
Authority
JP
Japan
Prior art keywords
carbon material
fuel cell
catalyst layer
catalyst
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011152795A
Other languages
Japanese (ja)
Other versions
JP2013020793A (en
Inventor
孝 飯島
英明 澤田
健一郎 田所
正孝 日吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011152795A priority Critical patent/JP5561250B2/en
Publication of JP2013020793A publication Critical patent/JP2013020793A/en
Application granted granted Critical
Publication of JP5561250B2 publication Critical patent/JP5561250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体高分子燃料電池用触媒層用担体炭素材料、及び、これを用いた固体高分子型燃料電池に関するものである。   The present invention relates to a support carbon material for a catalyst layer for a solid polymer fuel cell, and a solid polymer fuel cell using the same.

本発明が関わる固体高分子形燃料電池の基本構造は、プロトン伝導性の固体高分子電解質膜を挟んでアノードとカソードとなる触媒層が配置され、これを挟んでさらに外側にガス拡散層が配置され、さらにその外側にセパレーターが配置され、単位セルを構成する。通常、必要な電流特性に合わせて単セルの電極面積を決め、更に出力電圧特性に応じて単セルを直列に積層し、実用に供するスタックを構成して燃料電池として用いる。   The basic structure of the polymer electrolyte fuel cell according to the present invention is that a catalyst layer serving as an anode and a cathode is disposed with a proton-conducting solid polymer electrolyte membrane interposed therebetween, and a gas diffusion layer is disposed further on the outer side of the catalyst layer. In addition, a separator is disposed on the outer side to constitute a unit cell. Usually, the electrode area of a single cell is determined according to the required current characteristics, and further, the single cells are stacked in series according to the output voltage characteristics, and a practical stack is formed and used as a fuel cell.

このような基本構造の燃料電池から電流を取り出すためには、アノードとカソードの両極に配されたセパレーターのガス流路から、カソード側に酸素あるいは空気等の酸化性ガスを、アノード側には水素等の還元性ガスを、ガス拡散層を介して触媒層までそれぞれ供給する。例えば、水素ガスと酸素ガスを利用する場合、アノードの触媒上で起こる
→ 2H+2e (E0=0V)
の化学反応と、カソードの触媒上で起こる
+4H+4e→2HO (E0=1.23V)
の化学反応のエネルギー差(電位差)を利用して、電流を取り出すこととなる。
In order to take out the current from the fuel cell having such a basic structure, an oxidizing gas such as oxygen or air is supplied to the cathode side from the gas flow path of the separator disposed on both the anode and the cathode, and hydrogen is supplied to the anode side. A reducing gas such as is supplied to the catalyst layer through the gas diffusion layer. For example, when hydrogen gas and oxygen gas are used, H 2 → 2H + + 2e (E0 = 0 V) that occurs on the catalyst of the anode
And O 2 + 4H + + 4e → 2H 2 O occurring on the cathode catalyst (E0 = 1.23 V)
The current is taken out using the energy difference (potential difference) of the chemical reaction.

従って、セパレーターのガス流路から触媒層内部の触媒まで酸素ガスあるいは水素ガスが移動できるガス拡散経路や、アノード触媒上で発生したプロトン(H+)がプロトン伝導性電解質膜を経由してカソードの触媒まで伝達できるプロトン伝導経路、さらにはアノード触媒上で発生した電子(e-)がガス拡散層、セパレーター、外部回路を通じてカソード触媒まで伝達できる電子伝達経路が、それぞれ分断されることなく連続して連なっていないと、効率よく電流を取り出すことができない。 Therefore, a gas diffusion path through which oxygen gas or hydrogen gas can move from the gas flow path of the separator to the catalyst inside the catalyst layer, and protons (H + ) generated on the anode catalyst pass through the proton conductive electrolyte membrane and flow through the cathode. proton conduction paths that can be transmitted to the catalyst, more electrons generated on the anode catalyst (e -) is a gas diffusion layer, separator, electron transfer pathway capable of transmitting to the cathode catalyst through an external circuit, continuously without being separated respectively If they are not connected, current cannot be extracted efficiently.

触媒層内部では、一般に、材料の間隙に形成されガス拡散経路となる気孔、プロトン伝導経路となる電解質材料、及び、電子伝導経路となる炭素材料や金属材料などの導電性材料が、それぞれの連続したネットワークを形成していることが重要である。   Inside the catalyst layer, generally, pores that are formed in gaps between the materials and serve as gas diffusion paths, electrolyte materials that serve as proton conduction paths, and conductive materials such as carbon materials and metal materials that serve as electron conduction paths are continuously connected to each other. It is important to form a network.

また、プロトン伝導性電解質膜や触媒層中のプロトン伝導経路には、高分子電解質材料としてパーフルオロスルホン酸ポリマーに代表されるイオン交換樹脂が用いられている。これら一般に用いられる高分子電解質材料は、湿潤環境下で初めて高いプロトン伝導性を発現し、乾燥環境下ではプロトン導電性が低下してしまう。したがって、効率良く燃料電池を作動させるためには、高分子電解質材料が十分な湿潤状態であることが必須であり、両極に供給するガスと共に、常に水蒸気を供給する必要がある。   In addition, ion exchange resins typified by perfluorosulfonic acid polymers are used as polymer electrolyte materials for proton conducting paths in proton conducting electrolyte membranes and catalyst layers. These generally used polymer electrolyte materials exhibit high proton conductivity for the first time in a wet environment, and the proton conductivity decreases in a dry environment. Therefore, in order to operate the fuel cell efficiently, it is essential that the polymer electrolyte material is in a sufficiently wet state, and it is necessary to always supply water vapor together with the gas supplied to both electrodes.

水蒸気を供給するために一般には、供給するガスをあらかじめ一定温度に保温された水中に通じて加湿する方法などが用いられ、セルとは別に加湿のための機器が必要となる。しかし、保温のためにエネルギーを消耗する加湿器はシステム全体のエネルギー効率を低下させる。また、システム全体を小型・軽量化する目的においても、加湿器は無い方が望ましい。   In general, in order to supply water vapor, a method of humidifying a gas to be supplied by passing it through water that has been previously kept at a constant temperature is used, and a device for humidification is required in addition to the cell. However, a humidifier that consumes energy to keep warm reduces the energy efficiency of the entire system. Moreover, it is desirable that there is no humidifier for the purpose of reducing the size and weight of the entire system.

これに応えるために触媒は、1)高い保水能力、2)低加湿領域における十分な水蒸気放出能力、を併せもつことが課題となる。これを解決するために、従来から種々の提案がなされている。   In order to respond to this, it is a problem that the catalyst has 1) high water retention ability and 2) sufficient water vapor release ability in a low humidification region. In order to solve this, various proposals have been conventionally made.

特許文献1では、加湿量を低減した場合であっても高い電池性能を維持するために、アノードにゼオライトやチタニアなどの親水性微粒子や親水性の触媒担体を含有させた触媒材料が開示されている。特許文献2では、広範囲な加湿条件に対応可能な燃料電池を提供する目的で、触媒層中にテフロン(登録商標)粒子を担持したシリカ粒子のような疎水性粒子を担持した親水性粒子を含有させた触媒材料が開示されている。   Patent Document 1 discloses a catalyst material in which hydrophilic fine particles such as zeolite and titania and a hydrophilic catalyst carrier are contained in an anode in order to maintain high battery performance even when the amount of humidification is reduced. Yes. Patent Document 2 contains hydrophilic particles supporting hydrophobic particles such as silica particles supporting Teflon (registered trademark) particles in a catalyst layer for the purpose of providing a fuel cell that can cope with a wide range of humidification conditions. A catalyst material is disclosed.

しかしながら、特許文献1及び特許文献2で開示された触媒材料を用いると保水能力は向上するが、親水性であるが導電性あるいはプロトン伝導性を持たない材料を触媒層中に含有するため、電子あるいはプロトンの移動経路を分断してしまい、内部抵抗を増大するというあらたな問題を生じた。   However, when the catalyst materials disclosed in Patent Document 1 and Patent Document 2 are used, the water retention capacity is improved. However, since the catalyst layer contains a material that is hydrophilic but does not have conductivity or proton conductivity, Alternatively, the proton transfer path was interrupted, resulting in a new problem of increasing internal resistance.

特許文献3では、低温雰囲気下でも優れた始動性を示す燃料電池として、アノードの触媒層に水分保湿剤が含有され、該水分保湿剤が親水化処理された導電性材料として親水化処理されたカーボンブラック等が開示されている。   In Patent Document 3, as a fuel cell exhibiting excellent startability even in a low-temperature atmosphere, a moisture humectant is contained in the catalyst layer of the anode, and the moisture humectant was hydrophilized as a conductive material subjected to a hydrophilization treatment. Carbon black and the like are disclosed.

しかしながら、発明者らの検討によれば、親水化処理されたカーボンブラックは、低湿条件で保水能力の改善は認められるが、必ずしも実用上十分な発電特性が得られなかった。   However, according to the study by the inventors, the carbon black that has been subjected to the hydrophilization treatment has been improved in water retention capacity under low humidity conditions, but has not necessarily achieved practically sufficient power generation characteristics.

特許文献4では、燃料電池に用いたときに従来の燃料電池用電極触媒よりも高い出力密度の燃料電池用電極触媒を提供することを課題として、メソポーラスカーボン粒子を一部に含む炭素材料からなる担体と当該担体に担持された触媒粒子を有する燃料電池用電極触媒を提供している。   Patent Document 4 is made of a carbon material partially containing mesoporous carbon particles for the purpose of providing a fuel cell electrode catalyst having a higher power density than a conventional fuel cell electrode catalyst when used in a fuel cell. An electrode catalyst for a fuel cell having a carrier and catalyst particles carried on the carrier is provided.

特許文献5では、保水性が高く、低湿度環境下でも高い電池特性が得られる触媒層及びこれを用いた固体高分子型燃料電池を提供することを課題として、平均細孔径3.0nm以下、飽和水蒸気吸着量の半分の値が0.15〜0.5cc/g有する球状カーボン多孔体を担体とした触媒を用いる固体高分子型燃料電池が開示されている。   In Patent Document 5, with an object of providing a catalyst layer having high water retention and high battery characteristics even in a low humidity environment, and a polymer electrolyte fuel cell using the catalyst layer, an average pore diameter of 3.0 nm or less, A polymer electrolyte fuel cell using a catalyst having a spherical carbon porous body having a half value of saturated water vapor adsorption amount of 0.15 to 0.5 cc / g as a carrier is disclosed.

特開2004−342505号公報JP 2004-342505 A 特開2005−174835号公報JP 2005-174835 A 特開2006−059634号公報JP 2006-059634 A 特開2004−071253号公報JP 2004-071253 A 特開2007−220414号公報JP 2007-220414 A

しかしながら、特許文献4及び特許文献5に開示された触媒材料には以下のような問題がある。   However, the catalyst materials disclosed in Patent Document 4 and Patent Document 5 have the following problems.

特許文献4に開示された触媒材料では、実用上重要な相対湿度50%以下で触媒層を充分に加湿できるだけの水蒸気量を放出する機能を有しない。   The catalyst material disclosed in Patent Document 4 does not have a function of releasing an amount of water vapor that can sufficiently humidify the catalyst layer at a practically important relative humidity of 50% or less.

特許文献5に記載の触媒材料では、含有できる水蒸気の絶対量が少ないため触媒層の保湿機能は実用上十分ではない。   In the catalyst material described in Patent Document 5, since the absolute amount of water vapor that can be contained is small, the moisture retention function of the catalyst layer is not practically sufficient.

本発明は、高い保水能力と相対湿度50%以下の低加湿領域において十分な水蒸気放出能力を併せもつ固体高分子燃料電池用触媒材料を提供することにある。   An object of the present invention is to provide a catalyst material for a solid polymer fuel cell that has both a high water retention capacity and a sufficient water vapor release capacity in a low humidification region with a relative humidity of 50% or less.

発明者らは、触媒成分を担持する担体炭素材料を多孔質化することにより触媒の保水性が改善し、触媒層の低加湿特性が改善する可能性を見出した。   The inventors have found the possibility of improving the water retention of the catalyst and improving the low humidification characteristics of the catalyst layer by making the support carbon material carrying the catalyst component porous.

さらに、多孔質炭素材料の水蒸気の吸着脱離等温線の脱離特性、窒素ガスの吸着脱離等温線により解析されるミクロ孔分布と、多孔質炭素材料の酸素含有量が、触媒層の低加湿特性の改善に関する本質的制御因子であることを見出した。   Furthermore, the desorption characteristics of water vapor adsorption / desorption isotherm of the porous carbon material, the micropore distribution analyzed by the adsorption / desorption isotherm of nitrogen gas, and the oxygen content of the porous carbon material are low in the catalyst layer. It has been found that it is an essential control factor for improving humidification characteristics.

加えて、ガス拡散性を高めるため、ストラクチャーが発達し、水蒸気吸着量が高いカーボンブラックを担体炭素材料に混合することにより、実用上重要な低加湿運転でも高加湿状態と同等の性能を発現し得ることを見出した。   In addition, in order to improve gas diffusivity, carbon black with a developed structure and high water vapor adsorption amount is mixed with the carrier carbon material. Found to get.

本発明の要旨とするところは、以下の通りである。
(1)保湿性炭素材料とカーボンブラックとを質量比で2:8〜9:1で混合させた固体高分子燃料電池用触媒層用担体炭素材料であって、前記保湿性炭素材料は、25℃における水蒸気吸着脱離等温線の脱離曲線にける相対水蒸気圧0.95のときの水蒸気吸着量(以下、「V0.95」という。)の値が、1250cm/g≦V0.95≦2500cm/gであり、且つ、V0.95の半分の水蒸気吸着量を示す相対水蒸気圧(以下、「P1/2」という。)がP1/2≦0.55を満たし、前記カーボンブラックは、DBP給油量(以下「ODBP」という。)がODBP ≧100mL/100gであり、V0.95がV0.95≧100cm/gを満たすことを特徴とする固体高分子燃料電池用触媒層用担体炭素材料。
The gist of the present invention is as follows.
(1) moisturizing carbon material and carbon black in a mass ratio of 2: 8-9: a solid polymer fuel catalyst layer carrier carbon material for a battery obtained by mixing in 1, wherein the moisture resistant carbon material, 25 water vapor adsorption amount when you Keru relative water vapor pressure 0.95 desorption curve of water vapor adsorption-desorption isotherm at ° C. (hereinafter, referred to as. "V 0.95") the value of, 1250cm 3 / g ≦ V 0.95 ≦ 2500cm 3 / g and a relative water vapor pressure (hereinafter referred to as “P 1/2 ”) showing a water vapor adsorption amount half of V 0.95 satisfies P 1/2 ≦ 0.55, and the carbon black is DBP oil absorption (hereinafter referred to as "O DBP".) is O a DBP ≧ 100 mL / 100 g, the carrier for a solid polymer fuel cell catalyst layer V 0.95 is to satisfy the V 0.95 ≧ 100cm 3 / g carbon material.

(2)前記保湿性炭素材料がさらに、窒素ガス吸着脱離等温測定のBET法による比表面積(以下、「SBET」という。)がSBET≧2000m/gであり、SF法のよるミクロ孔容積(以下、「Vmicro」という。)が、Vmicro≧0.8mL/gであることを特徴とする(1)に記載の固体高分子燃料電池用触媒層用担体炭素材料。 (2) The moisturizing carbon material further has a specific surface area (hereinafter referred to as “S BET ”) according to the BET method of nitrogen gas adsorption / desorption isothermal measurement, and S BET ≧ 2000 m 2 / g. The carrier carbon material for a catalyst layer for a polymer electrolyte fuel cell according to (1), wherein the pore volume (hereinafter referred to as “V micro ”) is V micro ≧ 0.8 mL / g.

(3)前記保湿性炭素材料の酸素含有量が3質量%〜10質量%であることを特徴とする(1)ないし(2)のいずれか1つに記載の固体高分子燃料電池用触媒層用担体炭素材料。   (3) The oxygen content of the moisturizing carbon material is 3% by mass to 10% by mass, and the catalyst layer for a solid polymer fuel cell according to any one of (1) to (2) Support carbon material.

(4)(1)ないし(3)のいずれか1つに記載の固体高分子燃料電池用触媒層用担体炭素材料用いることを特徴とする固体高分子型燃料電池。   (4) A solid polymer fuel cell characterized by using the support carbon material for a catalyst layer for a solid polymer fuel cell according to any one of (1) to (3).

本発明の固体高分子型燃料電池用触媒層用材料を用いることにより、実用上の固体高分子形燃料電池の運転環境である相対湿度50%以下の低加湿環境においても飽和加湿状態と同等の性能を発現するという顕著な効果を奏する。   By using the material for the catalyst layer for the polymer electrolyte fuel cell of the present invention, even in a low humidification environment with a relative humidity of 50% or less, which is a practical operation environment of the polymer electrolyte fuel cell, it is equivalent to the saturated humidification state. There is a remarkable effect of exhibiting performance.

また、本発明の固体高分子型燃料電池用触媒層用材料を用いた気体高分子型燃料電池は、加湿状態を制御する機構を簡素化することが可能となり、燃料電池システムのコストを削減することによる固体高分子型燃料電池の商業的な市場普及を加速するという顕著な効果を奏する。   The gas polymer fuel cell using the catalyst layer material for a solid polymer fuel cell according to the present invention can simplify the mechanism for controlling the humidified state, thereby reducing the cost of the fuel cell system. This brings about a remarkable effect of accelerating the commercial market spread of polymer electrolyte fuel cells.

[第1の実施形態]
第1の実施形態は、保湿性炭素材料とカーボンブラックとを質量比で2:8〜9:1で混合させた固体高分子燃料電池用触媒層用担体炭素材料である。
[First embodiment]
The first embodiment is a support carbon material for a catalyst layer for a polymer electrolyte fuel cell in which a moisture-retaining carbon material and carbon black are mixed at a mass ratio of 2: 8 to 9: 1.

前記保湿性炭素材料は、25℃における水蒸気吸着脱離等温線の脱離曲線にける相対水蒸気圧0.95のときの水蒸気吸着量(以下、「V0.95」という。)の値が、1250cm3/g≦V0.95≦2500cm/gであり、且つ、V0.95の半分の水蒸気吸着量を示す相対水蒸気圧(以下、「P1/2」という。)がP1/2≦0.55を満たす。 The moisturizing carbon material, water vapor adsorption amount when you Keru relative water vapor pressure 0.95 desorption curve of water vapor adsorption-desorption isotherm at 25 ° C. (hereinafter, referred to as "V 0.95".) The value of, 1250 cm 3 / g ≦ V 0.95 ≦ 2500 cm 3 / g and the relative water vapor pressure (hereinafter referred to as “P 1/2 ”) indicating a water vapor adsorption amount half that of V 0.95 is P 1/2 ≦ 0.55 Meet.

前記カーボンブラックは、DBP給油量(以下「ODBP」という。)がODBP≧100mL/100gであり、V0.95がV0.95≧100cm/gを満たす。 The carbon black, DBP oil absorption (hereinafter referred to as "O DBP".) Is O DBP ≧ 100mL / 100g, V 0.95 satisfies V 0.95 ≧ 100cm 3 / g.

前記保湿性炭素材料はさらに、窒素ガス吸着脱離等温測定のBET法による比表面積(以下、「SBET」という。)がSBET≧2000m/gであり、SF法のよるミクロ孔容積(以下、「Vmicro」という。)が、Vmicro≧0.8mL/gを満足する。 The moisturizing carbon material further has a specific surface area (hereinafter referred to as “S BET ”) according to the BET method of nitrogen gas adsorption / desorption isothermal measurement, where S BET ≧ 2000 m 2 / g, and the micropore volume (by SF method) Hereinafter, “V micro ”) satisfies V micro ≧ 0.8 mL / g.

さらに、前記保湿性炭素材料の酸素含有量が3質量%〜10質量%であることを満足する。   Furthermore, the oxygen content of the moisturizing carbon material is 3% by mass to 10% by mass.

(保湿性炭素材料の保湿性)
炭素材料が吸蔵・放出する水分量を規定する物性指標には、一定温度において水蒸気の圧力を増加・減少させたときに炭素材料がどのくらいの水蒸気を吸蔵し放出するかという物性指標、いわゆる水蒸気吸着等温特性を採用した。
(Moisture retention of moisturizing carbon materials)
The physical property index that defines the amount of moisture that is stored and released by carbon materials is a physical property index that indicates how much water vapor is stored and released when the pressure of water vapor is increased or decreased at a constant temperature, so-called water vapor adsorption. Isothermal characteristics were adopted.

水蒸気吸着特性の評価温度には装置的に測定技術が確立されている25℃を採用した。   The evaluation temperature of the water vapor adsorption property was 25 ° C, for which a measurement technique was established for the device.

使用した測定装置は、日本ベル(株)製の水蒸気吸着装置ベルソープアクア(商品名)を用いた。実施例、比較例の測定値などは、この装置を用いて測定したものである。   The measuring apparatus used was a water vapor adsorption apparatus Bell Soap Aqua (trade name) manufactured by Nippon Bell Co., Ltd. The measured values of Examples and Comparative Examples are measured using this apparatus.

一般に黒鉛、非晶質炭素と称される炭素材料の表面の極性が弱いため極性分子である水分子との相互作用は弱く、いわゆる疎水性を示す。そのため炭素材料の水蒸気吸着特性は、相対湿度50%以下(相対水蒸気圧0.5と同等)の低い相対圧では殆ど水蒸気を吸着・脱離せず、相対圧0.7以上から徐々に吸着量が増加し、水が凝縮する相対圧1.0近傍で大きく吸着量が増大するが、その吸着量は炭素材料の質量に対して数%以下と低いものである。即ち、一般に炭素材料は相対圧0.7以下では水蒸気に対して不活性であり、担体炭素材料を触媒層に用いた場合にも、実用上重要な相対湿度50%以下の領域では触媒層の保湿に対して担体炭素材料は何ら寄与しないと考えられる。   In general, the surface of a carbon material called graphite or amorphous carbon has a weak polarity, so the interaction with water molecules, which are polar molecules, is weak, and so-called hydrophobicity is exhibited. For this reason, the water vapor adsorption characteristics of carbon materials hardly adsorb or desorb water vapor at low relative pressures of 50% or less (equivalent to a relative water vapor pressure of 0.5), and the amount of adsorption gradually increases from a relative pressure of 0.7 or higher. The amount of adsorption increases greatly in the vicinity of a relative pressure of 1.0 where water condenses, but the amount of adsorption is as low as several percent or less with respect to the mass of the carbon material. That is, in general, carbon materials are inactive against water vapor at a relative pressure of 0.7 or less, and even when a carrier carbon material is used for the catalyst layer, in the practically important region of 50% or less relative humidity, It is considered that the carrier carbon material does not contribute to moisture retention.

そこで、水蒸気吸着の原理的観点からの考察から、特殊な構造の炭素材料が相対圧0.5程度以下で水蒸気を吸蔵・放出し、且つ、その吸着・脱離量を炭素材料の質量と同等にまで高められることを見出し、燃料電池触媒層に適用した際に相対湿度50%以下の低加湿運転環境においても飽和加湿と同等の良好な出力特性を発揮するために最適な物性指標として、水蒸気の吸着脱離等温測定における相対圧0.95の水蒸気吸着量V0.95と、その半分の水蒸気吸着量を示す相対水蒸気圧P1/2とに着目した。 Therefore, from the viewpoint of the principle of water vapor adsorption, a carbon material with a special structure absorbs and releases water vapor at a relative pressure of about 0.5 or less, and the adsorption / desorption amount is equivalent to the mass of the carbon material. As an optimum physical property index, when it is applied to a fuel cell catalyst layer, it exhibits an excellent output characteristic equivalent to saturated humidification even in a low humidification operating environment with a relative humidity of 50% or less. Attention was paid to a water vapor adsorption amount V 0.95 at a relative pressure of 0.95 and a relative water vapor pressure P 1/2 indicating a half water vapor adsorption amount in the adsorption / desorption isothermal measurement.

即ち、本発明において規定する保湿性担体炭素材料は、25℃等温下での水蒸気の吸着脱離特性である相対水蒸気圧0.95における水蒸気吸着量V0.95の値が、1250cm3/g≦V0.95≦2500cm3/gであり、且つ、V0.95の半分の水蒸気吸着量を示す相対水蒸気圧(以下P1/2と記す)が、0.55以下と、制御したものである。 That is, the moisture retention carrier carbon material specified in the present invention has a water vapor adsorption amount V 0.95 of 1250 cm 3 / g ≦ V at a relative water vapor pressure of 0.95, which is a water vapor adsorption / desorption characteristic at 25 ° C. isothermal. 0.95 ≦ 2500 cm 3 / g, and the relative water vapor pressure (hereinafter referred to as P 1/2 ) indicating a water vapor adsorption amount half of V 0.95 is controlled to 0.55 or less.

V0.95が1250cm3/g未満では、触媒から放出される水分量が少ないために充分に触媒層を構成するプロトン伝導樹脂を保湿することができず、その結果、相対湿度50%以下の低加湿環境において触媒層の電気抵抗が大きくなり出力特性が低下してしまう。 If V 0.95 is less than 1250 cm 3 / g, the amount of water released from the catalyst is small, so that the proton conductive resin constituting the catalyst layer cannot be sufficiently moisturized, and as a result, low humidification with a relative humidity of 50% or less. In the environment, the electrical resistance of the catalyst layer increases and the output characteristics deteriorate.

また、2500cm3/gを超える触媒を触媒層に用いると、触媒から放出される水分量が多すぎるため、いわゆる高電流密度時にフラッディングを生じてしまう。 Further, when a catalyst exceeding 2500 cm 3 / g is used for the catalyst layer, the amount of water released from the catalyst is too much, so that flooding occurs at a so-called high current density.

より好ましくは、1350cm3/g≦V0.95≦2500cm3/gである。 More preferably 1350cm 3 / g ≦ V 0.95 ≦ 2500cm 3 / g.

P1/2が0.55を超えると、相対湿度50%以下の運転環境において触媒層が乾燥するためにプロトン伝導抵抗が増大し出力が低下してしまう。より好ましくはP1/2≦0.50、更に好ましくはP1/2≦0.45である。特に好ましくはP1/2≦0.42である。 If P 1/2 exceeds 0.55, the catalyst layer dries in an operating environment with a relative humidity of 50% or less, so that proton conduction resistance increases and output decreases. More preferably, P 1/2 ≦ 0.50, and still more preferably P 1/2 ≦ 0.45. Particularly preferably, P 1/2 ≦ 0.42.

本発明の規定する上述の保湿性担体炭素材料の粒子径は10nm以上10μm以下が好ましい。10nm未満では実質的なガス拡散のための細孔を触媒相中で確保することが出来ず、他方、10μmを越える粒子径では触媒成分の触媒相中での分布が疎になり、大きな電流密度を取り出すことが困難となる。より好ましくは50nm以上5μm以下である。   The particle size of the moisturizing carrier carbon material defined by the present invention is preferably 10 nm or more and 10 μm or less. If it is less than 10 nm, pores for substantial gas diffusion cannot be secured in the catalyst phase. On the other hand, if the particle diameter exceeds 10 μm, the distribution of catalyst components in the catalyst phase becomes sparse, resulting in a large current density. It becomes difficult to take out. More preferably, it is 50 nm or more and 5 μm or less.

(保湿性炭素材料の製造方法)
保湿性炭素材料は本発明の規定を満たすものであればその製造方法は限定させるものではないが、具体的な例としては、石油系、石炭系のピッチ、ピッチコークス、人造黒鉛、石油、石炭由来の樹脂を原料とした種々の炭素材料、天然植物を原料とした炭素材料、チャー、いわゆる炭素繊維等を粗原料として用い、いわゆる賦活処理をして多孔質化した炭素材料、また、ヤシガラ、竹、木材などの天然植物から製造される活性炭、を適用することができる。
(Method for producing moisturizing carbon material)
As long as the moisture-retaining carbon material satisfies the provisions of the present invention, its production method is not limited, but specific examples include petroleum-based, coal-based pitch, pitch coke, artificial graphite, petroleum, coal. Various carbon materials made from resins of origin, carbon materials made from natural plants, carbon materials made from char, so-called carbon fibers, etc. as raw materials, made porous by so-called activation treatment, Activated carbon produced from natural plants such as bamboo and wood can be applied.

賦活処理の方法を例示するならば、空気、酸素など酸化性雰囲気中での酸化処理、アルカリ賦活、水蒸気賦活、炭酸ガス賦活、塩化亜鉛賦活等の賦活処理を挙げることができる。賦活処理の後に更に不活性、還元性ガス、アンモニアガス、酸化性ガスを、各々単一ガス、或いは、複数のガスを混合したガス雰囲気で常圧、或いは、加圧状態で熱処理を行ったりして、炭素材料表面に種々の官能基を選択的に付与・制御し、水蒸気吸着特性、窒素ガス吸着特性を制御することができる。   Examples of the activation treatment method include activation treatment such as oxidation treatment in an oxidizing atmosphere such as air and oxygen, alkali activation, water vapor activation, carbon dioxide gas activation, and zinc chloride activation. After the activation treatment, heat treatment is performed under normal or pressurized conditions in a gas atmosphere in which inert gas, reducing gas, ammonia gas, and oxidizing gas, each of which is a single gas or a mixture of multiple gases. Thus, various functional groups can be selectively imparted and controlled on the surface of the carbon material to control water vapor adsorption characteristics and nitrogen gas adsorption characteristics.

また、いわゆる鋳型法(テンプレート法)を用いた多孔質炭素材料(独立行政法人 日本学術振興会 炭素材料 第117委員会発行(平成19年3月)炭素材料の新展開、24〜30貢、261〜271貢を参照)も本発明の保湿性担体炭素材料に好適に用いることが出来る。鋳型法の多孔質炭素の製造法は例えば鋳型を例示するならば、メソ孔領域の多孔質材料であるメソポーラスシリカ、ミクロ孔領域の多孔質材料であるゼオライト、種々の細孔径を制御可能なコロイダルシリカなどを挙げることが出来る。   In addition, porous carbon materials using the so-called template method (template method) (issued by the Japan Society for the Promotion of Science, Carbon Materials 117th Committee (March 2007), new developments in carbon materials, 24-30 contributions, 261 -271) can also be suitably used for the moisturizing carrier carbon material of the present invention. For example, the template method for producing porous carbon is, for example, a mesoporous silica that is a porous material in the mesopore region, a zeolite that is a porous material in the micropore region, and a colloidal that can control various pore sizes. Silica etc. can be mentioned.

特に本発明で規定する水蒸気吸着特性を発現するには、いわゆるミクロ孔の存在が必須である。ミクロ孔内部の水分子は、炭素材料のような疎水表面であっても、四方の内壁からのVan der Waals力の総和により、炭素材料表面に吸着するよりも、強く束縛される。そのため、低い相対圧でも水分子はミクロ孔内部に吸着されることになる。単にミクロ孔の存在だけでは、本発明の水蒸気吸着特性を満たすことは難しい。低い相対圧で相当量の水分子を吸着するには、ミクロ孔の中でも1nm以下の直径の細孔容積を大きくする、或いは、ミクロ孔内の親水性を高めることが重要である。ミクロ孔の中でもウルトラミクロ孔(<0.7nm)の容積は本発明の規定を満たすには重要な指標となり得る。細孔径が水分子の大きさに近くなればそれだけ細孔内壁と水分子とのVan der Waals力による相互作用が強まり、より低水蒸気圧から吸着が開始されることになると推察されるからである。   In particular, the presence of so-called micropores is indispensable for exhibiting the water vapor adsorption characteristics defined in the present invention. Water molecules inside the micropores are bound more strongly than those adsorbed on the carbon material surface due to the sum of the Van der Waals forces from the four inner walls even on a hydrophobic surface such as a carbon material. Therefore, water molecules are adsorbed inside the micropores even at a low relative pressure. It is difficult to satisfy the water vapor adsorption characteristics of the present invention simply by the presence of micropores. In order to adsorb a considerable amount of water molecules at a low relative pressure, it is important to increase the pore volume with a diameter of 1 nm or less among the micropores or to increase the hydrophilicity in the micropores. Among the micropores, the volume of ultramicropores (<0.7 nm) can be an important indicator for satisfying the definition of the present invention. This is because if the pore diameter is close to the size of the water molecule, the interaction between the inner wall of the pore and the water molecule due to the Van der Waals force is strengthened, and it is assumed that the adsorption starts from a lower water vapor pressure. .

本発明に適したミクロ孔の導入には、たとえば、以下の製造方法を好適に用いることができる。先ず、水蒸気吸着量の絶対値を高めるために、少なくとも、比表面積(窒素ガス吸着によるBET値)は1500m2/g以上が好ましく、更に好ましくは、2000m2/g、より好ましくは2500m2/g以上の多孔質炭素を作製する。電気二重層キャパシター用の市販の2000m/g以上の活性炭を出発原料とし、更に、炭酸ガス、水蒸気による賦活処理を施すことにより、2500m/g以上の比表面積にすることができる。その上で、ミクロ孔の細孔径を更に小さくするために、不活性雰囲気中で1200℃以上の温度で熱処理する。
炭素材料の熱処理は、炭素材料を構成する炭素六角網面からなる組織構造を熱により再構成し、細孔を狭めることを意図するものである。本発明への適用は、1200℃以上2000℃以下が好ましい。2000℃以上の高温で熱処理すると、結晶性が高まりすぎて、細孔が完全に消失するためである。実質的には、1200℃以上、1600℃以下が好適である。1600℃以上ではほとんどの炭素材料は細孔が潰れてしまう。1200℃未満では、炭素網面の再配列は生じないため細孔の構造は変化しない。
For the introduction of micropores suitable for the present invention, for example, the following production method can be suitably used. First, in order to increase the absolute value of the water vapor adsorption amount, at least the specific surface area (BET value by nitrogen gas adsorption) is preferably 1500 m 2 / g or more, more preferably 2000 m 2 / g, more preferably 2500 m 2 / g. The above porous carbon is produced. A specific surface area of 2500 m 2 / g or more can be obtained by using a commercially available activated carbon of 2000 m 2 / g or more for an electric double layer capacitor as a starting material and further applying an activation treatment with carbon dioxide gas and water vapor. Then, in order to further reduce the pore diameter of the micropores, heat treatment is performed at a temperature of 1200 ° C. or higher in an inert atmosphere.
The heat treatment of the carbon material intends to narrow the pores by restructuring the structure of the carbon hexagonal mesh surface constituting the carbon material with heat. The application to the present invention is preferably 1200 ° C. or more and 2000 ° C. or less. This is because when the heat treatment is performed at a high temperature of 2000 ° C. or higher, the crystallinity is increased so that the pores are completely lost. Substantially preferred is 1200 ° C. or higher and 1600 ° C. or lower. Above 1600 ° C, the pores of most carbon materials are crushed. Below 1200 ° C, rearrangement of the carbon network surface does not occur, so the pore structure does not change.

本発明に規定する水蒸気吸着特性を満たす多孔質炭素材料を製造するには、上記の多孔質化(賦活処理)、熱処理に加えて、炭素材料表面の親水化が必須である。具体的には極性の高い含酸素官能基を炭素材料表面に賦与することである。その方法には、強い酸化作用を持つ酸化剤による処理が好ましく、例示するならば、発煙硝酸、発煙硫酸など強い酸化剤の溶液中に炭素材料を浸漬させ、加熱しながらの酸化処理が好ましい。その他の強い酸化処理として、NOxによる熱処理、NOxと酸素の混合による熱処理も、好適に用いることが可能である。特に、NOxと酸素の混合ガスによる熱処理は、窒素が炭素材料内に多量に導入されるため、極性を高めるためにも本発明に好適に用いることができる。また、両者の複合処理、他の酸化処理との複合も有効な手段である。例えば、炭素材料をNOと酸素との混合ガスの流通化で、400℃以上1000℃以下、好ましくは、400℃以上800℃以下で数時間処理することにより、多量の含酸素官能基を炭素材料表面に導入することが可能であり、更に、本処理により窒素原子が炭素材料内部にまで導入され、炭素材料の極性はより一層高まり、本発明に好適である。   In order to produce a porous carbon material satisfying the water vapor adsorption characteristics defined in the present invention, it is essential to make the surface of the carbon material hydrophilic in addition to the above-described porous formation (activation treatment) and heat treatment. Specifically, an oxygen-containing functional group having a high polarity is imparted to the surface of the carbon material. For the method, treatment with an oxidizing agent having a strong oxidizing action is preferable. For example, a carbon material is immersed in a solution of a strong oxidizing agent such as fuming nitric acid or fuming sulfuric acid, and an oxidizing treatment while heating is preferred. As other strong oxidation treatments, heat treatment with NOx and heat treatment with a mixture of NOx and oxygen can be suitably used. In particular, heat treatment using a mixed gas of NOx and oxygen can be suitably used in the present invention to increase polarity because nitrogen is introduced in a large amount into the carbon material. In addition, a combination of both and a combination with other oxidation treatments are also effective means. For example, a carbon material is treated by flowing a mixed gas of NO and oxygen at 400 ° C. to 1000 ° C., preferably 400 ° C. to 800 ° C. Further, nitrogen atoms can be introduced into the carbon material by this treatment, and the polarity of the carbon material is further increased, which is suitable for the present invention.

更に、酸化処理後に再度不活性雰囲気中で熱処理することも本発明に好適に用いられる。白金などの担持触媒微粒子と炭素表面の強酸性官能基が相互作用し、特に貴な電位に触媒が保持された際に、触媒上で含酸素官能基が分解し、炭酸ガスとなって炭素材料表面を消耗させる。この炭素材料の消耗を抑制するために、1000℃以下の温度で不活性雰囲気中で熱処理することが有効である。1000℃以下、好ましくは800℃以下の不活性雰囲気下での熱処理により炭酸ガス化しやすいカルボキシル基などの強酸性基を選択的に除去することが可能であり、本発明には好適である。   Furthermore, heat treatment in an inert atmosphere after the oxidation treatment is also preferably used in the present invention. The carbon material is converted into carbon dioxide gas by decomposing oxygen-containing functional groups on the catalyst when the supported catalyst fine particles such as platinum interact with the strongly acidic functional group on the carbon surface and the catalyst is held at a particularly noble potential. Consumes the surface. In order to suppress the consumption of the carbon material, it is effective to perform heat treatment in an inert atmosphere at a temperature of 1000 ° C. or lower. It is possible to selectively remove a strong acidic group such as a carboxyl group which is easily converted to carbon dioxide by heat treatment under an inert atmosphere at 1000 ° C. or lower, preferably 800 ° C. or lower, which is suitable for the present invention.

(カーボンブラック)
カーボンブラックに求められる二次凝集構造の指標としてDBP給油量が重要な物性指標であり、その最適な物性範囲が100mL/100g以上であることを見出した。
(Carbon black)
It was found that the amount of DBP oil supply is an important physical property index as an index of the secondary aggregation structure required for carbon black, and the optimum physical property range is 100 mL / 100 g or more.

DBP給油量(ジブチルフタレート:可塑剤の一種)はカーボンブラックの二次凝集構造の空隙量、即ちストラクチャーの発達の程度と正の相関の高い指標であり、本発明ではこの指標が触媒層の気孔率を決定する重要な指標となることに基づくものである。   The amount of DBP oil supply (dibutyl phthalate: a kind of plasticizer) is an index that has a high positive correlation with the amount of voids in the secondary aggregate structure of carbon black, that is, the degree of structure development. It is based on becoming an important indicator for determining the rate.

DBP給油量が100mL/100g未満では、触媒層のガス拡散に必要な気孔率が確保できず、発電特性の低下を招いてしまう。DBP給油量の最適範囲に上限はないが実質的にはカーボンブラックの構造から1000mL/gが上限である。   When the DBP oil supply amount is less than 100 mL / 100 g, the porosity required for gas diffusion in the catalyst layer cannot be ensured, resulting in a decrease in power generation characteristics. Although there is no upper limit in the optimum range of DBP oil supply, the upper limit is substantially 1000 mL / g due to the structure of carbon black.

なお、DBP給油量の測定はJIS K 6217-4に従って測定したものである。   The DBP oil supply was measured according to JIS K 6217-4.

本発明で規定するカーボンブラックとして求められる保湿性の指標として、V0.95が重要な物性指標であり、その最適な物性範囲が、V0.95≧100cm/gであることを見出した。 It has been found that V 0.95 is an important physical property index as a moisturizing index required for the carbon black defined in the present invention, and the optimum physical property range is V 0.95 ≧ 100 cm 3 / g.

V0.95に関してより好ましくは、V0.95≧150cm/g、一層好ましくはV0.95≧200cm/gである。 More preferably with respect to V 0.95 , V 0.95 ≧ 150 cm 3 / g, more preferably V 0.95 ≧ 200 cm 3 / g.

V0.95が100cm/g未満では、保湿性担体炭素材料からなる触媒とカーボンブラックからなる触媒の混合による触媒層の低加湿特性が不十分となってしまう。本発明のカーボンブラックのV0.95の上限は特にないが、カーボンブラックという物質的制約から実質的には1000cm/gが上限である。 When V 0.95 is less than 100 cm 3 / g, the low humidification property of the catalyst layer due to the mixing of the catalyst made of the moisture-retaining carrier carbon material and the catalyst made of carbon black becomes insufficient. The upper limit of V 0.95 of the carbon black of the present invention is not particularly limited, but the upper limit is substantially 1000 cm 3 / g due to material restrictions of carbon black.

(保湿性担体炭素材料とカーボンブラックの混合)
保湿性担体炭素材料からなる触媒と上述のカーボンブラックからなる触媒との混合により「高い保湿性」と「低加湿領域における十分な水蒸気放出能力」を有する固体高分子燃料電池用触媒層用担体炭素材料を実現する。その混合比率は、質量比で2:8から9:1が好ましく、より好ましくは、質量比で3:7から8:2である。
(Mixing of moisturizing carrier carbon material and carbon black)
Support carbon for catalyst layer for solid polymer fuel cell having “high moisture retention” and “sufficient water vapor releasing ability in low humidification region” by mixing catalyst made of moisture retention carrier carbon material and above-mentioned catalyst made of carbon black Realize the material. The mixing ratio is preferably 2: 8 to 9: 1 by mass ratio, more preferably 3: 7 to 8: 2 by mass ratio.

保湿性担体炭素材料の質量比が2よりも小さいと保湿性の確保が不十分となり触媒層の低加湿特性が低下してしまう。また、保湿性担体炭素材料の質量比が9を超えると、触媒層のガス拡散性が低下し反応ガス供給律速による発電特性の低下という新たな問題を生じる。   If the mass ratio of the moisturizing carrier carbon material is smaller than 2, the moisturizing property cannot be ensured sufficiently, and the low humidification characteristics of the catalyst layer are deteriorated. Further, if the mass ratio of the moisturizing carrier carbon material exceeds 9, the gas diffusibility of the catalyst layer is lowered, which causes a new problem that power generation characteristics are lowered due to the reaction gas supply rate-determining rate.

保湿性担体炭素材料を用いた触媒とカーボンブラックを用いた触媒の混合状態は、均質に混合、或いは、各々が凝集体を形成していてもよい。本発明の2種の触媒の混合方法は特に限定されるものではない。例示するならば、乳鉢等による混合、ボールミル等による混合、溶媒に分散させた状態での攪拌混合などを挙げることができる。或いは、触媒を担持する前の炭素材料同士を混合した後に、触媒成分を担持させることも可能である。   The mixed state of the catalyst using the moisturizing carrier carbon material and the catalyst using carbon black may be homogeneously mixed, or each may form an aggregate. The method for mixing the two kinds of catalysts of the present invention is not particularly limited. Illustrative examples include mixing with a mortar or the like, mixing with a ball mill, or the like, and stirring and mixing in a state dispersed in a solvent. Alternatively, the catalyst component can be supported after mixing the carbon materials before supporting the catalyst.

(比表面積SBET・ミクロ孔容積Vmicro
多孔質であることが水分吸蔵特性に重要であるとの観点から、細孔径分布の構造を鋭意検討した結果、液体窒素温度における窒素ガスの吸着脱離等温測定におけるBET法解析による比表面積SBET、SF法解析によるミクロ孔容積Vmicroが触媒層の低加湿特性改善において、重要な指標であることを見出した。
(Specific surface area S BET / Micro pore volume V micro )
As a result of intensive studies on the structure of the pore size distribution from the viewpoint that porosity is important for moisture storage characteristics, the specific surface area S BET by BET analysis in the adsorption and desorption isothermal measurement of nitrogen gas at liquid nitrogen temperature The micro pore volume V micro by the SF analysis was found to be an important index for improving the low humidification characteristics of the catalyst layer.

即ち、当該炭素材料のBET法解析による比表面積SBETが2000m/g以上であり、SF法のよるミクロ孔容積Vmicroが0.8mL/g以上とすることにより、当該炭素材料を担体とした触媒を用いた触媒層の低加湿特性を大幅に改善することが可能である。 That is, when the specific surface area S BET by the BET analysis of the carbon material is 2000 m 2 / g or more and the micropore volume V micro by the SF method is 0.8 mL / g or more, the carbon material is used as a carrier. It is possible to greatly improve the low humidification characteristics of the catalyst layer using the prepared catalyst.

SBETが2000m/g未満では充分な水蒸気吸着量が確保できないため、触媒層の低加湿特性が確保できない。より好ましくは、SBETが2200m/g以上である。SBETは本発明においてその上限は特に規定されるものではなく、2000m/g以上であれば本発明に好適に用いられる。しかしながら、現時点の材料技術ではミクロ孔のみから構成されるゼオライトの鋳型炭素が最も質量あたりの比表面積が大きく、実質的なSBETの上限は5000m/gである。 When S BET is less than 2000 m 2 / g, a sufficient water vapor adsorption amount cannot be ensured, and thus low humidification characteristics of the catalyst layer cannot be ensured. More preferably, S BET is 2200 m 2 / g or more. The upper limit of S BET is not particularly defined in the present invention, and it is suitably used in the present invention as long as it is 2000 m 2 / g or more. However, the present material technology has the largest specific surface area per mass of zeolite template carbon composed only of micropores, and the practical upper limit of S BET is 5000 m 2 / g.

Vmicroが0.8mL/g未満では、低加湿環境で運転した際の触媒層の保湿量が低下しプロトン伝導抵抗が増大し発電特性が低下する。好ましくは、Vmicroが0.9mL/g以上、更に好ましくは1.0mL/g以上である。Vmicroは本発明においてその上限は特に規定されるものではなく、0.8mL/gであれば本発明に好適に用いられる。しかしながら、現時点での材料技術では実質的なVmicroの上限は2500mL/gである。 When V micro is less than 0.8 mL / g, the moisture retention amount of the catalyst layer when operating in a low humidified environment decreases, proton conduction resistance increases, and power generation characteristics deteriorate. Preferably, V micro is 0.9 mL / g or more, more preferably 1.0 mL / g or more. The upper limit of V micro is not particularly defined in the present invention, and if it is 0.8 mL / g, it is suitably used in the present invention. However, the actual upper limit of V micro is 2500 mL / g in the current material technology.

低相対圧での水蒸気吸着量を多くするには、ミクロ孔の平均細孔径を小さくすることが重要である。窒素ガス吸着特性におけるSF法解析による平均細孔径(モード平均径)が1.5nm以下であることが好ましく、更に好ましくは1.3nm以下である。   In order to increase the amount of water vapor adsorption at a low relative pressure, it is important to reduce the average pore diameter of the micropores. The average pore diameter (mode average diameter) according to the SF method analysis in the nitrogen gas adsorption characteristics is preferably 1.5 nm or less, and more preferably 1.3 nm or less.

ミクロ孔径が小さいほど0.5以下の低い相対圧での水蒸気吸着量が増加する。 The smaller the micropore diameter, the greater the amount of water vapor adsorption at a low relative pressure of 0.5 or less.

なお、本発明における窒素ガスの吸着等温測定にはカンタクローム社(Quantachrome Instruments)のAutosorb(商品名)を用い、測定値の解析には、同装置に付属のソフトウエア(Autosorb 1 for Windows(登録商標) 1.24)を用いて解析した。   In addition, the adsorption isothermal measurement of nitrogen gas in the present invention uses the Autosorb (trade name) of Quantachrome Instruments, and the analysis of the measured value uses software (Autosorb 1 for Windows (registered)) Trademark) 1.24).

SF解析法は、A. Saito and H. C. Foleyにより提案されたガス吸着等温線データに基づきミクロ孔構造を解析する理論であり、細孔直径が0.7nm〜2.0nmのスーパーミクロ孔(IUPACにて規定された分類)の解析として提案されたもので、文献「Curvature and Parametric Sensitivity in Models for Adsorption in Micropores」AIChE Journal, 37,429-436 (1991)に掲載されている。スーパーミクロ孔の解析にはHK法とSF法の2つが一般に広く普及しており、現在市販されている窒素ガスの吸着等温線の測定装置には解析プログラムとして両者の解析プログラムが付属している。前者はスリット型の細孔、後者は円筒型の細孔構造に適した解析法であるが、本発明で用いているVmicroの値は、種々の多孔質材料で比較したところHK法とSF法の差は高々5%程度であり、両者の差は実質的に殆ど無しとみなすことが可能であり、HK法での解析値を本発明の規定に適用することも可能である。 The SF analysis method is a theory to analyze the micropore structure based on the gas adsorption isotherm data proposed by A. Saito and HC Foley. Super micropores with a pore diameter of 0.7nm to 2.0nm (specified by IUPAC) The analysis was proposed as an analysis of the classification (Category) and published in the literature “Curvature and Parametric Sensitivity in Models for Adsorption in Micropores”, AIChE Journal, 37, 429-436 (1991). Two methods, the HK method and the SF method, are widely used for the analysis of super-micropores, and the analysis programs for both nitrogen gas adsorption isotherms currently on the market are both included as analysis programs. . The former is an analysis method suitable for slit-type pores, and the latter is suitable for cylindrical pore structures, but the V micro value used in the present invention is compared with the HK method and SF for various porous materials. The difference between the laws is at most about 5%, and it can be considered that the difference between the two is substantially negligible, and the analysis value according to the HK method can be applied to the provisions of the present invention.

(酸素含有量)
酸素含有量が3質量%以上、10質量%以下とすることでさらに向上することができる。
(Oxygen content)
This can be further improved when the oxygen content is 3 mass% or more and 10 mass% or less.

保湿性担体炭素材料の表面における水分子との相互作用の観点から鋭意検討した結果、炭素材料に含まれる酸素含有量が触媒層の低加湿特性改善に有効な指標であることを見出し、その最適な範囲を規定した。即ち、保湿性担体炭素材料の酸素含有量が3質量%以上、10質量%以下であることを規定するものである。   As a result of intensive studies from the viewpoint of interaction with water molecules on the surface of the moisturizing support carbon material, it was found that the oxygen content contained in the carbon material is an effective index for improving the low humidification characteristics of the catalyst layer. Specified a range. That is, it defines that the oxygen content of the moisturizing carrier carbon material is 3% by mass or more and 10% by mass or less.

酸素含有量が3質量%未満では水分子と炭素材料表面との相互作用が小さく低相対圧での水蒸気吸着量が低下する。また酸素含有量が10質量%を超えると運転環境における炭素材料の酸化消耗が大きく触媒層の耐久性が低下するために本発明には不適である。   If the oxygen content is less than 3% by mass, the interaction between water molecules and the carbon material surface is small, and the water vapor adsorption amount at a low relative pressure decreases. On the other hand, if the oxygen content exceeds 10% by mass, the oxidative consumption of the carbon material in the operating environment is great and the durability of the catalyst layer is lowered, which is not suitable for the present invention.

より好ましくは、酸素含有量が4質量%以上9質量%以下であり、さらに好ましくは、5質量%以上8質量%以下である。   More preferably, the oxygen content is 4% by mass or more and 9% by mass or less, and further preferably 5% by mass or more and 8% by mass or less.

本発明に好適な保湿性担体炭素材料の酸素含有量の制御には特に制限はないが、例示するならば、気相処理として、酸素含有雰囲気中での加熱処理、オゾン含有雰囲気中での加熱処理、酸素プラズマ中での(加熱)処理、液相での酸化処理として、硝酸、硫酸、過酸化水素などの一般的に知られた酸化剤中で炭素材料を加熱処理する方法を適用することが可能である。これらの酸化処理後に、不活性雰囲気、還元性雰囲気中で加熱処理することにより、酸素含有量を制御することも可能である。   Control of the oxygen content of the moisturizing carrier carbon material suitable for the present invention is not particularly limited. For example, as a gas phase treatment, heat treatment in an oxygen-containing atmosphere, heating in an ozone-containing atmosphere may be used. Applying a method of heat-treating a carbon material in a generally known oxidizing agent such as nitric acid, sulfuric acid, hydrogen peroxide, etc., as a treatment, (heating) treatment in oxygen plasma, or oxidation treatment in a liquid phase Is possible. After these oxidation treatments, the oxygen content can be controlled by heat treatment in an inert atmosphere or a reducing atmosphere.

本発明の酸素含有量の測定には、有機物の元素分析に広く用いられる、いわゆる燃焼法によるC,H,N分析、並びにSの分析値から、残量として酸素含有量を算出した。実施例の酸素含有量もこの方法で測定したものである。   In the measurement of the oxygen content of the present invention, the oxygen content was calculated as the remaining amount from the C, H, N analysis by the so-called combustion method widely used for the elemental analysis of organic substances and the analysis value of S. The oxygen content of the examples was also measured by this method.

[第2の実施形態]
第2の実施形態は、第1の実施形態として示された固体高分子燃料電池用触媒層用担体炭素材料を用いた固体高分子型燃料電池である。
[Second Embodiment]
The second embodiment is a polymer electrolyte fuel cell using the support carbon material for the catalyst layer for the polymer electrolyte fuel cell shown as the first embodiment.

(本発明に適用する触媒成分)
本発明の触媒層は、固体高分子形燃料電池のアノード電極とカソード電極の両方に適用することが可能である。カソード電極に本発明の触媒層を適用する場合には、触媒成分として酸素還元活性を有する触媒成分を用いることが必須となるが、触媒成分に関して、本発明は特に限定するものではない。
(Catalyst component applied to the present invention)
The catalyst layer of the present invention can be applied to both an anode electrode and a cathode electrode of a polymer electrolyte fuel cell. When the catalyst layer of the present invention is applied to the cathode electrode, it is essential to use a catalyst component having oxygen reduction activity as the catalyst component, but the present invention is not particularly limited with respect to the catalyst component.

酸素還元活性を有する触媒成分の例としては、白金、パラジウム、ルテニウム、金、ロジウム、オスミウム、イリジウム等の貴金属、これらの貴金属を2種類以上複合化した貴金属の複合体や合金、貴金属と有機化合物や無機化合物との錯体、遷移金属、遷移金属と有機化合物や無機化合物との錯体、金属酸化物等を挙げることができる。また、これらの2種類以上を複合したもの等も用いることもできる。また、酸素還元活性を有する非貴金属系の触媒、例示するならば、ポルフィリン、フタロシアニンに代表される3d鉄族元素のN4-大環状錯体なども適用することができる。また、貴金属系の触媒成分と非貴金属系の触媒成分の複合化も本発明に適用することが出来る。 Examples of catalyst components having oxygen reduction activity include noble metals such as platinum, palladium, ruthenium, gold, rhodium, osmium, iridium, composites and alloys of noble metals obtained by combining two or more of these noble metals, and noble metals and organic compounds. And a complex with an inorganic compound, a transition metal, a complex of a transition metal with an organic compound or an inorganic compound, a metal oxide, and the like. Also, a combination of two or more of these can be used. Further, a non-noble metal-based catalyst having oxygen reduction activity, for example, a porphyrin, an N 4 -macrocyclic complex of a 3d iron group element typified by phthalocyanine can be applied. Also, a composite of a noble metal-based catalyst component and a non-noble metal-based catalyst component can be applied to the present invention.

同様にアノード電極に適用する場合には、触媒成分の担体炭素材料への担持の製造方法は特に限定されず、貴金属微粒子を炭素担体へ担持する一般的な方法を適用することが可能である。例示するならば、貴金属の塩化物、硝酸塩、乳酸塩、アセチルアセトン錯体など貴金属の有機錯体を水や有機溶剤等の溶媒に溶解した上で、還元剤で還元して、触媒活性成分を微粒子化して炭素担体に担持する製造方法が好ましい。前記還元剤としては、例えば、アルコール類、フェノール類、クエン酸類、ケトン類、アルデヒド類、カルボン酸類、エーテル類等が挙げられる。その際に、水酸化ナトリウムや塩酸等を加えてpHを調節し、更に、粒子の凝集を妨げるためにポリビニルピロリドン等の界面活性剤を添加してもよい。前記炭素担体に担持した触媒を、更に、再還元処理してもよい。前記再還元処理方法としては、還元雰囲気、若しくは、不活性雰囲気の中で、500℃以下の温度で熱処理を行う。また、蒸留水中に分散し、アルコール類、フェノール類、クエン酸類、ケトン類、アルデヒド類、カルボン酸類及びエーテル類から選ばれる還元剤で還元することもできる。   Similarly, in the case of application to the anode electrode, the production method for supporting the catalyst component on the support carbon material is not particularly limited, and a general method for supporting the noble metal fine particles on the carbon support can be applied. For example, after dissolving a noble metal organic complex such as a noble metal chloride, nitrate, lactate or acetylacetone complex in a solvent such as water or an organic solvent, it is reduced with a reducing agent to form fine particles of the catalytically active component. A production method supported on a carbon support is preferred. Examples of the reducing agent include alcohols, phenols, citric acids, ketones, aldehydes, carboxylic acids, ethers, and the like. At that time, sodium hydroxide, hydrochloric acid or the like may be added to adjust the pH, and a surfactant such as polyvinylpyrrolidone may be added to prevent aggregation of particles. The catalyst supported on the carbon support may be further subjected to re-reduction treatment. As the re-reduction treatment method, heat treatment is performed at a temperature of 500 ° C. or lower in a reducing atmosphere or an inert atmosphere. Alternatively, it can be dispersed in distilled water and reduced with a reducing agent selected from alcohols, phenols, citric acids, ketones, aldehydes, carboxylic acids and ethers.

ポルフィリン、フタロシアニンに代表される3d鉄族元素のN4-大環状錯体を担持する場合には、錯体を適当な溶媒に溶解した錯体溶液に担体炭素材料を分散させ、溶媒を減圧、加熱蒸発させ、触媒成分である錯体を担体炭素材料の表面へ吸着させ、そのまま触媒として用いることが可能である。その他、錯体溶液に担体炭素材料を分散させた後、錯体の貧溶媒で且つ錯体の溶解溶媒と相溶する溶媒を投入して錯体成分を担体炭素材料上に析出させる方法なども好適に用いられるが、錯体の吸着の方法は上述の方法に限定されるものではない。更に好ましくは、炭素担体上に錯体を吸着させた後に、窒素、アルゴン、ヘリウムなどの不活性雰囲気下、窒素ガス雰囲気下で加熱処理することにより、担体炭素材料との電子的結合が強まりより触媒成分の活性を高めることが可能であり、本発明に好適に用いることが可能である。熱処理温度としては、300℃以上900℃以下が好ましい。 When supporting an N 4 -macrocyclic complex of a 3d iron group element typified by porphyrin or phthalocyanine, the carrier carbon material is dispersed in a complex solution in which the complex is dissolved in an appropriate solvent, and the solvent is evaporated under reduced pressure and heated. The complex which is a catalyst component can be adsorbed on the surface of the support carbon material and used as it is as a catalyst. In addition, after the carrier carbon material is dispersed in the complex solution, a method of depositing the complex component on the carrier carbon material by introducing a poor solvent of the complex and a solvent compatible with the complex dissolving solvent is also preferably used. However, the method of adsorption of the complex is not limited to the method described above. More preferably, after the complex is adsorbed on the carbon support, heat treatment is performed in an inert atmosphere such as nitrogen, argon, helium, or the like in a nitrogen gas atmosphere, so that the electronic bond with the support carbon material becomes stronger and the catalyst is more concentrated. The activity of the component can be increased, and it can be suitably used in the present invention. As heat processing temperature, 300 to 900 degreeC is preferable.

(本発明の触媒層とその製造方法)
本発明の触媒層は、前記触媒の他に、電解質材料としてプロトン伝導性樹脂を含むが、プロトン伝導性樹脂の種類や形態により限定されるものではない。本発明が規定する炭素担体からなる触媒とプロトン伝導樹脂に加えて、保湿性を高めるための金属酸化物微粒子の添加、撥水性を高めるためのテトラフルオロエチレンなどの樹脂を分散させた触媒層も本発明に好適に用いることが可能である。尚、プロトン伝導性を有する電解質材料としては、デュポン社製ナフィオン(登録商標)に代表されるスルホン酸基を導入したフッ素系高分子や、リン酸基、スルホン酸基等を導入した炭化水素系の高分子、例えば、ベンゼンスルホン酸が導入されたポリイミドなどの高分子等を挙げることができる。
(Catalyst layer of the present invention and production method thereof)
The catalyst layer of the present invention contains a proton conductive resin as an electrolyte material in addition to the catalyst, but is not limited by the type or form of the proton conductive resin. In addition to the catalyst comprising the carbon support defined by the present invention and the proton conductive resin, there are also added a metal oxide fine particle for improving moisture retention, and a catalyst layer in which a resin such as tetrafluoroethylene for enhancing water repellency is dispersed. It can be suitably used in the present invention. In addition, as electrolyte materials having proton conductivity, fluorine-based polymers introduced with sulfonic acid groups represented by Nafion (registered trademark) manufactured by DuPont, and hydrocarbon-based polymers introduced with phosphoric acid groups, sulfonic acid groups, etc. And a polymer such as polyimide having benzenesulfonic acid introduced therein.

本発明の触媒層は、本発明が規定する炭素担体を用いた触媒を含むものであれば、その製造方法は特に限定されないが、本発明の炭素担体からなる触媒と前記プロトン伝導性を有する電解質材料の入った溶媒からなる触媒層スラリーを作製し、テフロン(登録商標)シート等の高分子材料、ガス拡散層、又は、電解質膜に塗布、乾燥する方法が例として挙げられる。テフロン(登録商標)シート等の高分子材料に塗布した場合には、触媒層と電解質膜が接触するように2枚のテフロン(登録商標)シート等の高分子材料で電解質膜を挟み、ホットプレスで触媒層を電解質膜に定着させた後、更に2枚のガス拡散層で挟んでホットプレスを行い、膜/電極接合体(Membrane Electrode Assembly, MEA)を作製する方法を例として挙げることができる。また、ガス拡散層に塗布した場合には、触媒層と電解質膜が接触するように2枚のガス拡散層で電解質膜挟み、ホットプレス等、触媒層を電解質膜に圧着する方法等でMEAを作製することができる。電解質膜に触媒層を塗布した場合には、触媒層とガス拡散層が接触するように2枚のガス拡散層で挟み、触媒層をガス拡散層に圧着する方法等でMEAを作製することができる。   The method for producing the catalyst layer of the present invention is not particularly limited as long as it contains a catalyst using the carbon support defined by the present invention. However, the catalyst comprising the carbon support of the present invention and the electrolyte having proton conductivity are not limited. An example is a method in which a catalyst layer slurry made of a solvent containing the material is prepared and applied to a polymer material such as a Teflon (registered trademark) sheet, a gas diffusion layer, or an electrolyte membrane and dried. When applied to a polymer material such as a Teflon (registered trademark) sheet, the electrolyte membrane is sandwiched between two polymer materials such as a Teflon (registered trademark) sheet so that the catalyst layer and the electrolyte membrane are in contact with each other. As an example, the catalyst layer can be fixed to the electrolyte membrane in step 1 and then hot-pressed by sandwiching it between two gas diffusion layers to produce a membrane / electrode assembly (Mebrane Electrode Assembly, MEA). . In addition, when applied to the gas diffusion layer, the MEA is applied by sandwiching the electrolyte membrane between the two gas diffusion layers so that the catalyst layer and the electrolyte membrane are in contact, and pressing the catalyst layer to the electrolyte membrane, such as hot pressing. Can be produced. When the catalyst layer is applied to the electrolyte membrane, the MEA can be produced by sandwiching the gas diffusion layer between the two gas diffusion layers so that the catalyst layer and the gas diffusion layer are in contact with each other. it can.

触媒層スラリーに用いる溶媒としては、メタノール、エタノール、イソプロパノール、ヘキサン、トルエン、ベンゼン、酢酸エチル、酢酸ブチル等を挙げることができる。   Examples of the solvent used for the catalyst layer slurry include methanol, ethanol, isopropanol, hexane, toluene, benzene, ethyl acetate, butyl acetate and the like.

ガス拡散層の機能としては、セパレーターに形成されたガス流路から触媒層までガスを均一に拡散させる機能と、触媒層とセパレーター間に電子を伝導する機能が求められ、最低限、これらの機能を有していれば特に限定されるものではない。一般的な例としては、カーボンクロスやカーボンペーパー等の炭素材料が主な構成材料として用いられる。   As a function of the gas diffusion layer, a function of uniformly diffusing gas from the gas flow path formed in the separator to the catalyst layer and a function of conducting electrons between the catalyst layer and the separator are required. If it has, it will not specifically limit. As a general example, a carbon material such as carbon cloth or carbon paper is used as a main constituent material.

ガス拡散層の触媒層に接する側に、マイクロポア層と呼ばれる数μmから数十μmの厚みのカーボンブラックを主成分とするガス拡散の補助層を設けることができる。ミクロポア層の機能は、数μmから数十μmの細孔構造を持つガス拡散層により拡散されたガスをサブミクロン以下の細孔を有する触媒層へ均質に供給するために、触媒層と同一の構造体であるカーボンブラックによりガス拡散層からのガスをサブミクロン以下の細孔に均質に分散させて触媒層へガスを円滑に供給するものである。カーボンブラックに求められる物性としては、撥水性であること、化学的・電気化学的に安定であること、触媒層と同等の細孔分布を持つことである。撥水性を高めるために、カーボンブラックの結晶性を高めることも有効である。   On the side of the gas diffusion layer in contact with the catalyst layer, a gas diffusion auxiliary layer called carbon pore having a thickness of several μm to several tens of μm as a main component can be provided. The function of the micropore layer is the same as that of the catalyst layer in order to uniformly supply the gas diffused by the gas diffusion layer having a pore structure of several μm to several tens of μm to the catalyst layer having sub-micron or smaller pores. The gas from the gas diffusion layer is uniformly dispersed in pores of submicron or less by the carbon black structure, and the gas is smoothly supplied to the catalyst layer. The physical properties required for carbon black are water repellency, chemical and electrochemical stability, and pore distribution equivalent to that of the catalyst layer. In order to increase water repellency, it is also effective to increase the crystallinity of carbon black.

(本発明の触媒層を用いた固体高分子形燃料電池とその製造方法)
上述のガス拡散層を両極に装着したMEAを、いわゆるガス流通経路のための溝を有するセパレーターで挟み込んで、固体高分子形燃料電池を製造することができる。固体高分子形燃料電池を作動させる温度、供給する燃料(水素ガス)、及び酸化剤である空気(酸素)のガス流通量と、ガスと共に供給する水蒸気量を制御することにより、用途に応じた出力特性を有する高効率な固体高分子形燃料電池を運転することが可能である。特に、本発明の触媒担体炭素材料を用いることにより、低加湿条件でも良好な出力特性を発揮させることができるものである。
(Solid polymer fuel cell using catalyst layer of the present invention and method for producing the same)
A polymer electrolyte fuel cell can be manufactured by sandwiching the MEA having the gas diffusion layers mounted on both electrodes with a separator having a groove for a so-called gas flow path. By controlling the temperature at which the polymer electrolyte fuel cell is operated, the fuel to be supplied (hydrogen gas), the gas flow rate of air (oxygen) as the oxidant, and the amount of water vapor supplied with the gas, it is suitable for the application It is possible to operate a highly efficient polymer electrolyte fuel cell having output characteristics. In particular, by using the catalyst-supported carbon material of the present invention, good output characteristics can be exhibited even under low humidification conditions.

(保湿性炭素材料の調製)
市販の活性炭(クラレカミカル社製、窒素BET比表面積公称1700と2000m/g)を出発物質として、炭酸ガス流通下で、1050℃〜1200℃で1時間〜5時間かけて賦活処理して、比表面積を増加させ、1700〜2200m2/g程度の活性炭を調製した。これらの活性炭素材料の水蒸気吸着量を制御する目的で、炭素材料の表面の極性を高めるため、一酸化窒素と酸素の混合ガス流通下で、450℃〜650℃で1〜3時間処理し、炭素表面に含酸素官能基を導入した。また、他の含酸素官能基の導入処理として、ビーカー内に発煙硝酸と炭素材料を入れ、ホットプレート上で1〜3時間加熱し、熱発煙硝酸処理を施した。酸素含有官能基量を制御する目的で、これらの炭素材料を窒素ガス雰囲気流通下で、700℃〜1100℃で数時間熱処理した。
(Preparation of moisturizing carbon material)
Using activated carbon (available from Kuraray Chemical Co., Ltd., nitrogen BET specific surface area nominal 1700 and 2000 m 2 / g) as a starting material, activation treatment was performed at 1050 ° C. to 1200 ° C. over 1 hour to 5 hours under the flow of carbon dioxide, The specific surface area was increased, and activated carbon having a density of about 1700-2200 m 2 / g was prepared. In order to control the water vapor adsorption amount of these activated carbon materials, in order to increase the polarity of the surface of the carbon material, it is treated at 450 ° C. to 650 ° C. for 1 to 3 hours under a mixed gas flow of nitrogen monoxide and oxygen, Oxygen-containing functional groups were introduced on the carbon surface. In addition, as another oxygen-containing functional group introduction treatment, fuming nitric acid and a carbon material were placed in a beaker and heated on a hot plate for 1 to 3 hours to perform thermal fuming nitric acid treatment. In order to control the amount of oxygen-containing functional groups, these carbon materials were heat-treated at 700 ° C. to 1100 ° C. for several hours under a nitrogen gas atmosphere.

更に水蒸気吸着量の高い炭素材料を得るために、以下の方法でミクロポアのみからなるZTC(Zeolite Temolated Carbon)を作成した。鋳型となるゼオライトには、東ソー社製Y型ゼオライト(商品名HZS-320NAA)を用いた。フラスコに数gのゼオライト粉末とPTFE被覆磁性撹拌子を入れ、室温で1日真空乾燥した後、更に、150℃で1日真空乾燥した。次に細孔内に充てんする炭素源としてフルフリルアルコール(和光純薬社製)を、真空状態のフラスコ内に滴下しながら約100mL加えた。この際、充てんに伴う発熱でフルフリルアルコールが重合することを防ぐため、フラスコは氷冷した。充てん後、窒素ガスを導入しフロー状態、室温で1日撹拌した。遠心分離機でゼオライトとフルフリルアルコールを分離し、取り出したゼオライトをメシチレン(和光純薬社製)200mLで10分程度撹拌した後に遠心分離させ同じ操作を5回繰り返す。最後に取り出したゼオライトをPTFE製免部蓮フィルターで減圧濾過し、石英ボートに入れて加熱炉にセットし窒素ガスをフローする。約1時間かけて85℃に昇温し1日保持した後2時間かけて160℃まで昇温し8時間保持し室温まで放冷し、フルフリルアルコールの重合(ポリフルフリルアルコール化)を終了させた。ポリフルフリルアルコール充てんゼオライトは、乳鉢で解砕後、石英ボートに入れ加熱炉にセットし窒素ガスを流通させた状態で、2.5時間かけて680〜720℃に昇温した状態でプロピレンガスを窒素ガスに混合する。プロピレンガスの濃度は5〜10vol%とした。680〜720℃で1〜2時間保持した後、プロピレンガスの導入を停止し再び窒素ガスのみを流通させ1時間かけて900℃に昇温し3時間保持、その後、室温まで放冷した。得られた粉末をフッ酸100mLに少しずつ加え、約5時間撹拌してゼオライトを溶解除去した。フッ酸を洗浄するため、メンブレンフィルターで減圧濾過した粉末を再度蒸留水に分散し撹拌し洗浄した。この洗浄操作を3回繰り返し減圧乾燥して、ZTCを得た。
得られたZTCは、更に、本発明に適する水蒸気吸着特性にするために、含酸素官能基の導入処理として、ビーカー内に発煙硝酸と炭素材料を入れ、ホットプレート上で1〜3時間加熱し、熱発煙硝酸処理を施した。また、発煙硫酸を用いて同様の処理を施した。酸素含有官能基量を制御する目的で、これらの炭素材料を窒素ガス雰囲気流通下で、400℃〜1100℃で数時間熱処理して最終的な供試体とした。
Furthermore, in order to obtain a carbon material having a high water vapor adsorption amount, ZTC (Zeolite Temolated Carbon) consisting only of micropores was prepared by the following method. Y-type zeolite (trade name HZS-320NAA) manufactured by Tosoh Corporation was used as a zeolite as a template. A few grams of zeolite powder and PTFE-coated magnetic stirrer were placed in the flask, vacuum-dried at room temperature for 1 day, and further vacuum-dried at 150 ° C. for 1 day. Next, about 100 mL of furfuryl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) as a carbon source filled in the pores was added dropwise into the vacuum flask. At this time, the flask was ice-cooled in order to prevent the furfuryl alcohol from being polymerized by the heat generated by the filling. After filling, nitrogen gas was introduced, and the mixture was stirred at room temperature for 1 day in a flow state. Zeolite and furfuryl alcohol are separated by a centrifuge, and the taken-out zeolite is stirred for about 10 minutes with 200 mL of mesitylene (manufactured by Wako Pure Chemical Industries, Ltd.) and then centrifuged to repeat the same operation 5 times. Finally, the zeolite taken out is filtered under reduced pressure with a PTFE immunized lotus filter, placed in a quartz boat and set in a heating furnace, and nitrogen gas is flowed. Heated to 85 ° C over about 1 hour and held for 1 day, then raised to 160 ° C over 2 hours, held for 8 hours and allowed to cool to room temperature, completing the furfuryl alcohol polymerization (polyfurfuryl alcoholization) It was. Polyfurfuryl alcohol-filled zeolite is crushed in a mortar, placed in a quartz boat and set in a heating furnace, and nitrogen gas is circulated. To mix. The concentration of propylene gas was 5 to 10 vol%. After maintaining at 680-720 ° C. for 1-2 hours, the introduction of propylene gas was stopped, only nitrogen gas was circulated again, the temperature was raised to 900 ° C. over 1 hour, maintained for 3 hours, and then allowed to cool to room temperature. The obtained powder was added little by little to 100 mL of hydrofluoric acid and stirred for about 5 hours to dissolve and remove the zeolite. In order to wash hydrofluoric acid, the powder filtered under reduced pressure with a membrane filter was again dispersed in distilled water, stirred and washed. This washing operation was repeated three times and dried under reduced pressure to obtain ZTC.
In order to make the obtained ZTC suitable for water vapor adsorption characteristics suitable for the present invention, fuming nitric acid and a carbon material are placed in a beaker as an oxygen-containing functional group introduction treatment and heated on a hot plate for 1 to 3 hours. Then, a hot fuming nitric acid treatment was performed. Moreover, the same process was performed using fuming sulfuric acid. In order to control the amount of the oxygen-containing functional group, these carbon materials were heat-treated at 400 ° C. to 1100 ° C. for several hours under a nitrogen gas atmosphere circulation to obtain final specimens.

(保湿性炭素材料の物性評価)
水蒸気吸着特性は、日本ベル(株)製の水蒸気吸着装置ベルソープアクア(商品名)を用いて測定した。100℃、4時間の真空脱気処理の後、25℃で水蒸気吸着・脱離特性を測定した。水蒸気吸着特性は相対圧0.95まで測定し、相対圧0.95のときの水蒸気吸着量をV0.95とした。また、脱離曲線における水蒸気吸着量がV0.95の半分を示す相対圧をP1/2とした。
(Evaluation of physical properties of moisturizing carbon materials)
The water vapor adsorption characteristics were measured using a water vapor adsorption device Bell Soap Aqua (trade name) manufactured by Nippon Bell Co., Ltd. After vacuum degassing for 4 hours at 100 ° C., water vapor adsorption / desorption characteristics were measured at 25 ° C. The water vapor adsorption characteristic was measured up to a relative pressure of 0.95, and the water vapor adsorption amount at a relative pressure of 0.95 was V 0.95 . The relative pressure at which the water vapor adsorption amount in the desorption curve shows half of V 0.95 was defined as P1 / 2 .

炭素材料の窒素ガス吸着特性評価には、カンタクローム社(Quantachrome Instruments)のAutosorb(商品名)を用い、測定値の解析には、同装置に付属のソフトウエア(Autosorb 1 for Windows(登録商標) 1.24)を用いて解析した。前処理は水蒸気吸着特性と同じ条件で行った。   Autosorb (trade name) from Quantachrome Instruments is used to evaluate the nitrogen gas adsorption characteristics of carbon materials, and the software (Autosorb 1 for Windows (registered trademark)) supplied with the device is used for analysis of measured values. 1.24). The pretreatment was performed under the same conditions as the water vapor adsorption characteristics.

(触媒の調製)
蒸留水中に塩化白金酸水溶液とポリビニルピロリドンを溶解し、60℃で攪拌しながら、水素化ホウ素ナトリウムを蒸留水に溶かした上で注ぎ入れ、塩化白金酸を還元した。その水溶液に触媒担体炭素材料を添加し、60分間撹拌した後に、濾過、洗浄を行った。得られた固形物を90℃で真空乾燥した後、乳鉢で粉砕して、水素雰囲気中250℃で1時間熱処理することによって、白金担持触媒を作製した。尚、触媒の白金担持量は35質量%になるように調製した。
(Preparation of catalyst)
A chloroplatinic acid aqueous solution and polyvinylpyrrolidone were dissolved in distilled water, and sodium borohydride was dissolved in distilled water while stirring at 60 ° C. to reduce chloroplatinic acid. The catalyst support carbon material was added to the aqueous solution and stirred for 60 minutes, followed by filtration and washing. The obtained solid was vacuum-dried at 90 ° C., pulverized in a mortar, and heat-treated at 250 ° C. for 1 hour in a hydrogen atmosphere to prepare a platinum-supported catalyst. The catalyst was prepared so that the supported amount of platinum was 35% by mass.

(触媒層、MEAの調製)
触媒を、アルゴン気流中で5%ナフィオン溶液(デュポン製DE521)を触媒の質量に対してナフィオン固形分の質量が1.2倍になるように加え、軽く撹拌後、超音波で触媒を粉砕し、白金触媒とナフィオンを合わせた固形分濃度が、2質量%となるように撹拌しながら酢酸ブチルを加え、各触媒層スラリーを作製した。
(Preparation of catalyst layer and MEA)
Add the catalyst to a 5% Nafion solution (DE521 manufactured by DuPont) in an argon stream so that the mass of Nafion solids is 1.2 times the mass of the catalyst, and after gently stirring, pulverize the catalyst with ultrasound. Then, butyl acetate was added with stirring so that the solid content concentration of the platinum catalyst and Nafion was 2% by mass to prepare each catalyst layer slurry.

前記触媒層スラリーをテフロン(登録商標)シートの片面にそれぞれスプレー法で塗布し、80℃のアルゴン気流中10分間、続いて120℃のアルゴン気流中1時間乾燥し、固体高分子型燃料電池用触媒層を得た。尚、それぞれの触媒層は白金使用量が0.25mg/cmとなるようにスプレー等の条件を設定した。白金使用量は、スプレー塗布前後のテフロン(登録商標)シートの乾燥質量を測定し、その差から計算して求めた。 The catalyst layer slurry is applied to one side of a Teflon (registered trademark) sheet by a spray method and dried in an argon stream at 80 ° C. for 10 minutes and then in an argon stream at 120 ° C. for 1 hour, for a polymer electrolyte fuel cell A catalyst layer was obtained. In addition, conditions, such as a spray, were set so that each catalyst layer might use platinum usage amount 0.25 mg / cm < 2 >. The amount of platinum used was determined by measuring the dry mass of a Teflon (registered trademark) sheet before and after spray coating and calculating the difference.

さらに、得られた固体高分子型燃料電池用触媒層から2.5cm角の大きさで2枚づつ切り取り、触媒層が電解質膜と接触するように同じ種類の電極2枚で電解質膜(ナフィオン112)を挟み、130℃、90kg/cmで10分間ホットプレスを行った。室温まで冷却後、テフロン(登録商標)シートのみを注意深く剥がし、アノード及びカソードの触媒層をナフィオン膜に定着させた。更に、市販のカーボンクロス(ElectroChem社製EC-CC1-060)を2.5cm角の大きさに2枚切り取って、ナフィオン膜に定着させたアノードとカソードを挟むようにして130℃、50kg/cm2で10分間ホットプレスを行い、膜/電極接合体(Membrane Electrode Assembly, MEA)を作製した。 Further, two pieces of 2.5 cm square are cut out from the obtained catalyst layer for the polymer electrolyte fuel cell, and the electrolyte membrane (Nafion 112 is used with two electrodes of the same type so that the catalyst layer is in contact with the electrolyte membrane. ) And hot pressing was performed at 130 ° C. and 90 kg / cm 2 for 10 minutes. After cooling to room temperature, only the Teflon (registered trademark) sheet was carefully peeled off to fix the anode and cathode catalyst layers to the Nafion membrane. Further, two carbon cloths (EC-CC1-060 manufactured by ElectroChem) were cut into 2.5 cm square sizes, and the anode and cathode fixed on the Nafion membrane were sandwiched at 130 ° C. and 50 kg / cm 2 . Hot pressing was performed for 10 minutes to produce a membrane / electrode assembly (Mebrane Electrode Assembly, MEA).

(燃料電池による触媒層の性能評価)
作製したMEAは、セルに組み込み燃料電池測定装置にて、次の手順で燃料電池性能を評価した。
(Performance evaluation of catalyst layer by fuel cell)
The produced MEA was incorporated into a cell, and the fuel cell performance was evaluated by a fuel cell measuring device according to the following procedure.

カソードに空気、アノードに純水素を、1000mA/cmの発電に必要なガス量を100%として、利用率がそれぞれ30%と60%となるように供給し、ガス圧は0.1MPaとした。セル温度は80℃とした。 Air was supplied to the cathode, pure hydrogen was supplied to the anode, the amount of gas necessary for power generation of 1000 mA / cm 2 was set to 100%, and the utilization was 30% and 60%, respectively, and the gas pressure was 0.1 MPa. . The cell temperature was 80 ° C.

先ず、供給する空気と純水素を、各々80℃に保温された蒸留水中でバブリングし加湿した。このような条件でセルにガスを供給した後、300mA/cmまで負荷を徐々に増加して300mA/cmで負荷を固定し、60分経過後のセル端子間電圧を飽和加湿出力とした。 First, the supplied air and pure hydrogen were bubbled and humidified in distilled water kept at 80 ° C., respectively. After supplying a gas to the cell under these conditions, by gradually increasing the load until 300 mA / cm 2 to fix the load 300 mA / cm 2, the inter-cell terminal voltage after the lapse of 60 minutes was saturated humidification output .

次いで、供給ガスをそれぞれ55℃に保温された蒸留水中でバブリングを行い、加湿した。このような条件でセルにガスを供給した後、300mA/cmまで負荷を徐々に増加して300mA/cmで負荷を固定し、60分経過後のセル端子間電圧を低加湿出力とした。飽和加湿出力から低加湿出力を引いた値を、「出力低下量」とし、実施例における低加湿運転時の性能評価の指標とした。 Next, the feed gas was bubbled in distilled water kept at 55 ° C. and humidified. After supplying a gas to the cell under these conditions, by gradually increasing the load until 300 mA / cm 2 to fix the load 300 mA / cm 2, and the inter-cell terminal voltage after the lapse of 60 minutes and the low humidification output . A value obtained by subtracting the low humidified output from the saturated humidified output was defined as an “output reduction amount”, which was used as an index for performance evaluation during the low humidified operation in the examples.

更に、高負荷特性として、前述の出力低下量測定後に同一運転条件で、出力電流密度を徐々に高めていき、1000mA/cmの時の出力電圧の定常値を「高負荷特性」として、性能指標とした。 Furthermore, as the high load characteristics, the output current density is gradually increased under the same operating conditions after the aforementioned output reduction amount measurement, and the steady value of the output voltage at 1000 mA / cm 2 is set as the “high load characteristics”. It was used as an index.

(実施形態1の実施例)
上述の方法で調製したミクロポアからなる鋳型炭素、水蒸気賦活処理したコークスと、市販の活性炭を、更に熱硝酸、熱硫酸、発煙硫酸処理した多孔質炭素を保湿性炭素材料に用い触媒を調製した。市販のカーボンブラックを基に、熱硝酸で酸化した後に不活性雰囲気下で熱処理、或いは、CO2気流中で950〜1150℃で熱処理することで賦活処理し、更に熱硝酸酸化後に不活性雰囲気中で熱処理して、種々の物性のカーボンブラックを調製した。このカーボンブラックを担体として用い触媒を調製した。保湿性炭素材料を担体とした触媒と、カーボンブラックを担体とした触媒を所定の質量比で混合して、上述の方法に従って触媒層を作製した。表1に実施形態1の実施例に用いた触媒の組成と各種物性値をまとめて示した。表1の触媒No.6からなる触媒層をアノード、触媒No.1〜26からなる触媒層をカソードに組合わせたMEAを作製し、その燃料電池特性を評価した。表1に触媒の物性と併せて、燃料電池評価の結果をまとめた。
(Example of Embodiment 1)
A catalyst was prepared using template carbon composed of micropores prepared by the above-described method, coke subjected to steam activation treatment, and commercially available activated carbon, and porous carbon further treated with hot nitric acid, hot sulfuric acid, and fuming sulfuric acid as a moisturizing carbon material. Based on commercially available carbon black, oxidized with hot nitric acid and then heat-treated in an inert atmosphere, or activated by heat treatment at 950 to 1150 ° C in a CO2 stream, and further in an inert atmosphere after hot nitric acid oxidation Carbon black having various physical properties was prepared by heat treatment. A catalyst was prepared using this carbon black as a carrier. A catalyst using a moisturizing carbon material as a carrier and a catalyst using carbon black as a carrier were mixed at a predetermined mass ratio, and a catalyst layer was produced according to the above-described method. Table 1 summarizes the composition and various physical property values of the catalyst used in the example of the first embodiment. An MEA was prepared by combining the catalyst layer composed of catalyst No. 6 in Table 1 with the anode and the catalyst layer composed of catalyst Nos. 1 to 26 with the cathode, and the fuel cell characteristics were evaluated. Table 1 summarizes the results of the fuel cell evaluation together with the physical properties of the catalyst.

尚、2種の触媒の混合には乳鉢を用いた。   A mortar was used for mixing the two kinds of catalysts.

Figure 0005561250
Figure 0005561250

表1から、本発明の実施形態1の炭素担体を用いた触媒層が低加湿時に優れた出力特性を発揮することが判った。触媒No.24をカソードに用いた燃料電池では、高負荷運転中に電圧が急激に低下する、いわゆるフラッディング現象が生じ、継続的安定な高負荷特性を得ることが出来なかった。   From Table 1, it was found that the catalyst layer using the carbon support of Embodiment 1 of the present invention exhibits excellent output characteristics when the humidity is low. Catalyst No. In the fuel cell using 24 as the cathode, a so-called flooding phenomenon in which the voltage suddenly drops during high load operation occurred, and a continuous and stable high load characteristic could not be obtained.

(実施形態2の実施例)
実施形態1の実施例と同じアノードを用い、表2に示す触媒をカソードに用いてMEAを作製し、燃料電池特性を評価した。カソードの触媒担体物性と、燃料電池特性とをまとめて表2に示した。
(Example of Embodiment 2)
Using the same anode as in the example of Embodiment 1 and using the catalyst shown in Table 2 as the cathode, an MEA was fabricated and the fuel cell characteristics were evaluated. Table 2 summarizes the properties of the cathode catalyst carrier and the fuel cell characteristics.

Figure 0005561250
Figure 0005561250

実施形態2の保湿性担体を用いた触媒と、実施形態1のカーボンブラックを担体に用いた触媒とを混合することにより、出力低下量と高負荷特性が大幅に改善することが判った。   It was found that by mixing the catalyst using the moisturizing carrier of Embodiment 2 and the catalyst using the carbon black of Embodiment 1 as a carrier, the output reduction amount and the high load characteristics are greatly improved.

(実施形態3の実施例)
水蒸気、炭酸ガス賦活処理条件を変えた活性炭、並びに、ミクロポアのみから形成される種々の結晶構造のゼオライトを鋳型とした鋳型炭素を調製した。これらを保湿性担体として触媒を合成し、実施形態2に用いたカーボンブラック触媒とを混合(質量比1:1)し触媒層を作製した。尚、2種の触媒の混合には乳鉢を用いた。表3に、用いた保湿性担体炭素材料、カーボンブラックの物性と、燃料電池特性の評価結果をまとめて示した。尚、アノードには実施形態1、実施形態2と同一のものを用いた。
(Example of Embodiment 3)
Template carbon was prepared using zeolite with various crystal structures formed only from steam, activated carbon with different carbon dioxide activation treatment conditions, and micropores as templates. Catalysts were synthesized using these as moisturizing carriers and mixed with the carbon black catalyst used in Embodiment 2 (mass ratio 1: 1) to prepare a catalyst layer. A mortar was used for mixing the two kinds of catalysts. Table 3 summarizes the physical properties of the moisturizing carrier carbon material and carbon black used and the evaluation results of the fuel cell characteristics. The same anode as in Embodiments 1 and 2 was used as the anode.

Figure 0005561250
実施形態3の保湿性炭素を担体に用いた触媒と実施形態2のカーボンブラック触媒とを混合することにより、出力低下量と高負荷特性が大幅に改善することが判った。
Figure 0005561250
It was found that the amount of decrease in output and the high load characteristics are greatly improved by mixing the catalyst using the moisturizing carbon of Embodiment 3 as the carrier and the carbon black catalyst of Embodiment 2.

Claims (4)

保湿性炭素材料とカーボンブラックとを質量比で2:8〜9:1で混合させた固体高分子燃料電池用触媒層用担体炭素材料であって、
前記保湿性炭素材料は、25℃における水蒸気吸着脱離等温線の脱離曲線にける相対水蒸気圧0.95のときの水蒸気吸着量(以下、「V0.95」という。)の値が、
1250cm/g≦V0.95≦2500cm/g
であり、且つ、V0.95の半分の水蒸気吸着量を示す相対水蒸気圧(以下、「P1/2」という。)がP1/2≦0.55
を満たし、
前記カーボンブラックは、DBP給油量(以下「ODBP」という。)が
ODBP ≧100mL/100g
であり、V0.95
V0.95≧100 cm/g
を満たすことを特徴とする固体高分子燃料電池用触媒層用担体炭素材料。
A carrier carbon material for a catalyst layer for a polymer electrolyte fuel cell in which a moisture-retaining carbon material and carbon black are mixed at a mass ratio of 2: 8 to 9: 1,
The moisturizing carbon material, water vapor adsorption amount when you Keru relative water vapor pressure 0.95 desorption curve of water vapor adsorption-desorption isotherm at 25 ° C. (hereinafter, referred to as "V 0.95".) The value of,
1250 cm 3 / g ≦ V 0.95 ≦ 2500 cm 3 / g
And a relative water vapor pressure (hereinafter referred to as “P 1/2 ”) indicating a water vapor adsorption amount half that of V 0.95 is P 1/2 ≦ 0.55.
The filling,
The carbon black has a DBP oil supply amount (hereinafter referred to as “O DBP ”).
O DBP ≧ 100mL / 100g
And V 0.95 is
V 0.95 ≧ 100 cm 3 / g
A carbon material for a catalyst layer for a solid polymer fuel cell, characterized in that:
前記保湿性炭素材料がさらに、窒素ガス吸着脱離等温測定のBET法による比表面積(以下、「SBET」という。)が
SBET≧2000m/g
であり、SF法のよるミクロ孔容積(以下、「Vmicro」という。)が、
Vmicro≧0.8mL/g
であることを特徴とする請求項1に記載の固体高分子燃料電池用触媒層用担体炭素材料。
The moisturizing carbon material further has a specific surface area (hereinafter referred to as “S BET ”) according to the BET method of nitrogen gas adsorption / desorption isothermal measurement.
S BET ≧ 2000m 2 / g
The micropore volume (hereinafter referred to as “V micro ”) according to the SF method is
V micro ≧ 0.8mL / g
The support carbon material for a catalyst layer for a solid polymer fuel cell according to claim 1, wherein
前記保湿性炭素材料の酸素含有量が3質量%〜10質量%であることを特徴とする請求項1ないし2のいずれか1項に記載の固体高分子燃料電池用触媒層用担体炭素材料。   3. The carrier carbon material for a catalyst layer for a polymer electrolyte fuel cell according to claim 1, wherein the oxygen content of the moisturizing carbon material is 3% by mass to 10% by mass. 請求項1ないし3のいずれか1項に記載の固体高分子燃料電池用触媒層用担体炭素材料用いることを特徴とする固体高分子型燃料電池。   A solid polymer fuel cell comprising the support carbon material for a catalyst layer for a solid polymer fuel cell according to any one of claims 1 to 3.
JP2011152795A 2011-07-11 2011-07-11 Support carbon material for catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same Active JP5561250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011152795A JP5561250B2 (en) 2011-07-11 2011-07-11 Support carbon material for catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011152795A JP5561250B2 (en) 2011-07-11 2011-07-11 Support carbon material for catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2013020793A JP2013020793A (en) 2013-01-31
JP5561250B2 true JP5561250B2 (en) 2014-07-30

Family

ID=47692055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011152795A Active JP5561250B2 (en) 2011-07-11 2011-07-11 Support carbon material for catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same

Country Status (1)

Country Link
JP (1) JP5561250B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3661032A1 (en) 2018-11-28 2020-06-03 Nidec Sole Motor Corporation S.r.l. Brusshless permanent magnet electric motor for washing machines

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107073466A (en) 2014-11-28 2017-08-18 昭和电工株式会社 Catalyst carrier and its manufacture method
US10096841B2 (en) 2014-12-25 2018-10-09 Showa Denko K.K. Catalyst carrier, method for producing catalyst carrier, and use of catalyst carrier
CN107107032B (en) 2014-12-25 2020-04-03 昭和电工株式会社 Catalyst carrier and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799897B2 (en) * 2004-04-22 2011-10-26 新日本製鐵株式会社 Fuel cell
JP4520815B2 (en) * 2004-10-19 2010-08-11 新日本製鐵株式会社 Gas diffusion layer for fuel cell, gas diffusion electrode for fuel cell, and fuel cell
JP5021292B2 (en) * 2006-12-26 2012-09-05 新日本製鐵株式会社 Fuel cell
JP5213499B2 (en) * 2008-04-01 2013-06-19 新日鐵住金株式会社 Fuel cell
JP5397241B2 (en) * 2009-01-26 2014-01-22 新日鐵住金株式会社 Catalyst for polymer electrolyte fuel cell and electrode for polymer electrolyte fuel cell using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3661032A1 (en) 2018-11-28 2020-06-03 Nidec Sole Motor Corporation S.r.l. Brusshless permanent magnet electric motor for washing machines

Also Published As

Publication number Publication date
JP2013020793A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP6566331B2 (en) Electrocatalyst layer for electrochemical device, membrane / electrode assembly for electrochemical device, electrochemical device, and method for producing electrode catalyst layer for electrochemical device
JP5556434B2 (en) Gas diffusion electrode and method for producing the same, membrane electrode assembly and method for producing the same
JP5021292B2 (en) Fuel cell
WO2010047415A1 (en) Catalyst for solid polymer furl cell, electrode for solid polymer furl cell, and fuel cell
EP3276717B1 (en) Carrier carbon material for solid polymer fuel cell and catalyst
JP4204272B2 (en) Fuel cell electrode catalyst and fuel cell
JP4533108B2 (en) Electrode for polymer electrolyte fuel cell
JP6496531B2 (en) Polymer Electrolyte Fuel Cell Catalyst
CN111146482A (en) Self-humidifying proton exchange membrane and preparation method and application thereof
JP4960000B2 (en) Gas diffusion electrode for fuel cell and fuel cell
JP5561250B2 (en) Support carbon material for catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
JP2017035685A (en) Oxidative control of pore structure in carbon-supported pgm-based catalysts
Antxustegi et al. Chemical activation of Vulcan® XC72R to be used as support for NiNbPtRu catalysts in PEM fuel cells
JP5397241B2 (en) Catalyst for polymer electrolyte fuel cell and electrode for polymer electrolyte fuel cell using the same
JP2017073310A (en) Catalyst layer for fuel cell, and fuel cell
KR100541977B1 (en) Carbon nanoball supported Pt/Ru alloy electrode catalysts for direct methanol fuel cell and their preparation method
JP5862476B2 (en) Anode catalyst for fuel cell and fuel cell
JP4892811B2 (en) Electrocatalyst
JP2007242392A (en) Membrane electrode structure for solid-polymer fuel cell
JP4520815B2 (en) Gas diffusion layer for fuel cell, gas diffusion electrode for fuel cell, and fuel cell
JP5375623B2 (en) Catalyst for polymer electrolyte fuel cell and electrode for polymer electrolyte fuel cell using the same
KR101602413B1 (en) Preparation method of nanoporous silica/carbon catalyst support for fuel cell using rice hull, and direct methanol and polymer electrolyte fuel cell comprising the same
CN107107032B (en) Catalyst carrier and method for producing same
JP5119486B2 (en) Electrode for polymer electrolyte fuel cell
JP2016126869A (en) Solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R151 Written notification of patent or utility model registration

Ref document number: 5561250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350