JP5397241B2 - Catalyst for polymer electrolyte fuel cell and electrode for polymer electrolyte fuel cell using the same - Google Patents

Catalyst for polymer electrolyte fuel cell and electrode for polymer electrolyte fuel cell using the same Download PDF

Info

Publication number
JP5397241B2
JP5397241B2 JP2010014622A JP2010014622A JP5397241B2 JP 5397241 B2 JP5397241 B2 JP 5397241B2 JP 2010014622 A JP2010014622 A JP 2010014622A JP 2010014622 A JP2010014622 A JP 2010014622A JP 5397241 B2 JP5397241 B2 JP 5397241B2
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
water vapor
polymer electrolyte
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010014622A
Other languages
Japanese (ja)
Other versions
JP2010192436A (en
Inventor
英明 澤田
孝 飯島
健一郎 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010014622A priority Critical patent/JP5397241B2/en
Publication of JP2010192436A publication Critical patent/JP2010192436A/en
Application granted granted Critical
Publication of JP5397241B2 publication Critical patent/JP5397241B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体高分子型燃料電池用触媒及びこれを用いた固体高分子型燃料電池用電極に関するものである。   The present invention relates to a polymer electrolyte fuel cell catalyst and a polymer electrolyte fuel cell electrode using the same.

固体高分子型燃料電池は、水素を燃料とするクリーンな電源として、電気自動車の駆動電源、また、発電と熱供給を併用する定置電源として開発が進められている。また、固体高分子型燃料電池は、リチウムイオン電池等の二次電池と比較して高いエネルギー密度であることが特長であり、高エネルギー密度が要求される携帯用コンピュータあるいは移動用通信機器の電源としても開発が進められている。   The polymer electrolyte fuel cell is being developed as a clean power source using hydrogen as a fuel, a driving power source for an electric vehicle, and a stationary power source using both power generation and heat supply. In addition, solid polymer fuel cells are characterized by a high energy density compared to secondary batteries such as lithium ion batteries, and power sources for portable computers or mobile communication devices that require high energy density. Is also being developed.

固体高分子型燃料電池の典型的な単セルは、アノード(燃料極)とカソード(空気極)、及び両極間に配したプロトン伝導性の固体高分子電解質膜が基本構成となる。アノード及びカソードは、通常、白金等の貴金属を担持した触媒、フッ素樹脂紛等の造孔剤、及び固体高分子電解質等からなる薄膜電極として使用される。   A typical single cell of a polymer electrolyte fuel cell has a basic configuration of an anode (fuel electrode), a cathode (air electrode), and a proton-conducting solid polymer electrolyte membrane disposed between both electrodes. The anode and the cathode are usually used as a thin film electrode comprising a catalyst supporting a noble metal such as platinum, a pore forming agent such as a fluororesin powder, and a solid polymer electrolyte.

固体高分子型燃料電池は、前述のように高エネルギー密度の電源ではあるが、単位電極面積当たりの出力の更なる向上が求められている。そのための最も効果的な解決策の一つは、アノードとカソードを構成する電極触媒で起こる電気化学反応の触媒活性を向上させることである。水素を燃料とするアノードでは、水素分子が水素カチオン(プロトン)に酸化する電気化学的反応であって、その触媒活性の向上である。一方、カソードでは、固体高分子電解質から来るプロトンと酸素が反応して酸素が水に還元される電気化学反応であって、その触媒活性の向上である。このような固体高分子型燃料電池のアノードとカソードの電極触媒には、白金等の貴金属が用いられる。しかしながら、貴金属は高価であるので、固体高分子型燃料電池の実用化や普及を加速するために電極単位面積当たりの使用量の低減が求められ、そのためには触媒活性の更なる向上が必須である。   Although the polymer electrolyte fuel cell is a high energy density power source as described above, further improvement in output per unit electrode area is required. One of the most effective solutions for this purpose is to improve the catalytic activity of the electrochemical reaction that occurs in the electrocatalyst constituting the anode and cathode. An anode using hydrogen as a fuel is an electrochemical reaction in which hydrogen molecules are oxidized to hydrogen cations (protons), which is an improvement in the catalytic activity. On the other hand, the cathode is an electrochemical reaction in which protons coming from the solid polymer electrolyte and oxygen react to reduce oxygen to water, which is an improvement in its catalytic activity. A noble metal such as platinum is used for the anode and cathode electrode catalyst of such a polymer electrolyte fuel cell. However, since noble metals are expensive, in order to accelerate the practical use and spread of solid polymer fuel cells, it is required to reduce the amount used per unit area of the electrode. To that end, further improvement in catalytic activity is essential. is there.

更に、燃料電池として使用した場合には、起動停止や高負荷運転によって、触媒成分の白金等の金属が溶出したり、担体等に用いている炭素材料が腐食したりすることが知られており、白金等の金属の溶出やカーボン腐食を妨げる耐久技術も非常に重要になっている。   Furthermore, when used as a fuel cell, it is known that metals such as platinum as a catalyst component are eluted or the carbon material used for the carrier is corroded due to start-stop and high-load operation. Durability technology that prevents elution of metals such as platinum and carbon corrosion is also very important.

上記触媒担体として用いている炭素材料の腐食を妨げる方策としては、これまで、以下の技術が開示されている。例えば、特許文献1には、熱処理する等して、ラマン分光スペクトルから得られるD-バンドと呼ばれる1300〜1400cm-1の範囲のピーク強度(ID)と、G-バンドと呼ばれる1500〜1600cm-1の範囲のピーク強度(IG)との相対的強度比(ID/IG)を0.9〜1.2に調整した炭素材料を、触媒担体として用いることが開示されている。 As measures for preventing the corrosion of the carbon material used as the catalyst support, the following techniques have been disclosed so far. For example, in Patent Document 1, by performing heat treatment or the like, a peak intensity ( ID ) in a range of 1300 to 1400 cm −1 called a D-band obtained from a Raman spectroscopic spectrum, and a 1500 to 1600 cm called a G-band It is disclosed that a carbon material having a relative intensity ratio (I D / I G ) with a peak intensity (I G ) in the range of 1 adjusted to 0.9 to 1.2 is used as a catalyst support.

また、特許文献2には、触媒担体として用いる炭素材料の比表面積を800m2/g以上900m2/g以下にすることによる、発電性能が高く、高電位耐久性及び燃料不足耐久性に優れた固体高分子型燃料電池の電極構造体が開示されている。
また、特許文献3では、アノード電極が触媒層、水分解層、及びガス拡散層で構成され、前記触媒層に使用される担体は、60℃の飽和水蒸気圧下における水吸着量が100cc/g以下であり、前記水分解層に使用される担体は、60℃の飽和水蒸気圧下における水吸着量が150cc/g以上であることが開示されている。
In Patent Document 2, the specific surface area of the carbon material used as the catalyst carrier is set to 800 m 2 / g or more and 900 m 2 / g or less, so that power generation performance is high, and high potential durability and fuel shortage durability are excellent. An electrode structure of a polymer electrolyte fuel cell is disclosed.
In Patent Document 3, the anode electrode is composed of a catalyst layer, a water decomposition layer, and a gas diffusion layer, and the carrier used for the catalyst layer has a water adsorption amount of 100 cc / g or less under a saturated water vapor pressure of 60 ° C. It is disclosed that the carrier used for the water splitting layer has a water adsorption amount of 150 cc / g or more under a saturated water vapor pressure of 60 ° C.

特開2008-41253号公報JP 2008-41253 JP 特開2006-318707号公報JP 2006-318707 A 特開2006-134629号公報JP 2006-134629 A

上述のように、触媒担体として用いている炭素材料の腐食を妨げる方策としては、特許文献1、2にあるように、炭素材料の黒鉛化度や表面積を制御すること等が挙げられる。しかしながら、黒鉛化度を上げたり、比表面積を減少したりすれば、大まかには酸化消耗耐性が向上することは間違いないが、黒鉛化度や比表面積が同程度でも酸化消耗耐性が高いものと低いものがあり、真に酸化消耗耐性の高い炭素材料を得るためには、それが何に起因するかを明確にする必要があった。また、黒鉛化度を上げたり、比表面積を減少したりすると、触媒粒子の分散性が低下するだけでなく、保湿性が低下し、燃料電池性能が低下することが分かっていた。   As described above, measures for preventing the corrosion of the carbon material used as the catalyst carrier include controlling the graphitization degree and surface area of the carbon material, as described in Patent Documents 1 and 2. However, if the degree of graphitization is increased or the specific surface area is reduced, there is no doubt that the resistance to oxidation consumption is improved. However, even if the degree of graphitization and the specific surface area are the same, the resistance to oxidation consumption is high. In order to obtain a carbon material that is low and has a high resistance to oxidation exhaustion, it was necessary to clarify what caused it. Further, it has been known that increasing the degree of graphitization or reducing the specific surface area not only lowers the dispersibility of the catalyst particles but also reduces the moisture retention and the fuel cell performance.

また、特許文献3のように、水吸着量の大きな担体と水吸着量の小さな担体とを積層して組み合わせることで性能を向上させるとしているが、酸化消耗耐性が十分なものは得られていない。   In addition, as in Patent Document 3, the performance is improved by stacking and combining a carrier having a large amount of water adsorption and a carrier having a small amount of water adsorption, but a product with sufficient resistance to oxidation consumption has not been obtained. .

本発明は、上記問題点を鑑み、酸化消耗耐性の高く、高い電池性能を発揮し得る触媒及びこれを用いた固体高分子型燃料電池用電極を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a catalyst having high resistance to oxidation consumption and capable of exhibiting high battery performance, and an electrode for a polymer electrolyte fuel cell using the catalyst.

本発明者らは、上記課題を解決するために、炭素材料の黒鉛化度、酸素濃度、比表面積、水蒸気吸着量等を鋭意調べたところ、水蒸気吸着量と酸化消耗耐性、及び、電池性能の傾向が合致していることを見出し、即ち、異なる相対湿度における2種類の水蒸気吸着量が特定の値であると優れた酸化消耗耐性で優れた電池性能を示すことを見出し、本発明に至った。即ち、本発明は、以下の要旨とするものである。
(1) 炭素材料に酸素還元活性を持つ触媒成分を担持した触媒であって、前記炭素材料の25℃、相対湿度10%における水蒸気吸着量(V10)が2ml/g以下であり、且つ、前記炭素材料の25℃、相対湿度90%における水蒸気吸着量(V90)が400ml/g以上であることを特徴とする固体高分子型燃料電池用触媒。
(2) 前記炭素材料の25℃、相対湿度10%における水蒸気吸着量V10と、25℃、相対湿度90%における水蒸気吸着量V90の比V10/V90が0.002以下である(1)に記載の固体高分子型燃料電池用触媒。
(3) (1)又は(2)に記載の触媒を少なくとも含んでなる固体高分子型燃料電池用電極。
In order to solve the above problems, the present inventors have intensively investigated the degree of graphitization, oxygen concentration, specific surface area, water vapor adsorption amount, etc. of the carbon material. It was found that the trends were in agreement, that is, when the two kinds of water vapor adsorption amounts at different relative humidity were specific values, it was found that excellent battery performance was exhibited with excellent oxidation consumption resistance, and the present invention was achieved. . That is, the present invention has the following gist.
(1) A catalyst in which a catalytic component having oxygen reduction activity is supported on a carbon material, the water vapor adsorption amount (V 10 ) at 25 ° C. and a relative humidity of 10% of the carbon material is 2 ml / g or less, and A solid polymer fuel cell catalyst, wherein the carbon material has a water vapor adsorption amount (V 90 ) of at least 400 ml / g at 25 ° C. and a relative humidity of 90%.
(2) Ratio V 10 / V 90 of water vapor adsorption amount V 10 at 25 ° C. and relative humidity 10% of the carbon material and water vapor adsorption amount V 90 at 25 ° C. and relative humidity 90% is 0.002 or less (1) 2. A catalyst for a polymer electrolyte fuel cell according to 1.
(3) A polymer electrolyte fuel cell electrode comprising at least the catalyst according to (1) or (2).

本発明の固体高分子型燃料電池用触媒は、従来の触媒に比べて、高い酸化消耗耐性を持ち、且つ、高い電池性能を得ることができるという効果がある。前記触媒を用いた電極を固体高分子型燃料電池に使用すると、自動車用燃料電池や定置用燃料電池等の耐久性を向上させ、且つ、高い電池性能を得ることができることから、貴金属の使用量を低減でき、大幅な低コスト化を実現でき、固体高分子型燃料電池の商業的な市場普及を加速することができる。   The solid polymer fuel cell catalyst of the present invention has an effect that it has higher oxidation consumption resistance and higher battery performance than conventional catalysts. When an electrode using the catalyst is used for a polymer electrolyte fuel cell, durability of an automobile fuel cell, a stationary fuel cell, etc. can be improved, and high cell performance can be obtained. Can be reduced, the cost can be significantly reduced, and commercialization of the polymer electrolyte fuel cell can be accelerated.

本発明の固体高分子型燃料電池用触媒は、触媒担体として用いられる炭素材料の水蒸気吸着量を調べ、相対湿度10%と90%での水蒸気吸着量を特定の範囲にしたものである。   The catalyst for a polymer electrolyte fuel cell of the present invention is obtained by examining the water vapor adsorption amount of a carbon material used as a catalyst carrier, and setting the water vapor adsorption amount at a relative humidity of 10% and 90% within a specific range.

燃料電池起動停止時等に、燃料極が空気等の存在によって部分的に水素が欠乏した箇所が存在すると、空気極の電位が上昇し、触媒担体である炭素材料が酸化消耗することが知られているが、触媒担体として用いられる炭素材料の、25℃、相対湿度10%における水蒸気吸着量V10が2ml/g以下であると、上記酸化消耗が抑制され、酸化消耗耐性に優れた触媒とすることができる。触媒担体として用いられる炭素材料の、25℃、相対湿度10%における水蒸気吸着量が2ml/g超であると、上記酸化消耗が著しく起こり、触媒担体の親水性が高まり過ぎて排水能が低下し、燃料電池性能が低下したり、上記酸化消耗に伴って担持されていた触媒が脱落したり、溶出したりして、触媒量が減少し、燃料電池性能が低下する。従って、より好ましくは10%程度の余裕があるとよく、1.8ml/g以下とすることが好ましい。 It is known that when the fuel electrode is partially depleted of hydrogen due to the presence of air or the like when the fuel cell is started or stopped, the potential of the air electrode increases and the carbon material as the catalyst carrier is oxidized and consumed. and has, but the carbon material used as a catalyst carrier, 25 ° C., the amount of adsorbed water vapor V 10 at a relative humidity of 10% or less 2 ml / g, the oxidation loss is suppressed, and excellent catalytic oxidation exhaustion resistance can do. If the carbon material used as the catalyst support has a water vapor adsorption amount of more than 2 ml / g at 25 ° C. and 10% relative humidity, the above oxidation consumption occurs remarkably, and the hydrophilicity of the catalyst support becomes too high, resulting in a decrease in drainage capacity. In addition, the fuel cell performance is reduced, or the catalyst that has been carried along with the oxidation consumption is dropped or eluted, so that the amount of catalyst is reduced and the fuel cell performance is lowered. Therefore, it is more preferable that there is a margin of about 10%, and it is preferable that the amount be 1.8 ml / g or less.

相対湿度10%程度の低い相対湿度での水蒸気吸着量は、炭素材料のアグリゲートなどの凝集構造や細孔構造ではなく、炭素材料表面を構成する官能基種とその密度に依存していると考えられる。本発明の相対湿度10%での水蒸気吸着量が2ml/g以下であると、炭素材料表面の官能基の絶対量が少なく、したがって、官能基の酸化分解などに由来する酸化消耗が抑制されると推察される。   The amount of water vapor adsorption at a relative humidity as low as 10% relative humidity depends on the functional group species constituting the surface of the carbon material and its density, not on the aggregate structure or pore structure of the carbon material aggregate. Conceivable. When the water vapor adsorption amount at a relative humidity of 10% of the present invention is 2 ml / g or less, the absolute amount of functional groups on the surface of the carbon material is small, and therefore, oxidative consumption due to oxidative decomposition of the functional groups is suppressed. It is guessed.

触媒担体として用いられる炭素材料の、25℃、相対湿度10%における水蒸気吸着量V10は、酸化消耗耐性のみを考えるのであれば小さいほど良いが、触媒を担持する際の分散性は官能基の存在によって逆に向上することも考えられるため、下限値としては0.05ml/g以上とすることが好ましい。 The amount of water vapor adsorption V 10 at 25 ° C. and 10% relative humidity of the carbon material used as the catalyst support is better if only considering the resistance to oxidation consumption, but the dispersibility when supporting the catalyst is functional groups. Since it may be possible to improve the presence by the presence, the lower limit is preferably 0.05 ml / g or more.

触媒担体として用いられる炭素材料の、25℃、相対湿度90%での水蒸気吸着量V90が400ml/g以上であると、触媒成分近傍にある電解質が適当な湿潤状態を保ち、プロトン伝導性の低下を防ぐことができるため、自動車用燃料電池のように低加湿での運転をする必要が生じた場合においても、燃料電池性能の低下を最小限に抑えることが可能となる。より好ましくは、10%程度の余裕があるとよく、440ml/g以上とすることが好ましい。 When the water vapor adsorption amount V 90 at a temperature of 25 ° C. and a relative humidity of 90% of the carbon material used as the catalyst support is 400 ml / g or more, the electrolyte in the vicinity of the catalyst component is kept in a suitable wet state, and the proton conductivity is high. Since the decrease can be prevented, it is possible to minimize the decrease in fuel cell performance even when it is necessary to operate with low humidification as in a fuel cell for automobiles. More preferably, there should be a margin of about 10%, and it is preferably 440 ml / g or more.

触媒担体として用いられる炭素材料の、25℃、相対湿度90%における水蒸気吸着量V90が高過ぎると、高負荷運転をした時に生成水の排出が滞り、燃料電池性能が低下することになるため、上限値としては2000ml/g以下とすることが好ましい。より好ましくは1200ml/g以下である。相対湿度90%での水蒸気吸着量の支配要因は炭素材料表面の細孔構造にあると推察される。即ち、本発明の相対湿度90%での水蒸気吸着量が400ml/g以上であるためには、炭素材料表面に相応の細孔が存在すると推察される。 If the water vapor adsorption amount V 90 at 25 ° C and 90% relative humidity of the carbon material used as the catalyst support is too high, the discharge of produced water will be delayed during high load operation, and the fuel cell performance will be reduced. The upper limit is preferably 2000 ml / g or less. More preferably, it is 1200 ml / g or less. It is inferred that the dominant factor of the water vapor adsorption amount at 90% relative humidity is the pore structure of the carbon material surface. That is, since the water vapor adsorption amount at a relative humidity of 90% according to the present invention is 400 ml / g or more, it is presumed that corresponding pores exist on the surface of the carbon material.

本発明においては、触媒の保湿能力に対応する指標である25℃、相対湿度90%での水蒸気吸着量V90が高い値を有すると同時に、触媒担体炭素材料の高い耐酸化消耗性に対応する指標である25℃、相対湿度10%での水蒸気吸着量V10が小さい値を有することが、耐久性と触媒の高活性の両立には必須となる。さらに検討を進めた結果、25℃、相対湿度10%での水蒸気吸着量V10と25℃、相対湿度90%での水蒸気吸着量V90の比であるV10/V90が0.002以下であると、高い耐久性(耐酸化消耗性)と高い保湿能力の両立に好適であることが見出された。V10/V90が0.002を超えると、耐久性の低下、あるいは、保湿性能の低下を生じることになる。従って、さらに好ましくは、V10/V90が0.0018以下であることが好ましい。 In the present invention, the water vapor adsorption amount V 90 at 25 ° C. and a relative humidity of 90%, which is an index corresponding to the moisture retention capacity of the catalyst, has a high value, and at the same time, it corresponds to the high oxidation consumption resistance of the catalyst support carbon material. Having a small value of the water vapor adsorption amount V 10 at 25 ° C. and a relative humidity of 10%, which is an index, is essential for achieving both durability and high catalyst activity. Result of further study, 25 ° C., and the water vapor adsorption amount V 10 at a relative humidity of 10% 25 ℃, V 10 / V 90 is the ratio of the water vapor adsorption amount V 90 at a relative humidity of 90% is 0.002 or less And it was found that it is suitable for achieving both high durability (oxidation wear resistance) and high moisturizing ability. When V 10 / V 90 exceeds 0.002, the durability or the moisture retention performance is deteriorated. Therefore, more preferably, V 10 / V 90 is preferably 0.0018 or less.

本発明で指標となる25℃、相対湿度10%と90%における水蒸気吸着量は、25℃の環境に置かれた炭素材料1g当たりに吸着した水蒸気量を標準状態の水蒸気体積に換算して示した指標である。炭素材料の25℃、相対湿度10%と90%における水蒸気吸着量の測定は、市販の水蒸気吸着量測定装置を用いて測定することができる。本発明における水蒸気吸着量は、水蒸気の蒸気圧0の真空状態から吸着を開始し、水蒸気の相対圧を高めて徐々に炭素材料に水蒸気を吸着させたときの吸着量、いわゆる、等温吸着曲線における相対湿度10%と90%の値を用いたものである。あるいは、25℃、相対湿度10%と90%の恒温恒湿槽に乾燥した炭素材料を十分な時間静置し、質量変化から測定することもできる。即ち、乾燥した炭素材料を、25℃で相対湿度10%の恒温恒湿槽及び25℃で相対湿度90%の恒温恒湿槽にそれぞれ静置して、水蒸気を吸着させて、それぞれの質量変化から、本発明で指標となる25℃、相対湿度10%と90%における水蒸気吸着量を求めることができる。前述の何れか1つの測定方法で得られた値が、本発明の範囲内であれば、本作用効果が得られるものである。   The amount of water vapor adsorbed at 25 ° C. and relative humidity of 10% and 90% as an index in the present invention is shown by converting the amount of water vapor adsorbed per 1 g of carbon material placed in an environment of 25 ° C. into the water vapor volume in the standard state. Index. The measurement of the water vapor adsorption amount at 25 ° C. and relative humidity of 10% and 90% of the carbon material can be performed using a commercially available water vapor adsorption amount measuring device. The water vapor adsorption amount in the present invention is an adsorption amount when the water vapor is gradually adsorbed on the carbon material by starting the adsorption from a vacuum state where the vapor pressure of the water vapor is zero, and gradually increasing the relative pressure of the water vapor. Relative humidity values of 10% and 90% are used. Alternatively, the dried carbon material can be allowed to stand in a constant temperature and humidity chamber at 25 ° C. and 10% and 90% relative humidity for a sufficient period of time, and the change can be measured from the mass change. That is, the dried carbon material is placed in a constant temperature and humidity chamber at 25 ° C. and a relative humidity of 10% and a constant temperature and humidity chamber at 25 ° C. and a relative humidity of 90%. Thus, the water vapor adsorption amount at 25 ° C., relative humidity of 10% and 90%, which is an index in the present invention, can be obtained. If the value obtained by any one of the above-described measurement methods is within the scope of the present invention, this effect can be obtained.

触媒担体として用いられる炭素材料の種類の例としては、コークス、樹脂を原料とした種々の人造黒鉛、天然黒鉛、カーボンブラック、チャー、いわゆる炭素繊維、カーボンナノチューブ、カーボンナノホーン、フラーレン等が挙げられる。また、例えばシリカなどの多孔体を鋳型として炭素源を多孔体の細孔部分に充填したのち炭素源を炭素化した後に、鋳型を溶解して製造する、いわゆる鋳型炭素なども好適に用いることが可能である。また、これらの2種類以上の複合体であってもよい。   Examples of the types of carbon materials used as the catalyst carrier include coke, various artificial graphites made from resin as raw materials, natural graphite, carbon black, char, so-called carbon fibers, carbon nanotubes, carbon nanohorns, fullerenes and the like. Further, for example, so-called template carbon, which is produced by dissolving a template after carbonizing the carbon source after filling the pores of the porous body with a porous material such as silica as a template, is also preferably used. Is possible. Further, these two or more kinds of complexes may be used.

本発明で規定している水蒸気吸着量を持つような上記種類の炭素材料を選び出すこともできるし、例えば、アルカリ賦活、水蒸気賦活、炭酸ガス賦活、塩化亜鉛賦活等の賦活処理を行ったり、不活性雰囲気や還元性ガス雰囲気、酸化性ガスを含む雰囲気で熱処理を行ったりして、水蒸気吸着量を制御することもできる。   The above-mentioned types of carbon materials having the water vapor adsorption amount specified in the present invention can be selected. For example, activation treatment such as alkali activation, water vapor activation, carbon dioxide gas activation, zinc chloride activation or the like can be performed. The water vapor adsorption amount can also be controlled by performing heat treatment in an active atmosphere, a reducing gas atmosphere, or an atmosphere containing an oxidizing gas.

触媒として用いられる炭素材料の粒子径は10nm以上5μm以下がより好ましい。この範囲より大きな炭素材料は粉砕して用いることができ、粉砕する方が好ましい。粒子径が5μm超であると、ガス拡散経路やプロトン伝導経路を分断する恐れが高くなる他、特に経済的な理由により触媒成分の使用量が限定され、例えば、厚さ10μm程度の触媒層で性能を発現することが求められた時に、触媒層の触媒担持炭素材料の分布が不均一になり易く、好ましくない場合がある。また、粒子径が10nm未満であると、電子伝導性が低くなり、好ましくない場合がある。さらに安定した性能を得るためには、炭素材料の粒子径は、15nm以上、4.5μm以下とすることが好ましい。   The particle size of the carbon material used as the catalyst is more preferably 10 nm or more and 5 μm or less. A carbon material larger than this range can be used after being pulverized, and is preferably pulverized. If the particle size is more than 5 μm, there is a high risk of disrupting the gas diffusion path and proton conduction path, and the amount of the catalyst component used is limited particularly for economic reasons.For example, a catalyst layer with a thickness of about 10 μm When it is desired to exhibit performance, the distribution of the catalyst-carrying carbon material in the catalyst layer tends to be nonuniform, which may not be preferable. On the other hand, if the particle size is less than 10 nm, the electron conductivity is lowered, which is not preferable. In order to obtain more stable performance, the particle diameter of the carbon material is preferably 15 nm or more and 4.5 μm or less.

酸素還元活性を有する触媒成分の例としては、白金、パラジウム、ルテニウム、金、ロジウム、オスミウム、イリジウム等の貴金属、これらの貴金属を2種類以上複合化した貴金属の複合体や合金、貴金属と有機化合物や無機化合物との錯体、遷移金属、遷移金属と有機化合物や無機化合物との錯体、金属酸化物等を挙げることができる。また、これらの2種類以上を複合したもの等も用いることもできる。   Examples of catalyst components having oxygen reduction activity include noble metals such as platinum, palladium, ruthenium, gold, rhodium, osmium, iridium, composites and alloys of noble metals obtained by combining two or more of these noble metals, and noble metals and organic compounds. And a complex with an inorganic compound, a transition metal, a complex of a transition metal with an organic compound or an inorganic compound, a metal oxide, and the like. Also, a combination of two or more of these can be used.

前記触媒成分としての金属の担持量は、触媒成分を担持した炭素担体の全質量に対して、金属換算で10質量%〜80質量%の範囲が好ましい。10質量%未満では、担持される触媒成分が少なくなるために、触媒層の単位厚みでの出力が減少する場合がある。そのため、高出力を得るには触媒層を厚くする必要があり、生成水の除去が困難になり、電池性能が低下するだけでなく、運転時に触媒層に含まれる水分量が増加して耐久性も低下する場合がある。一方、80質量%を越えると、触媒活性成分を高密度分散させることが困難で触媒活性が低下する場合があり、また、触媒粒子同士が凝集しやすくなって耐久性も低下する場合がある。より好ましくは、15質量%〜80質量%であり、更に好ましくは、15質量%〜70質量%である。   The amount of the metal supported as the catalyst component is preferably in the range of 10% by mass to 80% by mass in terms of metal with respect to the total mass of the carbon support supporting the catalyst component. If the amount is less than 10% by mass, the supported catalyst component is reduced, and thus the output per unit thickness of the catalyst layer may decrease. Therefore, it is necessary to make the catalyst layer thicker in order to obtain a high output, which makes it difficult to remove the generated water, which not only lowers the battery performance but also increases the amount of water contained in the catalyst layer during operation, resulting in durability. May also decrease. On the other hand, if it exceeds 80% by mass, it may be difficult to disperse the catalytically active component at a high density and the catalytic activity may be lowered, and the catalyst particles may be easily aggregated and the durability may be lowered. More preferably, it is 15 mass%-80 mass%, More preferably, it is 15 mass%-70 mass%.

前記触媒粒子の粒子径は、2.0nm〜10.0nmの範囲が好ましい。より好ましくは、3.0nm〜7.0nmの範囲である。   The particle diameter of the catalyst particles is preferably in the range of 2.0 nm to 10.0 nm. More preferably, it is the range of 3.0 nm-7.0 nm.

本発明の固体高分子型燃料電池用触媒の製造方法は特に限定されないが、塩化白金酸等の金属塩化物、金属硝酸塩、金属錯体を水や有機溶媒等の溶媒に溶解した上で、還元剤で還元して、白金を含む触媒活性成分を炭素担体に担持する(液相吸着する)製造方法が好ましい。前記還元剤としては、例えば、アルコール類、フェノール類、クエン酸類、ケトン類、アルデヒド類、カルボン酸類、エーテル類等が挙げられる。その際に、水酸化ナトリウムや塩酸等を加えてpHを調節し、更に、粒子の凝集を妨げるためにポリビニルピロリドン等の界面活性剤を添加してもよい。前記炭素担体に担持した触媒を、更に、再還元処理してもよい。前記再還元処理方法としては、還元雰囲気、若しくは、不活性雰囲気の中で、500℃以下の温度で熱処理を行う。また、蒸留水中に分散し、アルコール類、フェノール類、クエン酸類、ケトン類、アルデヒド類、カルボン酸類及びエーテル類から選ばれる還元剤で還元することもできる。   The method for producing the solid polymer fuel cell catalyst of the present invention is not particularly limited, but a reducing agent is obtained after dissolving a metal chloride such as chloroplatinic acid, a metal nitrate, or a metal complex in a solvent such as water or an organic solvent. A production method in which a catalytically active component containing platinum is supported on a carbon support (liquid phase adsorption) is preferable. Examples of the reducing agent include alcohols, phenols, citric acids, ketones, aldehydes, carboxylic acids, ethers, and the like. At that time, sodium hydroxide, hydrochloric acid or the like may be added to adjust the pH, and a surfactant such as polyvinylpyrrolidone may be added to prevent aggregation of particles. The catalyst supported on the carbon support may be further subjected to re-reduction treatment. As the re-reduction treatment method, heat treatment is performed at a temperature of 500 ° C. or lower in a reducing atmosphere or an inert atmosphere. Alternatively, it can be dispersed in distilled water and reduced with a reducing agent selected from alcohols, phenols, citric acids, ketones, aldehydes, carboxylic acids and ethers.

本発明の固体高分子型燃料電池用電極は、少なくとも前記炭素材料に前記酸素還元活性を有する触媒成分を担持した触媒を含む触媒層を含むことを特徴とする。触媒層は、前記触媒の他に、プロトン伝導性を有する電解質材料を含むが、電解質材料の種類や形態、電極構成に必要なバインダー材料の種類・構造によらず触媒の効果を発揮するものであって、これら電極構成材料を特に限定するものではない。尚、プロトン伝導性を有する電解質材料としては、リン酸基、スルホン酸基等を導入した高分子、例えば、パーフルオロスルホン酸ポリマーやベンゼンスルホン酸が導入されたポリマー等を挙げることができる。   The electrode for a polymer electrolyte fuel cell of the present invention includes a catalyst layer including a catalyst in which the catalyst component having the oxygen reduction activity is supported on at least the carbon material. In addition to the catalyst, the catalyst layer includes an electrolyte material having proton conductivity, and exhibits the effect of the catalyst regardless of the type and form of the electrolyte material and the type and structure of the binder material required for the electrode configuration. Thus, these electrode constituent materials are not particularly limited. Examples of the electrolyte material having proton conductivity include polymers introduced with phosphoric acid groups, sulfonic acid groups, and the like, for example, polymers containing perfluorosulfonic acid polymer and benzenesulfonic acid.

本発明の固体高分子型燃料電池用電極は、本発明の固体高分子型燃料電池用触媒を含んでいれば、その製造方法は特に限定されないが、本発明の固体高分子型燃料電池用触媒と前記プロトン伝導性を有する電解質材料の入った溶媒からなる触媒層スラリーを作製し、テフロン(登録商標)シート等の高分子材料、ガス拡散層、又は、電解質膜に塗布、乾燥する方法が例として挙げられる。テフロン(登録商標)シート等の高分子材料に塗布した場合には、触媒層と電解質膜が接触するように2枚のテフロン(登録商標)シート等の高分子材料で電解質膜を挟み、ホットプレスで触媒層を電解質膜に定着させた後、更に2枚のガス拡散層で挟んでホットプレスを行い、膜/電極接合体(Membrane Electrode Assembly, MEA)を作製する方法を例として挙げることができる。また、ガス拡散層に塗布した場合には、触媒層と電解質膜が接触するように2枚のガス拡散層で電解質膜挟み、ホットプレス等、触媒層を電解質膜に圧着する方法等でMEAを作製することができる。電解質膜に触媒層を塗布した場合には、触媒層とガス拡散層が接触するように2枚のガス拡散層で挟み、触媒層をガス拡散層に圧着する方法等でMEAを作製することができる。   The method for producing the polymer electrolyte fuel cell electrode of the present invention is not particularly limited as long as it contains the catalyst for the polymer electrolyte fuel cell of the present invention, but the catalyst for the polymer electrolyte fuel cell of the present invention is not limited. And a catalyst layer slurry comprising a solvent containing the electrolyte material having proton conductivity and applying to a polymer material such as a Teflon (registered trademark) sheet, a gas diffusion layer, or an electrolyte membrane and drying. As mentioned. When applied to a polymer material such as a Teflon (registered trademark) sheet, the electrolyte membrane is sandwiched between two polymer materials such as a Teflon (registered trademark) sheet so that the catalyst layer and the electrolyte membrane are in contact with each other. As an example, the catalyst layer can be fixed to the electrolyte membrane in step 2 and then hot pressed by sandwiching it between two gas diffusion layers to produce a membrane / electrode assembly (MEA). . In addition, when applied to the gas diffusion layer, the MEA is applied by sandwiching the electrolyte membrane between the two gas diffusion layers so that the catalyst layer and the electrolyte membrane are in contact, and pressing the catalyst layer to the electrolyte membrane, such as hot pressing. Can be produced. When the catalyst layer is applied to the electrolyte membrane, the MEA can be produced by sandwiching the gas diffusion layer between the two gas diffusion layers so that the catalyst layer and the gas diffusion layer are in contact with each other. it can.

触媒層スラリーに用いる溶媒としては、メタノール、エタノール、イソプロパノール、ヘキサン、トルエン、ベンゼン、酢酸エチル、酢酸ブチル等を挙げることができる。   Examples of the solvent used for the catalyst layer slurry include methanol, ethanol, isopropanol, hexane, toluene, benzene, ethyl acetate, butyl acetate and the like.

ガス拡散層の機能としては、セパレーターに形成されたガス流路から触媒層までガスを均一に拡散させる機能と、触媒層とセパレーター間に電子を伝導する機能が求められ、最低限、これらの機能を有していれば特に限定されるものではない。一般的な例としては、カーボンクロスやカーボンペーパー等の炭素材料が主な構成材料として用いられる。   As a function of the gas diffusion layer, a function of uniformly diffusing gas from the gas flow path formed in the separator to the catalyst layer and a function of conducting electrons between the catalyst layer and the separator are required. If it has, it will not specifically limit. As a general example, a carbon material such as carbon cloth or carbon paper is used as a main constituent material.

コークス、樹脂を原料とした種々の人造黒鉛、天然黒鉛、カーボンブラック、チャー、いわゆる炭素繊維、カーボンナノチューブ、カーボンナノホーン、フラーレン等の炭素材料を、アルカリ賦活、水蒸気賦活、炭酸ガス賦活、塩化亜鉛賦活等の賦活処理を行ったり、不活性雰囲気や還元性ガス雰囲気、酸化性ガスを含む雰囲気で熱処理を行ったりして、水蒸気吸着量V10、V90、V10/V90の値を表1に示すAからNまでの14種の炭素材料を用意した。これらの炭素材料の粒子径は、10nm以上5μm以下に入っているものであった。 Various artificial graphite, natural graphite, carbon black, char, so-called carbon fibers, carbon nanotubes, carbon nanohorns, fullerenes, and other carbon materials made from coke and resin, alkali activation, water vapor activation, carbon dioxide activation, zinc chloride activation Table 1 shows the values of water vapor adsorption V 10 , V 90 , and V 10 / V 90 by heat treatment in an inert atmosphere, reducing gas atmosphere, or atmosphere containing oxidizing gas. 14 types of carbon materials from A to N shown in Table 1 were prepared. The particle diameters of these carbon materials were in the range of 10 nm to 5 μm.

蒸留水中に塩化白金酸水溶液とポリビニルピロリドンを入れ、90℃で攪拌しながら、水素化ホウ素ナトリウムを蒸留水に溶かした上で注ぎ、塩化白金酸を還元する。その水溶液に触媒担体炭素材料を添加し、60分間撹拌した後に、濾過、洗浄を行った。得られた固形物を90℃で真空乾燥した後、粉砕して、水素雰囲気中250℃で1時間熱処理することによって、触媒No.1〜14を作製した。尚、触媒の白金担持量は50質量%になるように調製した。   A chloroplatinic acid aqueous solution and polyvinylpyrrolidone are placed in distilled water. While stirring at 90 ° C., sodium borohydride is dissolved in distilled water and poured to reduce chloroplatinic acid. The catalyst support carbon material was added to the aqueous solution and stirred for 60 minutes, followed by filtration and washing. The obtained solid was vacuum-dried at 90 ° C., pulverized, and heat-treated at 250 ° C. for 1 hour in a hydrogen atmosphere to prepare Catalyst Nos. 1 to 14. The catalyst was prepared so that the amount of platinum supported was 50% by mass.

炭素材料の水蒸気吸着量は、定容量式水蒸気吸着装置(日本ベル製、BELSORP18)を用いて測定し、120℃、1Pa以下で2時間脱気前処理を行った試料を25℃の恒温中に保持し、真空状態から、25℃における水蒸気の飽和蒸気圧までの間、徐々に水蒸気を供給して段階的に相対湿度を変化させ、水蒸気吸着量を測定した。尚、同測定を、定容量式水蒸気吸着装置(日本ベル製、BELSORP-aqua3)を用いて行っても、同じ値を得ている。得られた測定結果から吸着等温線を描き、図から相対湿度10%と90%のときの水蒸気吸着量を読み取った。表1では、読み取った水蒸気量を試料1g当たりに吸着した標準状態の水蒸気体積に換算して示した。   The amount of water vapor adsorbed on the carbon material was measured using a constant capacity water vapor adsorption device (BELSORP18, manufactured by Nippon Bell Co., Ltd.). The water vapor was gradually supplied from the vacuum state to the saturated vapor pressure of water vapor at 25 ° C. to gradually change the relative humidity, and the water vapor adsorption amount was measured. The same value was obtained even when the same measurement was performed using a constant capacity water vapor adsorption apparatus (BELSORP-aqua3, manufactured by Nippon Bell). An adsorption isotherm was drawn from the obtained measurement results, and the water vapor adsorption amount at relative humidity of 10% and 90% was read from the figure. In Table 1, the read water vapor amount is shown in terms of the water vapor volume in the standard state adsorbed per 1 g of the sample.

白金粒子の粒子径は、X線回折装置(理学電機製)を用いて得られた触媒の粉末X線回折スペクトルの白金(111)ピークの半値幅からScherrerの式によって見積った。   The particle diameter of the platinum particles was estimated by the Scherrer equation from the half-value width of the platinum (111) peak of the powder X-ray diffraction spectrum of the catalyst obtained using an X-ray diffractometer (manufactured by Rigaku Corporation).

Figure 0005397241
Figure 0005397241

前記触媒No.1〜14を、それぞれ、アルゴン気流中で5%ナフィオン溶液(アルドリッチ製)を触媒の質量に対してナフィオン固形分の質量が3倍になるように加え、軽く撹拌後、超音波で触媒を粉砕し、白金触媒とナフィオンを合わせた固形分濃度が、2質量%となるように撹拌しながら酢酸ブチルを加え、各触媒層スラリーを作製した。   Each of the catalysts No. 1 to 14 was added to a 5% Nafion solution (manufactured by Aldrich) in an argon stream so that the mass of Nafion solids was tripled with respect to the mass of the catalyst. The catalyst was pulverized and butyl acetate was added with stirring so that the solid content concentration of the platinum catalyst and Nafion was 2% by mass to prepare each catalyst layer slurry.

前記触媒層スラリーをテフロン(登録商標)シートの片面にそれぞれスプレー法で塗布し、80℃のアルゴン気流中10分間、続いて120℃のアルゴン気流中1時間乾燥し、触媒No.1〜14を触媒層に含有した固体高分子型燃料電池用電極を得た。尚、それぞれの電極は白金使用量が0.10mg/cm2となるようにスプレー等の条件を設定した。白金使用量は、スプレー塗布前後のテフロン(登録商標)シートの乾燥質量を測定し、その差から計算して求めた。 The catalyst layer slurry was applied to each side of a Teflon (registered trademark) sheet by a spray method, and dried in an argon stream at 80 ° C. for 10 minutes and then in an argon stream at 120 ° C. for 1 hour. A solid polymer fuel cell electrode contained in the catalyst layer was obtained. The conditions of spraying and the like were set so that the amount of platinum used for each electrode was 0.10 mg / cm 2 . The amount of platinum used was determined by measuring the dry mass of a Teflon (registered trademark) sheet before and after spray coating and calculating the difference.

さらに、得られた固体高分子型燃料電池用電極から2.5cm角の大きさで2枚づつ切り取り、触媒層が電解質膜と接触するように同じ種類の電極2枚で電解質膜(ナフィオン112)を挟み、130℃、90kg/cm2で10分間ホットプレスを行った。室温まで冷却後、テフロン(登録商標)シートのみを注意深く剥がし、アノード及びカソードの触媒層をナフィオン膜に定着させた。更に、市販のカーボンクロス(ElectroChem社製EC-CC1-060)を2.5cm角の大きさに2枚切り取って、ナフィオン膜に定着させたアノードとカソードを挟むようにして130℃、50kg/cm2で10分間ホットプレスを行い、膜/電極接合体(Membrane Electrode Assembly, MEA)14種を作製した。 In addition, two 2.5 cm square pieces were cut from the obtained polymer electrolyte fuel cell electrode, and the electrolyte membrane (Nafion 112) was cut with two electrodes of the same type so that the catalyst layer was in contact with the electrolyte membrane. Hot pressing was performed for 10 minutes at 130 ° C. and 90 kg / cm 2 . After cooling to room temperature, only the Teflon (registered trademark) sheet was carefully peeled off to fix the anode and cathode catalyst layers to the Nafion membrane. Further, two commercially available carbon cloths (EC-CC1-060 manufactured by ElectroChem) were cut into 2.5 cm square pieces, and the anode and cathode fixed to the Nafion membrane were sandwiched between 130 ° C and 50 kg / cm 2 at 10 ° C. 14 minutes of membrane / electrode assemblies (Membrane Electrode Assembly, MEA) were produced by hot pressing for 5 minutes.

作製した各MEAは、それぞれ燃料電池測定装置に組み込み、電池性能測定を行った。電池性能測定は、セル端子間電圧を開放電圧(通常0.9〜1.0V程度)から0.2Vまで段階的に変化させ、セル端子間電圧が0.8Vのときに流れる電流密度を測定した。また、耐久試験としては、開放電圧に15秒間保持、セル端子間電圧を0.5Vに15秒間保持のサイクルを4000回実施し、その後、耐久試験前と同様に電池性能を測定した。ガスは、カソードに空気、アノードに純水素を、利用率がそれぞれ50%と80%となるように供給し、それぞれのガス圧は、セル下流に設けられた背圧弁で0.1MPaに圧力調整した。セル温度は70℃に設定し、供給する空気と純水素は、それぞれ50℃に保温された蒸留水中でバブリングを行い、加湿した。   Each of the produced MEAs was incorporated into a fuel cell measurement device, and battery performance was measured. In the battery performance measurement, the voltage between the cell terminals was changed stepwise from the open voltage (usually about 0.9 to 1.0 V) to 0.2 V, and the current density flowing when the cell terminal voltage was 0.8 V was measured. In addition, as a durability test, a cycle of holding the open voltage for 15 seconds and holding the cell terminal voltage at 0.5 V for 15 seconds was performed 4000 times, and then the battery performance was measured in the same manner as before the durability test. As the gas, air was supplied to the cathode and pure hydrogen was supplied to the anode so that the utilization rates would be 50% and 80%, respectively, and each gas pressure was adjusted to 0.1 MPa with a back pressure valve provided downstream of the cell. . The cell temperature was set to 70 ° C., and the supplied air and pure hydrogen were bubbled in distilled water kept at 50 ° C. and humidified.

Figure 0005397241
Figure 0005397241

表2に各MEAの電池性能結果と耐久試験後電池性能を示した。本発明の触媒No.1, 4, 6, 7, 9, 10, 12, 13, 14を用いたMEAは、優れた初期電池性能を発揮するのと同時に、耐久試験後にも高い電池性能を維持している。比較例の触媒No.2, 8を用いたMEAは、初期電池性能は優れているが、耐久試験後の電池性能が低く、耐久性に劣ることが分かる。また、比較例の触媒No.3, 5を用いたMEAは、初期電池性能と耐久試験後電池性能の差を示した劣化率は低く、耐久性に優れているが、初期電池性能が本発明の触媒No.1, 4, 6, 7, 9, 10, 12, 13, 14を用いたMEAに比べて劣位である。尚、比較例の触媒No.11を用いたMEAは、初期電池性能、耐久性能共に、本発明の触媒No.1, 4, 6, 7, 9, 10, 12, 13, 14を用いたMEAに比べて劣っている。このような優れた初期電池性能と耐久性能を両立して発揮できるのは、本発明によれば、相対湿度90%での水蒸気吸着量が高いため、保湿性に優れ、上記のような低加湿の条件においても高い電池性能を発揮し、更に、相対湿度10%での水蒸気吸着量が低く、炭素材料の酸化消耗を促進するような官能基の吸着量が少ないため、高い耐久性能を発揮するからである。   Table 2 shows the battery performance results of each MEA and the battery performance after the endurance test. MEA using catalyst Nos. 1, 4, 6, 7, 9, 10, 12, 13, 14 of the present invention exhibits excellent initial battery performance and at the same time maintains high battery performance after endurance testing. doing. It can be seen that the MEA using Comparative Catalyst Nos. 2 and 8 has excellent initial battery performance, but the battery performance after the durability test is low and the durability is inferior. In addition, the MEA using the catalyst Nos. 3 and 5 of the comparative example has a low deterioration rate indicating a difference between the initial battery performance and the battery performance after the durability test, and is excellent in durability, but the initial battery performance is the present invention. It is inferior to MEA using No. 1, 4, 6, 7, 9, 10, 12, 13, 14 Note that the MEA using the catalyst No. 11 of the comparative example is an MEA using the catalyst No. 1, 4, 6, 7, 9, 10, 12, 13, 14 of the present invention in both initial battery performance and durability performance. Is inferior to According to the present invention, both the excellent initial battery performance and the durability performance can be exhibited at the same time because the water vapor adsorption amount is high at a relative humidity of 90%. High battery performance is exhibited even under the above conditions, and furthermore, the water vapor adsorption amount at 10% relative humidity is low, and the adsorption amount of functional groups that promote the oxidative consumption of the carbon material is small, so it exhibits high durability performance. Because.

Claims (3)

炭素材料に酸素還元活性を持つ触媒成分を担持した触媒であって、前記炭素材料の25℃、相対湿度10%における水蒸気吸着量(V10)が2ml/g以下であり、且つ、前記炭素材料の25℃、相対湿度90%における水蒸気吸着量(V90)が400ml/g以上であることを特徴とする固体高分子型燃料電池用触媒。 A catalyst in which a catalyst component having oxygen reduction activity is supported on a carbon material, the water vapor adsorption amount (V 10 ) at 25 ° C. and a relative humidity of 10% of the carbon material is 2 ml / g or less, and the carbon material The solid polymer fuel cell catalyst characterized in that the water vapor adsorption amount (V 90 ) at 25 ° C. and 90% relative humidity is 400 ml / g or more. 前記炭素材料の25℃、相対湿度10%における水蒸気吸着量V10と、25℃、相対湿度90%における水蒸気吸着量V90の比V10/V90が0.002以下である請求項1に記載の固体高分子型燃料電池用触媒。 25 ° C. of the carbon material, a water vapor adsorption amount V 10 at a relative humidity of 10%, 25 ° C., the ratio V 10 / V 90 of the water vapor adsorption amount V 90 at a relative humidity of 90% according to claim 1 is 0.002 or less Catalyst for polymer electrolyte fuel cell. 請求項1又は2に記載の触媒を少なくとも含んでなる固体高分子型燃料電池用電極。   3. An electrode for a polymer electrolyte fuel cell, comprising at least the catalyst according to claim 1.
JP2010014622A 2009-01-26 2010-01-26 Catalyst for polymer electrolyte fuel cell and electrode for polymer electrolyte fuel cell using the same Expired - Fee Related JP5397241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010014622A JP5397241B2 (en) 2009-01-26 2010-01-26 Catalyst for polymer electrolyte fuel cell and electrode for polymer electrolyte fuel cell using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009014744 2009-01-26
JP2009014744 2009-01-26
JP2010014622A JP5397241B2 (en) 2009-01-26 2010-01-26 Catalyst for polymer electrolyte fuel cell and electrode for polymer electrolyte fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2010192436A JP2010192436A (en) 2010-09-02
JP5397241B2 true JP5397241B2 (en) 2014-01-22

Family

ID=42818219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010014622A Expired - Fee Related JP5397241B2 (en) 2009-01-26 2010-01-26 Catalyst for polymer electrolyte fuel cell and electrode for polymer electrolyte fuel cell using the same

Country Status (1)

Country Link
JP (1) JP5397241B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258076B2 (en) 2016-12-09 2022-02-22 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method of producing the same, and fuel cell

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561250B2 (en) * 2011-07-11 2014-07-30 新日鐵住金株式会社 Support carbon material for catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
JP5823285B2 (en) * 2011-12-22 2015-11-25 田中貴金属工業株式会社 Catalyst for polymer electrolyte fuel cell and method for producing the same
KR102051878B1 (en) * 2014-12-26 2019-12-04 닛폰세이테츠 가부시키가이샤 Electrode for metal-air battery
KR102096130B1 (en) * 2016-05-02 2020-04-01 주식회사 엘지화학 Carrier-nano particles complex, catalyst comprising the same and method for fabricating the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4960000B2 (en) * 2006-03-30 2012-06-27 新日本製鐵株式会社 Gas diffusion electrode for fuel cell and fuel cell
JP5021292B2 (en) * 2006-12-26 2012-09-05 新日本製鐵株式会社 Fuel cell
JP5458801B2 (en) * 2008-10-22 2014-04-02 新日鐵住金株式会社 Fuel cell
JP5458799B2 (en) * 2008-10-22 2014-04-02 新日鐵住金株式会社 Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258076B2 (en) 2016-12-09 2022-02-22 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method of producing the same, and fuel cell

Also Published As

Publication number Publication date
JP2010192436A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP6387431B2 (en) Carbon supported catalyst
Geng et al. Ni–Pt/C as anode electrocatalyst for a direct borohydride fuel cell
US10135074B2 (en) Carbon powder for catalyst, catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using the carbon powder
JP4799897B2 (en) Fuel cell
JP5021292B2 (en) Fuel cell
Ahn et al. Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells
WO2010047415A1 (en) Catalyst for solid polymer furl cell, electrode for solid polymer furl cell, and fuel cell
Álvarez et al. Electrochemical performance of low temperature PEMFC with surface tailored carbon nanofibers as catalyst support
JP5213499B2 (en) Fuel cell
JP4786453B2 (en) Catalyst for fuel cell cathode, membrane-electrode assembly including the same, and fuel cell system
JP2020129541A (en) Membrane electrode assembly
Teran-Salgado et al. Platinum nanoparticles supported on electrochemically oxidized and exfoliated graphite for the oxygen reduction reaction
Yuan et al. Carbon riveted Pt-MnO2/reduced graphene oxide anode catalyst for DMFC
JP2016100262A (en) Catalyst for solid polymer fuel cell
Chang et al. Investigations of a platinum–ruthenium/carbon nanotube catalyst formed by a two-step spontaneous deposition method
Kim et al. Development of highly-active and stable Pt/C catalyst for polymer electrolyte membrane fuel cells under simulated start-up/shut-down cycling
JP5297786B2 (en) Anode catalyst layer of polymer electrolyte fuel cell
JP5397241B2 (en) Catalyst for polymer electrolyte fuel cell and electrode for polymer electrolyte fuel cell using the same
KR20110125759A (en) Membrane electrode assembly(mea) using nano carbon materials for fuel cell and method for the same
JP2017073310A (en) Catalyst layer for fuel cell, and fuel cell
JP5561250B2 (en) Support carbon material for catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
JP5458799B2 (en) Fuel cell
JP5326585B2 (en) Method for producing metal catalyst-supported carbon powder
KR20210055285A (en) Catalyst for fuel cell and manufacturing method thereof
JP4892811B2 (en) Electrocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R151 Written notification of patent or utility model registration

Ref document number: 5397241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees