KR20110125759A - Membrane electrode assembly(mea) using nano carbon materials for fuel cell and method for the same - Google Patents

Membrane electrode assembly(mea) using nano carbon materials for fuel cell and method for the same Download PDF

Info

Publication number
KR20110125759A
KR20110125759A KR1020100045297A KR20100045297A KR20110125759A KR 20110125759 A KR20110125759 A KR 20110125759A KR 1020100045297 A KR1020100045297 A KR 1020100045297A KR 20100045297 A KR20100045297 A KR 20100045297A KR 20110125759 A KR20110125759 A KR 20110125759A
Authority
KR
South Korea
Prior art keywords
fuel cell
carbon
electrode assembly
membrane electrode
carbon nano
Prior art date
Application number
KR1020100045297A
Other languages
Korean (ko)
Other versions
KR101259439B1 (en
Inventor
임성대
박석희
박구곤
손영준
윤영기
양태현
김민진
김창수
최영우
이원용
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020100045297A priority Critical patent/KR101259439B1/en
Publication of KR20110125759A publication Critical patent/KR20110125759A/en
Application granted granted Critical
Publication of KR101259439B1 publication Critical patent/KR101259439B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A membrane electrode assembly using carbon nano material is provided to alleviate material transfer resistance and have excellent durability by including a catalyst layer with carbon nano supporter comprising a carbon black. CONSTITUTION: A membrane electrode assembly using carbon nano material comprises an electrolyte membrane and electrode. The electrode comprises a catalyst layer. The catalyst layer is in the both sides of the electrolyte membrane. The catalyst layer comprises conducting material of 0.05- 0.3 parts by weight relative to a carbon nano supporter of 1 part by weight. The catalyst layer mainly consists of a metal deposition electrocatalyst including a high endurance carbon nano supporter of a two dimensional structure and additionally consists of conductive material of a three dimensional structure and an ionomer binder for forming pores. The carbon nano supporter is the one or more kind of mixture which is selected from the group of a carbon nano fiber, carbon nano tube, carbon nano wire, carbon nano ring, and carbon nano horn.

Description

탄소 나노 재료를 이용한 연료전지용 막전극접합체 및 이의 제조방법 {Membrane electrode assembly(MEA) using nano carbon materials for fuel cell and method for the same}Membrane electrode assembly (MEA) using nano carbon materials for fuel cell and method for the same}

본 발명은 고분자 전해질 연료전지용 막전극접합체(Membrane Electrode Assembly, MEA)의 촉매층에 관한 것으로, 더욱 상세하게는 탄소 나노 재료 및 카본 블랙을 이용한 촉매담지체 및 이를 포함한 촉매를 포함하여 전극 성능을 향상시킬 수 있는 연료전지용 막전극접합체 및 이의 제조방법에 관한 것이다.The present invention relates to a catalyst layer of a membrane electrode assembly (MEA) for a polymer electrolyte fuel cell, and more particularly, to improve electrode performance including a catalyst carrier using carbon nanomaterial and carbon black and a catalyst including the same. The present invention relates to a membrane electrode assembly for a fuel cell and a method of manufacturing the same.

연료전지는 연료의 산화에 의해 생기는 화학에너지를 직접 전기에너지로 변환하는 전지로 가장 전형적인 것에는 수소-산소 연료전지가 있다. A fuel cell is a cell that directly converts chemical energy generated by oxidation of a fuel into electrical energy. The most typical one is a hydrogen-oxygen fuel cell.

연료전지는 종래의 내연기관에 비해 효율이 높고, 대기오염의 원인이 되는 질소산화물과 아황산화물의 배출량이 적으며, 더구나 이산화탄소의 배출을 크게 감소시킬 수 있어 환경 보전상 효과가 크다. 또한, 메탄올, 에탄올, 천연가스와 같은 탄화수소 계열 물질 내에 함유되어 있는 수소와 산소를 이용하기 때문에 다양한 연료의 사용이 가능하며, 소음이나 진동이 거의 없다.Fuel cells are more efficient than conventional internal combustion engines, have less emissions of nitrogen oxides and sulfide oxides that cause air pollution, and can significantly reduce carbon dioxide emissions, resulting in greater environmental conservation. In addition, since hydrogen and oxygen contained in hydrocarbon-based materials such as methanol, ethanol, and natural gas are used, various fuels can be used, and noise and vibration are virtually eliminated.

연료전지는 전해질을 두개의 전극으로 둘러싼 구조를 하고 있으며, 전해질의 종류에 따라 고체고분자형(Polymer electrolyte fuel cell : PEFC, 또는 proton exchange), 알칼리형(alkaline fuel cell : PAFC), 용융 탄산염형(Molten carbonate fuel cell : MCFC), 고체 산화물형(Solid oxide fuel cell : SOFC)가 있으며, 대표적인 예로는 고분자 전해질 연료전지(PEMFC: Polymer Electrolyte Membrane Fuel Cell)와 직접 메탄올 연료 전지(DMFC: Direct Methanol Fuel Cell)를 들 수 있다. The fuel cell has a structure surrounding the electrolyte with two electrodes, and depending on the type of electrolyte, a solid polymer fuel cell (PEFC, or proton exchange), an alkaline fuel cell (PAFC), and a molten carbonate type ( Molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC), and representative examples are Polymer Electrolyte Membrane Fuel Cell (PEMFC) and Direct Methanol Fuel Cell (DMFC). ).

상기 고분자 전해질 연료전지(PEMFC)는 출력밀도와 에너지 효율이 높고, 상온에서 운전되며, 장치 구성이 간단하여 가정용 발전 시스템, 이동통신 장비의 전원, 자동차 동력원 등으로 폭넓게 사용이 가능하다. The polymer electrolyte fuel cell (PEMFC) has a high output density and energy efficiency, operates at room temperature, and has a simple device configuration, which can be widely used as a home power generation system, a power source for mobile communication equipment, and a power source for automobiles.

고분자 전해질 연료전지는 막전극접합체(MEA)가 중심에 위치하며, 상기 MEA는 양극(Anode, "연료극“이라고도 함)과 음극(Cathode; "공기극” 혹은 “산소극”이라고도 함)이 고분자 전해질 막의 양쪽 면에 위치하고, 전극촉매 슬러리를 고분자 전해질 막에 코팅한 후 건조하여 양 극 사이에 촉매층이 형성되도록 제조한다.In the polymer electrolyte fuel cell, a membrane electrode assembly (MEA) is located at the center, and the MEA includes an anode (also referred to as a “fuel electrode”) and a cathode (also referred to as an “air electrode” or an “oxygen electrode”) of the polymer electrolyte membrane. Located on both sides, the electrocatalyst slurry is coated on a polymer electrolyte membrane and dried to prepare a catalyst layer between the two electrodes.

상기 고분자 전해질 연료전지의 원리는 연료가 연료극인 양극에 공급되어 촉매층에서 흡착, 산화되어, 수소이온과 전자를 생성시킨다. 이때 발생한 전자는 외부 회로에 따라 산화극인 음극에 도달하며, 수소 이온은 고분자 전해질 막을 통하여 음극으로 전달된다. 음극은 산화제가 공급되며, 수소 이온 및 전자가 음극의 촉매 상에서 반응하여 물을 생성하면서 전기를 발생시킨다.The principle of the polymer electrolyte fuel cell is that the fuel is supplied to the anode, the anode, and adsorbed and oxidized in the catalyst layer to generate hydrogen ions and electrons. The generated electrons reach the cathode, which is an anode, according to an external circuit, and hydrogen ions are transferred to the cathode through the polymer electrolyte membrane. The cathode is supplied with an oxidant and generates electricity while hydrogen ions and electrons react on the catalyst of the cathode to produce water.

이때, 상기 촉매층은 기체원료가 반응점까지 충분히 이동되어야 하기 때문에 기공률이 중요하다. 이를 위해 다공성 담지체가 주로 사용되어 왔다. 상기 다공성 담지체는 반응 기체를 원활히 공급하기 위해 기공 분율을 높이고 기공크기를 증가시켜 압력손실을 줄여야 하지만, 기공 분율이 증가하면 소재 자체의 밀도가 저하되고 이로 인한 강도가 약해진다. At this time, the catalyst layer is porosity is important because the gaseous material must be sufficiently moved to the reaction point. For this purpose, porous carriers have been mainly used. The porous carrier should reduce the pressure loss by increasing the pore fraction and increasing the pore size in order to supply the reaction gas smoothly, but as the pore fraction increases, the density of the material itself decreases and the strength thereof becomes weak.

또한, 연료전지용 담지체는 전기전도도가 우수해야 하며, 이러한 관점에서 카본블랙과 같은 탄소 기반의 지지체가 많이 사용되어 왔다. 하지만 일반적인 탄소 지지체는 연료전지에서 전기화학반응 중에 전기화학적인 부식으로 인하여 탄소 지지체의 구조가 손상되고 이로 인하여 전기 전도 네트워크 유실로 인한 전기 전도도 감소 및 탄소 지지체 위에 담지된 백금의 유실로 인한 전극촉매 성능 감소 등의 문제를 유발하게 된다. In addition, the fuel cell carrier must have excellent electrical conductivity, and carbon-based supports such as carbon black have been used in this respect. However, in general, the carbon support damages the structure of the carbon support due to the electrochemical corrosion during the electrochemical reaction in the fuel cell, thereby reducing the electrical conductivity due to the loss of the electric conduction network and the electrocatalyst performance due to the loss of the platinum supported on the carbon support. It causes problems such as decrease.

이를 위해 고내구성 탄소지지체인 탄소나노튜브(Carbon NanoTube, CNT) 또는 탄소나노섬유(Carbon NanoFiber, CNF)와 같은 흑연화도가 높은 재료에 백금을 담지한 촉매를 사용하고 있다. 실제로 이러한 CNT 또는 CNF를 지지체로 사용하는 전극 촉매가 카본블랙을 지지체로 사용하는 전극 촉매들에 비해 우수한 내구성을 보인다. 하지만 막전극접합체의 기본 성능에 있어서, Pt/CNT 또는 Pt/CNF를 전극 촉매로 사용한 막전극접합체가 Pt/C를 전극촉매로 사용한 막전극접합체에 비하여 떨어진다. 이는 CNT 또는 CNF가 이차원구조를 갖고 있기 때문에 다량의 전극 촉매들이 슬러리 형태로 전해질 막 표면에 촉매층으로 코팅 형성될 경우 기공률이 떨어지는 매우 촘촘한 구조로 되어 기체의 확산 저항으로 인한 막전극접합체의 전극에서의 성능을 확보하는데 어려움이 따른다.For this purpose, platinum-supported catalysts are used on highly graphitized materials such as carbon nanotubes (CNT) or carbon nanofibers (CNF), which are highly durable carbon supports. Indeed, such electrode catalysts using CNT or CNF as a support show superior durability compared to electrode catalysts using carbon black as a support. However, in the basic performance of the membrane electrode assembly, the membrane electrode assembly using Pt / CNT or Pt / CNF as the electrode catalyst is inferior to the membrane electrode assembly using Pt / C as the electrode catalyst. Since CNTs or CNFs have a two-dimensional structure, when a large amount of electrode catalysts are formed in the form of a slurry as a coating on the surface of the electrolyte membrane, the porosity decreases, resulting in a very dense structure. Difficulties in securing performance.

따라서, 본 발명은 전해질막의 양면에 촉매층이 구비된 전극을 포함하는 연료전지용 막전극접합체에 있어서, 상기 촉매층은 탄소나노재료를 이용하여 내구성을 확보하면서 전극의 성능을 향상시킬 수 있는 촉매담지 탄소나노지지체를 포함하는 막전극접합체 및 이의 제조방법을 제공하는 것을 목적으로 한다.Therefore, the present invention is a membrane electrode assembly for a fuel cell comprising an electrode having a catalyst layer on both sides of the electrolyte membrane, the catalyst layer using a carbon nano material to ensure the durability of the catalyst-carrying carbon nano to improve the performance of the electrode An object of the present invention is to provide a membrane electrode assembly comprising a support and a method of manufacturing the same.

상기와 같은 기술적 과제를 해결하기 위하여, 본 발명은 전해질 막 및 상기 전해질 막의 양면에 촉매층이 구비된 전극을 포함하는 연료전지용 막전극접합체에 있어서, 상기 촉매층은 2차원 구조의 고 내구성 탄소나노지지체를 포함하는 금속 담지 전극 촉매를 주성분으로 하며, 기공 형성을 위하여 3차원 구조를 갖는 전도성 재료 및 이오노머 바인더가 첨가된 것을 특징으로 한다.In order to solve the above technical problem, the present invention is a fuel cell membrane electrode assembly comprising an electrolyte membrane and an electrode provided with a catalyst layer on both sides of the electrolyte membrane, the catalyst layer is a high-durability carbon nano support having a two-dimensional structure The metal-supported electrode catalyst is included as a main component, and a conductive material and an ionomer binder having a three-dimensional structure are added to form pores.

상기 3차원 구조를 갖는 전도성 재료는 카본블랙, 활성탄소, 플러렌, 흑연 및 이들의 혼합물을 포함하며, 상기 카본블랙은 아세틸렌블랙을 사용하는 것이 보다 바람직하다. 아세틸렌블랙은 아세틸렌의 열분해에 의해 제조되며, 사슬구조로 되어있어 전기 전도도가 좋은 특성을 가진다.The conductive material having the three-dimensional structure includes carbon black, activated carbon, fullerene, graphite, and mixtures thereof, and more preferably, acetylene black is used. Acetylene black is produced by pyrolysis of acetylene and has a good electrical conductivity due to its chain structure.

상기 전도성 재료는 입도가 10 ~ 300nm인 3차원 구조를 갖는 것으로, 상기 범위의 입도는 전극 촉매의 기공 형성과 내구성을 위하여 보다 바람직한 것이다. The conductive material has a three-dimensional structure with a particle size of 10 ~ 300nm, the particle size of the above range is more preferable for the pore formation and durability of the electrode catalyst.

도 1에서 볼 수 있듯이, 상기 전도성 재료는 3차원 구조를 갖기 때문에 2차원 구조의 고 내구성 탄소나노지지체에 삽입됨으로써 백금 등의 활성금속이 담지된 탄소나노지지체의 기공을 확보하여 기체의 확산을 원활하게 도모할 수 있다. 전극 성능의 최적화를 위한 전도성 재료의 첨가량은 백금 등의 활성금속을 담지한 탄소나노지지체의 1 중량부 기준으로 0.05 내지 0.3중량부인 것이 좋으며, 보다 바람직하게는 0.075 내지 0.15중량부이다. 이에 따른 막전극접합체 촉매층의 기공률 향상으로 인하여, 상기 범위에 따른 연료전지는 보다 원활한 기체 확산 및 그로 인한 확산저항의 감소로 인하여 보다 우수한 전기화학적 성능을 나타낼 수 있다.As shown in FIG. 1, since the conductive material has a three-dimensional structure, the conductive material is inserted into a high-durability carbon nano support having a two-dimensional structure, thereby securing pores of the carbon nano support on which an active metal such as platinum is supported to smoothly diffuse gas. It can be planned. The addition amount of the conductive material for optimizing the electrode performance is preferably 0.05 to 0.3 parts by weight, more preferably 0.075 to 0.15 parts by weight, based on 1 part by weight of the carbon nano support carrying the active metal such as platinum. Accordingly, due to the improved porosity of the membrane electrode assembly catalyst layer, the fuel cell according to the above range may exhibit better electrochemical performance due to smoother gas diffusion and a decrease in diffusion resistance.

상기 2차원 구조의 고 내구성 탄소나노지지체는 탄소나노섬유, 탄소나노튜브, 탄소나노와이어, 탄소나노링 및 탄소나노혼으로 이루어진 군에서 선택되는 어느 하나 또는 2종 이상의 혼합물인 것을 특징으로 한다.The high durability carbon nano support of the two-dimensional structure is characterized in that any one or a mixture of two or more selected from the group consisting of carbon nanofibers, carbon nanotubes, carbon nanowires, carbon nano ring and carbon nanohorn.

상기 탄소나노지지체는 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금, 백금-M 합금(M은 Ga, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Mo, W, Rh 및 이들의 조합으로 이루어진 군으로부터 선택되는 전이 금속) 및 이들의 조합으로 이루어진 군에서 선택되는 금속촉매를 10 ~ 80 중량% 담지 한다. 상기 범위를 벗어나면 전극 성능이 저하될 수 있다.The carbon nano support is platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy, platinum-M alloy (M is Ga, Ti, V, Cr, Mn, Fe, Co, Ni, Cu , Zn, Sn, Mo, W, Rh and a transition metal selected from the group consisting of a combination thereof) and a metal catalyst selected from the group consisting of a combination of 10 to 80% by weight. Outside the above range, electrode performance may be degraded.

본 발명은 앞서 기재한 연료전지용 막전극접합체를 포함한 연료전지를 제공한다.The present invention provides a fuel cell comprising the membrane electrode assembly for fuel cells described above.

본 발명은 Pt/CNT 혹은 Pt/CNF와 같은 전극 촉매에 카본 블랙(Carbon Black;CB)을 혼합하여 연료전지 막전극접합체를 제조하는 경우뿐만 아니라 탄소나노튜브(CNT) 및 탄소나노섬유(CNF)와 같은 2차원 구조의 탄소나노재료와 더불어 카본 블랙과 같은 3차원 구조의 탄소 재료를 혼합한 후, 상기 혼합된 탄소 재료에 백금을 담지하여 전극 촉매를 제조하고 이 전극 촉매를 사용한 막전극접합체의 경우에도 동일한 효과를 나타낸다. 또한, Pt/CNT와 같은 2차원 구조의 전극 촉매와 Pt/CB와 같은 3차원 구조의 전극 촉매를 혼합한 경우에도 동일한 확산저항 감소 효과를 구현할 수 있다. 하지만 이 경우 Pt/CB의 함량이 너무 높을 경우에는 전극의 내구성이 현저하게 저하될 수 있기 때문에, 3차원 구조의 전극 촉매는 50wt%를 초과하지 않는 것이 바람직하다.The present invention not only manufactures fuel cell membrane electrode assemblies by mixing carbon black (CB) in an electrode catalyst such as Pt / CNT or Pt / CNF, but also carbon nanotubes (CNT) and carbon nanofibers (CNF). After mixing a carbon nanomaterial having a two-dimensional structure such as carbon and a carbon material having a three-dimensional structure such as carbon black, platinum is supported on the mixed carbon material to prepare an electrode catalyst, and to prepare a membrane electrode assembly using the electrode catalyst. Even if the same effect. In addition, even when the electrode catalyst having a two-dimensional structure such as Pt / CNT and the electrode catalyst having a three-dimensional structure such as Pt / CB can be realized the same diffusion resistance reduction effect. However, in this case, when the content of Pt / CB is too high, the durability of the electrode may be significantly reduced, so that the electrode catalyst having a three-dimensional structure does not exceed 50 wt%.

본 발명의 효과는 데칼법으로 제조되는 매우 치밀한 촉매층 구조를 지니는 막전극접합체의 경우에 보다 현저히 나타날 수 있으며 이러한 데칼 공정은 다음과 같은 세 단계로 구성된다. The effect of the present invention can be more remarkable in the case of a membrane electrode assembly having a very dense catalyst layer structure produced by the decal method, and this decal process consists of the following three steps.

(1) 전극 촉매, 이오노머, 용매를 포함하는 촉매슬러리 조성물을 균일하게 혼합하여 전극용 잉크를 제조하는 단계(1) uniformly mixing the catalyst slurry composition comprising the electrode catalyst, ionomer, and solvent to prepare an electrode ink

(2) 전극용 잉크를 닥터블레이드법, 그라비어 코팅법, 딥코팅법, 실크 프린터법, 슬롯다이법, 스프레이 코팅법, 페이팅법 등의 코팅 공정을 통하여 전사용 이형 필름에 코팅하여 전극 촉매층을 형성하는 단계(2) Electrode ink is coated on a transfer release film through a coating process such as doctor blade method, gravure coating method, dip coating method, silk printer method, slot die method, spray coating method, or coating method to form an electrode catalyst layer. Steps to

(3) 상기 전극 촉매층을 고온고압의 핫프레싱 공정을 통하여 수소이온전도성막으로 전사하는 단계;를 포함한다.(3) transferring the electrode catalyst layer to a hydrogen ion conductive film through a hot pressing process at a high temperature and high pressure.

본 발명에 따른 카본블랙을 삽입한 탄소나노지지체를 구비한 촉매층을 포함하는 막전극접합체는 전극 촉매층에서의 물질전달 저항을 완화시킬 뿐만 아니라, 우수한 내구성을 갖고 있는 장점이 있다. 이를 통해 상기 막전극접합체를 포함하는 연료전지의 성능을 최적화 할 수 있는 효과가 있다.The membrane electrode assembly including a catalyst layer having a carbon nano support incorporating carbon black according to the present invention has the advantage of not only alleviating material transfer resistance in the electrode catalyst layer, but also having excellent durability. This has the effect of optimizing the performance of the fuel cell including the membrane electrode assembly.

도 1은 본 발명에 따른 카본블랙이 삽입된 Pt/CNF 전극 구조 단면 형상을 나타낸 것이다.
도 2는 실시예 1, 실시예 2 및 비교예 1의 전류밀도에 따른 Cell voltage를 나타낸 것이다.
1 illustrates a cross-sectional shape of a Pt / CNF electrode structure in which carbon black is inserted according to the present invention.
Figure 2 shows the cell voltage according to the current density of Example 1, Example 2 and Comparative Example 1.

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.

촉매층Catalyst bed 형성용  Forming 슬러리의Slurry 제조 Produce

(실시예 1)(Example 1)

백금촉매를 담지한 나노섬유(Pt/CNF) 1g에 카본블랙 0.075g을 넣고, 수소이온 전도성 바인더 수지인 나피온 현탁액과 IPA 수용액 용매를 포함하는 촉매형성용 조성물을 하기 표1과 같이 제조하였다. 나피온 이오노머의 함량은 전체 고형물 기준으로 15-25% 중량비로 맞추었다.
0.075 g of carbon black was added to 1 g of nanofibers (Pt / CNF) carrying platinum catalyst, and a catalyst-forming composition including Nafion suspension, which is a hydrogen ion conductive binder resin, and an IPA aqueous solution solvent was prepared as shown in Table 1 below. The Nafion ionomer content was set to 15-25% by weight based on total solids.

(실시예 2)(Example 2)

백금촉매를 담지한 나노섬유(Pt/CNF) 1g에 카본블랙 0.15g을 넣고, 수소이온 전도성 바인더 수지인 나피온 현탁액과 IPA 수용액 용매를 포함하는 촉매형성용 조성물을 하기 표1과 같이 제조하였다. 나피온 이오노머의 함량은 전체 고형물 기준으로 15-25% 중량비로 맞추었다.
0.15 g of carbon black was added to 1 g of nanofibers (Pt / CNF) carrying platinum catalyst, and a catalyst-forming composition including Nafion suspension, which is a hydrogen ion conductive binder resin, and an IPA aqueous solution solvent was prepared as shown in Table 1 below. The Nafion ionomer content was set to 15-25% by weight based on total solids.

(비교예 1)(Comparative Example 1)

백금촉매를 담지한 나노섬유(Pt/CNF) 1g에 카본블랙을 넣지 않고, 수소이온 전도성 바인더 수지인 나피온 현탁액과 IPA 수용액 용매를 포함하는 촉매형성용 조성물을 하기 표1과 같이 제조하였다. 나피온 이오노머의 함량은 전체 고형물 기준으로 15-25% 중량비로 맞추었다.
A catalyst composition comprising Nafion suspension, which is a hydrogen ion conductive binder resin, and an IPA aqueous solution solvent, was prepared as shown in Table 1 without putting carbon black in 1 g of nanofibers (Pt / CNF) loaded with a platinum catalyst. The Nafion ionomer content was set to 15-25% by weight based on total solids.

표 1. 촉매층 형성용 슬러리 제조Table 1. Preparation of slurry for catalyst layer formation

Figure pat00001

Figure pat00001

막 전극 접합체의 제조Preparation of Membrane Electrode Assembly

상기 실시예 1, 2 및 비교예 1의 촉매층 형성용 슬러리를 닥터 블레이드 방식으로 박막 필름에 일정 두께로 코팅하고, 120-150oC, 100-300kgf/cm2 조건에서 나피온 필름으로 촉매층을 전사하여 막전극접합체(MEA)를 제조하였다. 이렇게 제조된 MEA의 백금 담지량은 대략 0.4mg/cm2 전후에서 유지되었다.
The slurry for forming the catalyst layer of Examples 1, 2 and Comparative Example 1 was coated on the thin film by a doctor blade method to a predetermined thickness, and transferred to the Nafion film under 120-150 o C, 100-300 kgf / cm 2 condition. To prepare a membrane electrode assembly (MEA). The platinum loading of the MEA thus prepared was maintained at about 0.4 mg / cm 2 .

연료전지 성능 평가Fuel Cell Performance Evaluation

상기 실시예 1, 2 및 비교예 1의 촉매층 형성용 슬러리로 제조한 막전극 접합체를 가지고 상대습도 100%, 수소 및 공기를 연료로 하는 기체 이용률 70%/40%, 상압 운전, 셀 온도 70도 등의 운전 조건에서 단위셀 형태로 MEA의 성능을 평가하였다. 그 결과, 카본블랙이 각각 Pt/CNF 촉매 1g 기준으로 0.075g 및 0.15g 첨가된 MEA(실시예 1 및 실시예 2)은 카본블랙이 첨가되지 않은 MEA(비교예 1)은 카본블랙이 첨가됨에 따라서 연료전지 성능이 향상됨을 확인할 수 있다.
A membrane electrode assembly prepared from the slurry for forming catalyst layers of Examples 1, 2 and Comparative Example 1 has a relative humidity of 100%, a gas utilization rate of 70% / 40% using hydrogen and air as fuel, atmospheric pressure operation, and a cell temperature of 70 degrees. The performance of the MEA was evaluated in the form of unit cells under the operating conditions. As a result, MEA (Example 1 and Example 2) to which carbon black was added 0.075 g and 0.15 g based on 1 g of Pt / CNF catalyst, respectively, was added to MEA (Comparative Example 1) to which carbon black was not added. Therefore, it can be seen that the fuel cell performance is improved.

막전극접합체Membrane Electrode Assembly 기공 분포 측정 Pore distribution measurement

상기 실시예 2 및 비교예 1의 조성으로 제조된 막전극접합체의 촉매층 기공 분포를 분석하기 위하여 수은침투 기공측정기 (Autopore IV 9500, Micromeritics사)를 이용하여 측정하였으며 그 결과를 도 3에 도시하였다. 실제로 Pt/CNF에 CB을 첨가하였을 경우 20~100 nm 범위의 기공 체적이 현저하게 증가함을 확인할 수 있었다. 실제로 이러한 범위의 기공이 연료전지 성능에 중요한 역할을 하는 것으로 보고되고 있으며 도 3에서도 기공부피의 증가가 연료전지 성능 향상에 기여하는 것으로 판단된다. In order to analyze the pore distribution of the catalyst layer of the membrane electrode assembly prepared by the composition of Example 2 and Comparative Example 1, it was measured by using a mercury permeation porosimeter (Autopore IV 9500, Micromeritics) and the results are shown in FIG. In fact, when CB was added to Pt / CNF, the pore volume in the range of 20 to 100 nm was remarkably increased. In fact, these ranges of pores are reported to play an important role in fuel cell performance, and in FIG. 3, it is determined that an increase in pore volume contributes to an improvement in fuel cell performance.

Claims (9)

전해질 막 및 상기 전해질 막의 양면에 촉매층이 구비된 전극을 포함하는 연료전지용 막전극접합체에 있어서,
상기 촉매층은 2차원 구조의 고 내구성 탄소나노지지체를 포함하는 금속 담지 전극 촉매를 주성분으로 하며, 기공 형성을 위하여 3차원 구조를 갖는 전도성 재료 및 이오노머 바인더가 첨가된 것을 특징으로 하는 연료전지용 막전극접합체.
In the membrane electrode assembly for a fuel cell comprising an electrolyte membrane and an electrode provided with a catalyst layer on both sides of the electrolyte membrane,
The catalyst layer is mainly composed of a metal-supported electrode catalyst including a high-durability carbon nano support having a two-dimensional structure, and a membrane electrode assembly for a fuel cell, wherein a conductive material and an ionomer binder having a three-dimensional structure are added to form pores. .
제 1항에 있어서,
상기 탄소나노지지체는 탄소나노섬유 (CNF), 탄소나노튜브 (CNT), 탄소나노와이어, 탄소나노링 및 탄소나노혼으로 이루어진 군에서 선택되는 어느 하나 또는 2종 이상의 혼합물인 것을 특징으로 하는 연료전지용 막전극접합체.
The method of claim 1,
The carbon nano support is any one or a mixture of two or more selected from the group consisting of carbon nanofibers (CNF), carbon nanotubes (CNT), carbon nanowires, carbon nanorings and carbon nanohorns. Membrane electrode assembly.
제 1항에 있어서,
상기 촉매층은 탄소나노지지체 1중량부에 대하여 0.05 내지 0.3중량부의 전도성 재료를 포함하는 연료전지용 막전극접합체.
The method of claim 1,
The catalyst layer is a fuel cell membrane electrode assembly comprising 0.05 to 0.3 parts by weight of conductive material based on 1 part by weight of carbon nano support.
제 1항 및 제 3항에 있어서,
상기 전도성 재료는 카본블랙, 활성탄소, 플러렌, 흑연 및 이들의 혼합물로 이루어진 탄소재료를 포함하는 연료전지용 막전극접합체.
The method according to claim 1 and 3,
The conductive material is a fuel cell membrane electrode assembly comprising a carbon material consisting of carbon black, activated carbon, fullerene, graphite and mixtures thereof.
제 4항에 있어서,
상기 전도성 재료는 입도가 10nm ~300nm인 것을 특징으로 하는 연료전지용 막전극접합체.
The method of claim 4, wherein
Membrane electrode assembly for a fuel cell, characterized in that the conductive material has a particle size of 10nm ~ 300nm.
제 4항에 있어서,
상기 카본블랙은 아세틸렌의 열분해에 제조되는 아세틸렌 블랙인 것을 포함하는 연료전지용 막전극접합체.
The method of claim 4, wherein
Membrane electrode assembly for a fuel cell comprising the carbon black is acetylene black prepared for pyrolysis of acetylene.
제 1항에 있어서,
상기 금속 담지 전극 촉매는 10~80 중량%의 금속이 담지된 것을 특징으로 하는 연료전지용 막전극접합체.
The method of claim 1,
The metal supported electrode catalyst is a fuel cell membrane electrode assembly, characterized in that 10 to 80% by weight of the metal is supported.
제 1항 및 7항에 있어서,
상기 금속은 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금, 백금-M 합금(M은 Ga, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Mo, W, Rh 및 이들의 조합으로 이루어진 군으로부터 선택되는 전이 금속) 및 이들의 조합으로 이루어진 군에서 선택된 것을 포함하는 연료전지용 막전극접합체.
The method according to claim 1 and 7,
The metal is platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy, platinum-M alloy (M is Ga, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn And a transition metal selected from the group consisting of Sn, Mo, W, Rh, and combinations thereof, and a membrane electrode assembly for a fuel cell comprising a combination thereof.
제 1항 내지 제 8항 중에서 선택된 어느 하나의 연료전지용 막전극접합체를 포함하는 연료전지.
A fuel cell comprising any one of the fuel cell membrane electrode assemblies selected from claim 1.
KR1020100045297A 2010-05-14 2010-05-14 Membrane electrode assembly(MEA) using nano carbon materials for fuel cell and method for the same KR101259439B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100045297A KR101259439B1 (en) 2010-05-14 2010-05-14 Membrane electrode assembly(MEA) using nano carbon materials for fuel cell and method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100045297A KR101259439B1 (en) 2010-05-14 2010-05-14 Membrane electrode assembly(MEA) using nano carbon materials for fuel cell and method for the same

Publications (2)

Publication Number Publication Date
KR20110125759A true KR20110125759A (en) 2011-11-22
KR101259439B1 KR101259439B1 (en) 2013-05-02

Family

ID=45395087

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100045297A KR101259439B1 (en) 2010-05-14 2010-05-14 Membrane electrode assembly(MEA) using nano carbon materials for fuel cell and method for the same

Country Status (1)

Country Link
KR (1) KR101259439B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150006913A (en) * 2013-07-09 2015-01-20 전주대학교 산학협력단 Welding Adhesive Composition using CNT
KR20180088050A (en) * 2017-01-26 2018-08-03 주식회사 엘지화학 Catalyst composition of fuel cell, catalyst layer manufactured by the same and fuel cell comprising the same
KR101955666B1 (en) * 2017-12-12 2019-03-07 한국에너지기술연구원 Catalyst electrode of three-phase sepatation and manufacturing method for the same
CN110247088A (en) * 2018-03-08 2019-09-17 通用汽车环球科技运作有限责任公司 Composite electrode layers for polymer electrolyte fuel cells
CN113943946A (en) * 2021-12-07 2022-01-18 陕西科技大学 PHF-Ru @ C-N electrocatalyst and preparation method thereof
KR20220066720A (en) * 2020-11-16 2022-05-24 단국대학교 천안캠퍼스 산학협력단 Electrode composition comprising nanodispersed ionomer as binder, membrane electrode assembly and fuel cell manufactured by using the composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4031463B2 (en) 2004-04-26 2008-01-09 株式会社東芝 Anode electrode for liquid fuel type polymer electrolyte fuel cell, membrane electrode assembly for liquid fuel type polymer electrolyte fuel cell, and liquid fuel type polymer electrolyte fuel cell
JP2005322449A (en) 2004-05-06 2005-11-17 Toyota Motor Corp Coating liquid for forming catalyst electrode layer and membrane electrode assembly
JP4185064B2 (en) 2005-03-11 2008-11-19 株式会社東芝 Cathode electrode for liquid fuel type polymer electrolyte fuel cell and liquid fuel type polymer electrolyte fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150006913A (en) * 2013-07-09 2015-01-20 전주대학교 산학협력단 Welding Adhesive Composition using CNT
KR20180088050A (en) * 2017-01-26 2018-08-03 주식회사 엘지화학 Catalyst composition of fuel cell, catalyst layer manufactured by the same and fuel cell comprising the same
KR101955666B1 (en) * 2017-12-12 2019-03-07 한국에너지기술연구원 Catalyst electrode of three-phase sepatation and manufacturing method for the same
CN110247088A (en) * 2018-03-08 2019-09-17 通用汽车环球科技运作有限责任公司 Composite electrode layers for polymer electrolyte fuel cells
KR20220066720A (en) * 2020-11-16 2022-05-24 단국대학교 천안캠퍼스 산학협력단 Electrode composition comprising nanodispersed ionomer as binder, membrane electrode assembly and fuel cell manufactured by using the composition
CN113943946A (en) * 2021-12-07 2022-01-18 陕西科技大学 PHF-Ru @ C-N electrocatalyst and preparation method thereof

Also Published As

Publication number Publication date
KR101259439B1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP4185064B2 (en) Cathode electrode for liquid fuel type polymer electrolyte fuel cell and liquid fuel type polymer electrolyte fuel cell
JP4752762B2 (en) Membrane-electrode assembly for fuel cell and fuel cell using the same
US7858265B2 (en) Carrier for fuel cell, and catalyst, membrane-electrode assembly, and fuel cell system including the same
Xu et al. Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells
JP2006012832A (en) Electrode for fuel cell, membrane for fuel cell-electrode assembly including this, fuel cell, and manufacturing method of electrode for fuel cell
US7771860B2 (en) Catalyst of a fuel cell, and membrane-electrode assembly and fuel cell system including catalyst
KR20060117474A (en) Electrode substrate for fuel cell, method for preparating the same, and membrane-electrode assembly
US8137859B2 (en) Membrane-electrode assembly for fuel cell, method for manufacturing the same, and fuel cell system including the same
Hong et al. A high-performance PEM fuel cell with ultralow platinum electrode via electrospinning and underpotential deposition
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
CA3035582A1 (en) Cathode electrode design for electrochemical fuel cells
KR101259439B1 (en) Membrane electrode assembly(MEA) using nano carbon materials for fuel cell and method for the same
CN101557001A (en) Fuel cell film electrode and preparation method thereof
KR20170089486A (en) The mixed catalysts composition for fuel cell electrode, the electrode of fuel cell and manufacturing method of the electrode
JP2006252967A (en) Solid polymer electrolyte membrane for fuel cell, and fuel cell using the same
CN100377396C (en) Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode
Negro et al. Polymer electrolyte fuel cells based on bimetallic carbon nitride electrocatalysts
KR102602407B1 (en) The composition for manufacturing electrode of membrane-electrode assembly for fuel cell and method for manufacturing electrode of membrane-electrode assembly for fuel cell using the same
US8445163B2 (en) Membrane electrode assembly for fuel cell having catalyst layer with mesopore volume, method of preparing same, and fuel cell system including the same
Pu et al. High performance MWCNT–Pt nanocomposite-based cathode for passive direct methanol fuel cells
KR20060104821A (en) Catalyst for fuel cell, preparation method thereof, and fuel cell system comprising the same
KR102455396B1 (en) Catalyst ink for forming electrode catalyst layer of fuel cell and manufacturing method thereof
US8273230B2 (en) Method for making membrane fuel cell electrodes by low-voltage electrophoretic deposition of carbon nanomaterial-supported catalysts
JP4892811B2 (en) Electrocatalyst
CN100506373C (en) Improved pemfc electrocatalyst based on mixed carbon supports

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160412

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 8