JP2006228502A - Electrode catalyst for fuel cell, its manufacturing method, and electrode and fuel cell using the same - Google Patents

Electrode catalyst for fuel cell, its manufacturing method, and electrode and fuel cell using the same Download PDF

Info

Publication number
JP2006228502A
JP2006228502A JP2005038931A JP2005038931A JP2006228502A JP 2006228502 A JP2006228502 A JP 2006228502A JP 2005038931 A JP2005038931 A JP 2005038931A JP 2005038931 A JP2005038931 A JP 2005038931A JP 2006228502 A JP2006228502 A JP 2006228502A
Authority
JP
Japan
Prior art keywords
silica
fuel cell
carbon
electrode
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005038931A
Other languages
Japanese (ja)
Inventor
Masami Murakami
雅美 村上
Akihiro Okabe
晃博 岡部
Shunsuke Oike
俊輔 大池
Yoshito Kurano
義人 蔵野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2005038931A priority Critical patent/JP2006228502A/en
Publication of JP2006228502A publication Critical patent/JP2006228502A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode catalyst for fuel cell which is high in catalytic activity and resistance to poisoning, its manufacturing method and an electrode and a fuel cell that uses this catalyst. <P>SOLUTION: The electrode catalyst for fuel cell includes a porous carbon, where 10 nm or less of diameter of pores have 0.6 to 1.2 ml/g of pore capacity, and 90 or higher vol.% of the pores are in the dimensions of 1.2 to 5.0 nm, and 0.5 to 3.0 nm of Pt particles are dispersed on the surface of the pores. The electrode for fuel cell and the fuel cell that use it are also disclosed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電極酸化・還元反応により生じる電力を利用した燃料電池の電極触媒に関するものであり、それを用いた電極、燃料電池に関する。   The present invention relates to an electrode catalyst for a fuel cell using electric power generated by electrode oxidation / reduction reaction, and relates to an electrode and a fuel cell using the same.

燃料電池は、燃料の電気化学反応により発生するエネルギーを直接起電力とする電池であるため、発電効率が高く、エネルギー消費低減をもたらす電力源として期待されている。その主なものは水素を燃料とするもので、自動車用や定置用の電源として開発が進んでいる。燃料電池には、使用する電解質により様々な種類があるが、中でも固体高分子型燃料電池は、出力密度が高いことに加え動作温度が低く、他の燃料電池に比べ機動性に優れるという特徴を持つ。   A fuel cell is a cell that directly uses energy generated by an electrochemical reaction of fuel as an electromotive force. Therefore, the fuel cell is expected to be a power source that has high power generation efficiency and reduces energy consumption. The main ones are those that use hydrogen as fuel, and are being developed as power sources for automobiles and stationary use. There are various types of fuel cells, depending on the electrolyte used. Among them, solid polymer fuel cells have a high output density, a low operating temperature, and superior mobility compared to other fuel cells. Have.

また、固体高分子型燃料電池の一つとして分類される直接メタノール型燃料電池は、常温で液体であるメタノールを直接燃料とし、燃料処理用の改質器も必要としないため、さらにコンパクトな燃料電池となり得る。またそのエネルギー密度はリチウムイオン二次電池の10倍以上が実現可能であり、加えて充電時間が不要といった利点も含め、リチウムイオン二次電池に置き換わる携帯機器用電源として期待されている。   In addition, direct methanol fuel cells, which are classified as one of the polymer electrolyte fuel cells, use methanol, which is liquid at room temperature, as a direct fuel and do not require a reformer for fuel processing. Can be a battery. In addition, its energy density can be more than 10 times that of lithium ion secondary batteries. In addition, it is expected to be a power source for portable devices that can replace lithium ion secondary batteries, including the advantage of not requiring charging time.

これらの燃料電池は、いずれも燃料極である負極、空気極である正極、およびそれらの間に挟まれる電解質から構成される。電極は、導電性の炭素に酸化・還元触媒である白金(Pt)等の金属が担持された構造となっている。   Each of these fuel cells includes a negative electrode that is a fuel electrode, a positive electrode that is an air electrode, and an electrolyte sandwiched between them. The electrode has a structure in which a metal such as platinum (Pt) which is an oxidation / reduction catalyst is supported on conductive carbon.

電極用の担体として、一般的に知られているのはカーボンブラックである。カーボンブラックは直径数十 nm程度の一次粒子が数珠上に凝集した多孔質な構造を持っており、これにPt粒子を担持することによりPtをカーボンブラック上に分散させた電極が得られる。しかしながら、携帯機器のエネルギー源としての利用を考慮すると、更に、エネルギー密度の高いものが望まれており、燃料電池を高出力にするためにPt粒子をさらに高分散化できる担体の検討が望まれている。そのため、例えば、活性炭を担体とする研究が盛んに行われており、活性炭の原料や炭化する熱処理条件を制御した研究がなされている(例えば、特許文献1参照)。   Carbon black is generally known as an electrode carrier. Carbon black has a porous structure in which primary particles with a diameter of about several tens of nanometers are aggregated on a bead, and by supporting Pt particles on this, an electrode in which Pt is dispersed on carbon black can be obtained. However, considering the use as an energy source for portable devices, those having higher energy density are desired, and in order to increase the output of the fuel cell, it is desired to study a carrier that can further disperse Pt particles. ing. Therefore, for example, active research using activated carbon as a carrier has been actively conducted, and research has been conducted in which activated carbon raw materials and heat treatment conditions for carbonization are controlled (see, for example, Patent Document 1).

燃料電池において、カーボンブラックや活性炭を電極触媒の担体に用いた場合、その表面積は大きいものの、3次元的に繋がるメソ細孔が成長しにくく、かつ細孔構造の制御も困難であるため、触媒成分であるPtの更なる高分散化によるPt利用率の向上や、細孔径最適化による燃料、プロトン等の物質拡散向上は困難である。   In a fuel cell, when carbon black or activated carbon is used as a carrier for an electrode catalyst, the surface area is large, but mesopores that are three-dimensionally connected are difficult to grow and control of the pore structure is difficult. It is difficult to improve the Pt utilization rate by further increasing the dispersion of Pt as a component and to improve the diffusion of substances such as fuel and protons by optimizing the pore size.

また、近年、見出されたカーボンナノチューブの一種であるカーボンナノホーンを利用した例も報告されている(例えば、非特許文献1、特許文献2参照)。カーボンナノホーンは微小かつ特異な構造をもっており、多数のナノホーンが集まり100nm程度の大きさの表面積が非常に大きい凝集体(二次粒子)を作っている。そのため、従来から用いられているカーボンブラックや活性炭の場合と同じ条件で比較すると、Pt粒子の大きさは半分以下まで細かくできるという特徴をもっている。そのため、Ptをより高分散化して活性を向上させることができると報告されている。しかしながら、現状において、カーボンナノホーンはカーボンブラックや活性炭に比較すると高価であるという問題点がある。   In recent years, there have also been reports of examples using carbon nanohorns, which are a type of carbon nanotubes found (see, for example, Non-Patent Document 1 and Patent Document 2). Carbon nanohorns have a minute and unique structure, and a large number of nanohorns gather to form aggregates (secondary particles) with a surface area of about 100 nm and a very large surface area. Therefore, when compared under the same conditions as those of conventionally used carbon black and activated carbon, the size of the Pt particles can be reduced to half or less. Therefore, it has been reported that the activity can be improved by further dispersing Pt. However, at present, carbon nanohorns have a problem that they are more expensive than carbon black and activated carbon.

1999年にメソポーラスシリカを鋳型として多孔質カーボンを製造する方法が報告された(例えば、非特許文献2参照)。このメソポーラスカーボンは、多孔質カーボンの中でも特に、細孔構造のより精密な制御が可能なことで知られている。鋳型として用いられるメソポーラスシリカは、均一でかつ規則的に配列するメソ細孔を持つことを特徴とするシリカであり、シリカ骨格中のSiの一部をAl、B、Ti等で同型置換したメタロシリケートも含めた総称である。メソポーラスシリカそのものは一般的に界面活性剤の集合構造(例えば棒状ミセル)を鋳型として、その周囲(表面)で適当なシリカ源、例えばテトラエトキシシラン(TEOS)を原料としてゾルゲル反応を行わせてシリカを生成し、その後に鋳型である界面活性剤を焼成などにより除いてシリカ骨格を残すことにより製造される。   In 1999, a method for producing porous carbon using mesoporous silica as a template was reported (for example, see Non-Patent Document 2). This mesoporous carbon is known to be able to control the pore structure more precisely among porous carbons. Mesoporous silica used as a template is a silica characterized by having mesopores that are uniformly and regularly arranged. A part of Si in the silica skeleton is substituted with Al, B, Ti, etc. A generic term that includes silicates. In general, mesoporous silica itself is a silica obtained by performing a sol-gel reaction using a surfactant aggregate structure (for example, rod-like micelles) as a template and using a suitable silica source, for example, tetraethoxysilane (TEOS) as a raw material around the surface (surface). And then, the surfactant as a template is removed by baking or the like to leave a silica skeleton.

メソポーラスカーボンは、このメソポーラスシリカを鋳型とするため、メソポーラスシリカの均一、かつ規則的に配列したメソ細孔を転写した構造を持ち、1000 m/g以上の高比表面積とメソ細孔領域の非常に範囲の狭い細孔径分布を持つことを特徴とする。このメソポーラスカーボンの細孔径は、鋳型であるメソポーラスシリカの細孔径を制御することにより1.2〜10 nm程度の範囲で制御可能である。 Since mesoporous carbon uses mesoporous silica as a template, mesoporous silica has a structure in which mesoporous silica is arranged uniformly and regularly, and has a high specific surface area of 1000 m 2 / g or more and a mesoporous region. It has a very narrow pore size distribution. The pore diameter of this mesoporous carbon can be controlled in the range of about 1.2 to 10 nm by controlling the pore diameter of mesoporous silica as a template.

このメソポーラスカーボンを燃料電池電極触媒用の担体として利用した報告がある。Ryong Ryooらによってなされた研究(例えば、非特許文献3参照)では、メソポーラスカーボンにPtを担持することにより、その活性は大きく改善し、Pt担持量が30〜40wt%において活性は極大となることを報告している。しかし、これ以上、Ptを担持すると、逆に活性は低下することも示されている。   There are reports of using this mesoporous carbon as a carrier for fuel cell electrode catalysts. In the research conducted by Ryong Ryoo et al. (For example, see Non-Patent Document 3), by supporting Pt on mesoporous carbon, the activity is greatly improved, and the activity is maximized when the amount of Pt supported is 30 to 40 wt%. Has been reported. However, it has also been shown that the activity decreases when Pt is supported.

メソポーラスカーボン粒子を一部に含む炭素材料を担体とする報告もある(例えば、特許文献3参照)。この例では、メソポーラスカーボンは3nm付近にピークのある分布の狭い細孔を有しているが、Ptを担持すると2〜4nmの細孔の大部分は消滅する。そのため、メソポーラスカーボンだけではガス拡散性が十分ではなくなり、メソポーラスカーボン以外の炭素材料を混合することで、ガス拡散性の改善を行っている。すなわち、他の炭素材料をメソポーラスカーボンに対して1:1で混合することにより、ガス拡散性を改善している。   There is also a report that uses a carbon material partially containing mesoporous carbon particles as a carrier (see, for example, Patent Document 3). In this example, the mesoporous carbon has narrow pores with a distribution having a peak near 3 nm, but most of the pores of 2 to 4 nm disappear when Pt is supported. Therefore, the gas diffusibility is not sufficient with only mesoporous carbon, and the gas diffusivity is improved by mixing a carbon material other than mesoporous carbon. That is, gas diffusibility is improved by mixing other carbon materials with mesoporous carbon at 1: 1.

また、メソポーラスシリカを鋳型とした例で、はじめに触媒成分粒子を鋳型であるメソポーラスシリカ上に生成させ、その後、炭素前駆物質を吸着、炭化し、最後に鋳型を除去する触媒調製法も報告されている(例えば、特許文献4参照)。この例では、Pt粒子と電解質の接触が良くなることで発電特性が向上するが、Pt粒子径については6.8 nmと従来調製法と同程度である。     In addition, an example using mesoporous silica as a template is also reported. First, a catalyst preparation method in which catalyst component particles are first produced on mesoporous silica as a template, carbon precursors are adsorbed and carbonized, and finally the template is removed is reported. (See, for example, Patent Document 4). In this example, the power generation characteristics are improved by improving the contact between the Pt particles and the electrolyte, but the Pt particle diameter is 6.8 nm, which is the same level as the conventional preparation method.

また、燃料極である負極においては、高性能化のためにPtを高分散化させても、原料中、あるいは反応によって生じた一酸化炭素(CO)がPt触媒に吸着、被毒することにより電池性能が低下する問題がある。特に直接メタノール型燃料電池の場合、原料であるメタノールの酸化過程において、中間体としてCOが生成するため、被毒は避けられず、性能低下はより顕著に現われる。   In the negative electrode, which is the fuel electrode, even if Pt is highly dispersed for high performance, carbon monoxide (CO) generated in the raw material or reaction is adsorbed and poisoned by the Pt catalyst. There is a problem that the battery performance deteriorates. In particular, in the case of a direct methanol fuel cell, poisoning is unavoidable because CO is generated as an intermediate during the oxidation process of methanol, which is a raw material, and the performance deterioration is more noticeable.

この問題を回避するため、一般的に行われているのは、H2Oを活性化することで残存COの酸化を促進し、Pt触媒の被毒を抑制する効果を有するRu金属を、二次金属として共担持することである。このような活性低下を抑えた電極触媒の開発が積極的になされてはいるが、まだ、十分ではないため、更に耐被毒性を高めた高活性な電極触媒が望まれている。
特開2004−217507 WO2002/075831 特開2004−71253 特開2004−178859 NEC Press Release 2001-8-30-02(2001) J. Phys. Chem. B 103巻 7743−7746ページ(1999) Nature 412巻 169−172ページ(2001)
To avoid this problem, what is commonly done is to facilitate the oxidation of residual CO by activating the H 2 O, the Ru metal having an effect of suppressing the poisoning of the Pt catalyst, the two Co-supported as the next metal. Although development of an electrocatalyst that suppresses such a decrease in activity has been actively carried out, it is not sufficient yet, so a highly active electrocatalyst with further enhanced resistance to poisoning is desired.
JP-A-2004-217507 WO2002 / 075831 JP2004-71253A JP 2004-178859 A NEC Press Release 2001-8-30-02 (2001) J. Phys. Chem. B 103, 7743-7746 (1999) Nature 412 169-172 (2001)

現状の燃料電池、特に直接メタノール型燃料電池は、まだ、その出力および効率が十分にでていない。本発明は、触媒活性と耐被毒性の高い燃料電池用触媒とその製造方法、およびこの触媒を用いた電極と燃料電池を開発することを目的とする。   Current fuel cells, particularly direct methanol fuel cells, are not yet sufficiently powerful and efficient. It is an object of the present invention to develop a fuel cell catalyst having high catalytic activity and poisoning resistance, a method for producing the same, and an electrode and a fuel cell using the catalyst.

本発明者らは、上記課題を解決するため鋭意検討した結果、Ptを高分散担持し、細孔径の分布範囲が狭く、3次元的広がりをもつメソ細孔を有する多孔質炭素に、必要に応じて親水基を持つシリカを複合化することにより、触媒活性と耐被毒性の高い燃料電池用触媒が得られることを見出し、本発明に至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention required a porous carbon having mesopores with high dispersion of Pt, a narrow pore size distribution range, and three-dimensional expansion. Accordingly, the present inventors have found that a fuel cell catalyst having high catalytic activity and high resistance to poisoning can be obtained by complexing silica having a hydrophilic group.

すなわち、本発明の燃料電池用電極触媒は、直径10 nm以下の大きさの細孔が0.6 〜1.2ml/gの細孔容積を有し、かつ、該細孔の90体積%以上が1.2〜5.0nmの大きさの範囲にあり、該細孔表面に0.5〜3.0 nmの大きさのPt粒子が分散している多孔質炭素を含むことを特徴としている。   That is, the fuel cell electrode catalyst of the present invention has pores with a diameter of 10 nm or less having a pore volume of 0.6 to 1.2 ml / g, and 90% by volume or more of the pores. Is in the range of 1.2 to 5.0 nm in size, and includes porous carbon in which Pt particles having a size of 0.5 to 3.0 nm are dispersed on the pore surface. .

また、本発明は前記多孔質炭素が多孔質シリカを鋳型として細孔形成されることを特徴とする燃料電池用電極触媒の製造方法である。   The present invention also provides the method for producing an electrode catalyst for a fuel cell, wherein the porous carbon is formed with pores using porous silica as a template.

また、本発明は上記の燃料電池用電極触媒を用いた燃料電池用電極及び燃料電池である。   The present invention also provides a fuel cell electrode and a fuel cell using the above fuel cell electrode catalyst.

本発明により、活性と耐被毒性がともに優れる電極触媒を提供することができ、これは燃料電池に好適に用いることができる。   According to the present invention, an electrode catalyst having both excellent activity and poisoning resistance can be provided, which can be suitably used for a fuel cell.

以下、本発明について具体的に説明する。
(燃料電池用電極触媒)
本発明の燃料電池用電極触媒は、直径10nm以下の大きさの細孔が0.6〜1.2ml/gの細孔容積を有している。細孔容積は、好ましくは0.7〜1.2ml/gであり、更に好ましくは0.8〜1.2ml/gである。細孔容積がこの範囲にあることで、構造を堅固にした状態で、物質拡散は容易になる。ここで、細孔容積は一般に知られている窒素吸着法によって求めることができる。
Hereinafter, the present invention will be specifically described.
(Electrocatalyst for fuel cell)
In the fuel cell electrode catalyst of the present invention, pores having a diameter of 10 nm or less have a pore volume of 0.6 to 1.2 ml / g. The pore volume is preferably 0.7 to 1.2 ml / g, more preferably 0.8 to 1.2 ml / g. When the pore volume is in this range, material diffusion is facilitated with the structure being solid. Here, the pore volume can be determined by a generally known nitrogen adsorption method.

また、本発明の燃料電池用電極触媒は、直径10nm以下の大きさの細孔の90体積%以上が、直径が1.2〜5.0nmの範囲である。好ましくは、1.2〜4.0nmであり、更に好ましくは2.0〜4.0nmである。細孔の直径がこの範囲にあることで、物質拡散は低下せずに触媒成分上での反応を容易にできる。ここで、細孔の直径も細孔容積と同様に窒素吸着法によって求めることができる。   In the fuel cell electrode catalyst of the present invention, 90% by volume or more of pores having a diameter of 10 nm or less have a diameter of 1.2 to 5.0 nm. Preferably, it is 1.2-4.0 nm, More preferably, it is 2.0-4.0 nm. When the diameter of the pore is within this range, the reaction on the catalyst component can be facilitated without decreasing the substance diffusion. Here, the diameter of the pores can also be determined by the nitrogen adsorption method in the same manner as the pore volume.

また、本発明の燃料電池用電極触媒は、細孔表面に0.5〜3.0nmの大きさのPt粒子が分散している。Pt粒子の大きさは、好ましくは0.5〜2.5nmであり、更に好ましくは0.5〜2.0nmである。Pt粒子の大きさがこの範囲にあることで、高活性な触媒を得ることができる。ここで、Pt粒子の大きさは、X線回折法などによって求めることができる。   In the fuel cell electrode catalyst of the present invention, Pt particles having a size of 0.5 to 3.0 nm are dispersed on the pore surface. The size of the Pt particles is preferably 0.5 to 2.5 nm, more preferably 0.5 to 2.0 nm. When the size of the Pt particles is in this range, a highly active catalyst can be obtained. Here, the size of the Pt particles can be determined by an X-ray diffraction method or the like.

本発明の燃料電池用電極触媒は、多孔質炭素に対して0.01〜120重量%のシリカと複合していることが好ましい。複合しているシリカの量は、更に好ましくは、0.1〜100重量%であり、特に好ましくは0.1〜80重量%である。多孔質炭素とシリカが上述の範囲で複合化していることにより、触媒がCOに被毒することによる触媒活性の低下を抑制できる。本発明においては、多孔質炭素と複合化したシリカ表面を水の吸着点としてCO酸化を促進させることで、Ruを用いなくてもCO被毒による触媒活性低下を抑制できることを見出した。多孔質炭素と複合しているシリカの量は、シリカをフッ酸等で溶かし出した後、ICP分析によって求めることができる。   The fuel cell electrode catalyst of the present invention is preferably combined with 0.01 to 120% by weight of silica based on the porous carbon. The amount of composite silica is more preferably 0.1 to 100% by weight, particularly preferably 0.1 to 80% by weight. Since the porous carbon and the silica are combined in the above-described range, it is possible to suppress a decrease in catalytic activity due to poisoning of the catalyst by CO. In the present invention, it was found that by promoting CO oxidation using a silica surface complexed with porous carbon as an adsorption point of water, reduction in catalytic activity due to CO poisoning can be suppressed without using Ru. The amount of silica combined with porous carbon can be determined by ICP analysis after dissolving the silica with hydrofluoric acid or the like.

更に、本発明の燃料電池用電極触媒は、Pt粒子の含有量が多孔質炭素に対して0.01〜100重量%であることが好ましい。Pt粒子の含有量がこの範囲にあることで、触媒コストを下げることが可能となる。Pt粒子の含有量は、王水でPtを溶解後、ICP分析によって求めることができる。   Furthermore, the fuel cell electrode catalyst of the present invention preferably has a Pt particle content of 0.01 to 100% by weight based on the porous carbon. When the content of Pt particles is within this range, the catalyst cost can be reduced. The content of Pt particles can be determined by ICP analysis after dissolving Pt with aqua regia.

本発明における電極触媒の担体である多孔質炭素は、上記のように、細孔径が制御された3次元構造の多孔質炭素であり、これにより、活性成分の高分散とその利用率向上、および物質拡散が向上して高活性となる。また、適宜シリカと複合体を形成しており、CO被毒によるPt触媒活性低下も抑制できる特徴を有している。   As described above, the porous carbon which is a carrier of the electrode catalyst in the present invention is a porous carbon having a three-dimensional structure with a controlled pore diameter, and thereby, high dispersion of the active ingredient and improvement of its utilization rate, and Increased material diffusion and high activity. In addition, it has a characteristic that it can form a complex with silica as appropriate and can suppress a decrease in Pt catalyst activity due to CO poisoning.

(燃料電池用電極触媒の製造方法)
本発明では、負極、正極のいずれにおいても、電極触媒の担体としては、多孔質シリカ、特にメソポーラスシリカを鋳型として調製した多孔質炭素を用いるのが好ましい。ただし、鋳型として用いられる多孔質シリカは、3次元の細孔を有するものであればメソポーラスシリカには限定されない。上述のメソポーラスシリカを鋳型とする場合には、細孔が3次元的に繋がりを持つ構造、例えば、MCM−48、SBA−1等に代表されるキュービック型の規則的細孔構造を持つものや、HMS、SBA−15、MSU−H等に代表される各メソ細孔間がミクロ細孔により虫食い状に連結した構造をもつもの、さらには規則的に配列するメソ細孔に加え、それ以上に細孔径の大きい2次的細孔が共存するバイモーダル型メソポーラスシリカ等が望ましい。
(Method for producing electrode catalyst for fuel cell)
In the present invention, it is preferable to use porous carbon prepared using porous silica, particularly mesoporous silica as a template, as the electrode catalyst carrier in both the negative electrode and the positive electrode. However, the porous silica used as a template is not limited to mesoporous silica as long as it has three-dimensional pores. When the above-described mesoporous silica is used as a template, a structure in which the pores are three-dimensionally connected, for example, a cubic type regular pore structure represented by MCM-48, SBA-1, etc. , HMS, SBA-15, MSU-H, and other mesopores represented by worm-eaten structures connected by micropores, and in addition to regularly arranged mesopores, more Bimodal mesoporous silica or the like in which secondary pores having a large pore diameter coexist is desirable.

すなわち、多孔質炭素の細孔形状の制御は、鋳型となる多孔質シリカの細孔形状の制御により行なわれる。例えば、鋳型である界面活性剤の疎水基の長さを変えることにより、形成するミセルのサイズが変化することを利用し、細孔径の異なる多孔質シリカを製造することが可能であり、多孔質シリカの細孔形状を制御することにより、細孔形状の制御された多孔質炭素を調製できる。   That is, the pore shape of the porous carbon is controlled by controlling the pore shape of the porous silica serving as a template. For example, it is possible to produce porous silica with different pore diameters by utilizing the fact that the size of the micelle to be formed is changed by changing the length of the hydrophobic group of the surfactant as a template. By controlling the pore shape of silica, porous carbon with a controlled pore shape can be prepared.

鋳型とする多孔質シリカの物性としては比表面積400 m/g以上、細孔容積0.4 ml/g以上、細孔径1.5〜10nmであることが、さらには比表面積600 m/g以上、細孔容積0.6ml/g以上、細孔径1.5〜5.0 nmであることが好ましく、また、さらには比表面積600 m/g以上、細孔容積0.8 ml/g以上、細孔径1.5〜5.0nmであることが好ましい。 The physical properties of the porous silica used as a template include a specific surface area of 400 m 2 / g or more, a pore volume of 0.4 ml / g or more, and a pore diameter of 1.5 to 10 nm, and further a specific surface area of 600 m 2 / g. g or more, a pore volume of 0.6 ml / g or more, and a pore diameter of 1.5 to 5.0 nm are preferable, and a specific surface area of 600 m 2 / g or more, a pore volume of 0.8 ml / g g or more and a pore diameter of 1.5 to 5.0 nm are preferable.

多孔質炭素の調製法としては、まず、多孔質シリカの細孔内に炭素源となる前駆体有機物を充満させておこなうが、その方法としては以下のような2つの方法が例示できる。また、その他の方法によって調製することも可能である。   As a method for preparing the porous carbon, first, the pores of the porous silica are filled with a precursor organic substance serving as a carbon source. Examples of the method include the following two methods. It can also be prepared by other methods.

(i)炭素源となる前駆体有機物を、多孔質シリカを形成させる際の鋳型として用いる界面活性剤とする方法
多孔質シリカの鋳型である界面活性剤としては、下記の一般式(1)、(2)、(3)または(4)で表されるものが挙げられる。一般式(1)において、Xはイオン性の親水性官能基または原子団を表す。イオン性の親水性官能基としては、例えば、4級アンモニウムイオン、ピリジニウムイオン、イミダゾリウムイオン、スルホン酸イオン、カルボン酸イオンが挙げられ、中でも4級アンモニウムイオン、ピリジニウムイオン、イミダゾリウムイオンが好ましい。一般式(2)、(3)におけるXおよび一般式(3)におけるX’は中性の親水性官能基または原子団を表す。中性の親水性官能基としては、例えば、アミノ基、ポリエチレンオキシド基、ニトロソ基、ヒドロキシル基が挙げられ、中でもアミノ基、重合度2〜150のポリエチレンオキシド基が好ましい。一般式(1)〜(3)においてYは界面活性剤の構成成分として従来より知られる疎水部である。具体的には、アルキル基、アルケニル基、アルキニル基、脂環式炭化水素基、フェニル基、またはアルキレンオキシド基等が挙げられ、中でも特に、炭素原子数8〜24のアルキル基または平均重合度10〜200のポリプロピレンオキシド基が好ましい。一般式(1)においてZはイオン性の親水性官能基Xの対イオンを表す。Zの例として、ハロゲン化物イオン、硝酸イオン、硫酸イオン、水酸化物イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、アルカリ金属イオン、アルカリ土類金属イオン、アンモニウムイオンが挙げられ、中でも特に塩化物イオン、臭化物イオン、フッ化物イオン、水酸化物イオンが好ましい。一般式(1)〜(3)で表される界面活性剤等の具体例として、セチルトリメチルアンモニウム塩等のカチオン性界面活性剤、Triton-X(C14H22O(C2H4O)nH)、Brij30(C12H25O(C2H4O)4H)、Pluronic P123(HO(C2H4O)20(C3H6O)70(C2H4O)20H)等のノニオン性界面活性剤等が挙げられる。
(I) Method of using a precursor organic substance as a carbon source as a surfactant used as a template when forming porous silica As a surfactant used as a template of porous silica, the following general formula (1), Those represented by (2), (3) or (4) may be mentioned. In the general formula (1), X represents an ionic hydrophilic functional group or atomic group. Examples of the ionic hydrophilic functional group include a quaternary ammonium ion, a pyridinium ion, an imidazolium ion, a sulfonate ion, and a carboxylate ion, and among them, a quaternary ammonium ion, a pyridinium ion, and an imidazolium ion are preferable. X in the general formulas (2) and (3) and X ′ in the general formula (3) represent a neutral hydrophilic functional group or atomic group. Examples of the neutral hydrophilic functional group include an amino group, a polyethylene oxide group, a nitroso group, and a hydroxyl group. Among them, an amino group and a polyethylene oxide group having a polymerization degree of 2 to 150 are preferable. In the general formulas (1) to (3), Y is a hydrophobic part conventionally known as a constituent component of the surfactant. Specific examples include an alkyl group, an alkenyl group, an alkynyl group, an alicyclic hydrocarbon group, a phenyl group, or an alkylene oxide group. Among them, an alkyl group having 8 to 24 carbon atoms or an average degree of polymerization of 10 is particularly preferable. ~ 200 polypropylene oxide groups are preferred. In the general formula (1), Z represents a counter ion of the ionic hydrophilic functional group X. Examples of Z include halide ions, nitrate ions, sulfate ions, hydroxide ions, tetrafluoroborate ions, hexafluorophosphate ions, alkali metal ions, alkaline earth metal ions, ammonium ions, among others. Chloride ion, bromide ion, fluoride ion and hydroxide ion are preferred. Specific examples of the surfactants represented by the general formulas (1) to (3) include cationic surfactants such as cetyltrimethylammonium salt, Triton-X (C 14 H 22 O (C 2 H 4 O) n H), Brij30 (C 12 H 25 O (C 2 H 4 O) 4 H), Pluronic P123 (HO (C 2 H 4 O) 20 (C 3 H 6 O) 70 (C 2 H 4 O) 20 Nonionic surfactants such as H).

Figure 2006228502
Figure 2006228502

界面活性剤を鋳型とする多孔質シリカの製造方法は、特に制限されず、一般的な公知の方法によって製造できる。すなわち、多孔質シリカの鋳型である前記界面活性剤、ケイ酸ナトリウムやアルコキシシラン類等のシリカ源、HCl等の酸またはNaOHやNH4OH等の塩基のゾルゲル反応触媒、水、有機溶媒等から構成されるシリカ調製液を、公知の方法によってゾルゲル反応させることにより、界面活性剤とシリカの複合体を得る。ここで、ゾルゲル反応触媒は通常酸または塩基であるが、ゾルゲル反応促進物質であるNaFやNH4F等のフッ酸塩、NaBF4やNH4BF4等のテトラフルオロホウ酸塩をこれに添加、または酸・塩基に代用して単独で使用しても良い。有機溶媒は、特に限定されないが、親水性のあるアルコール類やエーテル類が好ましい。また、上記シリカ調製液に、必要に応じて後述する易炭化性物質を添加しても構わない。得られた界面活性剤/シリカ複合体は、空気中、15〜150℃で1〜24時間、好ましくは80〜120 ℃で10〜20時間乾燥する。次に界面活性剤を炭化するために、界面活性剤/シリカ複合体を真空または窒素等の不活性雰囲気下において300〜1400℃以上、好ましくは600〜1100 ℃の温度で加熱する。加熱時間は1〜24時間、好ましくは2〜6時間で行う。 The method for producing the porous silica using the surfactant as a template is not particularly limited, and can be produced by a generally known method. That is, from the surfactant which is a template of porous silica, a silica source such as sodium silicate and alkoxysilane, a sol-gel reaction catalyst of an acid such as HCl or a base such as NaOH or NH 4 OH, water, an organic solvent, etc. A composite of a surfactant and silica is obtained by subjecting the constituted silica preparation liquid to a sol-gel reaction by a known method. Here, the sol-gel reaction catalyst is usually an acid or a base, but a sol-gel reaction promoting substance such as a hydrofluoric acid salt such as NaF or NH 4 F or a tetrafluoroborate such as NaBF 4 or NH 4 BF 4 is added thereto. Alternatively, an acid / base may be used alone. The organic solvent is not particularly limited, but hydrophilic alcohols and ethers are preferable. Moreover, you may add the easily carbonizable substance mentioned later to the said silica preparation liquid as needed. The obtained surfactant / silica composite is dried in air at 15 to 150 ° C. for 1 to 24 hours, preferably at 80 to 120 ° C. for 10 to 20 hours. Next, in order to carbonize the surfactant, the surfactant / silica complex is heated at a temperature of 300 to 1400 ° C. or higher, preferably 600 to 1100 ° C. in an inert atmosphere such as vacuum or nitrogen. The heating time is 1 to 24 hours, preferably 2 to 6 hours.

(ii)多孔質シリカ細孔内に易炭化性物質を充満させ、その後、該易炭化性物質を重合して炭化する方法
本発明において、易炭化性物質とは、不飽和結合を有する分子や多価アルコール等の重合性分子または分子集合体、芳香環・脂環式炭化水素・ヘテロ環を含む分子または分子集合体、または分子量が500以上の高分子であり、具体的にはショ糖などの糖類、フルフリルアルコール、スチレン、ジビニルベンゼン、石油ピッチ、フェノール、ホルムアルデヒド、テレフタル酸、エチレングリコール、アクリロニトリル、アクリル酸メチル、ポリアクリル酸塩、ナフタレン・トリフェニレン等の多環芳香族誘導体等が挙げられる。
(Ii) A method of filling a porous silica pore with a readily carbonizable substance and then polymerizing and carbonizing the easily carbonizable substance In the present invention, the easily carbonizable substance is a molecule having an unsaturated bond, Polymeric molecules or molecular aggregates such as polyhydric alcohols, molecules or molecular aggregates containing aromatic rings / alicyclic hydrocarbons / heterocycles, or polymers having a molecular weight of 500 or more, such as sucrose Saccharides, furfuryl alcohol, styrene, divinylbenzene, petroleum pitch, phenol, formaldehyde, terephthalic acid, ethylene glycol, acrylonitrile, methyl acrylate, polyacrylate, naphthalene, triphenylene, etc. .

これらの易炭化性物質を多孔質シリカ細孔内に充満させる具体的な方法としては、易炭化性物質および必要に応じて重合用触媒や重合開始剤を含む溶液に鋳型となる多孔質シリカを浸漬させて吸着・含浸させる方法が比較的簡単に行える。   As a specific method for filling these easily carbonizable substances into the porous silica pores, porous silica as a template is added to a solution containing the easily carbonized substance and, if necessary, a polymerization catalyst and a polymerization initiator. It is relatively easy to immerse and adsorb and impregnate.

この場合、重合触媒としては硫酸等の酸が挙げられる。これ以外にも、あらかじめ酸点が導入された多孔質シリカ、例えばシリカ骨格中のSiの一部をAlやB等で置換し酸点としたメタロシリケートや、シリカ骨格を有機基で修飾しスルホン酸基やカルボン酸基等を導入した有機修飾体を使用することで代用することもできる。重合開始剤としては、例えば、2,2’−アゾビス(イソブチロニトリル)、過酸化ベンゾイル等が挙げられる。多孔質シリカを浸漬した液は、空気中、15〜200℃で1〜48時間、好ましくは80〜120 ℃で3〜15時間溶媒が乾固するまで乾燥する。このようにして、シリカ細孔内に充填された炭素源は、必要に応じ40〜300℃、好ましくは100〜200 ℃で熱処理することにより重合させる。熱処理の雰囲気としては、特に限定されないが、窒素などの不活性雰囲気中で行うほうが好ましい。処理時間は1〜48時間、好ましくは5〜15時間で行う。この前駆体有機物の充填およびその重合の操作は、シリカ細孔内に炭素源が十分に充填されるように、適宜、繰り返して行うことが望ましい。   In this case, the polymerization catalyst includes acids such as sulfuric acid. Other than this, porous silica in which acid sites are introduced in advance, for example, metallosilicates in which a part of Si in the silica skeleton is substituted with Al or B to form acid sites, or the silica skeleton is modified with an organic group to form a sulfone. Substitution can also be made by using an organic modified product into which an acid group, a carboxylic acid group or the like is introduced. Examples of the polymerization initiator include 2,2'-azobis (isobutyronitrile), benzoyl peroxide, and the like. The liquid in which the porous silica is immersed is dried in air at 15 to 200 ° C. for 1 to 48 hours, preferably at 80 to 120 ° C. for 3 to 15 hours until the solvent is dried. In this way, the carbon source filled in the silica pores is polymerized by heat treatment at 40 to 300 ° C., preferably 100 to 200 ° C., if necessary. The atmosphere for the heat treatment is not particularly limited, but is preferably performed in an inert atmosphere such as nitrogen. The treatment time is 1 to 48 hours, preferably 5 to 15 hours. It is desirable to repeat the filling of the precursor organic material and the polymerization thereof appropriately and appropriately so that the carbon source is sufficiently filled in the silica pores.

得られた炭素源/多孔質シリカ複合体は、(i)の場合と同様、真空または窒素等の不活性雰囲気下において300〜1400℃以上、好ましくは600〜1100 ℃の高温で加熱することにより、炭化処理を行う。加熱時間は1〜24時間、好ましくは2〜6時間で行う。   The obtained carbon source / porous silica composite is heated at a high temperature of 300 to 1400 ° C. or higher, preferably 600 to 1100 ° C. in an inert atmosphere such as vacuum or nitrogen as in the case of (i). Carburizing treatment is performed. The heating time is 1 to 24 hours, preferably 2 to 6 hours.

上記の方法によって得られた炭素/シリカ複合体は、NH4OH 、NaOH等の塩基性溶液またはHF溶液に浸漬し、シリカ骨格を溶解除去することにより、多孔質炭素を得る。NH4OH 、NaOH等の塩基性溶液で処理する場合には、0.05〜10mol/lの溶液、好ましくは0.5〜2 mol/lの水溶液に炭素/シリカ複合体を浸漬し、15〜150℃、好ましくは80〜120℃の温度で、適宜、必要に応じて還流しながら行う。処理時間は1分〜24時間、好ましくは10分〜12時間で行う。一方、HF溶液で処理する場合は、0.01〜2.0 mol/lの溶液、好ましくは0.1〜0.5 mol/lの水溶液に炭素/シリカ複合体を浸漬し、0〜50℃、好ましくは15〜35 ℃の温度で放置または攪拌する。処理時間は3時間以内、好ましくは1分〜1時間で行う。 The carbon / silica composite obtained by the above method is immersed in a basic solution such as NH 4 OH and NaOH or an HF solution to dissolve and remove the silica skeleton, thereby obtaining porous carbon. In the case of treatment with a basic solution such as NH 4 OH or NaOH, the carbon / silica composite is immersed in an aqueous solution of 0.05 to 10 mol / l, preferably 0.5 to 2 mol / l, and 15 It is carried out at a temperature of ˜150 ° C., preferably 80 ° C. to 120 ° C., with reflux as necessary. The treatment time is 1 minute to 24 hours, preferably 10 minutes to 12 hours. On the other hand, in the case of treating with an HF solution, the carbon / silica composite is immersed in an aqueous solution of 0.01 to 2.0 mol / l, preferably 0.1 to 0.5 mol / l, and 0 to 50 mol. C., preferably 15 to 35.degree. C., left standing or stirred. The treatment time is within 3 hours, preferably 1 minute to 1 hour.

さらに、本発明においては、以下に記述するように、適宜シリカと複合体を形成させる方法により、CO被毒による触媒活性低下も抑制できる特徴を有している。   Furthermore, in the present invention, as described below, it is possible to suppress a decrease in catalytic activity due to CO poisoning by appropriately forming a complex with silica.

本発明においては、多孔質炭素の調製過程で生成する炭素/シリカ複合体からシリカ骨格を全て除去せずに、シリカ表面を残存させることが好ましい。
すなわち、製造した炭素/シリカ複合体をNaOH等の塩基性溶液またはHF溶液の濃度および浸漬時間を調節することにより、適切な多孔質炭素の細孔形状を保ちつつ、多孔質炭素の0.01〜120重量%、好ましくは0.1〜100重量%、さらに好ましくは0.1〜80重量%の範囲内で炭素表面にシリカを残存させることが可能となる。
In the present invention, it is preferable to leave the silica surface without removing all of the silica skeleton from the carbon / silica composite produced in the process of preparing the porous carbon.
That is, by adjusting the concentration and immersion time of a basic solution such as NaOH or HF solution and the immersion time of the produced carbon / silica composite, while maintaining an appropriate porous carbon pore shape, Silica can remain on the carbon surface within a range of ˜120 wt%, preferably 0.1 to 100 wt%, more preferably 0.1 to 80 wt%.

易炭化性有機物を含む溶液を多孔質シリカに浸漬させて吸着・含浸させ調製する場合には、多孔質シリカ細孔内への易炭化性有機物の浸漬度を制御することにより、炭素が完全に充満させずに一部空隙を残した構造とすることができる。ここで、炭素とシリカの重量比率を上記の範囲内にすれば、そのままでシリカを除去する操作は必要ない。浸漬度の制御は例えば、易炭化性物質溶液の濃度、あるいは浸漬処理の回数を変えることにより行うことができる。   When a solution containing a readily carbonizable organic substance is immersed in porous silica to be adsorbed and impregnated, the carbon is completely removed by controlling the degree of immersion of the easily carbonizable organic substance in the porous silica pores. It can be set as the structure which left the space | gap partly without making it fill. Here, if the weight ratio of carbon and silica is within the above range, the operation of removing silica as it is is not necessary. The degree of immersion can be controlled, for example, by changing the concentration of the easily carbonizable substance solution or the number of immersion treatments.

さらにまた、細孔内に充満した炭素源の炭化に伴う収縮により、シリカを除去する事無く適切な多孔質炭素の細孔形状が形成される場合には、上記の含有率にすれば、そのままシリカを除去せず使用することも可能である。   Furthermore, in the case where an appropriate porous carbon pore shape is formed without removing silica due to shrinkage due to carbonization of the carbon source filled in the pores, if the above content rate is maintained, It is also possible to use without removing the silica.

負極の多孔質炭素担体に含有させる金属触媒としては、Pt一元系を用いるが、適宜、これにRu等の第二金属を加えた二元系を用いても構わない。また、正極も負極と同様にPtなどの金属触媒を使用することができる。   As the metal catalyst to be contained in the porous carbon support of the negative electrode, a Pt one-way system is used, but a two-way system in which a second metal such as Ru is added thereto may be used as appropriate. Further, a metal catalyst such as Pt can be used for the positive electrode as well as the negative electrode.

Ptの分散方法については多孔質炭素を形成後、一般的なPt担持方法で行うこともできるが、触媒を安定化させるための熱処理を行うとPt粒子の凝集が起こりやすく、高分散化は困難である。本研究では、このPt粒子の凝集の問題を、あらかじめ炭素前駆体とPt粒子前駆体で混合溶液を調製し、この混合溶液を多孔質シリカ内に充填する方法により克服した。すなわち、前述の方法(i)における界面活性剤等を炭素源とする場合には、界面活性剤にあらかじめ、Pt前駆体を混合しておけばよい。   Regarding the Pt dispersion method, after forming porous carbon, it can also be performed by a general Pt support method, but if heat treatment is performed to stabilize the catalyst, Pt particles tend to aggregate, making it difficult to achieve high dispersion It is. In this study, the problem of agglomeration of Pt particles was overcome by preparing a mixed solution of carbon precursor and Pt particle precursor in advance and filling the mixed solution in porous silica. That is, when the surfactant or the like in the above-described method (i) is used as a carbon source, a Pt precursor may be mixed with the surfactant in advance.

また、前述の方法(ii)においては、該易炭化性有機物を含む溶液にH2PtCl6や[Pt(NH3)4]Cl2等のPt粒子の前駆体である化合物を混合することにより、Pt粒子前駆体が炭素中に高分散した担持状態で形成される。この時、この易炭化性有機物を含む溶液中におけるPt粒子前駆体の濃度としては、Pt元素換算で0.1〜30重量%が好ましく、1〜10重量%が特に好ましい。 In the above-mentioned method (ii), a compound containing a precursor of Pt particles such as H 2 PtCl 6 or [Pt (NH 3 ) 4 ] Cl 2 is mixed with the solution containing the easily carbonizable organic substance. , Pt particle precursors are formed in a highly dispersed state in carbon. At this time, the concentration of the Pt particle precursor in the solution containing the easily carbonizable organic substance is preferably 0.1 to 30% by weight, particularly preferably 1 to 10% by weight in terms of Pt element.

また、多孔質シリカ細孔内にあらかじめPt粒子の前駆体を高分散した状態で固定化した後、多孔質シリカ細孔内に炭素源を充填し、この充填した炭素源を炭化させた後、適宜、還元処理を行うことによって炭素内にPt粒子を高分散化することもできる。具体的には、例えば、多孔質シリカとして骨格中のSiの一部がIIIB族元素、中でも特にAlまたはBで同型置換された陽イオン交換点を持つメタロシリケートを用い、イオン交換法等により[Pt(NH3)4]2+等の陽イオン性Pt化合物をあらかじめ多孔質シリカに高分散担持させる。メタロシリケートの同型置換率は置換前Siの0.1〜50mol%であることが好ましく、1〜40mol%であることが特に好ましい。この場合、まずメタロシリケートを陽イオン交換点に対して過剰量のNa+を含むNaNO3等の水溶液または過剰量のNH4 +を含むNH4NO3等の水溶液に浸し、10〜90 ℃、好ましくは10〜40 ℃の温度で1〜24時間放置し、イオン交換点を全てNa型またはNH4型にする。NH4型のものは、適宜、200〜1000 ℃、好ましくは300〜600 ℃で1〜24時間焼成しH型としても良い。Na型、NH4型またはH型となったメタロシリケートを、[Pt(NH3)4]2+等のPt化合物陽イオンがイオン交換点の1〜200%、好ましくは20〜120%含む水溶液に浸漬し、10〜90℃、好ましくは65 ℃〜85 ℃の温度で、1〜24時間攪拌する。このようにしてPt化合物を担持した後に、先に述べた易炭化性物質を含む溶液に浸漬し、炭素源を吸着・含浸させて複合体を得る。この炭素源を重合し、不活性雰囲気下で加熱して炭化させ、必要に応じて還元処理を行うことによって、Pt粒子は部分的に炭素に埋没しながら炭素表面に高分散担持された状態で形成される。この方法によれば、あらかじめシリカ上にPt粒子を生成した後に炭素源を吸着・含浸させてから炭化する場合に比較して、Pt粒子前駆体はイオン交換点に固定化されているため、よりPt粒子を微小化することが可能である。 In addition, after immobilizing the precursor of Pt particles in a highly dispersed state in the porous silica pores in advance, filling the porous silica pores with a carbon source, and carbonizing the filled carbon source, If appropriate, Pt particles can be highly dispersed in carbon by performing a reduction treatment. Specifically, for example, by using a metallosilicate having a cation exchange point in which a part of Si in the skeleton as porous silica is a group IIIB element, in particular, Al or B is isomorphously substituted, A cationic Pt compound such as Pt (NH 3 ) 4 ] 2+ is preliminarily dispersed on porous silica. The isomorphous substitution rate of the metallosilicate is preferably 0.1 to 50 mol%, and particularly preferably 1 to 40 mol%, of Si before substitution. In this case, first, the metallosilicate is immersed in an aqueous solution such as NaNO 3 containing an excess amount of Na + or an aqueous solution such as NH 4 NO 3 containing an excess amount of NH 4 + with respect to the cation exchange point, and 10 to 90 ° C., Preferably, it is allowed to stand at a temperature of 10 to 40 ° C. for 1 to 24 hours to make all the ion exchange points Na type or NH 4 type. The NH 4 type may be appropriately baked at 200 to 1000 ° C., preferably 300 to 600 ° C. for 1 to 24 hours, to form an H type. An aqueous solution containing a metallosilicate in Na-type, NH 4 -type or H-type, wherein a Pt compound cation such as [Pt (NH 3 ) 4 ] 2+ is 1 to 200%, preferably 20 to 120% of the ion exchange point. And is stirred at a temperature of 10 to 90 ° C, preferably 65 to 85 ° C for 1 to 24 hours. After supporting the Pt compound in this manner, the composite is obtained by immersing in the solution containing the easily carbonizable substance described above and adsorbing and impregnating the carbon source. By polymerizing this carbon source, heating it in an inert atmosphere and carbonizing it, and performing reduction treatment as necessary, Pt particles are partially embedded in carbon while being highly dispersed and supported on the carbon surface. It is formed. According to this method, since the Pt particle precursor is immobilized at the ion exchange point, compared to the case where the carbon source is adsorbed and impregnated after the Pt particles are generated on silica in advance, the Pt particle precursor is immobilized at the ion exchange point. Pt particles can be miniaturized.

本発明の方法によれば、シリカを完全に溶解した場合には、Pt粒子を含有する多孔質炭素の細孔構造も、上記の多孔質炭素のみの細孔構造と同一の物性を有する。このようにして得られたPt粒子含有多孔質炭素は、Pt粒子が多孔質炭素に埋め込まれたような構造になっているため、熱処理時、Ptの移動による凝集が起こりにくく高分散を維持できる。シリカを残存させた場合には、残存したシリカの量に比例して、細孔径や細孔容積は小さくなるが、上記細孔構造の範囲内であれば物質拡散に問題は無く、また、得られるPt粒子の粒径はシリカの量にかかわらず上記の範囲内となる。   According to the method of the present invention, when the silica is completely dissolved, the porous structure of the porous carbon containing the Pt particles has the same physical properties as the above-mentioned porous structure of only the porous carbon. The Pt particle-containing porous carbon thus obtained has a structure in which the Pt particles are embedded in the porous carbon, so that during heat treatment, aggregation due to the movement of Pt hardly occurs and high dispersion can be maintained. . When silica is left, the pore diameter and pore volume become smaller in proportion to the amount of silica remaining, but there is no problem in material diffusion as long as it is within the range of the pore structure described above. The particle size of the Pt particles is within the above range regardless of the amount of silica.

次に燃料電池用電極について説明する。燃料電池用電極は上述の通りに調製した電極触媒から作製でき、その製造方法には特に限定されない。Pt含有量は、電極面積1cmあたり0.1〜0.5 mg、好ましくは0.1〜0.4 mg、さらに好ましくは0.1〜0.35 mgであることが好ましい。 Next, the fuel cell electrode will be described. The fuel cell electrode can be produced from the electrode catalyst prepared as described above, and the production method is not particularly limited. The Pt content is 0.1 to 0.5 mg, preferably 0.1 to 0.4 mg, more preferably 0.1 to 0.35 mg per 1 cm 2 of electrode area.

固体電解質としてはポリパーフルオロアルキルスルホン酸類に代表される固体電解質膜が最も好ましいが、プロトンを伝導できる膜であれば特に限定されない。また固体電解質と各電極との接合の方法についても特に限定されない。   The solid electrolyte is most preferably a solid electrolyte membrane represented by polyperfluoroalkylsulfonic acids, but is not particularly limited as long as it is a membrane capable of conducting protons. Further, the method for joining the solid electrolyte and each electrode is not particularly limited.

以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何らの制限を受けるものではない。     EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
n−オクチルアミン9.93 gにイオン交換水50 mlを添加した溶液を攪拌後、濃塩酸0.56gを添加攪拌した。この溶液に、テトラエトキシシラン(TEOS)16.00gをエタノール30 mlに混合した溶液を加え、35 ℃の水浴中で攪拌して、白色沈殿を得た。これを吸引濾過し、漏斗内にてイオン交換水により濾液が白濁しなくなるまで濾過洗浄した後、さらにエタノール20mlで3回洗浄した。濾物を室温で風乾後、空気中650 ℃で焼成することにより多孔質シリカを得た。
Example 1
After stirring a solution obtained by adding 50 ml of ion-exchanged water to 9.93 g of n-octylamine, 0.56 g of concentrated hydrochloric acid was added and stirred. A solution obtained by mixing 16.00 g of tetraethoxysilane (TEOS) with 30 ml of ethanol was added to this solution and stirred in a 35 ° C. water bath to obtain a white precipitate. This was subjected to suction filtration, filtered and washed with ion-exchanged water in the funnel until the filtrate did not become cloudy, and further washed with 20 ml of ethanol three times. The filter cake was air-dried at room temperature and then fired at 650 ° C. in air to obtain porous silica.

上記の方法で調製した多孔質シリカ1.00gを、ショ糖1.25 g、濃硫酸0.14 g、H2PtCl6・6H2O 0.20 g、イオン交換水5.00 gを混合した溶液に浸し、シリカを溶液に浸漬したまま空気中100 ℃で液体が乾固するまで乾燥した後、引き続き160 ℃で熱処理した。得られた粉末を、再度ショ糖0.80g、濃硫酸0.09 g 、H2PtCl6・6H2O 0.20 g、イオン交換水5.00 gを混合した溶液に浸し、シリカを浸漬した溶液を、同様に空気中100 ℃で乾燥後、160 ℃で熱処理し、さらに真空下900 ℃で処理してショ糖の炭化およびPtの還元を行った。炭化・還元後の試料1gに対し、1 mol/lのNaOH水溶液280 gを添加し、フラスコ中120 ℃で還流しながら加熱することでシリカ骨格を除去した。この液を吸引濾過して得られた黒色の沈殿に対し、漏斗内にてイオン交換水による濾過洗浄を2回繰り返し、そのまま風乾しPt担持メソポーラスカーボンを調製した。 1.00 g of porous silica prepared by the above method is mixed with 1.25 g of sucrose, 0.14 g of concentrated sulfuric acid, 0.20 g of H 2 PtCl 6 .6H 2 O, and 5.00 g of ion-exchanged water. The sample was immersed in the solution and dried in air at 100 ° C. while the silica was immersed in the solution, followed by heat treatment at 160 ° C. The obtained powder is again immersed in a solution in which 0.80 g of sucrose, 0.09 g of concentrated sulfuric acid, 0.20 g of H 2 PtCl 6 .6H 2 O and 5.00 g of ion-exchanged water are mixed, and silica is immersed The solution thus obtained was similarly dried in air at 100 ° C., heat treated at 160 ° C., and further treated at 900 ° C. under vacuum to carbonize sucrose and reduce Pt. To 1 g of the sample after carbonization / reduction, 280 g of 1 mol / l NaOH aqueous solution was added, and the silica skeleton was removed by heating at 120 ° C. while refluxing in the flask. The black precipitate obtained by suction filtration of this liquid was repeatedly filtered and washed with ion-exchanged water twice in a funnel, and then air-dried as it was to prepare Pt-supported mesoporous carbon.

窒素吸着測定の結果をBJH法により解析した細孔分布曲線を図1に示す。図1から、得られたPt担持メソポーラスカーボン(試料1)は細孔径1.6 nm付近に分布する細孔を持つことが分かった。     FIG. 1 shows a pore distribution curve obtained by analyzing the result of the nitrogen adsorption measurement by the BJH method. From FIG. 1, it was found that the obtained Pt-supported mesoporous carbon (sample 1) had pores distributed around a pore diameter of 1.6 nm.

(実施例2)
HO(C2H4O)20(C3H6O)70(C2H4O)20Hの構造を持つ界面活性剤2.00 gに、イオン交換水52.40 g、濃塩酸8.60 gを添加し、均一になるまで攪拌した。この溶液にTEOS 4.30 gを添加後、40 ℃のオイルバスに浸して攪拌した。得られた白色のスラリーをオートクレーブに移液し、密閉して100℃の恒温槽中で2日間攪拌した。これを吸引濾過し、漏斗内にてイオン交換水による濾過洗浄を5回繰り返し、そのまま風乾した。回収した白色粉末を空気中100℃で乾燥した後、同じく空気中550 ℃で焼成することにより、界面活性剤を除去し多孔質シリカを得た。
(Example 2)
2.00 g of a surfactant having the structure of HO (C 2 H 4 O) 20 (C 3 H 6 O) 70 (C 2 H 4 O) 20 H, ion-exchanged water 52.40 g, concentrated hydrochloric acid 8 .60 g was added and stirred until uniform. After adding 4.30 g of TEOS to this solution, it was immersed in an oil bath at 40 ° C. and stirred. The obtained white slurry was transferred to an autoclave, sealed, and stirred in a thermostat at 100 ° C. for 2 days. This was subjected to suction filtration, and filtration and washing with ion-exchanged water was repeated 5 times in the funnel, followed by air drying. The collected white powder was dried at 100 ° C. in the air and then baked at 550 ° C. in the air to remove the surfactant and obtain porous silica.

上記の方法で調製した多孔質シリカ1.00 gを、ショ糖1.25 g、濃硫酸0.14 g、H2PtCl6・6H2O 0.20 g、イオン交換水5.00 gを混合した溶液に浸し、シリカを溶液に浸漬したまま空気中100 ℃で液体が乾固するまで乾燥した後、引き続き160 ℃で熱処理した。得られた粉末を、再度ショ糖0.80g、濃硫酸0.09 g 、H2PtCl6・6H2O 0.20 g、イオン交換水5.00 gを混合した溶液に浸し、シリカを浸漬した溶液を、同様に空気中100 ℃で乾燥後、160 ℃で熱処理し、さらに真空下900 ℃処理してショ糖の炭化およびPtの還元を行った。炭化・還元後の試料1gに対し、1 mol/lのNaOH水溶液280 gを添加し、フラスコ中120 ℃で還流しながら加熱することでシリカ骨格を除去した。この液を吸引濾過して得られた黒色の沈殿に対し、漏斗内にてイオン交換水による濾過洗浄を2回繰り返し、そのまま風乾してPt担持メソポーラスカーボンを調製した。 1.00 g of porous silica prepared by the above method was added to 1.25 g of sucrose, 0.14 g of concentrated sulfuric acid, 0.20 g of H 2 PtCl 6 .6H 2 O, and 5.00 g of ion-exchanged water. It was immersed in the mixed solution, dried in air at 100 ° C. with the silica immersed in the solution, and then heat-treated at 160 ° C. The obtained powder is again immersed in a solution in which 0.80 g of sucrose, 0.09 g of concentrated sulfuric acid, 0.20 g of H 2 PtCl 6 .6H 2 O and 5.00 g of ion-exchanged water are mixed, and silica is immersed The solution thus obtained was similarly dried in air at 100 ° C., heat-treated at 160 ° C., and further treated at 900 ° C. under vacuum to carbonize sucrose and reduce Pt. To 1 g of the sample after carbonization / reduction, 280 g of 1 mol / l NaOH aqueous solution was added, and the silica skeleton was removed by heating at 120 ° C. while refluxing in the flask. The black precipitate obtained by suction filtration of this liquid was repeatedly filtered and washed with ion-exchanged water twice in a funnel, and then air-dried as it was to prepare Pt-supported mesoporous carbon.

窒素吸着測定の結果をBJH法により解析した細孔分布曲線を図1に示す。図1から、得られたPt担持メソポーラスカーボン(試料2)は細孔径3.5 nm付近に分布する細孔を持つことが分かった。   FIG. 1 shows a pore distribution curve obtained by analyzing the result of the nitrogen adsorption measurement by the BJH method. From FIG. 1, it was found that the obtained Pt-supported mesoporous carbon (sample 2) had pores distributed around a pore diameter of 3.5 nm.

(実施例3)
実施例2の多孔質シリカ調製におけるTEOS添加時に、TEOS 3.01 g、Al(OC3H7)3 1.26 gを添加した以外は、実施例2の多孔質シリカ調製と同様の操作を行い、Al含有多孔質シリカを得た。
(Example 3)
The same operation as in the preparation of porous silica in Example 2 was performed except that TEOS 3.01 g and Al (OC 3 H 7 ) 3 1.26 g were added when TEOS was added in the preparation of porous silica in Example 2. And Al-containing porous silica was obtained.

上記の方法で調製したAl含有多孔質シリカ1.00 gを、1 mol/lのNaNO3水溶液200 mlに浸してイオン交換点を全てNa型にするまで室温で放置した。減圧濾過後、漏斗内でイオン交換水により5回濾過洗浄し、更に、1 mol/lのNH4NO3水溶液200 mlに浸してイオン交換点を全てNH4型にするまで室温で放置し、同様に濾過・洗浄した。この試料を空気中400 ℃で焼成してイオン交換点をH+型にした後、4 mmol/lの[Pt(NH3)4]Cl2水溶液200 mlに浸して80 ℃オイルバス中で攪拌した。そのまま室温まで降温した後、濾過して得られた粉末を空気中100℃で乾燥した。乾燥後、フェノール0.83 g、ホルムアルデヒド0.80g、エタノール5.00gを混合した溶液に浸し、シリカを溶液に浸漬したまま50 ℃でエタノールを除去した後、引き続き100 ℃で熱処理した。得られた粉末を、再度フェノール0.83 g、ホルムアルデヒド0.80g、エタノール5.00gを混合した溶液に浸し、シリカを浸漬した溶液を、同様に50 ℃でエタノールを除去した後、100 ℃で熱処理し、さらに真空下900 ℃処理してショ糖の炭化およびPtの還元を行った。炭化・還元後の試料1 gに対し、1 mol/lのNaOH水溶液280 gを添加し、フラスコ中120 ℃で還流しながら加熱することでシリカ骨格を除去した。この液を吸引濾過して得られた黒色の沈殿に対し、漏斗内にてイオン交換水による濾過洗浄を2回繰り返し、そのまま風乾しPt担持メソポーラスカーボン(試料3)を調製した。 1.00 g of Al-containing porous silica prepared by the above method was immersed in 200 ml of 1 mol / l NaNO 3 aqueous solution and allowed to stand at room temperature until all the ion exchange points were converted to Na type. After filtration under reduced pressure, it was filtered and washed five times with ion-exchanged water in the funnel, and further immersed in 200 ml of 1 mol / l NH 4 NO 3 aqueous solution and allowed to stand at room temperature until the ion exchange points were all NH 4 type. The same was filtered and washed. This sample was calcined in air at 400 ° C. to make the ion exchange point H + type, then immersed in 200 ml of 4 mmol / l [Pt (NH 3 ) 4 ] Cl 2 aqueous solution and stirred in an oil bath at 80 ° C. did. After cooling to room temperature, the powder obtained by filtration was dried in air at 100 ° C. After drying, it was immersed in a solution in which 0.83 g of phenol, 0.80 g of formaldehyde and 5.00 g of ethanol were mixed, and after removing ethanol at 50 ° C. while the silica was immersed in the solution, heat treatment was subsequently performed at 100 ° C. The obtained powder was immersed again in a solution in which 0.83 g of phenol, 0.80 g of formaldehyde and 5.00 g of ethanol were mixed, and the solution in which silica was immersed was similarly removed at 50 ° C., and then at 100 ° C. The mixture was heat-treated and further treated at 900 ° C. under vacuum to carbonize sucrose and reduce Pt. 280 g of 1 mol / l NaOH aqueous solution was added to 1 g of the sample after carbonization / reduction, and the silica skeleton was removed by heating in a flask while refluxing at 120 ° C. The black precipitate obtained by suction filtration of this liquid was repeatedly filtered and washed with ion-exchanged water twice in a funnel, and then air-dried to prepare Pt-supported mesoporous carbon (sample 3).

(実施例4)
HO(C2H4O)20(C3H6O)70(C2H4O)20Hの構造を持つ界面活性剤2.00 gに、フェノール1.50 g、エタノール10.0g、イオン交換水52.40 g、濃塩酸8.60gおよびH2PtCl6・6H2O 0.49 gを添加し40 ℃のオイルバスに浸して攪拌した。この溶液にTEOS 4.30 gを、さらにホルムアルデヒド1.44 gを添加した後、そのまま40 ℃で1日攪拌した。得られた白色のスラリーをオートクレーブに移液して密閉し、100℃の恒温槽中で2日間攪拌後、沈殿を吸引濾過し、濾物を漏斗内にてイオン交換水により濾過洗浄を5回繰り返し、そのまま風乾した。回収した白色粉末を空気中100℃で乾燥した後、真空下800 ℃処理してフェノール樹脂の炭化およびPtの還元を行った。炭化・還元後の試料1 gに対し、1 mol/lのNaOH水溶液280 gを添加し、フラスコ中120 ℃で還流しながら加熱することでシリカ骨格を除去した。この液を吸引濾過して得られた黒色の沈殿に対し、漏斗内にてイオン交換水による濾過洗浄を2回繰り返し、そのまま風乾しPt担持メソポーラスカーボン(試料4)を調製した。
Example 4
A surfactant having a structure of HO (C 2 H 4 O) 20 (C 3 H 6 O) 70 (C 2 H 4 O) 20 H is added to 1.50 g of phenol, 10.0 g of ethanol, 52.40 g of ion-exchanged water, 8.60 g of concentrated hydrochloric acid and 0.49 g of H 2 PtCl 6 .6H 2 O were added, and the mixture was immersed in an oil bath at 40 ° C. and stirred. To this solution, 4.30 g of TEOS and 1.44 g of formaldehyde were added, followed by stirring at 40 ° C. for 1 day. The obtained white slurry was transferred to an autoclave and sealed, and stirred for 2 days in a thermostatic bath at 100 ° C., and then the precipitate was suction filtered, and the residue was filtered and washed with ion exchange water in a funnel 5 times. Repeatedly air dried. The collected white powder was dried in air at 100 ° C. and then treated under vacuum at 800 ° C. to carbonize the phenol resin and reduce Pt. 280 g of 1 mol / l NaOH aqueous solution was added to 1 g of the sample after carbonization / reduction, and the silica skeleton was removed by heating in a flask while refluxing at 120 ° C. The black precipitate obtained by suction filtration of this liquid was repeatedly filtered and washed with ion-exchanged water twice in a funnel, and then air-dried to prepare Pt-supported mesoporous carbon (Sample 4).

(比較例1)
実施例2で調製した多孔質シリカ1.00gを、ショ糖1.25g、濃硫酸0.14 g、イオン交換水5.00 gを混合した溶液に浸し、シリカを溶液に浸漬したまま空気中100℃で液体が乾固するまで乾燥した後、引き続き160 ℃で熱処理した。得られた粉末を、再度ショ糖0.80g、濃硫酸0.09 g、イオン交換水5.00 gを混合した溶液に浸し、シリカを浸漬した溶液を、同様に空気中100℃で乾燥後、160 ℃で熱処理し、さらに真空下900 ℃処理してショ糖の炭化を行った。炭化後の試料1 gに対し、1 mol/lのNaOH水溶液280 gを添加し、フラスコ中120 ℃で還流しながら加熱することでシリカ骨格を除去した。この液を吸引濾過して得られた黒色の沈殿に対し、漏斗内にてイオン交換水による濾過洗浄を2回繰り返し、そのまま風乾しメソポーラスカーボンを調製した。H2PtCl6・6H2O 0.40 gをイオン交換水200 mlに添加し作成した溶液に、上記の方法で調製したメソポーラスカーボン0.90gを浸して、カーボンを溶液に浸漬したまま、空気中100 ℃で液体が乾固するまで乾燥した後、H2 50 ml/min流通下300 ℃処理してPtの還元を行い、Pt担持メソポーラスカーボン(試料5)を調製した。
(Comparative Example 1)
1.00 g of the porous silica prepared in Example 2 was immersed in a solution in which 1.25 g of sucrose, 0.14 g of concentrated sulfuric acid and 5.00 g of ion-exchanged water were mixed, and the silica was immersed in the solution while being immersed in the solution. After drying at 100 ° C. until the liquid was dried, heat treatment was continued at 160 ° C. The obtained powder was again immersed in a solution in which 0.80 g of sucrose, 0.09 g of concentrated sulfuric acid and 5.00 g of ion-exchanged water were mixed, and the solution in which silica was immersed was similarly dried at 100 ° C. in air. The sucrose was carbonized by heat treatment at 160 ° C. and further under vacuum at 900 ° C. 280 g of 1 mol / l NaOH aqueous solution was added to 1 g of the carbonized sample, and the silica skeleton was removed by heating at 120 ° C. in a flask while refluxing. The black precipitate obtained by suction filtration of this liquid was subjected to filtration and washing with ion-exchanged water twice in a funnel, and then air-dried to prepare mesoporous carbon. In a solution prepared by adding 0.40 g of H 2 PtCl 6 · 6H 2 O to 200 ml of ion-exchanged water, 0.90 g of the mesoporous carbon prepared by the above method is immersed, and while the carbon is immersed in the solution, air After drying at 100 ° C. until the liquid was dried, Pt was reduced by treatment at 300 ° C. under a flow of H 2 of 50 ml / min to prepare Pt-supported mesoporous carbon (Sample 5).

表1に実施例および比較例で調製したPt担持メソポーラスカーボン(試料1〜4)の細孔容積、全細孔容積中の細孔径1.2〜5.0nmの細孔容積比率、および平均Pt粒子径の測定結果を示す。本発明に従い調製したPt担持メソポーラスカーボンにおいては、Pt担持による細孔の閉塞は無く、Pt粒子径も3.0nm以下になり高分散化されていることが分かった。   Table 1 shows the pore volume of the Pt-supported mesoporous carbon (samples 1 to 4) prepared in Examples and Comparative Examples, the pore volume ratio of the pore diameter of 1.2 to 5.0 nm in the total pore volume, and the average Pt The measurement result of a particle diameter is shown. In the Pt-supported mesoporous carbon prepared according to the present invention, it was found that there was no pore clogging due to Pt support, and the Pt particle diameter was 3.0 nm or less and highly dispersed.

Figure 2006228502
Figure 2006228502

本発明に従い調製した、Pt担持メソポーラスカーボン(試料1および2)の細孔分布曲線。The pore distribution curve of Pt-supported mesoporous carbon (Samples 1 and 2) prepared according to the present invention.

Claims (9)

直径10 nm以下の大きさの細孔が0.6〜1.2ml/gの細孔容積を有し、かつ、該細孔の90体積%以上が1.2〜5.0 nmの大きさの範囲にあり、該細孔表面に0.5〜3.0nmの大きさのPt粒子が分散している多孔質炭素を含むことを特徴とする燃料電池用電極触媒。 A pore having a diameter of 10 nm or less has a pore volume of 0.6 to 1.2 ml / g, and 90% by volume or more of the pore has a size of 1.2 to 5.0 nm. An electrode catalyst for a fuel cell, comprising porous carbon in which Pt particles having a size of 0.5 to 3.0 nm are dispersed on the pore surface. 前記多孔質炭素が、多孔質炭素に対して0.01〜120重量%のシリカと複合化していることを特徴とする請求項1に記載の燃料電池用電極触媒。 The electrode catalyst for a fuel cell according to claim 1, wherein the porous carbon is complexed with 0.01 to 120% by weight of silica based on the porous carbon. 前記Pt粒子の含有量が、前記多孔質炭素に対して0.01〜100重量%であることを特徴とする請求項1又は請求項2に記載の燃料電池用電極触媒。 3. The fuel cell electrode catalyst according to claim 1, wherein the content of the Pt particles is 0.01 to 100% by weight with respect to the porous carbon. 前記多孔質炭素が、多孔質シリカを鋳型として細孔を形成することを特徴とする請求項1記載の燃料電池用電極触媒の製造方法。 The method for producing an electrode catalyst for a fuel cell according to claim 1, wherein the porous carbon forms pores using porous silica as a template. 前記Pt粒子が、多孔質炭素の炭素源の中に分散されたPt粒子の前駆体から形成されたものであり、多孔質炭素が形成されたあとに炭素表面に分散していることを特徴とする請求項4に記載の燃料電池用電極触媒の製造方法。 The Pt particles are formed from a precursor of Pt particles dispersed in a carbon source of porous carbon, and the porous carbon is dispersed on the carbon surface after the formation. The method for producing a fuel cell electrode catalyst according to claim 4. 前記Pt粒子が、あらかじめ前記多孔質シリカの細孔内に固定化されているPtまたは/及びPt化合物から形成されたものであり、多孔質炭素が形成されたあとに炭素表面に分散していることを特徴とする請求項4又は請求項5に記載の燃料電池用電極触媒の製造方法。 The Pt particles are formed from Pt or / and a Pt compound fixed in advance in the pores of the porous silica, and are dispersed on the carbon surface after the porous carbon is formed. A method for producing an electrode catalyst for a fuel cell according to claim 4 or 5, wherein: 請求項1〜3のいずれか1項に記載の電極触媒を用いて形成された燃料電池用電極。 The electrode for fuel cells formed using the electrode catalyst of any one of Claims 1-3. 前記Pt金属使用量が電極面積1 cmあたり0.1〜0.5 mgであることを特徴とする請求項7に記載の燃料電池用電極。 The fuel cell electrode according to claim 7, wherein the amount of Pt metal used is 0.1 to 0.5 mg per 1 cm 2 of electrode area. 請求項7又は請求項8に記載の電極を構成要素とする燃料電池。




A fuel cell comprising the electrode according to claim 7 or 8 as a constituent element.




JP2005038931A 2005-02-16 2005-02-16 Electrode catalyst for fuel cell, its manufacturing method, and electrode and fuel cell using the same Pending JP2006228502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038931A JP2006228502A (en) 2005-02-16 2005-02-16 Electrode catalyst for fuel cell, its manufacturing method, and electrode and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005038931A JP2006228502A (en) 2005-02-16 2005-02-16 Electrode catalyst for fuel cell, its manufacturing method, and electrode and fuel cell using the same

Publications (1)

Publication Number Publication Date
JP2006228502A true JP2006228502A (en) 2006-08-31

Family

ID=36989704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038931A Pending JP2006228502A (en) 2005-02-16 2005-02-16 Electrode catalyst for fuel cell, its manufacturing method, and electrode and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP2006228502A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759435B1 (en) 2006-11-20 2007-10-04 삼성에스디아이 주식회사 Catalyst for fuel cell and membrane-electrode assembly for fuel cell
JP2008041498A (en) * 2006-08-08 2008-02-21 Sharp Corp Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
WO2008093731A1 (en) * 2007-02-01 2008-08-07 National Institute Of Advanced Industrial Science And Technology Electrode catalyst for fuel cell and fuel cell using the same
WO2009119062A1 (en) * 2008-03-24 2009-10-01 三洋電機株式会社 Membrane-electrode assembly, fuel cell, and fuel cell system
JP2011222378A (en) * 2010-04-13 2011-11-04 Toyota Motor Corp Fuel cell manufacturing method
JP2014017230A (en) * 2012-06-12 2014-01-30 Toyota Motor Corp Porous carbon and metal air battery
WO2014175106A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Electrode and fuel cell electrode catalyst layer containing same
WO2017183475A1 (en) * 2016-04-19 2017-10-26 日産自動車株式会社 Electrocatalyst, membrane electrode assembly using said electrocatalyst, and fuel cell
WO2023166754A1 (en) * 2022-03-04 2023-09-07 日清紡ホールディングス株式会社 Metal-loaded catalyst, electrode and battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071253A (en) * 2002-08-02 2004-03-04 Toyota Motor Corp Electrocatalyst for fuel cell and fuel cell
JP2004178859A (en) * 2002-11-25 2004-06-24 Aisin Seiki Co Ltd Method for manufacturing catalyst and fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071253A (en) * 2002-08-02 2004-03-04 Toyota Motor Corp Electrocatalyst for fuel cell and fuel cell
JP2004178859A (en) * 2002-11-25 2004-06-24 Aisin Seiki Co Ltd Method for manufacturing catalyst and fuel cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041498A (en) * 2006-08-08 2008-02-21 Sharp Corp Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
KR100759435B1 (en) 2006-11-20 2007-10-04 삼성에스디아이 주식회사 Catalyst for fuel cell and membrane-electrode assembly for fuel cell
JPWO2008093731A1 (en) * 2007-02-01 2010-05-20 独立行政法人産業技術総合研究所 Fuel cell electrode catalyst and fuel cell using the same
WO2008093731A1 (en) * 2007-02-01 2008-08-07 National Institute Of Advanced Industrial Science And Technology Electrode catalyst for fuel cell and fuel cell using the same
US8475964B2 (en) 2008-03-24 2013-07-02 Sanyo Electric Co., Ltd. Membrane-electrode assembly, fuel cell, and fuel cell system
WO2009119062A1 (en) * 2008-03-24 2009-10-01 三洋電機株式会社 Membrane-electrode assembly, fuel cell, and fuel cell system
JP5385897B2 (en) * 2008-03-24 2014-01-08 Jx日鉱日石エネルギー株式会社 Membrane electrode assembly, fuel cell and fuel cell system
JP2011222378A (en) * 2010-04-13 2011-11-04 Toyota Motor Corp Fuel cell manufacturing method
JP2014017230A (en) * 2012-06-12 2014-01-30 Toyota Motor Corp Porous carbon and metal air battery
WO2014175106A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Electrode and fuel cell electrode catalyst layer containing same
WO2017183475A1 (en) * 2016-04-19 2017-10-26 日産自動車株式会社 Electrocatalyst, membrane electrode assembly using said electrocatalyst, and fuel cell
JPWO2017183475A1 (en) * 2016-04-19 2019-02-28 日産自動車株式会社 Electrode catalyst, membrane electrode assembly and fuel cell using the electrode catalyst
US10562018B2 (en) 2016-04-19 2020-02-18 Nissan Motor Co., Ltd. Electrode catalyst, and membrane electrode assembly and fuel cell using electrode catalyst
WO2023166754A1 (en) * 2022-03-04 2023-09-07 日清紡ホールディングス株式会社 Metal-loaded catalyst, electrode and battery

Similar Documents

Publication Publication Date Title
Lei et al. CMK-5 mesoporous carbon synthesized via chemical vapor deposition of ferrocene as catalyst support for methanol oxidation
Azizi et al. Nickel/mesoporous silica (SBA-15) modified electrode: an effective porous material for electrooxidation of methanol
JP2006228502A (en) Electrode catalyst for fuel cell, its manufacturing method, and electrode and fuel cell using the same
TWI243507B (en) Hollow mesocarbon electrode-catalyst for direct methanol fuel cell and preparation thereof
Wu et al. Ordered mesoporous platinum@ graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst
Joo et al. Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes
JP6305349B2 (en) Highly sintered stable metal nanoparticles supported on mesoporous graphite particles and uses thereof
Kuppan et al. Platinum-supported mesoporous carbon (Pt/CMK-3) as anodic catalyst for direct methanol fuel cell applications: The effect of preparation and deposition methods
KR100866311B1 (en) Method for preparing n-rich nanoporous graphitic carbon nitride structure
Zhao et al. Nitrogen and sulfur co-doped mesoporous hollow carbon microspheres for highly efficient oxygen reduction electrocatalysts
CN1781604A (en) Mesoporous carbon composite containing carbon nanotube
Huang et al. Multiheteroatom-doped porous carbon catalyst for oxygen reduction reaction prepared using 3D network of ZIF-8/polymeric nanofiber as a facile-doping template
JP7153005B2 (en) MESOPOROUS CARBON, METHOD FOR MANUFACTURING SAME, AND POLYMER FUEL CELL
JP2007519165A (en) Nanostructured metal-carbon composite for electrode catalyst of fuel cell and production method thereof
Kong et al. Platinum catalyst on ordered mesoporous carbon with controlled morphology for methanol electrochemical oxidation
Ren et al. Dual-porosity carbon templated from monosize mesoporous silica nanoparticles
Cao et al. Enhanced electrocatalytic activity of platinum nanoparticles supported on nitrogen-modified mesoporous carbons for methanol electrooxidation
Yang et al. Controllable synthesis of multiheteroatoms co-doped hierarchical porous carbon spheres as an ideal catalysis platform
KR100574030B1 (en) Electrocatalysts for fuel cell supported by porous carbon structure having regularly 3-dimensionally arranged spherical pores of uniform diameter and their preparation method
Wang et al. Insights into the resorcinol–formaldehyde resin coating process focusing on surface modification of colloidal SiO2 particles
Wang et al. Diaminohexane-assisted preparation of coral-like, poly (benzoxazine)-based porous carbons for electrochemical energy storage
Chen et al. Molecular level design of nitrogen-doped well-defined microporous carbon spheres for selective adsorption and electrocatalysis
KR100752265B1 (en) Nano-structured metal-carbon composite for electrode catalyst of fuel cell and process for preparation thereof
CN102931418B (en) Preparation method of mesoporous carbon nitride loaded precious nano particle
JP7116564B2 (en) Monodisperse spherical carbon porous material and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405