JP2004178859A - Method for manufacturing catalyst and fuel cell - Google Patents

Method for manufacturing catalyst and fuel cell Download PDF

Info

Publication number
JP2004178859A
JP2004178859A JP2002341155A JP2002341155A JP2004178859A JP 2004178859 A JP2004178859 A JP 2004178859A JP 2002341155 A JP2002341155 A JP 2002341155A JP 2002341155 A JP2002341155 A JP 2002341155A JP 2004178859 A JP2004178859 A JP 2004178859A
Authority
JP
Japan
Prior art keywords
catalyst
template
electrode
catalyst component
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002341155A
Other languages
Japanese (ja)
Inventor
Toshihiro Asao
敏裕 朝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2002341155A priority Critical patent/JP2004178859A/en
Publication of JP2004178859A publication Critical patent/JP2004178859A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a catalyst having an excellent catalyst property by using a nano-structure carbon material as a catalyst carrier material, and a fuel cell having an excellent power generation property by using the nano-structure carbon material as the catalyst carrier material of an electrode. <P>SOLUTION: The method comprises a catalyst component producing process of producing catalyst component particles 2 inside fine pores of a template matter 1 with nano-fine pores; a carbon precursor absorbing process of absorbing a carbon precursor 3 inside the fine pores of the template matter 1; a carbonization process of carbonizing the carbon precursor 3; and a template matter rejecting process of rejecting the template matter 1. This fuel cell uses a catalyst manufactured by the method as at least one electrode catalyst for a fuel electrode or an oxidizer electrode. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は触媒の製造方法および燃料電池に関する。
【0002】
【従来の技術】
大気の汚染をできる限り減らすために自動車の排ガス対策が重要になっており、その対策の一つとして電気自動車が使用されているが、充電設備や走行距離などの問題で普及に至っていない。
【0003】
大気汚染防止、CO排出規制および石油資源枯渇といった地球規模での環境・資源問題に対処するため、クリーンでエネルギー密度が高く、充電時間が不要な燃料電池は最も脚光を浴び、世界中で急ピッチに研究開発が進められている。すなわち、燃料電池は水素と酸素を使用して電気分解の逆反応で発電し、水以外の排出物がなくクリーンな発電装置として注目されており、燃料電池を使用した自動車が最も将来性のあるクリーンな自動車であると見られている。燃料電池の中でも固体高分子電解質型燃料電池が低温で作動するため自動車用として最も有望である。
【0004】
しかしながら、現段階では、実用化のために克服しなければならないいくつかの課題が残されている。固体高分子電解質型燃料電池は、一般的に多数の単セルが積層されており、単セルは、二つの電極(燃料極と酸化剤極)で固体高分子電解質膜を挟持して接合した膜電極接合体を、燃料ガスまたは酸化剤ガスのガス流路を有するセパレータで挟んだ構造をしている。
【0005】
電極には触媒成分が担持された触媒担体を層状にした電極層が使用される。ガス拡散と集電体の役割を併せ持つ多孔質のガス拡散層の平面上に電極層を設ける構造と固体高分子電解質膜の平面上に電極層を設ける構造が存在する。触媒成分には白金、白金系合金などの貴金属が使用されている。貴金属は非常に高価であるため、燃料電池を低コスト化するために、できる限り使用量を減らすことが必要である。触媒金属を効率的に利用するためには微細な粒子とし比表面積を大きくする必要があり、触媒担体材料としても比表面積の大きなカーボンブラックが使用されている。しかし、様々な研究がなされているが、触媒担体材料としてカーボンブラックを使用した場合、触媒金属の粒子径減少は限界に至っている。このため触媒成分の使用量減少には限界があった。
【0006】
近年、カーボンブラックに換わる触媒担体材料としてナノ構造炭素材料が注目されている。ナノ構造炭素材料は、その微細構造が適度に小さいことに特徴があり、新しい機能を発現する材料として期待されている。すなわち、ナノ構造炭素材料はナノオーダーの細孔を有しており、この細孔はある程度の大きさの分子も取り込むことが可能であり、かつ量子効果も期待できるほど小さい。
【0007】
従来技術として、非特許文献1にはナノ細孔を有するメソポーラスシリカを鋳型物質として用いてナノ構造炭素材料を調製した後、このナノ構造炭素材料に触媒成分を担持する触媒の製造方法が開示されている。
【0008】
【非特許文献1】
Nature 412, 169−172, 2001
【0009】
【発明が解決しようとする課題】
従来技術の製造方法では、触媒成分を担持する際に使用する金属塩化物溶液はナノ構造炭素材料の微細構造表面に吸着され、粒子の移動や成長が阻害されるために還元金属化された後も微細な白金粒子が得られる。
【0010】
しかしながら、従来技術の方法で製造された触媒を電極に使用した燃料電池の発電特性は不十分であった。
【0011】
本発明は上記課題を解決したもので、ナノ構造炭素材料を触媒担体材料として使用して優れた触媒特性を得る触媒の製造方法およびナノ構造炭素材料を電極の触媒担体材料として使用して優れた発電特性を有する燃料電池を提供する。
【0012】
【課題を解決するための手段】
上記技術的課題を解決するために、本発明の請求項1において講じた技術的手段(以下、第1の技術的手段と称する。)は、ナノ細孔を有するの鋳型物質の細孔内部に触媒成分粒子を生成させる触媒成分生成工程と、次に前記鋳型物質の細孔内部に炭素前駆物質を吸着させる炭素前駆物質吸着工程と、次に前記炭素前駆物質を炭化する炭化工程と、次に前記鋳型物質を除去する鋳型物質除去工程が設けられていることを特徴とする触媒の製造方法である。
【0013】
上記第1の技術的手段による効果は、以下のようである。
【0014】
すなわち、ナノ細孔を有するの鋳型物質の細孔内部に触媒成分粒子を生成させたのちに鋳型物質の細孔内部に炭素前駆物質を吸着させ炭化し、その後、鋳型物質を除去しているので、炭素前駆物質を炭化して形成されるナノ構造炭素材料の最表面に触媒成分粒子が担持された触媒を製造できるため、優れた触媒特性を得ることができる。
【0015】
上記技術的課題を解決するために、本発明の請求項2において講じた技術的手段(以下、第2の技術的手段と称する。)は、前記鋳型物質がメソポーラスシリカであることを特徴とする請求項1記載の触媒の製造方法である。
【0016】
上記第2の技術的手段による効果は、以下のようである。
【0017】
すなわち、メソポーラスシリカは柱状のメソ細孔を有しているので、このメソ細孔を型として柱状のナノ構造炭素材料が形成され、その端部に触媒成分粒子が担持された触媒を形成できるため、触媒の担持位置が限定され、さらに優れた触媒特性を得ることができる。またメソポーラスシリカは炭素材料や貴金属触媒を損傷せずに除去することができる。
【0018】
上記技術的課題を解決するために、本発明の請求項3において講じた技術的手段(以下、第3の技術的手段と称する。)は、請求項1または請求項2に記載の製造方法で製造された触媒を、燃料極、酸化剤極の少なくとも一方の触媒として使用していることを特徴とする燃料電池である。
【0019】
上記第3の技術的手段による効果は、以下のようである。
【0020】
すなわち、ナノ構造炭素材料の最表面に触媒成分粒子が担持された触媒を使用した電極を使用しているので、高分子電解質と接触しない触媒成分粒子はなく、効率的にプロトン伝導がなされ、優れた発電特性を有する燃料電池を製造できる。
【0021】
【発明の実施の形態】
本発明者は、従来技術において十分な触媒特性が得られない原因を探究し、鋭意研究した結果、本発明に至った。
【0022】
図3〜5を用いて従来技術の触媒の製造方法を説明する。図3はシリカ複合体の製造方法の説明図である。図4は触媒担体の製造方法の説明図である。図5は触媒担持の説明図である。
【0023】
図3(a)は界面活性剤51の模式図である。51aは親水基を、51bは疎水基を表している。界面活性剤51を水中に分散させると、疎水基51bを中心側にして図3(b)のように球状に凝集し球状ミセル52が形成される。なお、図3(b)は球状ミセルの断面形状の模式図である。界面活性剤の種類や水中の濃度により疎水基51b側が内径側に集まって図3(c)のように柱状の棒状ミセル53が形成される。棒状ミセル53が形成された溶液中にシリカ源が存在すると、図3(d)のように棒状ミセル53の外径側にシリカ源が集まり筒状シリカ源凝集体54が形成されたシリカ複合体55が形成される。
【0024】
棒状ミセル53が形成される界面活性剤濃度域では水相と油相の界面を保つため各棒状ミセル53が近接し自己組織化的に最密配置するため棒状ミセル53は互いに軸方向にそろって集まっている。このため、棒状ミセル53の外径側に集まったシリカ源から形成されるシリカ複合体55も互いに軸方向がそろって集まり、図3(e)のようにシリカ複合積層体56が形成される。この積層体を仮焼成するとシリカ源はシリカになるとともに界面活性剤が除去され、図3(f)のように、外径が隣接したメソポーラスシリカ57のシリカ積層体58が形成される。
【0025】
棒状ミセル53の形状はほぼ円柱状で、その外径は20〜100Åのメソ径である。この外径と型として形成されたメソポーラスシリカ57の筒内の横断面形状はメソ径を有する略円形である。したがって、メソポーラスシリカ57の筒内はメソ細孔であり、メソポーラスシリカ57はメソ細孔を有する鋳型物質となり得る。
【0026】
こうして得られたシリカ積層体58に不活性ガス中で加熱処理すると炭素になる炭素前駆物質の水溶液に浸して乾燥すると、図4(b)のようにメソポーラスシリカ57の筒内部に炭素前駆物質59が吸着される。炭素前駆物質59が吸着されたシリカ積層体58を不活性ガス中で加熱処理すると炭素前駆物質が炭素になり、その後アルカリ溶解処理するとメソポーラスシリカ57が溶解し柱状のナノ構造炭素体60の集合体からなるナノ構造炭素材料61が得られる。メソポーラスシリカ57はナノ構造炭素体60の鋳型物質となっている。
【0027】
このナノ構造炭素材料61を白金源の水溶液に浸漬し、乾燥させると図5(b)のように白金源62が分散したナノ構造炭素材料61が得られ、これを還元処理すると図5(c)のように白金源62が白金63となり、従来技術の触媒が得られる。
【0028】
この従来技術の触媒を詳細に観察すると、触媒成分である白金はナノ構造炭素材料61のナノ構造炭素体60とナノ構造炭素体60の隙間の内部まで侵入した状態で存在している。すなわち、触媒金属はナノ構造炭素材料61の内部にまで侵入した状態で存在し、見かけ上の表面に存在する量は極めて少ないことが判明した。
【0029】
燃料電池の発電に際しては、燃料ガスの供給、触媒成分上で反応したプロトンの移動、電子の移動が円滑に行われることが必要で、通常はプロトン輸送を助ける高分子電解質を触媒成分近傍に付着させている。
【0030】
従来技術の製造方法で発電特性が十分でなかった原因はナノ構造炭素材料の微細構造が高分子電解質の取り込みに十分なほどの大きさではないため、ナノ構造炭素材料の内部に担持された触媒成分粒子の周囲には高分子電解質が存在せず、発電反応への寄与が妨げられるという問題が生ずるためであると推論した。そこで本発明者はナノ構造炭素材料上に存在する触媒成分粒子の存在部位を限定すれば、優れた特性を有する触媒が得られると考えた。
【0031】
すなわち、上記したように、メソポーラスシリカを鋳型として調製したナノ構造炭素材料は、柱状の微細なナノ構造炭素体を束ねたような状態で得られる。この微細なナノ構造炭素体の先端にのみ選択的に触媒成分を担持することで、微細な触媒成分粒子の高密度担持を維持しながら、高分子電解質との付着を確保することができれば、優れた特性を有する触媒が得られると本発明者は考え、鋭意研究した結果、本発明に至った。
【0032】
本発明は、メソ細孔を有する鋳型物質の細孔内部に触媒成分粒子を生成させたのちに鋳型物質の細孔内部に炭素前駆物質を吸着させ、炭素前駆物質を炭化後、鋳型物質を除去することを特徴としている。
【0033】
以下、本発明の実施例について説明する。
【0034】
はじめに、実施例、比較例に用いた鋳型物質の製造について説明する。鋳型物質として従来技術と同様にメソポーラスシリカを使用した。鋳型物質とするメソポーラスシリカの調製は、界面活性剤の自己組織化過程に伴う液晶化を利用して、ミセル間の隙間に鋳型材料を浸透固化させるものである。
【0035】
アニオン系界面活性剤ヘキサデシルトリメチルアンモニウムブロミド〔C1633N(CHBr〕12.4gとノニオン系界面活性剤ポリオキシエチレン(4)ラウリルエーテル〔C1225(OCOH〕2.3gを234gの純水に加温溶解し、10秒程度の超音波照射を行い、界面活性剤水溶液を作製する。これにより界面活性剤水溶液中に棒状ミセルができる。この界面活性剤水溶液に別途作製したシリカ源である珪酸ナトリウム水溶液70gを混合し振騰攪拌する。珪酸ナトリウム水溶液はSiO:NaOH:HO=2:1:30の組成比で調整されている。100℃で48時間の熟成を行い、残渣を濾別洗浄した後、100℃で乾燥した。その後、550℃で6時間加熱処理を行い、界面活性剤を除去すると、鋳型物質であるメソポーラスシリカのシリカ積層体(Cubic型(Ia−3d)構造のメソ細孔を有するMCM−48)が製造される。製造されたMCM−48の細孔の平均径は約60Åである。
【0036】
(実施例)
ヘキサクロロ白金の10%水溶液10gに上記の方法で製造されたMCM−48を1g投入し、0.027MPa程度の減圧下で細孔内に溶液を浸透させた。その後、濾別し残渣を真空乾燥した。この残渣を水素雰囲気下120℃で2時間処理し、ヘキサクロロ白金を還元し金属化した(触媒成分生成工程)。
【0037】
触媒成分が生成されたMCM−48の仕込量1gに対して1.25gの蔗糖吸着量になるように蔗糖の水溶液を調整した。この蔗糖水溶液をテトラフルオロエチレン製シャーレ上に置いたMCM−48にかけ、室温に放置乾燥させた。乾燥後160℃にて1時間の仮焼成を行った。さらにMCM−48の仕込量1gに対して0.63gの蔗糖吸着量になるように調整された蔗糖水溶液をテトラフルオロエチレン製シャーレ上に置いたMCM−48にかけ、室温に放置乾燥させ、乾燥後160℃にて1時間の仮焼成を行った。MCM−48の重量1gに対する蔗糖吸着量は全体で1.88gである(炭素前駆物質吸着工程)。
【0038】
次にアルゴンガス雰囲気中で900℃、6時間加熱し、蔗糖を炭化させた(炭化工程)。この材料を重量比で1:1の水とエタノールの混合液に水酸化ナトリウムを5wt%溶解した溶液を用いて環流処理することによるアルカリ溶解によりメソポーラスシリカを溶解除去した(鋳型物質除去工程)。その後、洗浄処理して触媒を得た。
【0039】
得られた触媒の白金平均粒子径をX線回折法により測定した。また得られた触媒の一部を王水に分散し白金成分を溶解させ、その濾液をIPC分析により濾液中の白金量測定値から白金担持量を測定した。ここでいう白金担持量とは、触媒に対する白金の重量比であり、重量%で表している。
【0040】
得られた触媒を高分子電解質溶液(旭化成株式会社製:アシプレックスSS−1080、5wt%)と触媒:高分子電解質溶液=1:1.25(重量比)で混合しペーストを作製し、このペーストを使用して、炭化フッソ系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体のエチレン−四フッ化エチレン共重合体フィルム上に130mm×200mm、厚さ300μmのシート状のデカールを作製した。このデカールをφ36の円形に切り出して触媒層を作製後、60mm×60mmの形状の固体高分子電解質膜(ジャパンゴアテックス株式会社製:Gore−Select、厚さ40μm)の両面に転写した。この接合体の両面に触媒層に合わせてφ36mm、厚さ180mmのカーボンシート(東レ株式会社製: TGP−60)を160℃、0.5MPaでホットプレスすることにより接合し、膜・電極接合体(MEA)を作製した。このMEAを、それぞれ酸化剤ガス、燃料ガスを供給するガス通路を有するペアのセパレータで挟持して単セルを作製した。
【0041】
作製した単セルを用いて発電特性を測定した。発電特性は、酸化剤極のガス通路に0.12MPaの純酸素を、燃料極側のガス通路に0.12MPaの純水素をそれぞれバブリング式の加湿器を介して供給して測定した。セル温度は75℃、酸素側の加湿器温度は55℃、水素側の加湿器温度は65℃とした。電流密度1A/cmにおける酸素利用率、水素利用率とも80%の条件で、電流密度−セル電圧を測定した。
【0042】
(比較例)
鋳型物質として実施例と同様のメソポーラスシリカMCM−48を使用した。MCM−48の仕込量1gに対して1.25gの蔗糖吸着量になるように蔗糖の水溶液を調整した。この蔗糖水溶液をテトラフルオロエチレン製シャーレ上に置いたMCM−48にかけ、室温に放置乾燥させた。乾燥後160℃にて1時間の仮焼成を行った。さらにMCM−48の仕込量1gに対して0.63gの蔗糖吸着量になるように調整された蔗糖水溶液をテトラフルオロエチレン製シャーレ上に置いたMCM−48にかけ、室温に放置乾燥させ、乾燥後160℃にて1時間の仮焼成を行った。MCM−48の重量1gに対する蔗糖吸着量は全体で実施例と同じ1.88gである。
【0043】
次にアルゴンガス雰囲気中で900℃、6時間加熱し、蔗糖を炭化させた。この材料を重量比で1:1の水とエタノールの混合液に水酸化ナトリウムを5wt%溶解した溶液を用いて環流処理することによるアルカリ溶解によりメソポーラスシリカを溶解除去した。その後、洗浄処理してナノ構造炭素材料を得た。
【0044】
得られたナノ構造炭素材料0.6gに対して0.4gの白金吸着量になるように調整されたヘキサクロロ白金水溶液をナノ構造炭素材料に吸着させ乾燥した。この材料を水素雰囲気下120℃で2時間処理し、ヘキサクロロ白金を還元し金属化し触媒を得た。ここで得られた触媒の製造方法は、従来技術の非特許文献1に記載された製造方法である。
【0045】
実施例と同様の方法で白金平均粒子径を測定した。白金担持量は使用した白金がすべて担体に付着したものとして算出した。得られた触媒を使用して実施例と同様に単セルを作製し、発電特性を評価した。
【0046】
(評価結果)
表1に白金平均粒子径、白金担持量の結果を示す。白金平均粒子径は、実施例の方が比較例よりやや小さいが、ほぼ同等である。その白金平均粒子径は、カーボンブラック(キャボードジャパン社製:バルカンXC−72R、平均粒径40nm)を用いて比較例と同様に白金を担持した場合の白金平均粒子径156Åに対し半分以下である。実施例では鋳型物質のナノ細孔内部で白金源を還元処理したので、ナノ細孔内部に閉じこめられた白金源が還元処理時に成長が妨げられたため粒子径の小さい白金粒子が得られたと考えられる。また比較例では担体材料としてナノ構造炭素材料を使用したため、ナノ構造炭素材料の微細構造の隙間に閉じこめられた白金源が還元処理時に成長が妨げられたことによると考えられる。ナノ構造炭素材料が優れた担体材料となりえる可能性が示されている。なお、ここでナノ細孔とはnmオーダーの細孔のことで、断面径が10〜100Åであればよい。望ましくは20〜70Åの断面径であるとよい。
【0047】
白金担持量の結果と実施例、比較例の電極の実測厚さから計算される電極の単位面積当りの白金量は、実施例では燃料極0.18mg/cm、酸化剤極0.21mg/cm、比較例では燃料極0.35mg/cm、酸化剤極0.32mg/cmであった。
【0048】
【表1】

Figure 2004178859
図1に実施例、比較例の触媒から製造された燃料電池単セルの電流密度−セル電圧特性を示す。実施例の方が電極の単位面積当りの白金量が比較例よりはるかに少ないにもかかわらず、発電特性は実施例の方が比較例よりはるかに優れている。
【0049】
本発明者は、その理由を下記のように推論している。図2は本発明の触媒の製造方法の説明図である。鋳型物質は実際には図3(d)のように積層体であるが、図2(a)〜図2(c)では簡略化のために一つの鋳型物質で説明している。触媒成分生成工程により図2(a)のように筒状の鋳型物質1の筒内部(メソ細孔)に触媒成分粒子2が生成する。次に炭素前駆物質吸着工程により図2(b)のように鋳型物質1の筒内部に炭素前駆物質3が吸着される。鋳型物質1の筒内部には炭素前駆物質3より先に触媒成分粒子2が生成しているので、触媒成分粒子2は炭素前駆物質3の表面に存在する。次に炭化工程により図2(c)のように炭素前駆物質3が炭化されて形成されたナノ構造炭素体4の表面に触媒成分粒子2が担持された構造ができる。鋳型物質除去工程により鋳型物質1が除去されて、図2(d)のように表面にのみ触媒成分粒子2が担持されたナノ構造炭素体4の集合体が残る。すなわち、本発明の触媒製造方法により表面にのみ触媒成分粒子2が担持されたナノ構造炭素材料5が形成される。この触媒を使用して燃料電池用電極を形成すると、ほとんどすべての触媒成分粒子の周囲に高分子電解質が存在するため、発電時にプロトンの移動が円滑に行われる。この結果、本発明の触媒を使用した燃料電池は、触媒担持量が少ないにもかかわらず優れた発電特性が得られたものと考える。
【0050】
なお、実施例では燃料電池の触媒として説明したが、特に限定されない。触媒反応は、被反応物質と触媒成分が接触することにより起こるので、担体材料の表面に触媒成分が分布する本発明の構造は、あらゆる触媒に適用可能である。
【0051】
実施例では鋳型物質としてメソポーラスシリカを使用したが、ナノ細孔を有する物質であれば使用可能であり、その形状も限定はなく、粒子状のもの、薄膜状のもの等が使用できる。鋳型物質としてメソポーラスシリカを使用すれば、柱状のメソ細孔を有しているので、このメソ細孔を型として柱状のナノ構造炭素材料が形成され、その端部に触媒成分粒子が担持された触媒を形成できるため、触媒の担持位置が限定され、さらに優れた触媒特性を得ることができる。また鋳型物質の材質としてシリカ以外にメタロシリケート、遷移金属酸化物など、炭素材料や触媒成分粒子を損傷せずに除去できる材質なら使用できる。鋳型物質の材質としてシリカを使用すると、比較的容易に炭素材料や触媒成分粒子を損傷せずに除去することができる。実施例では、炭素前駆物質として蔗糖を使用したが、鋳型物質の細孔内部に侵入可能な有機物であればよく、低分子有機物やポリイミド等の高分子有機物が使用できる。
【0052】
【発明の効果】
以上のように、本発明は、ナノ細孔を有するの鋳型物質の細孔内部に触媒成分粒子を生成させる触媒成分生成工程と、次に前記鋳型物質の細孔内部に炭素前駆物質を吸着させる炭素前駆物質吸着工程と、次に前記炭素前駆物質を炭化する炭化工程と、次に前記鋳型物質を除去する鋳型物質除去工程が設けられていることを特徴とする触媒の製造方法であるので、ナノ構造炭素材料を触媒担体材料として使用して優れた触媒特性を得る触媒の製造方法を提供でき、この製造方法で製造された触媒を、燃料極、酸化剤極の少なくとも一方の電極触媒として使用していることを特徴とする燃料電池であるので、ナノ構造炭素材料を電極の触媒担体材料として使用して優れた発電特性を有する燃料電池を提供できる。
【図面の簡単な説明】
【図1】実施例、比較例の触媒から製造された燃料電池単セルの電流密度−セル電圧特性のグラフ図
【図2】本発明の触媒の製造方法の説明図
【図3】従来技術のシリカ複合体の製造方法の説明図
【図4】従来技術の触媒担体の製造方法の説明図
【図5】従来技術の触媒担持の説明図
【符号の説明】
1…メソポーラスシリカ(鋳型物質)
2…触媒成分粒子
3…炭素前駆物質
4…ナノ構造炭素体
5…ナノ構造炭素材料[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a catalyst and a fuel cell.
[0002]
[Prior art]
In order to reduce air pollution as much as possible, it is important to reduce exhaust gas from automobiles. As one of the measures, electric vehicles are used, but they have not been widely used due to problems such as charging facilities and mileage.
[0003]
Air pollution, to deal with environmental and resource problems on a global scale, such as CO 2 emission regulations and depletion of oil resources, high energy density clean unnecessary fuel cell charging time attracting the most limelight, rapid worldwide R & D is progressing on the pitch. In other words, fuel cells use hydrogen and oxygen to generate electricity through the reverse reaction of electrolysis, and are attracting attention as clean power generators with no emissions other than water, and vehicles using fuel cells are the most promising. It is seen as a clean car. Among the fuel cells, solid polymer electrolyte fuel cells are most promising for automobiles because they operate at low temperatures.
[0004]
However, at this stage, there are still some issues that need to be overcome for practical use. A solid polymer electrolyte fuel cell generally has a large number of single cells stacked, and a single cell is a membrane formed by sandwiching a solid polymer electrolyte membrane between two electrodes (a fuel electrode and an oxidant electrode). It has a structure in which the electrode assembly is sandwiched between separators having a gas flow path for fuel gas or oxidant gas.
[0005]
For the electrode, an electrode layer in which a catalyst carrier carrying a catalyst component is layered is used. There are a structure in which an electrode layer is provided on a plane of a porous gas diffusion layer having both functions of gas diffusion and a current collector, and a structure in which an electrode layer is provided on a plane of a solid polymer electrolyte membrane. Precious metals such as platinum and platinum-based alloys are used for the catalyst component. Since noble metals are very expensive, it is necessary to reduce the amount of use as much as possible in order to reduce the cost of the fuel cell. In order to use the catalyst metal efficiently, it is necessary to form fine particles and increase the specific surface area. As a catalyst carrier material, carbon black having a large specific surface area is used. However, although various studies have been made, when carbon black is used as the catalyst carrier material, the reduction in the particle size of the catalyst metal has reached its limit. For this reason, there is a limit in reducing the amount of the catalyst component used.
[0006]
In recent years, nanostructured carbon materials have attracted attention as catalyst carrier materials replacing carbon black. Nanostructured carbon materials are characterized by their appropriately small microstructure, and are expected to be materials that exhibit new functions. That is, the nanostructured carbon material has pores on the order of nanometers, and these pores can take in molecules of a certain size, and are so small that a quantum effect can be expected.
[0007]
As a conventional technique, Non-Patent Document 1 discloses a method for producing a catalyst in which a nanostructured carbon material is prepared using mesoporous silica having nanopores as a template substance, and a catalyst component is supported on the nanostructured carbon material. ing.
[0008]
[Non-patent document 1]
Nature 412, 169-172, 2001
[0009]
[Problems to be solved by the invention]
In the prior art production method, the metal chloride solution used for supporting the catalyst component is adsorbed on the fine structure surface of the nanostructured carbon material, and after the movement and growth of the particles is inhibited, the metal chloride solution is subjected to reduction metallization. Also, fine platinum particles can be obtained.
[0010]
However, the power generation characteristics of a fuel cell using a catalyst produced by a conventional method for an electrode were insufficient.
[0011]
The present invention solves the above-mentioned problems, and provides a method for producing a catalyst that obtains excellent catalytic properties by using a nanostructured carbon material as a catalyst support material and an excellent method using the nanostructured carbon material as a catalyst support material for an electrode. Provided is a fuel cell having power generation characteristics.
[0012]
[Means for Solving the Problems]
In order to solve the above technical problem, the technical measures taken in claim 1 of the present invention (hereinafter, referred to as first technical means) are provided inside the pores of the template material having nanopores. A catalyst component generation step of generating catalyst component particles, and then a carbon precursor adsorption step of adsorbing a carbon precursor inside the pores of the template substance, and then a carbonization step of carbonizing the carbon precursor, A method for producing a catalyst, comprising a template substance removing step of removing the template substance.
[0013]
The effects of the first technical means are as follows.
[0014]
In other words, after the catalyst component particles are generated inside the pores of the template material having nanopores, the carbon precursor is adsorbed and carbonized inside the pores of the template material, and then the template material is removed. Since a catalyst in which catalyst component particles are supported on the outermost surface of a nanostructured carbon material formed by carbonizing a carbon precursor can be manufactured, excellent catalytic properties can be obtained.
[0015]
In order to solve the above technical problem, a technical means (hereinafter referred to as a second technical means) taken in claim 2 of the present invention is characterized in that the template substance is mesoporous silica. A method for producing a catalyst according to claim 1.
[0016]
The effects of the second technical means are as follows.
[0017]
That is, since mesoporous silica has columnar mesopores, a columnar nanostructured carbon material is formed using the mesopores as a mold, and a catalyst in which catalyst component particles are supported at the end can be formed. In addition, the position where the catalyst is supported is limited, and more excellent catalyst characteristics can be obtained. Further, the mesoporous silica can be removed without damaging the carbon material or the noble metal catalyst.
[0018]
In order to solve the above technical problem, the technical measures taken in claim 3 of the present invention (hereinafter, referred to as third technical means) are the same as those in claim 1 or claim 2. A fuel cell characterized in that the produced catalyst is used as at least one of a fuel electrode and an oxidizer electrode.
[0019]
The effects of the third technical means are as follows.
[0020]
That is, since the electrode using the catalyst in which the catalyst component particles are supported on the outermost surface of the nano-structured carbon material is used, there is no catalyst component particle that does not come into contact with the polymer electrolyte, and proton conduction is efficiently performed, and excellent. A fuel cell having improved power generation characteristics can be manufactured.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventor has searched for the cause of the inability to obtain sufficient catalytic properties in the prior art, and as a result of diligent research, led to the present invention.
[0022]
A conventional method for producing a catalyst will be described with reference to FIGS. FIG. 3 is an explanatory diagram of a method for producing a silica composite. FIG. 4 is an explanatory diagram of a method for producing a catalyst carrier. FIG. 5 is an explanatory view of carrying a catalyst.
[0023]
FIG. 3A is a schematic diagram of the surfactant 51. 51a represents a hydrophilic group, and 51b represents a hydrophobic group. When surfactant 51 is dispersed in water, spherical micelles 52 are formed by agglomerating spherically around hydrophobic group 51b as shown in FIG. 3B. FIG. 3B is a schematic view of the cross-sectional shape of the spherical micelle. Depending on the type of the surfactant and the concentration in the water, the hydrophobic group 51b side gathers on the inner diameter side to form a columnar rod-shaped micelle 53 as shown in FIG. 3C. When the silica source is present in the solution in which the rod-shaped micelles 53 are formed, the silica composite in which the silica sources are collected on the outer diameter side of the rod-shaped micelles 53 and the cylindrical silica source aggregate 54 is formed as shown in FIG. 55 are formed.
[0024]
In the surfactant concentration region where the rod-shaped micelles 53 are formed, the rod-shaped micelles 53 are close to each other in order to maintain the interface between the aqueous phase and the oil phase and are arranged in a self-organizing and close-packed manner. Are gathering. For this reason, the silica composites 55 formed from the silica sources collected on the outer diameter side of the rod-shaped micelles 53 are also collected in the same axial direction, and a silica composite laminate 56 is formed as shown in FIG. When this laminate is calcined, the silica source becomes silica and the surfactant is removed, and a silica laminate 58 of mesoporous silica 57 having adjacent outer diameters is formed as shown in FIG.
[0025]
The rod-shaped micelle 53 has a substantially cylindrical shape, and its outer diameter is a meso diameter of 20 to 100 °. The outer diameter and the cross-sectional shape of the mesoporous silica 57 formed as a mold in the cylinder are substantially circular having a meso diameter. Therefore, the inside of the cylinder of the mesoporous silica 57 has mesopores, and the mesoporous silica 57 can be a template material having mesopores.
[0026]
The silica laminate 58 thus obtained is immersed in an aqueous solution of a carbon precursor which becomes carbon when heat-treated in an inert gas, and dried. As shown in FIG. 4B, the carbon precursor 59 is placed inside the cylinder of the mesoporous silica 57. Is adsorbed. When the silica laminate 58 on which the carbon precursor 59 is adsorbed is heat-treated in an inert gas, the carbon precursor is converted into carbon, and when alkali-dissolving is performed, the mesoporous silica 57 is dissolved and an aggregate of columnar nanostructured carbon bodies 60 Is obtained. The mesoporous silica 57 serves as a template material for the nanostructured carbon body 60.
[0027]
When this nanostructured carbon material 61 is immersed in an aqueous solution of a platinum source and dried, a nanostructured carbon material 61 in which a platinum source 62 is dispersed as shown in FIG. 5B is obtained. 2), the platinum source 62 becomes platinum 63, and a catalyst of the prior art can be obtained.
[0028]
When the catalyst of the related art is observed in detail, platinum as a catalyst component is present in a state where it penetrates into the nanostructured carbon body 60 of the nanostructured carbon material 61 and the inside of the gap between the nanostructured carbon bodies 60. That is, it was found that the catalyst metal was present in a state of penetrating into the inside of the nanostructured carbon material 61, and the amount present on the apparent surface was extremely small.
[0029]
In power generation of a fuel cell, it is necessary that the supply of fuel gas, the transfer of protons reacted on the catalyst component, and the transfer of electrons are performed smoothly, and a polymer electrolyte that assists proton transport is usually attached near the catalyst component. Let me.
[0030]
The reason that the power generation characteristics were not sufficient in the conventional manufacturing method was that the catalyst supported inside the nanostructured carbon material because the microstructure of the nanostructured carbon material was not large enough to incorporate the polymer electrolyte It was guessed that this was because there was no polymer electrolyte around the component particles and the problem that the contribution to the power generation reaction was hindered. Therefore, the present inventor thought that a catalyst having excellent characteristics could be obtained by limiting the location of the catalyst component particles present on the nanostructured carbon material.
[0031]
That is, as described above, a nanostructured carbon material prepared using mesoporous silica as a template can be obtained in a state where columnar fine nanostructured carbon bodies are bundled. By selectively supporting the catalyst component only at the tip of this fine nanostructured carbon body, it is excellent if the adhesion to the polymer electrolyte can be secured while maintaining the high density support of the fine catalyst component particles. The present inventors have thought that a catalyst having the above characteristics can be obtained, and as a result of diligent research, led to the present invention.
[0032]
In the present invention, after generating catalyst component particles inside the pores of the template material having mesopores, the carbon precursor is adsorbed inside the pores of the template material, and after the carbon precursor is carbonized, the template material is removed. It is characterized by doing.
[0033]
Hereinafter, examples of the present invention will be described.
[0034]
First, the production of the template material used in the examples and comparative examples will be described. Mesoporous silica was used as a template material as in the prior art. The preparation of mesoporous silica as a template substance is to penetrate and solidify the template material into the gaps between micelles by using liquid crystalization accompanying the self-assembly process of the surfactant.
[0035]
Anionic surfactant hexadecyltrimethylammonium bromide [C 16 H 33 N (CH 3 ) 3 Br] 12.4 g and nonionic surfactant polyoxyethylene (4) lauryl ether [C 12 H 25 (OC 2 H 4) ) 4 OH] 2.3g was dissolved by heating of pure water 234 g, subjected to ultrasonic irradiation for about 10 seconds, to prepare a surfactant solution. As a result, rod-shaped micelles are formed in the surfactant aqueous solution. 70 g of an aqueous solution of sodium silicate, which is a silica source prepared separately, is mixed with the surfactant aqueous solution and shaken and stirred. The aqueous solution of sodium silicate is adjusted to have a composition ratio of SiO 2 : NaOH: H 2 O = 2: 1: 30. After aging at 100 ° C for 48 hours, the residue was separated by filtration and washed, and then dried at 100 ° C. Thereafter, a heat treatment is performed at 550 ° C. for 6 hours to remove the surfactant, and a silica laminate of mesoporous silica as a template substance (MCM-48 having mesopores having a Cubic type (Ia-3d) structure) is produced. Is done. The average diameter of the pores of the manufactured MCM-48 is about 60 °.
[0036]
(Example)
1 g of MCM-48 produced by the above method was added to 10 g of a 10% aqueous solution of hexachloroplatinum, and the solution was permeated into the pores under a reduced pressure of about 0.027 MPa. Thereafter, the mixture was filtered off and the residue was dried under vacuum. This residue was treated under a hydrogen atmosphere at 120 ° C. for 2 hours to reduce and metallize hexachloroplatinum (catalyst component generation step).
[0037]
An aqueous solution of sucrose was adjusted so that the amount of sucrose adsorbed was 1.25 g per 1 g of the charged amount of MCM-48 in which the catalyst component was generated. This aqueous sucrose solution was applied to MCM-48 placed on a petri dish made of tetrafluoroethylene, and allowed to dry at room temperature. After drying, temporary baking was performed at 160 ° C. for 1 hour. Further, an aqueous sucrose solution adjusted to have a sucrose adsorption amount of 0.63 g with respect to 1 g of the charged amount of MCM-48 was applied to MCM-48 placed on a tetrafluoroethylene petri dish, allowed to dry at room temperature, and dried. Pre-baking was performed at 160 ° C. for 1 hour. The total amount of sucrose adsorbed per 1 g of MCM-48 is 1.88 g (carbon precursor adsorbing step).
[0038]
Next, the mixture was heated at 900 ° C. for 6 hours in an argon gas atmosphere to carbonize sucrose (carbonization step). The mesoporous silica was dissolved and removed by alkali dissolution by subjecting this material to reflux treatment using a solution in which 5 wt% of sodium hydroxide was dissolved in a mixture of water and ethanol at a weight ratio of 1: 1 (template substance removing step). Thereafter, a washing treatment was performed to obtain a catalyst.
[0039]
The platinum average particle diameter of the obtained catalyst was measured by an X-ray diffraction method. A part of the obtained catalyst was dispersed in aqua regia to dissolve the platinum component, and the filtrate was subjected to IPC analysis to measure the amount of platinum carried from the measured amount of platinum in the filtrate. The amount of platinum carried here is the weight ratio of platinum to the catalyst, and is expressed in weight%.
[0040]
The obtained catalyst was mixed with a polymer electrolyte solution (manufactured by Asahi Kasei Corporation: Aciplex SS-1080, 5 wt%) at a ratio of catalyst: polymer electrolyte solution = 1: 1.25 (weight ratio) to prepare a paste. Using the paste, a sheet-like decal having a size of 130 mm × 200 mm and a thickness of 300 μm was produced on an ethylene-tetrafluoroethylene copolymer film of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer. . This decal was cut out into a circular shape of φ36 to form a catalyst layer, and then transferred to both surfaces of a solid polymer electrolyte membrane (Gore-Select, manufactured by Japan Gore-Tex Co., Ltd., having a thickness of 40 μm) having a shape of 60 mm × 60 mm. A carbon sheet (TGP-60, manufactured by Toray Industries, Inc.) having a diameter of 36 mm and a thickness of 180 mm in accordance with the catalyst layer was hot-pressed at 160 ° C. and 0.5 MPa on both surfaces of the joined body to join the membrane and electrode assembly. (MEA) was produced. The MEA was sandwiched between a pair of separators having gas passages for supplying an oxidizing gas and a fuel gas, respectively, to produce a single cell.
[0041]
The power generation characteristics were measured using the produced single cell. The power generation characteristics were measured by supplying pure oxygen of 0.12 MPa to the gas passage on the oxidant electrode and pure hydrogen of 0.12 MPa to the gas passage on the fuel electrode side via a bubbling humidifier. The cell temperature was 75 ° C, the humidifier temperature on the oxygen side was 55 ° C, and the humidifier temperature on the hydrogen side was 65 ° C. The current density-cell voltage was measured under the condition that both the oxygen utilization rate and the hydrogen utilization rate at a current density of 1 A / cm 2 were 80%.
[0042]
(Comparative example)
The same mesoporous silica MCM-48 as in the example was used as a template material. The aqueous solution of sucrose was adjusted so that the amount of sucrose adsorbed was 1.25 g per 1 g of the charged amount of MCM-48. This aqueous sucrose solution was applied to MCM-48 placed on a petri dish made of tetrafluoroethylene, and allowed to dry at room temperature. After drying, temporary baking was performed at 160 ° C. for 1 hour. Further, an aqueous sucrose solution adjusted to have a sucrose adsorption amount of 0.63 g with respect to 1 g of the charged amount of MCM-48 was applied to MCM-48 placed on a tetrafluoroethylene petri dish, allowed to dry at room temperature, and dried. Pre-baking was performed at 160 ° C. for 1 hour. The amount of sucrose adsorbed per 1 g of MCM-48 was 1.88 g, which was the same as in the example.
[0043]
Next, the mixture was heated at 900 ° C. for 6 hours in an argon gas atmosphere to carbonize sucrose. The mesoporous silica was dissolved and removed by alkali dissolution by subjecting this material to reflux treatment using a solution in which 5 wt% of sodium hydroxide was dissolved in a mixture of water and ethanol at a weight ratio of 1: 1. Thereafter, a cleaning treatment was performed to obtain a nanostructured carbon material.
[0044]
An aqueous hexachloroplatinum solution adjusted to have a platinum adsorption amount of 0.4 g with respect to 0.6 g of the obtained nanostructured carbon material was adsorbed on the nanostructured carbon material and dried. This material was treated at 120 ° C. for 2 hours in a hydrogen atmosphere to reduce and metallize hexachloroplatinum to obtain a catalyst. The method for producing the catalyst obtained here is the production method described in Non-Patent Document 1 of the prior art.
[0045]
The average platinum particle diameter was measured in the same manner as in the examples. The amount of platinum carried was calculated assuming that all of the platinum used had adhered to the carrier. A single cell was produced using the obtained catalyst in the same manner as in the example, and the power generation characteristics were evaluated.
[0046]
(Evaluation results)
Table 1 shows the results of the average platinum particle diameter and the amount of supported platinum. The average platinum particle diameter of the examples is slightly smaller than that of the comparative examples, but is substantially the same. The platinum average particle diameter is half or less of the platinum average particle diameter of 156 ° when carbon black (Valkan XC-72R, manufactured by Caboard Japan Co., Ltd., average particle diameter: 40 nm) is used to carry platinum in the same manner as in the comparative example. is there. In the example, since the platinum source was reduced inside the nanopore of the template material, it was considered that platinum particles with a small particle diameter were obtained because the growth of the platinum source confined inside the nanopore was prevented during the reduction process. . Further, in the comparative example, since the nanostructured carbon material was used as the carrier material, it is considered that the growth of the platinum source trapped in the gap of the fine structure of the nanostructured carbon material was prevented during the reduction treatment. It has been shown that nanostructured carbon materials can be excellent carrier materials. Here, the nanopores are pores on the order of nm and may have a cross-sectional diameter of 10 to 100 °. Desirably, the cross-sectional diameter is 20 to 70 °.
[0047]
The amount of platinum per unit area of the electrode calculated from the result of the amount of supported platinum and the measured thickness of the electrodes of the examples and comparative examples is 0.18 mg / cm 2 for the fuel electrode and 0.21 mg / cm for the oxidant electrode in the example. cm 2, and in Comparative example fuel electrode 0.35 mg / cm 2, was the oxidant electrode 0.32 mg / cm 2.
[0048]
[Table 1]
Figure 2004178859
FIG. 1 shows a current density-cell voltage characteristic of a single cell of a fuel cell manufactured from the catalysts of Examples and Comparative Examples. Although the amount of platinum per unit area of the electrode is much smaller in the example than in the comparative example, the power generation characteristics of the example are much better than the comparative example.
[0049]
The inventor infers the reason as follows. FIG. 2 is an explanatory diagram of the method for producing a catalyst of the present invention. The template material is actually a laminate as shown in FIG. 3 (d), but in FIG. 2 (a) to FIG. 2 (c), one template material is described for simplification. As shown in FIG. 2A, catalyst component particles 2 are generated in the inside of the cylindrical mold material 1 (mesopores) by the catalyst component generation step. Next, as shown in FIG. 2B, the carbon precursor 3 is adsorbed in the cylinder of the template material 1 by the carbon precursor adsorption step. Since the catalyst component particles 2 are generated inside the cylinder of the template material 1 before the carbon precursor 3, the catalyst component particles 2 exist on the surface of the carbon precursor 3. Next, a structure in which the catalyst component particles 2 are supported on the surface of the nanostructured carbon body 4 formed by carbonizing the carbon precursor 3 as shown in FIG. The template substance 1 is removed by the template substance removing step, and an aggregate of the nanostructured carbon bodies 4 having the catalyst component particles 2 supported only on the surface remains as shown in FIG. That is, the nanostructured carbon material 5 in which the catalyst component particles 2 are supported only on the surface is formed by the catalyst manufacturing method of the present invention. When a fuel cell electrode is formed using this catalyst, since the polymer electrolyte is present around almost all of the catalyst component particles, the movement of protons during power generation is performed smoothly. As a result, it is considered that the fuel cell using the catalyst of the present invention had excellent power generation characteristics despite the small amount of the catalyst carried.
[0050]
In the embodiment, the catalyst has been described as a fuel cell catalyst, but is not particularly limited. Since the catalytic reaction is caused by the contact between the reactant and the catalyst component, the structure of the present invention in which the catalyst component is distributed on the surface of the carrier material can be applied to any catalyst.
[0051]
In the examples, mesoporous silica was used as the template material. However, any material having nanopores can be used, and the shape is not limited, and a particulate material, a thin film material, or the like can be used. If mesoporous silica was used as the template material, it had columnar mesopores, so a columnar nanostructured carbon material was formed using the mesopores as a mold, and the catalyst component particles were supported at the ends. Since the catalyst can be formed, the position where the catalyst is supported is limited, and more excellent catalyst characteristics can be obtained. As a material for the template material, any material other than silica, such as a metallosilicate or a transition metal oxide, can be used as long as it can remove a carbon material and catalyst component particles without damaging them. When silica is used as the material of the template material, the carbon material and the catalyst component particles can be relatively easily removed without damage. In the embodiment, sucrose was used as the carbon precursor, but any organic substance that can enter the pores of the template substance may be used, and a low molecular organic substance or a high molecular organic substance such as polyimide can be used.
[0052]
【The invention's effect】
As described above, the present invention provides a catalyst component generating step of generating catalyst component particles inside the pores of a template material having nanopores, and then adsorbing a carbon precursor inside the pores of the template material. Since the carbon precursor adsorption step, and then carbonization step of carbonizing the carbon precursor, and then a template material removal step of removing the template substance is a method for producing a catalyst characterized by being provided, It is possible to provide a method for producing a catalyst that achieves excellent catalytic properties by using a nanostructured carbon material as a catalyst carrier material, and to use a catalyst produced by this method as an electrode catalyst for at least one of a fuel electrode and an oxidant electrode. Therefore, a fuel cell having excellent power generation characteristics can be provided by using a nanostructured carbon material as a catalyst carrier material for an electrode.
[Brief description of the drawings]
FIG. 1 is a graph showing current density-cell voltage characteristics of a single cell of a fuel cell produced from catalysts of Examples and Comparative Examples. FIG. 2 is an explanatory view of a method for producing a catalyst of the present invention. FIG. FIG. 4 is an illustration of a method for producing a silica composite. FIG. 4 is an illustration of a method for producing a conventional catalyst carrier. FIG. 5 is an illustration of a conventional catalyst support.
1: Mesoporous silica (template material)
2 ... catalyst component particles 3 ... carbon precursor 4 ... nanostructured carbon body 5 ... nanostructured carbon material

Claims (3)

ナノ細孔を有するの鋳型物質の細孔内部に触媒成分粒子を生成させる触媒成分生成工程と、次に前記鋳型物質の細孔内部に炭素前駆物質を吸着させる炭素前駆物質吸着工程と、次に前記炭素前駆物質を炭化する炭化工程と、次に前記鋳型物質を除去する鋳型物質除去工程が設けられていることを特徴とする触媒の製造方法。A catalyst component generation step of generating catalyst component particles inside the pores of the template material having nanopores, and then a carbon precursor adsorption step of adsorbing a carbon precursor inside the pores of the template material, A method for producing a catalyst, comprising: a carbonizing step of carbonizing the carbon precursor; and a template substance removing step of removing the template substance. 前記鋳型物質がメソポーラスシリカであることを特徴とする請求項1記載の触媒の製造方法。The method for producing a catalyst according to claim 1, wherein the template substance is mesoporous silica. 請求項1または請求項2に記載の製造方法で製造された触媒を、燃料極、酸化剤極の少なくとも一方の電極触媒として使用していることを特徴とする燃料電池。3. A fuel cell, wherein the catalyst produced by the production method according to claim 1 or 2 is used as an electrode catalyst of at least one of a fuel electrode and an oxidant electrode.
JP2002341155A 2002-11-25 2002-11-25 Method for manufacturing catalyst and fuel cell Pending JP2004178859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341155A JP2004178859A (en) 2002-11-25 2002-11-25 Method for manufacturing catalyst and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341155A JP2004178859A (en) 2002-11-25 2002-11-25 Method for manufacturing catalyst and fuel cell

Publications (1)

Publication Number Publication Date
JP2004178859A true JP2004178859A (en) 2004-06-24

Family

ID=32703608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341155A Pending JP2004178859A (en) 2002-11-25 2002-11-25 Method for manufacturing catalyst and fuel cell

Country Status (1)

Country Link
JP (1) JP2004178859A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027249A1 (en) * 2003-09-12 2005-03-24 Rohm Co., Ltd. Fuel cell and method for producing same
WO2005027250A1 (en) * 2003-09-12 2005-03-24 Rohm Co., Ltd. Proton conductive membrane, method for producing same, and fuel cell using same
JP2006202687A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Electrode catalyst for fuel cell of metal cluster
JP2006228502A (en) * 2005-02-16 2006-08-31 Mitsui Chemicals Inc Electrode catalyst for fuel cell, its manufacturing method, and electrode and fuel cell using the same
JP2006252836A (en) * 2005-03-09 2006-09-21 Tokyo Electric Power Co Inc:The Manufacturing method of electrode for solid oxide fuel cell
JP2006327849A (en) * 2005-05-24 2006-12-07 Masahiko Abe Manufacturing method of metal oxide nanocapsule
WO2008093731A1 (en) * 2007-02-01 2008-08-07 National Institute Of Advanced Industrial Science And Technology Electrode catalyst for fuel cell and fuel cell using the same
JP2015523694A (en) * 2012-07-11 2015-08-13 エスティーシー. ユーエヌエムStc.Unm Carbendazim-based catalytic agent

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027249A1 (en) * 2003-09-12 2005-03-24 Rohm Co., Ltd. Fuel cell and method for producing same
WO2005027250A1 (en) * 2003-09-12 2005-03-24 Rohm Co., Ltd. Proton conductive membrane, method for producing same, and fuel cell using same
JP2006202687A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Electrode catalyst for fuel cell of metal cluster
JP2006228502A (en) * 2005-02-16 2006-08-31 Mitsui Chemicals Inc Electrode catalyst for fuel cell, its manufacturing method, and electrode and fuel cell using the same
JP2006252836A (en) * 2005-03-09 2006-09-21 Tokyo Electric Power Co Inc:The Manufacturing method of electrode for solid oxide fuel cell
JP4626756B2 (en) * 2005-03-09 2011-02-09 東京電力株式会社 Method for producing electrode for solid oxide fuel cell
JP2006327849A (en) * 2005-05-24 2006-12-07 Masahiko Abe Manufacturing method of metal oxide nanocapsule
WO2008093731A1 (en) * 2007-02-01 2008-08-07 National Institute Of Advanced Industrial Science And Technology Electrode catalyst for fuel cell and fuel cell using the same
JPWO2008093731A1 (en) * 2007-02-01 2010-05-20 独立行政法人産業技術総合研究所 Fuel cell electrode catalyst and fuel cell using the same
JP2015523694A (en) * 2012-07-11 2015-08-13 エスティーシー. ユーエヌエムStc.Unm Carbendazim-based catalytic agent

Similar Documents

Publication Publication Date Title
CN106784943A (en) A kind of membrane electrode of fuel batter with proton exchange film of high power density and preparation method thereof
KR102323487B1 (en) Catalyst, method for manufacturing the same, electrode comprising the same, membrane-electrode assembly comprising the same, and fuel cell comprising the same
WO2014129597A1 (en) Carbon material for use as catalyst carrier
KR100684854B1 (en) Catalyst for fuel cell, method for preparing same, amd membrane-electrode assembly for fuel cell comprising same
KR101641145B1 (en) A method for preparation of catalyst using poly-dopamine, catalyst fabricated by the same and the fuel cell using the catalyst
JP2006128117A (en) Catalyst for fuel cell, its production method, membrane-electrode conjugate containing the catalyst, and fuel cell system
JP4204272B2 (en) Fuel cell electrode catalyst and fuel cell
JP2008239369A (en) Method for refining carbon nanowall (cnw), refined carbon nanowall, method for manufacturing catalyst layer for fuel cell, catalyst layer for fuel cell, and polymer electrolyte fuel cell
JP4337406B2 (en) Electrode for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
CN104726891B (en) Proton exchange membrane water-electrolyzer with internal hydrogen removing function and producing method thereof
CN107611452A (en) A kind of preparation method of the membrane electrode containing three-dimensional hydrophobic cathode catalysis layer
JPWO2002027843A1 (en) Fuel cell
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
JP2003282078A (en) Catalyst particle and manufacturing method of the same, gaseous-diffusion property electrode body, and electrochemical device
JP2004185901A (en) Electrode for fuel cell and fuel cell
JP2004178859A (en) Method for manufacturing catalyst and fuel cell
JP2007141626A (en) Catalyst electrode for polymer electrolyte fuel cell, and the fuel cell
JP2007157645A (en) Membrane electrode conjugant for fuel cell, its manufacturing method, and fuel cell
JP4438525B2 (en) FUEL CELL CELL MODULE, MANUFACTURING METHOD THEREOF, AND FUEL CELL
TW200817530A (en) Method and apparatus for surface modification of film component by carbon dioxide supercritical fluid
JP2006222020A (en) Method and device of manufacturing catalyst layer for fuel cell
JP2009064591A (en) Electrode for fuel cell, manufacturing method thereof, and membrane electrode assembly using the electrode
JP2007141623A (en) Electrode catalyst for polymer electrolyte fuel cell and fuel cell using it
JP2012212661A (en) Electrode catalyst layer for fuel cell, manufacturing method of electrode catalyst layer, membrane electrode assembly for fuel cell, and solid polymer fuel cell
JP2005317467A (en) Electrode for fuel cell and mea for fuel cell using the same