JP4199645B2 - Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk - Google Patents

Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk Download PDF

Info

Publication number
JP4199645B2
JP4199645B2 JP2003378532A JP2003378532A JP4199645B2 JP 4199645 B2 JP4199645 B2 JP 4199645B2 JP 2003378532 A JP2003378532 A JP 2003378532A JP 2003378532 A JP2003378532 A JP 2003378532A JP 4199645 B2 JP4199645 B2 JP 4199645B2
Authority
JP
Japan
Prior art keywords
polishing
glass substrate
magnetic disk
disk
polishing cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003378532A
Other languages
Japanese (ja)
Other versions
JP2005141852A (en
Inventor
誠宏 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2003378532A priority Critical patent/JP4199645B2/en
Publication of JP2005141852A publication Critical patent/JP2005141852A/en
Application granted granted Critical
Publication of JP4199645B2 publication Critical patent/JP4199645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明はHDD(ハードディスクドライブ)等の磁気ディスク装置に搭載される磁気ディスク及び磁気ディスク用ガラス基板の製造方法に関する。   The present invention relates to a method of manufacturing a magnetic disk mounted on a magnetic disk device such as an HDD (hard disk drive) and a glass substrate for the magnetic disk.

近年、磁気ディスクの情報記録密度は1平方インチ当り60ギガビット以上を求められるようになってきた。このような高記録密度を実現するためには、スペーシングロスを低減させる観点から、磁気ディスク上を浮上飛行して記録再生する磁気ヘッドの浮上量は10nm以下とする必要がある。このため、磁気ディスク用基板の表面粗さは、磁気ヘッドの浮上量が10nmでもクラッシュ等の障害を防止できるように、極めて平滑化する必要がある。例えば、Rmaxで5nm以下、Raで0.5nm以下のような鏡面にする必要がある。
このような鏡面を得るためには、磁気ディスク用ガラス基板の研磨方法、特に鏡面研磨方法において、様々な技術革新を必要とする。この方途の一つとして研磨剤に含まれる研磨粒子(研磨砥粒)を微細化する方法を挙げることができる。
In recent years, the information recording density of magnetic disks has been required to be 60 gigabits or more per square inch. In order to realize such a high recording density, the flying height of the magnetic head that records and reproduces by flying over the magnetic disk needs to be 10 nm or less from the viewpoint of reducing the spacing loss. For this reason, the surface roughness of the magnetic disk substrate needs to be extremely smoothed so that a failure such as a crash can be prevented even if the flying height of the magnetic head is 10 nm. For example, it is necessary to have a mirror surface such that Rmax is 5 nm or less and Ra is 0.5 nm or less.
In order to obtain such a mirror surface, various technical innovations are required in the method for polishing a glass substrate for a magnetic disk, particularly in the mirror polishing method. As one of the methods, there can be mentioned a method of refining abrasive particles (abrasive grains) contained in the abrasive.

ところが、本発明者の研究によれば、現在知られている研磨布のアスカーC硬度にかかわらず、研磨砥粒として例えば酸化セリウム(相対的に粒径大)を使用すると主表面の端部の研磨が不十分となって主表面の端部の盛り上がり(主表面の端部が他の主表面の部分よりも突出すること)が生じてしまい問題となり、また、研磨砥粒として例えばコロイダルシリカ(相対的に粒径小)を使用すると主表面の端部が削られて主表面の端部の「端部のだれ」(主表面の端部が他の主表面の部分よりも相対的に多く削られた状態となること)が生じてしまい問題となることが判明した。このように、端部形状の乱れ(端部の盛り上がりや端部のだれ)の問題を顕著に改善し、端部形状に十分に優れた磁気ディスク用ガラス基板は未だ得られていない(第1の課題)。
更に、本発明者の研究によれば、現在知られている研磨布において、アスカーC硬度が比較的小さく相対的に軟らかい研磨布を使用する(研磨砥粒は酸化セリウムを使用)と、鏡面レベルは向上するが、上述したように研磨砥粒として酸化セリウムを使用しているため主表面の端部の盛り上がりが生じるという問題がある。アスカーC硬度が比較的大きく相対的に硬い研磨布を使用する(研磨砥粒は酸化セリウムを使用)と、端部の盛り上がりは相対的に低減できる(顕著には低減できず)ことが判明したが、硬い研磨布を使用すると鏡面レベルが低下してしまうという問題がある。そこで、本発明者は、アスカーC硬度が比較的大きく相対的に硬い研磨布を使用すると共に、研磨砥粒の粒径を微細化することを試みた(研磨砥粒はコロイダルシリカを使用)のであるが、この場合、鏡面レベルの低下は低減できるものの、上述したように研磨砥粒としてコロイダルシリカを使用しているため主表面の端部が削られて「端部のだれ」が生じてしまうことが判明した。以上のように、ディスク表面の鏡面化と、端部形状の乱れ(端部の盛り上がりや端部のだれ)は、トレードオフの関係にあり、現状では上記範囲内の鏡面(Rmaxで5nm以下、Raで0.5nm以下)を有しかつ端部形状に十分に優れた磁気ディスク用ガラス基板は未だ得られていない(第1’の課題)。
ディスク端部形状に乱れが生じると磁気ヘッドの浮上姿勢が乱されるので端部付近においてクラッシュ等の障害を誘発してしまう。
However, according to the study of the present inventor, regardless of the currently known Asker C hardness of the polishing cloth, when, for example, cerium oxide (relatively large particle size) is used as the polishing abrasive grain, Insufficient polishing causes a rise in the edge of the main surface (protruding the edge of the main surface beyond the portion of the other main surface), and there is a problem. For example, colloidal silica ( When using a relatively small particle size, the edge of the main surface is scraped off and the edge of the edge of the main surface is “end of the edge” (the edge of the main surface is relatively larger than the parts of the other main surfaces) It was found that this would be a problem. As described above, the problem of the irregular shape of the end portion (protrusion of the end portion and the sag of the end portion) is remarkably improved, and a glass substrate for a magnetic disk sufficiently excellent in the end shape has not yet been obtained (first). Issue).
Further, according to the research of the present inventor, when a polishing cloth having a relatively small Asker C hardness and a relatively soft polishing cloth is used (polishing abrasive grains use cerium oxide), a mirror surface level is known. However, since cerium oxide is used as the abrasive grains as described above, there is a problem that the end of the main surface is raised. It has been found that when a polishing cloth having a relatively large Asker C hardness is used (the polishing abrasive grains are cerium oxide), the bulge at the end can be relatively reduced (not significantly reduced). However, when a hard polishing cloth is used, there is a problem that the mirror surface level is lowered. Therefore, the present inventor tried to use a polishing cloth having a relatively large Asker C hardness and relatively hard, and attempted to reduce the grain size of the abrasive grains (the abrasive grains used colloidal silica). However, in this case, although the decrease in the mirror surface level can be reduced, as described above, since colloidal silica is used as the abrasive grains, the end of the main surface is scraped off, resulting in “end-sag”. It has been found. As described above, the mirror surface of the disk and the irregularity of the end shape (the bulge of the end and the sag of the end) are in a trade-off relationship, and at present, the mirror surface within the above range (Rmax of 5 nm or less, A glass substrate for a magnetic disk having a Ra of 0.5 nm or less) and a sufficiently excellent edge shape has not been obtained yet (first problem 1).
If the disk end shape is disturbed, the flying posture of the magnetic head is disturbed, so that a failure such as a crash is induced near the end.

また、近年、磁気ディスクの情報容量を向上させる手投として、磁気ディスク表面上の記録再生用領域を拡大させる傾向にある。例えば、従来HDDはCSS(Contact Start Stop)方式HDDが主流であったが、最近になって、LUL(Load Unload)方式が採用されつつある。LUL方式用磁気ディスクにおいてはCSS用領域(磁気ヘッドとの接触摺動用領域)を設ける必要が無いので磁気ディスク表面上の記録再生用領域を拡大できるという利点があるからである。また、LUL方式用磁気ディスクにあっては、磁気ヘッドと磁気ディスクとの接触摺動が起らないので、磁気ヘッドとの接触による吸着を防止するための凹凸形状を磁気ディスク表面に設ける必要が無い。従って、CSS方式用磁気ディスクに比べてLUL方式用磁気ディスクでは磁気ヘッドの浮上量を一段と低減させることができるという利点もある。言い換えれば、磁気ディスク用基板表面の鏡面化によるスペーシングロスの低減という目的に対して特に好適な方式であるということもできる。
ところが、LUL方式のHDDでは、起動時には磁気ヘッドが磁気ディスク外からディスク面上に進入して起動する。また停止時にはディスク面上からディスク外に退避して停止する。即ち、起動・停止時に磁気ヘッドはディスクの端部付近を通過することになる。このとき、上述したような、ディスク表面上の端部に形状の乱れ(端部の盛り上がりや端部のだれ)があると、磁気ヘッドの浮上姿勢が乱され、クラッシュ障害を起こしやすいという課題が発生した。つまり、LUL方式のHDDでは、ディスク表面上の端部に形状の乱れをCSS方式のHDDに比べ低減する必要性が高い(第2の課題)。
In recent years, there is a tendency to expand the recording / reproducing area on the surface of the magnetic disk as a hand-raising to improve the information capacity of the magnetic disk. For example, a conventional HDD is a CSS (Contact Start Stop) type HDD, but recently, an LUL (Load Unload) type is being adopted. This is because the LUL magnetic disk does not need to have a CSS area (contact sliding area with the magnetic head), and therefore has an advantage that the recording / reproducing area on the surface of the magnetic disk can be enlarged. Further, in the LUL magnetic disk, since the sliding contact between the magnetic head and the magnetic disk does not occur, it is necessary to provide an uneven shape on the surface of the magnetic disk to prevent the magnetic head from being attracted by the contact. No. Therefore, the LUL magnetic disk has an advantage that the flying height of the magnetic head can be further reduced as compared with the CSS magnetic disk. In other words, it can be said that the system is particularly suitable for the purpose of reducing the spacing loss by mirroring the surface of the magnetic disk substrate.
However, in the LUL type HDD, at the time of activation, the magnetic head enters the disk surface from the outside of the magnetic disk and is activated. At the time of stop, the disk is evacuated from the disk surface and stopped. That is, the magnetic head passes near the end of the disk when starting and stopping. At this time, as described above, when there is a disorder in the shape of the edge on the disk surface (the bulge of the edge or the sag of the edge), the flying posture of the magnetic head is disturbed, and the problem that a crash failure is likely to occur. Occurred. That is, in the LUL type HDD, it is highly necessary to reduce the shape irregularity at the end on the disk surface as compared with the CSS type HDD (second problem).

さらに、磁気ヘッドの浮上量を10nm以下とするためには、上述した範囲内の鏡面(Rmaxで5nm以下、Raで0.5nm以下)を有しかつ端部形状に十分に優れた磁気ディスク用ガラス基板を得ることが必要であるが、主表面の「微小うねり」の低減も重要な要素である。
このことを説明すると、近年、いくら高精度に研磨して表面粗さ(Rmax(最大高さ)、Ra(中心線平均粗さ))を小さくしても、磁気ヘッドの浮上高さを下げることができないという問題が生じることが明らかとなった。本願出願人は、その原因が、基板表面に存在する微小うねり(Microwaviness)であることに突き止め、この微小うねりを低減する手段として、研磨パッド表面の表面粗さRz(十点平均粗さ)を20μm以下とすること等の手段を開発し、これにより、低グライドハイト、低モジュレーションの基板を提供しうる技術に関し既に出願を行っている(特許文献1)。
しかし、磁気ヘッドの浮上量を10nm以下とした上で磁気ヘッドの浮上量を更に低減するというより高度な要求を実現するためには、上記微小うねりの低減技術の適用だけでは不十分であり、微小うねりの更なる低減が要求される。本発明者の研究によれば、主表面の「微小うねり」に比べ端部の「微小うねり」が大きくなる傾向があることが判明した。つまり、磁気ヘッドの浮上量を10nm以下とした上で磁気ヘッドの浮上量を更に低減しようとするときに、前述したように端部の「微小うねり」が大きいことは、ディスク表面上の端部に形状の乱れがある状態に該当してしまう。そして、前述したように端部の「微小うねり」が大きいと、磁気ヘッドの浮上量を10nm以下とした上で磁気ヘッドの浮上量を更に低減するための障害となり、特にLUL方式用磁気ディスクでは上述した第2の課題解決の障害となる。
したがって、主表面の「微小うねり」に比べ端部の「微小うねり」が大きくなるという課題に対し、端部の「微小うねり」を従来に比べ低減できる技術の開発が望まれる(第3の課題)。
特開2002−92867号公報
Furthermore, in order to set the flying height of the magnetic head to 10 nm or less, the magnetic disk has a mirror surface (Rmax 5 nm or less, Ra 0.5 nm or less) within the above-mentioned range and has a sufficiently excellent edge shape. Although it is necessary to obtain a glass substrate, reduction of “microwaviness” on the main surface is also an important factor.
To explain this, in recent years, the flying height of the magnetic head can be lowered even if the surface roughness (Rmax (maximum height), Ra (centerline average roughness)) is reduced by polishing with high accuracy. It became clear that the problem of not being able to occur. The applicant of the present application has determined that the cause is microwaviness existing on the substrate surface, and as a means for reducing this microwaviness, the surface roughness Rz (ten-point average roughness) of the polishing pad surface is determined. An application has already been filed regarding a technology capable of providing a substrate having a low glide height and a low modulation by developing means such as 20 μm or less (Patent Document 1).
However, in order to realize a more advanced requirement to further reduce the flying height of the magnetic head after setting the flying height of the magnetic head to 10 nm or less, it is not sufficient to apply the technology for reducing the fine waviness described above. Further reduction of micro swell is required. According to the inventor's research, it has been found that the “micro-waviness” at the end tends to be larger than the “micro-waviness” on the main surface. That is, when the flying height of the magnetic head is set to 10 nm or less and the flying height of the magnetic head is further reduced, as described above, the “small waviness” at the edge is large. Falls into a state where there is a disturbance in shape. As described above, if the “small waviness” at the end is large, the flying height of the magnetic head is set to 10 nm or less, and it becomes an obstacle to further reducing the flying height of the magnetic head. This is an obstacle to the second problem solving described above.
Therefore, it is desired to develop a technique capable of reducing the “micro-waviness” at the end compared to the “micro-waviness” at the end compared to the “micro-swell” at the end compared to the “small swell” at the end (third problem). ).
JP 2002-92867 A

本発明は上記課題に鑑みて成されたものであって、その第1の目的は、鏡面かつ端部形状に十分に優れた磁気ディスク用ガラス基板または磁気ディスクを提供することにある。
また、主表面の「微小うねり」に比べ端部の「微小うねり」が大きくなるという課題に対し、端部の「微小うねり」を従来に比べ更に低減した磁気ディスク用ガラス基板または磁気ディスクを提供することにある。
さらに、浮上量が10nm以下の磁気ヘッドでも浮上姿勢を安定させることのできる磁気ディスク用ガラス基板または磁気ディスクを提供することを第2の目的とする。
また、LUL方式用磁気ディスクまたは、この磁気ディスクに好適なガラス基板を提供することを第3の目的とする。
The present invention has been made in view of the above problems, and a first object thereof is to provide a glass substrate for magnetic disk or a magnetic disk that is sufficiently excellent in mirror surface and end shape.
In addition, we provide a glass substrate or magnetic disk for magnetic disks in which the “micro-waviness” at the end is further reduced compared to the conventional technology, in response to the problem that the “micro-waviness” at the end is larger than the “micro-swell” on the main surface. There is to do.
It is a second object of the present invention to provide a glass substrate for a magnetic disk or a magnetic disk that can stabilize the flying posture even with a magnetic head having a flying height of 10 nm or less.
It is a third object of the present invention to provide a magnetic disk for LUL system or a glass substrate suitable for this magnetic disk.

本発明者は、上述した本発明の課題解決にあたり、鋭意研究開発を重ねた結果、第1に、研磨布を構成する発泡樹脂層における基層側のポア径を縮径することによって(構成1)、別の見方をすると研磨布の圧縮率を小さくすることによって(構成2)、上述した第1の課題に対して、端部形状の乱れ(端部の盛り上がりや端部のだれ)を顕著に低減し、端部形状に十分に優れた磁気ディスク用ガラス基板が得られることを第1に見出した。
また、研磨布を構成する発泡樹脂層における基層側のポア径を縮径することによって(構成1)、別の見方をすると研磨布の圧縮率を小さくすることによって(構成2)、上述した第1’の課題に対して、主表面の端部の研磨速度と主表面の他の部分の研磨速度との差を低減でき、その結果、「端部のだれ」の問題を低減できることを第2に見出した。つまり、本発明は、ディスク表面の鏡面化と、端部形状の乱れ(端部の盛り上がりや端部のだれ)は、トレードオフの関係にあるという課題を解決し、上記範囲内の鏡面(Rmaxで5nm以下、Raで0.5nm以下)を有しかつ端部形状に十分に優れた磁気ディスク用ガラス基板を得ることに初めて成功したものである。
第2に、研磨布を構成する発泡樹脂層における基層側のポア径を縮径することは(構成1)、別の見方をすると研磨布の圧縮率を小さくすることは(構成2)、上述した第3の課題に対して、端部の微小うねりを低減するのに効果的な手段であることを第3に見出した。
第3に、研磨布の表面開口を縮径することによって、基板全面の微小うねりを全体的に低減する効果があること、及び、研磨布の表面開口を縮径することは、端部の微小うねりを低減するのに効果的な手段であること、を第4に見出した(構成3)。
さらに、構成1又は2の要件に加え、コロイド粒子を含む研磨液を供給して研磨すると(研磨粒子の粒径を小さくすると)、構成1又は2の要件の採用によって新たに生じる主表面の鏡面レベルが悪化する問題を解消でき主表面の鏡面レベルを磁気ヘッドの浮上量を10nm以下としても問題ないレベルに抑えることができることを第5に見出し本発明を完成するに至った。
As a result of intensive research and development in solving the problems of the present invention described above, the present inventor firstly reduced the pore diameter on the base layer side in the foamed resin layer constituting the polishing cloth (Configuration 1). From another point of view, by reducing the compressibility of the polishing cloth (Configuration 2), the end shape irregularities (swelling of the end portion and drooping of the end portion) are conspicuous with respect to the first problem described above. It was first found that a glass substrate for a magnetic disk having a reduced edge shape and a sufficiently excellent edge shape can be obtained.
Further, by reducing the pore diameter on the base layer side in the foamed resin layer constituting the polishing cloth (Configuration 1), in another way, by reducing the compressibility of the polishing cloth (Configuration 2), the above-described first In contrast to the problem 1 ′, the difference between the polishing rate at the end of the main surface and the polishing rate at the other part of the main surface can be reduced, and as a result, the problem of “sagging of the end” can be reduced. I found it. That is, the present invention solves the problem that the mirroring of the disk surface and the disturbance of the end shape (end bulge and end sag) are in a trade-off relationship, and the mirror surface within the above range (Rmax) And 5 nm or less and Ra 0.5 nm or less) and a glass substrate for a magnetic disk that has a sufficiently excellent edge shape.
Secondly, reducing the pore diameter on the base layer side in the foamed resin layer constituting the polishing cloth (Configuration 1), from another viewpoint, reducing the compressibility of the polishing cloth (Configuration 2) is described above. The third problem has been found to be an effective means for reducing the minute waviness at the end of the third problem.
Third, by reducing the surface opening of the polishing cloth, there is an effect of reducing the overall waviness of the entire surface of the substrate, and reducing the surface opening of the polishing cloth means that the end opening has a minute diameter. It has been found fourth (Configuration 3) that it is an effective means for reducing waviness.
Further, in addition to the requirements of Configuration 1 or 2, when a polishing liquid containing colloidal particles is supplied and polished (when the particle size of the polishing particles is reduced), a mirror surface of the main surface newly generated by adopting the requirements of Configuration 1 or 2 The present invention has been completed fifth by finding that the problem of deterioration of the level can be solved and the mirror surface level of the main surface can be suppressed to a level that does not cause a problem even if the flying height of the magnetic head is 10 nm or less.

本発明は以下の構成を有する。
(構成1)基層と発泡樹脂層を備える研磨布を用い、ガラスディスクと研磨布とを相対的に移動させて研磨を行なう磁気ディスク用ガラス基板の製造方法であって、
基層側のポア径が200μm以下の発泡樹脂層を備える研磨布を選択し、かつ、コロイド粒子を含む研磨液を供給してガラスディスクを研磨することを特徴とする磁気ディスク用ガラス基板の製造方法。
(構成2)研磨布を用い、ガラスディスクと研磨布とを相対的に移動させて研磨を行なう磁気ディスク用ガラス基板の製造方法であって、
前記研磨布の圧縮率を測定し、前記圧縮率が1.0%以下の研磨布を選択し、かつ、コロイド粒子を含む研磨液を供給してガラスディスクを研磨することを特徴とする磁気ディスク用ガラス基板の製造方法。
(構成3)構成1に記載の磁気ディスク用ガラス基板の製造方法であって、
研磨面に開口するポア径が50μm以下の発泡樹脂層を備える研磨布を選択してガラスディスクを研磨することを特徴とする磁気ディスク用ガラス基板の製造方法。
(構成4)前記研磨液に含まれるコロイド粒子は、平均粒径(D50)が、10nm〜120nmであることを特徴とする構成1〜3の何れかに記載の磁気ディスク用ガラス基板の製造方法。
(構成5)前記研磨液に含まれるコロイド粒子は、コロイダルシリカ研磨砥粒であることを特徴とする構成1〜4の何れかに記載の磁気ディスク用ガラス基板の製造方法。
(構成6)構成1〜5の何れかに記載の磁気ディスク用ガラス基板の製造方法であって、
前記研磨布の基層側から研磨布を付圧して研磨することを特徴とする磁気ディスク用ガラス基板の製造方法。
(構成7)構成1〜6の何れかに記載の磁気ディスク用ガラス基板上に磁性層を形成することを特徴とする磁気ディスクの製造方法。
(構成8)ディスク主表面を原子間力顕微鏡で測定したときの表面粗さがRmaxで5nm以下、Raで0.5nm以下の磁気ディスク用ガラス基板であって、
ディスク外周端からディスク中心方向に向かって0.34mmの主表面上の点をAとし、ディスク外周端からディスク中心方向に向かって3.54mmの主表面上の点をBとし、このA点とB点を結んだ仮想線を基準としたときに、前記仮想線から主表面までの乖離距離が50nm以下である、磁気ディスク用ガラス基板。
(構成9)ディスク主表面を原子間力顕微鏡で測定したときの表面粗さがRmaxで5nm以下、Raで0.5nm以下の磁気ディスク用ガラス基板であって、
ディスク外周端からディスク中心方向に向かって2.5mmの主表面上の点を中心とした、3.8平方mmの矩形領域における表面形状のうち、形状波長が16μm〜1.9mm帯域の表面形状を抽出し、この表面形状のこ二乗平均粗さRq(RMS)を微小うねりRqとしたときに、前記微小うねりRqが1.42nm以下である磁気ディスク用ガラス基板。
(構成10)構成8又は構成9に記載の磁気ディスク用ガラス基板上に少なくとも磁性層が形成されたロードアンロード方式用磁気ディスク。
The present invention has the following configuration.
(Configuration 1) A method for producing a glass substrate for a magnetic disk that uses a polishing cloth having a base layer and a foamed resin layer, and moves the glass disk and the polishing cloth relatively to perform polishing.
A method for producing a glass substrate for a magnetic disk, comprising selecting a polishing cloth provided with a foamed resin layer having a pore diameter of 200 μm or less on the base layer side, and polishing a glass disk by supplying a polishing liquid containing colloidal particles. .
(Configuration 2) A method of manufacturing a glass substrate for a magnetic disk, in which polishing is performed by using a polishing cloth and relatively moving the glass disk and the polishing cloth,
A magnetic disk comprising: measuring a compressibility of the polishing cloth; selecting a polishing cloth having a compressibility of 1.0% or less; and supplying a polishing liquid containing colloidal particles to polish a glass disk. Method for manufacturing glass substrate.
(Configuration 3) A method of manufacturing a glass substrate for a magnetic disk according to Configuration 1,
A method for producing a glass substrate for a magnetic disk, comprising polishing a glass disk by selecting a polishing cloth provided with a foamed resin layer having a pore diameter of 50 μm or less opened on a polished surface.
Colloidal particles contained in (Configuration 4) The polishing liquid has an average particle diameter (D 50), the manufacture of glass substrate according to any one of configurations 1 to 3, characterized in that the 10nm~120nm Method.
(Constitution 5) The method for producing a glass substrate for a magnetic disk according to any one of constitutions 1 to 4, wherein the colloidal particles contained in the polishing liquid are colloidal silica abrasive grains.
(Configuration 6) A method for manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 5,
A method for producing a glass substrate for a magnetic disk, comprising polishing by pressing a polishing cloth from a base layer side of the polishing cloth.
(Structure 7) A method of manufacturing a magnetic disk, comprising forming a magnetic layer on the glass substrate for a magnetic disk according to any one of structures 1 to 6.
(Configuration 8) A magnetic disk glass substrate having a surface roughness Rmax of 5 nm or less and Ra of 0.5 nm or less when the main surface of the disk is measured with an atomic force microscope,
A point on the main surface of 0.34 mm from the outer peripheral edge of the disk toward the disk center is A, and B is a point on the main surface of 3.54 mm from the outer edge of the disk toward the disk center. A glass substrate for a magnetic disk, wherein a divergence distance from the virtual line to the main surface is 50 nm or less when a virtual line connecting points B is used as a reference.
(Configuration 9) A glass substrate for a magnetic disk having a surface roughness of 5 nm or less in Rmax and 0.5 nm or less in Ra when the disk main surface is measured with an atomic force microscope,
Of the surface shapes in a rectangular area of 3.8 square mm centered on a point on the main surface of 2.5 mm from the outer peripheral edge of the disk toward the center of the disk, the surface shape having a shape wavelength of 16 μm to 1.9 mm band Is extracted, and the surface roughness of the root mean square roughness Rq (RMS) is defined as a microwaviness Rq, the microwaviness Rq is 1.42 nm or less.
(Structure 10) A magnetic disk for load / unload system, wherein at least a magnetic layer is formed on the glass substrate for magnetic disk according to Structure 8 or Structure 9.

本発明によれば、鏡面かつ端部形状に十分に優れた磁気ディスク用ガラス基板または磁気ディスクを提供できる。また、主表面の「微小うねり」に比べ端部の「微小うねり」が大きくなるという課題に対し、端部の「微小うねり」を従来に比べ低減した磁気ディスク用ガラス基板または磁気ディスクを提供できる。
さらに、浮上量が10nm以下の磁気ヘッドでも浮上姿勢を安定させることのできる磁気ディスク用ガラス基板または磁気ディスクを提供できる。
また、LUL方式用磁気ディスクまたは、この磁気ディスクに好適なガラス基板を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the glass substrate for magnetic discs or magnetic discs which were fully excellent in the mirror surface and edge part shape can be provided. In addition, the glass substrate for magnetic disk or the magnetic disk can be provided in which the “micro-waviness” at the end portion is smaller than the conventional one in response to the problem that the “micro-waviness” at the end portion becomes larger than the “micro-waviness” on the main surface. .
Furthermore, it is possible to provide a glass substrate for a magnetic disk or a magnetic disk that can stabilize the flying posture even with a magnetic head having a flying height of 10 nm or less.
In addition, a magnetic disk for LUL system or a glass substrate suitable for this magnetic disk can be provided.

以下本発明を詳細に説明する。
本発明の構成1に係る発明は、基層と発泡樹脂層を備える研磨布を用い、ガラスディスクと研磨布とを相対的に移動させて研磨を行なう磁気ディスク用ガラス基板の製造方法に関する。
ここで、発泡樹脂層としては、ウレタンが広く利用されている。基層と発泡樹脂層を備える研磨布としては、スエードタイプや、発泡ウレタンタイプが挙げられる。スエードタイプの研磨布(研磨パッド)は、図6に示すように、基層(ベース層)にポリウレタンをコート(積層)し、ポリウレタン内に発泡層を成長させ、表面部位を除去し発泡層に開口部(研磨面の開口、表面開口)を設けたものである。発泡の跡である空孔をポアと呼び、ポリウレタン層におけるポアの存在する部分をナップ層、基層付近の薄い層(通常ポアの存在しない部分)をマイクロレイヤと呼ぶ。発泡ウレタンタイプの研磨パッドは、発泡したウレタンのブロックをスライスしたもので、これを基層と接合することによって、基層と発泡樹脂層を備える研磨布とする。なお、スウェードタイプの研磨布における基層としては、天然繊維、再生繊維又は合成繊維からなる編織布又は、不織布、あるいはこれらのスチレンブタジエンゴム、ニトリルブタジエンゴム等のゴム状物質又はポリウレタンエラストマー等の樹脂を充填して得られる基材が一般的に用いられるが、構成1に係る発明においては、基層として樹脂フィルム(例えばPET樹脂フィルムなど)を採用することにより、発泡樹脂層の基層側のポア径を所定の値に縮径したことによる作用効果との相乗効果が発揮されると考えられることから、基層として樹脂フィルムを用いることが好ましい。基層として樹脂フィルムを用いる場合、前記相乗効果の観点から、樹脂フィルムの厚さは、400nm以下が好ましく、特に、300nm以下が好適である。下限値については特に限定する必要はないが、実用上50nm以上とすることができる。
The present invention will be described in detail below.
The invention which concerns on the structure 1 of this invention is related with the manufacturing method of the glass substrate for magnetic discs which grind | polishes using an abrasive cloth provided with a base layer and a foamed resin layer, moving a glass disk and an abrasive cloth relatively.
Here, urethane is widely used as the foamed resin layer. Examples of the polishing cloth having a base layer and a foamed resin layer include a suede type and a urethane foam type. As shown in FIG. 6, a suede-type polishing cloth (polishing pad) is coated (laminated) with polyurethane on the base layer (base layer), a foam layer is grown in the polyurethane, the surface portion is removed, and the foam layer is opened. Part (opening of polishing surface, opening of surface). The pores that are traces of foaming are called pores, the portion of the polyurethane layer where pores are present is called a nap layer, and the thin layer near the base layer (usually the portion where pores are not present) is called a microlayer. The foamed urethane type polishing pad is obtained by slicing a foamed urethane block, and is bonded to the base layer to form a polishing cloth having a base layer and a foamed resin layer. The base layer in the suede type polishing cloth is a woven or non-woven cloth made of natural fibers, recycled fibers or synthetic fibers, or a rubbery substance such as styrene butadiene rubber or nitrile butadiene rubber, or a resin such as polyurethane elastomer. Although the base material obtained by filling is generally used, in the invention according to Configuration 1, by adopting a resin film (for example, a PET resin film) as the base layer, the pore diameter on the base layer side of the foamed resin layer is reduced. A resin film is preferably used as the base layer because it is considered that a synergistic effect with the function and effect obtained by reducing the diameter to a predetermined value is exhibited. When using a resin film as a base layer, from the viewpoint of the synergistic effect, the thickness of the resin film is preferably 400 nm or less, and particularly preferably 300 nm or less. Although it is not necessary to specifically limit the lower limit, it can be practically 50 nm or more.

本発明の構成1に係る発明は、基層側のポア径が200μm以下の発泡樹脂層を備える研磨布を選択し、かつ、コロイド粒子を含む研磨液を供給してガラスディスクを研磨することを特徴とする。このように、ポア径を200μm以下に縮径すると、以下の効果がある。
第1に、上述した第1の課題に対して、端部形状の乱れ(端部の盛り上がりや端部のだれ)を顕著に低減し、端部形状に十分に優れた(端部形状がほぼフラットであると言えるような)磁気ディスク用ガラス基板が得られる。
第2に、上述した第1’の課題に対して、主表面の端部の研磨速度と主表面の他の部分の研磨速度との差を低減でき、その結果、「端部のだれ」の問題を低減できることを第2に見出した。つまり、本発明(構成1)によって、ディスク表面の鏡面化と、端部形状の乱れ(端部の盛り上がりや端部のだれ)は、トレードオフの関係にあるという課題を解決し、上記範囲内の鏡面(Rmaxで5nm以下、Raで0.5nm以下)を有しかつ端部形状に十分に優れた磁気ディスク用ガラス基板を得ることを初めて実現できる。
第3に、上述した第3の課題に対して、端部の微小うねりを低減するのに効果的な手段となる。
なお、ポア径の相違は構造上の相違であり、後述する圧縮率では捕捉できない作用や、相乗作用が、実際の研磨時の研磨布が圧縮された状態で発揮されることがあるものと考えられる。
発泡樹脂層においては、基層側から発泡樹脂層の厚みの約半分〜約1/3までにかけて発泡時に生じた空孔部がありそこから空気が抜ける方向に縮径して形成された気孔が表面開口まで続いた形状である。本発明において、基層側のポア径とは、基層側から発泡樹脂層の厚みの約半分〜約1/3までの部位にある空孔の径(好ましくは、発泡樹脂層の縦断面を見たときの前記空孔の断面の径(大きさ))を指す。例えば、後述する実施例に示すように、基層側のポア径の最大径で管理すれば、従来に比べ縮径され、本発明の効果が発現される研磨布を選択できる。基層側のポア径の最大径は、多数ある基層側のポア径のうち最大径であるもので管理してもよく、多数ある基層側の各ポア径の各最大径の平均値で管理してもよい。このように基層側のポア径の最大径で管理する以外に、基層側から発泡樹脂層の厚みの約半分〜約1/3までの部位に任意の基準線(基層と平行な線)を引き、基準線におけるポア径の平均径で管理を行うこともできる。この場合、ポア径の平均値が最大となる部位に基準線を引くことが好ましい。基層側のポア径は基層側から発泡樹脂層の厚み方向に100μm〜300μmの部位の基準線(基層と平行な線)におけるポア径で管理を行うことができる。また例えば、多数ある基層側のポア径のうち任意に選択した(好ましくは代表的なものを選択した)複数のポア径の平均値等で管理を行うことも可能である。以上のように、本発明においては、発泡時に生じる従来の比較的大きな空孔部に比べ、ポア径が縮径され、本発明の効果が発現される研磨布を選択できるようにポア径の管理を行えばよい。
上記本発明の作用効果を更に有効に発現させるためには、基層側のポア径のばらつき(分散)は均一化することが好ましい。基層側のポア径のばらつき(分散)が均一化している場合は、基層側のポア径の最大径で管理するのが、簡便である。
上記本発明の作用効果を更に有効に発現させるためには、基層側のポア径は150μm以下とすることが更に好ましい。
基層側のポア径の具体的な観察手段としては、走査型電子顕微鏡が適している。
具体的な発泡樹脂の素材としては、ポリウレタンが現状では好ましい。
発泡樹脂層の厚さは、650μm以下の範囲で選択し、更に450μm以下が好ましい。下限値については特に限定する必要はないが、実用上50nm以上とすることができる。
The invention according to Configuration 1 of the present invention is characterized in that a polishing cloth including a foamed resin layer having a pore diameter of 200 μm or less on the base layer side is selected, and a glass disk is polished by supplying a polishing liquid containing colloidal particles. And Thus, when the pore diameter is reduced to 200 μm or less, the following effects are obtained.
First, in contrast to the first problem described above, the end shape disorder (swelling of the end portion and end sag) is significantly reduced, and the end shape is sufficiently excellent (the end shape is almost the same). A glass substrate for a magnetic disk (which can be said to be flat) is obtained.
Second, the difference between the polishing rate of the end portion of the main surface and the polishing rate of the other portion of the main surface can be reduced with respect to the first 'problem described above. Secondly, the problem can be reduced. That is, according to the present invention (Configuration 1), the problem that the mirror surface of the disk surface is mirror-finished and the end shape is distorted (the bulge of the end portion or the sag of the end portion) is in a trade-off relationship. It is possible to achieve for the first time a magnetic disk glass substrate having a mirror surface (Rmax of 5 nm or less, Ra of 0.5 nm or less) and having a sufficiently excellent end shape.
Third, it is an effective means for reducing the minute waviness of the end portion with respect to the third problem described above.
Note that the difference in pore diameter is a structural difference, and it is considered that an action that cannot be captured at a compression rate, which will be described later, or a synergistic action may be exhibited in a state where the polishing cloth at the time of actual polishing is compressed. It is done.
In the foamed resin layer, there are pores formed during foaming from the base layer side to about half to about one third of the thickness of the foamed resin layer, and the pores formed by reducing the diameter in the direction in which air escapes from the surface The shape continues to the opening. In the present invention, the pore diameter on the base layer side means the diameter of pores in the region from the base layer side to about half to about 3 of the thickness of the foamed resin layer (preferably, the longitudinal section of the foamed resin layer was seen. The diameter (size) of the cross section of the hole. For example, as shown in the examples to be described later, if the maximum pore diameter on the base layer side is managed, a polishing cloth that is reduced in diameter compared with the conventional one and exhibits the effects of the present invention can be selected. The maximum pore diameter on the base layer side may be managed by the maximum diameter among the pore diameters on the base layer side, and is managed by the average value of the maximum diameters of the pore diameters on the base layer side. Also good. In addition to managing the maximum pore diameter on the base layer side in this way, an arbitrary reference line (a line parallel to the base layer) is drawn from the base layer side to a portion from about half to about one third of the thickness of the foamed resin layer. The management can also be performed by the average diameter of the pore diameters in the reference line. In this case, it is preferable to draw a reference line at a site where the average pore diameter is maximum. The pore diameter on the base layer side can be managed by the pore diameter at a reference line (line parallel to the base layer) at a site of 100 μm to 300 μm in the thickness direction of the foamed resin layer from the base layer side. Further, for example, it is possible to perform management based on an average value of a plurality of pore diameters arbitrarily selected (preferably a representative one) among a large number of pore diameters on the base layer side. As described above, according to the present invention, the pore diameter is controlled so that the pore diameter is reduced compared with the conventional relatively large pores generated at the time of foaming, and the polishing cloth that exhibits the effects of the present invention can be selected. Just do.
In order to more effectively express the effect of the present invention, it is preferable to make the dispersion (dispersion) of the pore diameter on the base layer side uniform. When variation (dispersion) in the pore diameter on the base layer side is uniform, it is easy to manage the maximum pore diameter on the base layer side.
In order to more effectively express the effects of the present invention, the pore diameter on the base layer side is more preferably 150 μm or less.
A scanning electron microscope is suitable as a specific means for observing the pore diameter on the base layer side.
As a specific material for the foamed resin, polyurethane is currently preferred.
The thickness of the foamed resin layer is selected within a range of 650 μm or less, and more preferably 450 μm or less. Although it is not necessary to specifically limit the lower limit, it can be practically 50 nm or more.

本発明の構成2に係る発明は、研磨布を用い、ガラスディスクと研磨布とを相対的に移動させて研磨を行なう磁気ディスク用ガラス基板の製造方法に関する。
ここで、研磨布は所定の圧縮率を有すれば特に限定されない。これは、圧縮率の相違は研磨布全体(例えば基層及び発泡樹脂層)としての機能上の相違であり、前述した基層側のポア径の相違だけでは発揮されない作用や、相乗作用が、実際の研磨時の研磨布が圧縮された状態で発揮されることがあるものと考えられるからである。ただし、圧縮率が同じであったとしても、上記構成1で示した基層側のポア径を所定の値に縮径した発泡樹脂層を備える研磨布を用いると、発泡樹脂層の基層側のポア径を所定の値に縮径した作用効果と、圧縮率が所定の値に規定したことによる作用効果と、の相乗効果が発揮されることがあると考えられることから、上記構成1で示した基層と発泡樹脂層を備える研磨布を用いることが好ましい。なお、上記構成1で示した基層と発泡樹脂層を備える研磨布における基層としては、天然繊維、再生繊維又は合成繊維からなる編織布又は、不織布、あるいはこれらのスチレンブタジエンゴム、ニトリルブタジエンゴム等のゴム状物質又はポリウレタンエラストマー等の樹脂を充填して得られる基材が一般的に用いられるが、構成2に係る発明においては、基層として樹脂フィルム(例えばPET樹脂フィルムなど)を採用することにより、相乗効果が発揮されると考えられることから、基層として樹脂フィルムを用いることが好ましい。
The invention which concerns on the structure 2 of this invention is related with the manufacturing method of the glass substrate for magnetic discs which grind | polishes using an abrasive cloth and moving a glass disk and an abrasive cloth relatively.
Here, the polishing cloth is not particularly limited as long as it has a predetermined compression rate. This is because the difference in compressibility is a difference in function as the entire polishing cloth (for example, the base layer and the foamed resin layer). This is because it is considered that the polishing cloth at the time of polishing may be exhibited in a compressed state. However, even if the compression rate is the same, if a polishing cloth including a foamed resin layer having a pore diameter reduced to a predetermined value as shown in the above-described configuration 1 is used, the pore on the base layer side of the foamed resin layer is used. Since it is considered that a synergistic effect between the effect obtained by reducing the diameter to a predetermined value and the effect obtained by setting the compression rate to a predetermined value may be exhibited, the configuration 1 described above is shown. It is preferable to use an abrasive cloth provided with a base layer and a foamed resin layer. In addition, as the base layer in the polishing cloth provided with the base layer and the foamed resin layer shown in the above configuration 1, a woven or nonwoven fabric made of natural fibers, recycled fibers or synthetic fibers, or styrene butadiene rubber, nitrile butadiene rubber, etc. A base material obtained by filling a resin such as a rubbery substance or a polyurethane elastomer is generally used, but in the invention according to Configuration 2, by adopting a resin film (for example, a PET resin film) as a base layer, Since it is thought that a synergistic effect is exhibited, it is preferable to use a resin film as a base layer.

本発明の構成2に係る発明は、前記研磨布の圧縮率を測定し、圧縮率が1.0%以下である研磨布を選択し、かつ、コロイド粒子を含む研磨液を供給してガラスディスクを研磨することを特徴とする。このように、研磨布の圧縮率を小さくすると、以下の効果がある。
第1に、上述した第1の課題に対して、端部形状の乱れ(端部の盛り上がりや端部のだれ)を顕著に低減し、端部形状に十分に優れた(端部形状がほぼフラットであると言えるような)磁気ディスク用ガラス基板が得られる。
第2に、上述した第1’の課題に対して、主表面の端部の研磨速度と主表面の他の部分の研磨速度との差を低減でき、その結果、「端部のだれ」の問題を低減できることを第2に見出した。つまり、本発明(構成2)によって、ディスク表面の鏡面化と、端部形状の乱れ(端部の盛り上がりや端部のだれ)は、トレードオフの関係にあるという課題を解決し、上記範囲内の鏡面を有しかつ端部形状に十分に優れた磁気ディスク用ガラス基板を得ることを初めて実現できる。
第3に、上述した第3の課題に対して、端部の微小うねりを低減するのに効果的な手段である。
上記本発明の作用効果を更に有効に発現させるためには、圧縮率は好ましくは1.0%未満であり、更に好ましくは0.8%以下でり、より以上に好ましくは0.5%以下である。
圧縮率は、日本工業規格Ll096に定める圧縮率を用いた。
研磨布の圧縮率を下げるためには、主として発泡樹脂層における基層側のポア径小さくする手段が有効である。また、発泡樹脂層や基層を薄くする手段や、基層の材質を変更する手段も有効である。したがって、これらの手段を組み合わせて採用することが効果的である。なお、これらの手段を採用した場合、圧縮率は変化率が大きいが、アスカーC硬度は若干上昇するもののその変化率(相対的な差異)は極めて小さい。したがって、圧縮率は、これらの手段の採用の有無や採用レベルに応じた差異を、アスカーC硬度に比べ、顕在化できるパラメーターであるといえる。これは、圧縮率は、研磨時に研磨布にかかる平均荷重(例えば80g/cm)を含む範囲の荷重をかけた状態で一定時間経過後測定されるので、実際の研磨時の圧縮された状態にある研磨布の硬さやその研磨作用をアスカーC硬度に比べより良好且つ忠実に反映しているためであると考えられる。本発明では、このことに着目し、通常研磨布の硬さはアスカーC硬度で管理されるのが一般的であるのに対し、研磨布の圧縮率を測定し、研磨布の特性を圧縮率で管理しようとするものである。
発泡樹脂層の厚さは、650μm以下の範囲で選択し、更に450μm以下が好ましい。
In the invention according to Configuration 2 of the present invention, the compressibility of the polishing cloth is measured, a polishing cloth having a compression ratio of 1.0% or less is selected, and a polishing liquid containing colloidal particles is supplied to provide a glass disk. It is characterized by polishing. Thus, reducing the compressibility of the polishing pad has the following effects.
First, in contrast to the first problem described above, the end shape disorder (swelling of the end portion and end sag) is significantly reduced, and the end shape is sufficiently excellent (the end shape is almost the same). A glass substrate for a magnetic disk (which can be said to be flat) is obtained.
Second, the difference between the polishing rate of the end portion of the main surface and the polishing rate of the other portion of the main surface can be reduced with respect to the first 'problem described above. Secondly, the problem can be reduced. In other words, the present invention (Configuration 2) solves the problem that the mirror surface of the disk and the disturbance of the end shape (the rising of the end and the sag of the end) are in a trade-off relationship. It is possible for the first time to obtain a glass substrate for a magnetic disk that has a mirror surface and has a sufficiently excellent end shape.
Third, it is an effective means for reducing the minute waviness of the end portion with respect to the third problem described above.
In order to more effectively express the effects of the present invention, the compression ratio is preferably less than 1.0%, more preferably 0.8% or less, and even more preferably 0.5% or less. It is.
The compression rate defined in Japanese Industrial Standard L1096 was used as the compression rate.
In order to lower the compressibility of the polishing cloth, it is effective to mainly reduce the pore diameter on the base layer side in the foamed resin layer. In addition, means for thinning the foamed resin layer and the base layer and means for changing the material of the base layer are also effective. Therefore, it is effective to employ a combination of these means. When these means are employed, the rate of change in the compression ratio is large, but the rate of change (relative difference) is very small although the Asker C hardness slightly increases. Therefore, it can be said that the compression ratio is a parameter that can make the difference according to the presence / absence of these means and the adoption level more obvious than the Asker C hardness. This is because the compression rate is measured after a certain time has passed in a state where a load in a range including an average load (for example, 80 g / cm 2 ) applied to the polishing cloth at the time of polishing is applied. This is probably because the hardness of the polishing cloth and its polishing action are better and faithfully reflected than the Asker C hardness. In the present invention, focusing on this, the hardness of the abrasive cloth is generally controlled by the Asker C hardness, whereas the compressibility of the abrasive cloth is measured and the characteristics of the abrasive cloth are determined as the compressibility. It is something to be managed with.
The thickness of the foamed resin layer is selected within a range of 650 μm or less, and more preferably 450 μm or less.

本発明においては、上記構成3にあるように、研磨面に開口するポア径が50μm以下の発泡樹脂層を備える研磨布を選択してガラスディスクを研磨することが好ましい。このように、研磨布の表面開口を小さくすると、基板全面の微小うねりを全体的に低減する効果があり、また、端部の微小うねりを低減するのに効果的な手段である。
このことを説明すると、例えば表面開口が相対的に大きい研磨布を用い、酸化セリウムを使用して研磨を実施した場合、端部の盛り上がりが生じてしまい、さらに図7のAに示すように、端部の微小うねりの低減効果も十分とは言えないことが判明した。
これに対し、研磨布の表面開口を縮径する(例えば後述する比較例で示した研磨布を用いる。この場合研磨布のアスカーC硬度は若干大きくなるが従来の範疇、研磨粒子は更せず。)と、図7のA→Bに示すように、基板全面の微小うねりを全体的に低減でき、従って端部の微小うねりを低減できることを見出した。ただし、図7を別の見方で見ると、研磨布の表面開口を縮径しだけでは、端部の微小うねりが他の箇所に比べ大きく微小うねりの低減効果が十分であるとは言えない。これに対し、研磨布の表面開口を縮径する要件と、上記構成1又は2の要件を組み合わせることによって、図7のB→Cに示すように、端部の微小うねりを更に顕著に低減する効果があることを見出した。つまり、このような組み合わせ構成によって、ディスク表面の鏡面化と、端部形状の乱れ(端部の盛り上がりや端部のだれ)は、トレードオフの関係にあるという課題を顕著に解決し、上記範囲内の鏡面(Rmaxで5nm以下、Raで0.5nm以下)を有しかつ端部形状に顕著に優れた磁気ディスク用ガラス基板を得ることができる。
本発明の作用効果をより有効に発現させるためには、研磨面に開口するポア径は好ましくは20μm以下である。
本発明の作用効果をより有効に発現させるためには、研磨面に開口するポア径のばらつき(分散)は均一化することが好ましい。
研磨面に開口するポア径の具体的な観察手段としては、走査型電子顕微鏡が適している。
In the present invention, as in the configuration 3, it is preferable to polish a glass disk by selecting a polishing cloth having a foamed resin layer having a pore diameter of 50 μm or less opened on the polishing surface. Thus, if the surface opening of the polishing cloth is made small, there is an effect of reducing the micro waviness on the entire surface of the substrate, and it is an effective means for reducing the micro waviness of the end portion.
To explain this, for example, when polishing is performed using cerium oxide using a polishing cloth having a relatively large surface opening, the bulge of the end portion occurs, and as shown in FIG. It was found that the effect of reducing the minute waviness at the end was not sufficient.
On the other hand, the surface opening of the polishing cloth is reduced in diameter (for example, the polishing cloth shown in the comparative example described later is used. In this case, the Asker C hardness of the polishing cloth is slightly increased, but the conventional category and polishing particles are not changed. 7), as shown by A → B in FIG. 7, it was found that the micro-waviness of the entire surface of the substrate can be reduced as a whole, and therefore the micro-waviness of the end portion can be reduced. However, from another perspective, FIG. 7 cannot be said to be sufficient in reducing the micro-waviness of the end portion by reducing the diameter of the surface opening of the polishing cloth, as compared with other locations. On the other hand, by combining the requirement for reducing the diameter of the surface opening of the polishing cloth and the requirement of the above-described configuration 1 or 2, as shown in B → C of FIG. I found it effective. In other words, such a combined configuration remarkably solves the problem that the disk surface is mirror-finished and the end shape is distorted (the bulge of the end and the sag of the end) are in a trade-off relationship. It is possible to obtain a glass substrate for a magnetic disk having an inner mirror surface (Rmax of 5 nm or less, Ra of 0.5 nm or less) and having a remarkably excellent end shape.
In order to more effectively express the effects of the present invention, the pore diameter opened to the polished surface is preferably 20 μm or less.
In order to more effectively express the effects of the present invention, it is preferable to make the variation (dispersion) in the pore diameters opened in the polishing surface uniform.
A scanning electron microscope is suitable as a specific means for observing the pore diameter opening in the polished surface.

本発明においては、上記構成1,2にあるように、コロイド粒子を含む研磨液を供給して研磨することが好ましい。このように、コロイド粒子を含む研磨液を供給して研磨すると(研磨粒子の粒径を小さくすると)、上記構成1又は2の要件の採用によって新たに生じる主表面の鏡面レベルが悪化する問題を解消でき、主表面の鏡面レベルを磁気ヘッドの浮上量を10nm以下としても問題ないレベルに抑えることができる。
コロイド粒子の具体的としてはコロイダルシリカ粒子(コロイダルシリカ研磨砥粒)(構成5)が好ましく、コロイド粒子を含む研磨液としてはマイクロシリカスラリーが好ましい。コロイダルシリカの平均粒径(D50)は10nm〜120nmとすると本願発明の作用効果が顕著になるので好ましく(構成4)、90nm以下とすることが更に好ましく、80nm以下とすることがより以上に好ましい。研磨液はアルカリ性であることが好ましく、具体的にはPHが8〜12とすることが好ましい。
コロイダルシリカは、SiOまたはその水和物のコロイドで、一定の構造をもたないものをいう。ケイ酸塩に希塩酸を作用させてから透析して得られ、常温ではなかなか沈澱しないゾル状で、ある長時間放置するか、水分を蒸発させるか、あるいは電解質を加えると、含水二酸化ケイ素ゲルとなる。
In the present invention, it is preferable to polish by supplying a polishing liquid containing colloidal particles as in the above-described configurations 1 and 2. As described above, when polishing is performed by supplying a polishing liquid containing colloidal particles (when the particle size of the polishing particles is reduced), a problem arises that the mirror surface level of the main surface newly generated by adopting the requirements of the above configuration 1 or 2 deteriorates. The mirror surface level of the main surface can be suppressed to a level that does not cause a problem even if the flying height of the magnetic head is 10 nm or less.
Specifically, the colloidal particles are preferably colloidal silica particles (colloidal silica abrasive grains) (Configuration 5), and the polishing liquid containing colloidal particles is preferably a microsilica slurry. When the average particle diameter (D 50 ) of the colloidal silica is 10 nm to 120 nm, the effect of the present invention becomes remarkable (Configuration 4), more preferably 90 nm or less, and more preferably 80 nm or less. preferable. The polishing liquid is preferably alkaline, and specifically, the pH is preferably 8-12.
Colloidal silica is a colloid of SiO 2 or its hydrate that does not have a certain structure. It is obtained by dialysis after the action of dilute hydrochloric acid on silicate, and it is a sol that does not easily precipitate at room temperature. When it is left for a long time, water is evaporated, or an electrolyte is added, it becomes a hydrous silicon dioxide gel .

上記本発明は、研磨布を用い、ガラスディスクと研磨布とを相対的に移動させて研磨を行なう磁気ディスク用ガラス基板の製造方法に適用可能であるが、好ましくは、研磨布の基層側から研磨布を付圧して研磨する磁気ディスク用ガラス基板の製造方法に適用することが好ましい(構成6)。本発明の作用効果をより有効に発現させるためには、研磨布の基層側から研磨布を付圧する範囲は50g/cm〜150g/cmであることが好ましい。本発明においては、基層と発泡樹脂層を備える研磨布を用いることが好ましい。 The present invention is applicable to a method for manufacturing a glass substrate for a magnetic disk that uses an abrasive cloth and moves the glass disk and the abrasive cloth relative to each other, and preferably, from the base layer side of the abrasive cloth. It is preferably applied to a method for producing a glass substrate for a magnetic disk that is polished by applying a polishing cloth (Structure 6). To more effectively express the effect of the present invention preferably ranges pressure with the polishing cloth from the base layer side of the polishing cloth is 50g / cm 3 ~150g / cm 3 . In the present invention, it is preferable to use an abrasive cloth provided with a base layer and a foamed resin layer.

研磨布を用い、ガラスディスクと研磨布とを相対的に移動させて研磨を行なう磁気ディスク用ガラス基板の製造方法に好適に使用される研磨装置の一例について説明する。
図9は上下定盤を有する両面研磨装置の主要部断面図、図10は研磨装置の駆動機構部の説明図、である。この装置は、上下定盤に研磨布(研磨パッド)を介して狭圧されたガラスディスクが、定番上を自転しつつ公転して両面が研磨される、遊星歯車方式両面研磨装置である。図9及び図10において、研磨装置5は、それぞれ所定の回転比率で回転駆動されるインターナルギア51及びサンギア52を有する研磨用キャリア装着部と、この研磨用キャリア装着部を挟んで互いに逆回転駆動される上定盤53及び下定盤54とを有する。研磨用キャリア装着部に、複数の研磨用キャリア1をセットすると、これら研磨用キャリア1のギアがインターナルギア51及びサンギア52と噛合されるようになっている。各研磨用キャリア1の被研磨体保持孔に被研磨体であるガラスディスク4をセットし、研磨を開始すると、研磨用キャリア1はインターナルギア51及びサンギア52との回転数の差により遊星運動を行う。同時に、上定盤53及び下定盤54は互いに逆回転し、それらに設けられた研磨パッド53a,54aによって磁気ディスク用ガラス基板4の表裏の面がポリッシングされる。
An example of a polishing apparatus that is preferably used in a method for manufacturing a glass substrate for a magnetic disk that performs polishing by using a polishing cloth and relatively moving the glass disk and the polishing cloth will be described.
FIG. 9 is a cross-sectional view of the main part of a double-side polishing apparatus having upper and lower surface plates, and FIG. 10 is an explanatory view of a drive mechanism section of the polishing apparatus. This device is a planetary gear type double-side polishing device in which a glass disk, which is narrowly pressed on an upper and lower surface plate via a polishing cloth (polishing pad), revolves while rotating on a standard surface to be polished on both sides. 9 and 10, the polishing apparatus 5 includes a polishing carrier mounting portion having an internal gear 51 and a sun gear 52 that are driven to rotate at a predetermined rotation ratio, and a reverse rotation drive with the polishing carrier mounting portion interposed therebetween. The upper surface plate 53 and the lower surface plate 54 are provided. When a plurality of polishing carriers 1 are set in the polishing carrier mounting portion, the gears of the polishing carrier 1 are engaged with the internal gear 51 and the sun gear 52. When the glass disk 4 as the object to be polished is set in the object to be polished holding hole of each polishing carrier 1 and polishing is started, the polishing carrier 1 performs planetary motion due to the difference in rotational speed between the internal gear 51 and the sun gear 52. Do. At the same time, the upper surface plate 53 and the lower surface plate 54 rotate reversely to each other, and the front and back surfaces of the magnetic disk glass substrate 4 are polished by the polishing pads 53a and 54a provided on them.

本発明の磁気ディスク用ガラス基板の硝種、サイズ等については特に限定されない。硝種としては、例えば、アルミノシリケートガラス、ソーダライムガラス、ソーダアルミノ珪酸ガラス、アルミノボロシリケートガラス、ボロシリケートガラス、石英ガラス、結晶化ガラスなどが上げられる。平滑性の点では、一般に結晶化ガラスよりもアモルファスガラスが良く、特に、機械的強度や、耐衝撃性、耐振動性等の点からアルミノシリケートガラスなどの化学強化ガラスが好ましい。   The glass type, size, etc. of the glass substrate for magnetic disk of the present invention are not particularly limited. Examples of the glass type include aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, and crystallized glass. In terms of smoothness, amorphous glass is generally better than crystallized glass, and chemically tempered glass such as aluminosilicate glass is particularly preferred in terms of mechanical strength, impact resistance, vibration resistance, and the like.

アルミノシリケートガラスとしては、SiO:58〜75重量%、Al:5〜23重量%、Li2O:3〜10重量%、Na2O:4〜13重量%を主成分として含有する化学強化ガラスなどが好ましい。 The aluminosilicate glass, SiO 2: containing 4-13% by weight as the main component: 58 to 75 wt%, Al 2 O 3: 5~23 wt%, Li 2 O: 3 to 10 wt%, Na 2 O Chemical tempered glass is preferred.

また、近年では、高い平滑性を有する基板が求められていることから、結晶化ガラスの結晶粒径が100nm以下の結晶化ガラス基板の開発が行われている。結晶化ガラスは、機械的強度がアモルファスガラスと比べて大きく、また製造工程上、ダイヤモンドペレットによる研削加工を行うなどの利点から平坦性に優れ、且つ高い平滑性の基板が得られるので好ましい。   In recent years, since a substrate having high smoothness has been demanded, a crystallized glass substrate having a crystal grain size of 100 nm or less has been developed. Crystallized glass is preferable because it has higher mechanical strength than amorphous glass, and is excellent in flatness and has a high smoothness due to advantages such as grinding with diamond pellets in the manufacturing process.

上述の磁気ディスク用ガラス基板の主表面に少なくとも磁性層を形成することにより、高密度記録に対応した磁気ディスクを得ることができる(構成7)。
ここで、ガラス基板上に形成する磁性層の材料には特に制限はない。磁性層としては、例えば、Coを主成分とするCoPt、CoCr、CoNi、CoNiCr、CoCrTa、CoPtCr、CoNiPt、CoNiCrPt、CoNiCrTa、CoCrPtTa、CoCrPtB、CoCrPtTaBなどの磁性膜が挙げられる。磁性層は、磁性膜を非磁性膜(例えば、Cr、CrMo、CrV、CrMnCなど)で分割してノイズの低減を図った多層構造としても良い。また、必要に応じ、ガラス基板と磁性層との間に、シード層や下地層を、磁性層上に保護層や潤滑層を設けても良い。
By forming at least the magnetic layer on the main surface of the glass substrate for magnetic disk described above, a magnetic disk compatible with high-density recording can be obtained (Configuration 7).
Here, the material of the magnetic layer formed on the glass substrate is not particularly limited. Examples of the magnetic layer include magnetic films such as CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, CoNiPt, CoNiCrPt, CoNiCrTa, CoCrPtTa, CoCrPtB, and CoCrPtTaB containing Co as a main component. The magnetic layer may have a multilayer structure in which the magnetic film is divided by a nonmagnetic film (for example, Cr, CrMo, CrV, CrMnC, etc.) to reduce noise. If necessary, a seed layer or an underlayer may be provided between the glass substrate and the magnetic layer, and a protective layer or a lubricating layer may be provided on the magnetic layer.

シード層としては、その上に形成される下地層や磁性層の結晶粒径を制御する役割があり、例えば、NiAl、CrNi、CrTiなどの材料が挙げられる。下地層としては、磁気特性の向上を目的として設けられ、例えば、Cr、Mo、V、Ta、Ti、W、B、Al、Niなどの非磁性金属から選ばれる少なくとも一種以上の材料からなる非磁性膜が挙げられる。下地層は単層でも複数層でもかまわない。   The seed layer has a role of controlling the crystal grain size of the underlayer and magnetic layer formed thereon, and examples thereof include materials such as NiAl, CrNi, and CrTi. The underlayer is provided for the purpose of improving magnetic properties, and is made of, for example, a non-magnetic material made of at least one material selected from nonmagnetic metals such as Cr, Mo, V, Ta, Ti, W, B, Al, and Ni. An example is a magnetic film. The underlayer may be a single layer or a plurality of layers.

保護層としては、機械的耐久性、耐食性等のために設けられ、例えば、Cr、Cr合金、カーボン、水素化カーボン、窒化カーボン、ジルコニア、SiOなどが挙げられる。潤滑層としては、磁気ヘッドとの吸着防止、摩擦係数の低減のために設けられ、パーフルオロポリエーテル潤滑剤などが一般的に使用される。 The protective layer is provided for mechanical durability, corrosion resistance, and the like, and examples thereof include Cr, Cr alloy, carbon, hydrogenated carbon, carbon nitride, zirconia, and SiO 2 . The lubricating layer is provided to prevent adsorption with the magnetic head and reduce the friction coefficient, and a perfluoropolyether lubricant or the like is generally used.

次に、本発明の実施例を掲げて本発明をより具体的に説明する。
実施例1は、(1)粗ラッピング工程、(2)形状加工程、(3)端面研磨工程、(4)精ラッピング工程、(5)第一ポリッシング工程、(6)第二ポリッシング工程、(7)洗浄工程、(8)化学強化工程、(9)洗浄工程、(10)評価工程、(11)磁気ディスクの製造工程、の各工程を有する。以下、各工程を詳細に説明する。
Next, the present invention will be described in more detail with reference to examples of the present invention.
Example 1 includes (1) rough lapping step, (2) shape adding step, (3) end surface polishing step, (4) fine lapping step, (5) first polishing step, (6) second polishing step, ( 7) cleaning process, (8) chemical strengthening process, (9) cleaning process, (10) evaluation process, and (11) magnetic disk manufacturing process. Hereinafter, each process will be described in detail.

(1)粗ラッピング工程
まず、溶融ガラスを、上型、下型、胴型を用いたダイレクトプレスして、直径66mmφ、厚さ1.2mmの円盤状のアルミノシリケートガラスからなるガラス基板を得た。この場合、ダイレクトプレス以外に、ダウンドロー法やフロート法で形成したシートガラスから研削砥石で切り出して円盤状のガラス基板を得ても良い。なお、アルミノシリケートガラスとしては、SiO:58〜75重量%、Al:5〜23重量%、LiO:3〜10重量%、NaO:4〜13重量%を主成分として含有する化学強化ガラスを使用した。
(1) Coarse lapping process First, the molten glass was directly pressed using an upper mold, a lower mold, and a trunk mold to obtain a glass substrate made of a disc-shaped aluminosilicate glass having a diameter of 66 mmφ and a thickness of 1.2 mm. . In this case, in addition to the direct press, a disk-shaped glass substrate may be obtained by cutting out from a sheet glass formed by a downdraw method or a float method with a grinding wheel. As the aluminosilicate glass, SiO 2: 58 to 75 wt%, Al 2 O 3: 5~23 wt%, Li 2 O: 3 to 10 wt%, Na 2 O: 4 to 13 principal component weight% Chemically strengthened glass contained as

次いで、ガラス基板にラッピング工程を施した。このラッピング工程は、寸法制度及び形状制度の向上を目的としている。ラッピング工程は、両面ラッピング装置を用いて行い、砥粒の粒度を#400で行った。詳しくは、粒度#400のアルミナ砥粒を用い、荷重Lを100kg程度に設定して、内転ギアと外転ギアを回転させることによって、キャリア内に収納したガラス基板の両面を面精度0〜1μm、表面粗さRmaxで6μm程度に仕上げた。   Next, a lapping process was performed on the glass substrate. This lapping process aims to improve the size system and the shape system. The lapping process was performed using a double-sided lapping apparatus, and the abrasive grain size was # 400. Specifically, by using alumina abrasive grains having a particle size of # 400, the load L is set to about 100 kg, and the inner rotation gear and the outer rotation gear are rotated, so that both surfaces of the glass substrate housed in the carrier have surface accuracy of 0 to 0. Finished to about 1 μm and a surface roughness Rmax of about 6 μm.

(2)形状加工工程
次に,円筒状の砥石を用いてガラス基板の中央部分に孔を開けると共に、外周端面も研削して直径65mmφとした後、外周端面及び内周面に所定の面取り加工を施した。このときのガラス基板端面(内周、外周)の表面粗さは、Rmaxで4μm程度であった。
(2) Shape processing step Next, a cylindrical grindstone is used to make a hole in the central portion of the glass substrate, and the outer peripheral end surface is ground to a diameter of 65 mmφ, followed by predetermined chamfering on the outer peripheral end surface and the inner peripheral surface. Was given. The surface roughness of the glass substrate end face (inner circumference, outer circumference) at this time was about 4 μm in Rmax.

(3)端面研磨工程
次いで、ブラシ研磨により、ガラス基板を回転させながらガラス基板の端面(内周、外周)の表面粗さをRmaxで1μm、Raで0.3μm程度に研磨した。上記端面研磨工程を終えたガラス基板の表面を水洗浄した。
(3) End face polishing step Next, the surface roughness of the end face (inner circumference, outer circumference) of the glass substrate was polished to about 1 μm by Rmax and about 0.3 μm by Ra while rotating the glass substrate by brush polishing. The surface of the glass substrate after the end face polishing step was washed with water.

(4)精ラッピング工程
次に、砥粒の粒度を#1000に変え、ガラス基板表面をラッピングすることにより、平坦度3μm、表面粗さRmaxが2μm程度、Raが0.2μm程度とした。尚、Rmax、Raは原子間力顕微鏡(AFM)で測定、平坦度は、平坦度測定装置で測定したもので、基板表面の最も高い部位と、もっとも低い部位との上下方向(表面に垂直な方向)の距離(高低差)である。上記精ラッピング工程を終えたガラス基板を、中性洗剤、水の各洗浄槽に順次浸漬して洗浄した。
(4) Fine lapping step Next, the grain size of the abrasive grains was changed to # 1000, and the glass substrate surface was lapped, so that the flatness was 3 μm, the surface roughness Rmax was about 2 μm, and Ra was about 0.2 μm. Rmax and Ra were measured with an atomic force microscope (AFM), and flatness was measured with a flatness measuring device. The vertical direction between the highest part and the lowest part of the substrate surface (perpendicular to the surface). Direction) (the difference in height). The glass substrate after the fine wrapping step was washed by sequentially immersing it in each washing tank of neutral detergent and water.

(5)第一ポリッシング工程
次に、ポリッシング工程を施した。このポリッシング工程は、上述したラッピング工程で残留した傷や歪みの除去を目的とするもので、両面研磨装置を用いて行った。詳しくは、ポリシャとして硬質ポリシャを用い、以下の研磨条件で実施した。
研磨液:酸化セリウム(平均粒径1.3μm)砥粒に水を加えた遊離砥粒
荷重(付圧):80〜100g/cm
研磨時間:30〜50分
除去量:35〜45μm
(5) First Polishing Step Next, a polishing step was performed. This polishing process is intended to remove scratches and distortions remaining in the lapping process described above, and was performed using a double-side polishing apparatus. Specifically, a hard polisher was used as the polisher, and the polishing was performed under the following conditions.
Polishing liquid: cerium oxide (average particle size 1.3 μm) free abrasive grains in which water is added to abrasive grains Load (applied pressure): 80 to 100 g / cm 2
Polishing time: 30-50 minutes Removal amount: 35-45 μm

上記ポリッシング工程を終えたガラス基板を、中性洗剤、純水、純水、IPA、IPA(蒸気乾燥)の各洗浄槽に順次浸漬して、洗浄した。尚、各洗浄槽には超音波を印加した。また、この洗浄工程は、次の第二ポリッシング工程において使用する研磨液が同一のものである場合、省略することもできる。また、第一ポリッシング工程で使用する硬質ポリシャは、特に限定されず、目標とする表面粗さ、基板の端部形状等によって適宜選択することが可能である。   The glass substrate that had been subjected to the polishing step was sequentially immersed in each washing bath of neutral detergent, pure water, pure water, IPA, and IPA (steam drying) and washed. An ultrasonic wave was applied to each cleaning tank. Further, this cleaning step can be omitted when the polishing liquid used in the next second polishing step is the same. The hard polisher used in the first polishing step is not particularly limited, and can be appropriately selected depending on the target surface roughness, the end shape of the substrate, and the like.

(6)第二ポリッシング工程(鏡面研磨加工工程)
次に、第一ポリッシング工程で使用した両面研磨装置を用い、ポリシャとして硬質ポリシャから軟質ポリシャに変えて第二ポリッシング工程を実施した。ここで、研磨布(軟質ポリシャ)として、表1に示す諸特性を有する4種類のものを準備し、4種類の研磨布(研磨パッド)を順次交換しそれぞれの研磨布を用いて鏡面研磨加工工程(ファイナルポリッシング)を実施した。
表1に示す諸特性を有する4種類の各研磨布の縦断面の走査型電子顕微鏡写真(SEM写真)を図1(1)〜(4)に示す。図1(1)は表1の比較例に、図1(2)は表1の実施例1−1に、図1(3)は表1の実施例1−2に、図1(4)は表1の実施例1−3に、それぞれ対応する。
表1において、基層の層厚、発泡樹脂層の層厚及び基層側のポア径は、研磨布の縦断面を走査型電子顕微鏡(SEM)により分析して求めた。表1の発泡樹脂層の基層側のポア径の欄において、「最大径」は、図1の各図において多数ある基層側のポア径のうち最大径であるものの値を示し、「平均径」は、図1の各図において多数ある基層側の各ポア径の各最大径の平均値の値を示し、「最小径」は、図1の各図において多数ある基層側のポア径のうち最小径であるものの値を示す。
また、硬度(Asker−C)は日本ゴム協会標準規格(SRISO101)に定める評価法によった。圧縮率は日本工業規格JIS L1096に定める評価法によった。
ファイナルポリッシングにおける研磨条件は、研磨液:コロイダルシリカ(平均粒径 80nm)砥粒に水を加えた遊離砥粒、荷重(付圧):80〜100g/cm、研磨時間:10〜30分、除去量:0.1〜5μmとした。
なお、研磨布の表面粗さRz(十点平均粗さ)(特許文献1参照)を、触針式の表面粗さ計である小型表面粗さ測定機(サーフテストSJ−401:ミツトヨ社製)で測定したところ、8.0μmであった。
また、発泡樹脂層の研磨面に開口するポア径を、走査型電子顕微鏡(SEM)で測定したところ、20μmであった。
(6) Second polishing process (mirror polishing process)
Next, the double polishing apparatus used in the first polishing process was used, and the second polishing process was performed by changing the hard polisher to the soft polisher as the polisher. Here, as the polishing cloth (soft polisher), four types having the characteristics shown in Table 1 are prepared, and the four types of polishing cloth (polishing pad) are sequentially replaced, and mirror polishing is performed using each polishing cloth. A process (final polishing) was performed.
Scanning electron micrographs (SEM photographs) of longitudinal sections of four types of polishing cloths having various characteristics shown in Table 1 are shown in FIGS. 1 (1) is a comparative example of Table 1, FIG. 1 (2) is Example 1-1 of Table 1, FIG. 1 (3) is Example 1-2 of Table 1, and FIG. Corresponds to Examples 1-3 in Table 1, respectively.
In Table 1, the layer thickness of the base layer, the layer thickness of the foamed resin layer, and the pore diameter on the base layer side were determined by analyzing the longitudinal section of the polishing pad with a scanning electron microscope (SEM). In the column of the pore diameter on the base layer side of the foamed resin layer in Table 1, “maximum diameter” indicates the value of the maximum diameter among the pore diameters on the base layer side in each figure of FIG. 1 represents the average value of the maximum diameters of the pores on the base layer side that are numerous in each figure of FIG. 1, and the “minimum diameter” is the maximum of the pore diameters on the base layer side in the figures of FIG. The value of the small diameter is shown.
The hardness (Asker-C) was determined by an evaluation method defined in the Japan Rubber Association Standard (SRISO101). The compression rate was based on the evaluation method defined in Japanese Industrial Standard JIS L1096.
The polishing conditions in final polishing are as follows: polishing liquid: colloidal silica (average particle diameter 80 nm) free abrasive grains obtained by adding water, load (pressure applied): 80 to 100 g / cm 2 , polishing time: 10 to 30 minutes, Removal amount: 0.1 to 5 μm.
Note that the surface roughness Rz (ten-point average roughness) of the polishing cloth (see Patent Document 1) is a small surface roughness measuring instrument (Surf Test SJ-401: manufactured by Mitutoyo Corporation) which is a stylus type surface roughness meter. ) Was 8.0 μm.
Moreover, when the pore diameter opened to the grinding | polishing surface of a foamed resin layer was measured with the scanning electron microscope (SEM), it was 20 micrometers.

Figure 0004199645
Figure 0004199645

(7)洗浄工程
上記第二ポリッシング工程を終えたガラス基板を、アルカリ(NaOH)、硫酸に順次浸漬して、洗浄を行った。尚、各洗浄槽には超音波を印加した。さらに、中性洗剤、純水、純水、IPA、IPA(蒸気乾燥)の各洗浄槽に順次浸漬して、洗浄した。
(7) Washing step The glass substrate after the second polishing step was washed by immersing it sequentially in alkali (NaOH) and sulfuric acid. An ultrasonic wave was applied to each cleaning tank. Furthermore, it wash | cleaned by immersing in each washing tank of neutral detergent, a pure water, a pure water, IPA, and IPA (steam drying) one by one.

(8)化学強化工程
次に、上記ラッピング、ポリッシング、洗浄工程を終えたガラス基板に化学強化を施した。化学強化には、硝酸カリウム(60%)と硝酸ナトリウム(40%)を混合した化学強化塩を用意し、この化学強化塩を375℃に加熱し、300℃に予熱された洗浄済みのガラス基板を約3時間浸漬して行った。この浸漬の際に、ガラス基板の表面全体が化学強化するように、複数のガラス基板が端面で保持されるようにホルダーに収納した状態で行った。
(8) Chemical strengthening process Next, the glass substrate which finished the said lapping, polishing, and washing | cleaning process was chemically strengthened. For chemical strengthening, a chemically strengthened salt prepared by mixing potassium nitrate (60%) and sodium nitrate (40%) is prepared, and this chemically strengthened salt is heated to 375 ° C. and a cleaned glass substrate preheated to 300 ° C. is prepared. It was immersed for about 3 hours. During this immersion, the plurality of glass substrates were housed in a holder so that the entire surface of the glass substrate was chemically strengthened so that the glass substrates were held at the end surfaces.

このように、化学強化塩に浸漬処理することによって、ガラス基板表層のリチウムイオン、ナトリウムイオンは、化学強化塩中のナトリウムイオン、カリウムイオンにそれぞれ置換されガラス基板は強化される。ガラス基板の表層に形成された圧縮応力層の厚さは、約100〜200μmであった。上記化学強化を終えたガラス基板を20℃の水槽に浸漬して急冷し、約10分維持した。   Thus, by immersing in the chemically strengthened salt, the lithium ions and sodium ions on the surface of the glass substrate are replaced with sodium ions and potassium ions in the chemically strengthened salt, respectively, and the glass substrate is strengthened. The thickness of the compressive stress layer formed on the surface layer of the glass substrate was about 100 to 200 μm. The glass substrate after the chemical strengthening was immersed in a 20 ° C. water bath and rapidly cooled, and maintained for about 10 minutes.

(9)洗浄工程
上記急冷を終えたガラス基板を、約40℃に加熱した硫酸に浸漬し、超音波をかけながら洗浄を行った。
以上のようにして、内径(内直径)20mm、外径(外直径)65mm(中心部から測って内周端10mm、外周端32.5mm)の2.5インチ型ガラス基板を得た。
(9) Washing Step The glass substrate after the rapid cooling was immersed in sulfuric acid heated to about 40 ° C. and washed while applying ultrasonic waves.
As described above, a 2.5-inch glass substrate having an inner diameter (inner diameter) of 20 mm and an outer diameter (outer diameter) of 65 mm (measured from the central portion, an inner peripheral end of 10 mm and an outer peripheral end of 32.5 mm) was obtained.

(10)評価工程
このようにして得られたガラス基板表面の各種測定結果を表2、図1〜3に示す。
なお、表2における測定条件等は以下の(1)〜(3)に示す通りである。
(1)「表面粗さRa」は、表面5平方μm矩形領域についての原子間力顕微鏡(AFM)による表面形状測定結果を用い、日本工業規格JISB0601の算術平均粗さRaに準拠して算出した。
なお、各試料について、中周部の表面粗さ(測定位置=半径23mm)を上記方法で測定したところ、いずれの試料についても、本発明で得ようとする所定範囲内の鏡面(Rmaxで5nm以下、Raで0.5nm以下)が得られていることを確認した。具体的には、実施例1−1の試料について主表面の表面粗さ(測定位置=半径23mm)を上記方法で測定したところ、Rmaxで2.3nm、Raで0.24nmであり、他の試料についても同様であった。
(2)「微小うねりRq」は、フェイス・シフトテクノロジー社製の多機能表面解析装置(MicroXAM)を用い、表面3.8平方mm矩形領域についての550nm波長の光を用いた光学干渉法による表面形状測定結果を用い、形状波長が16μm〜1,9mm帯域の表面形状を抽出し、この表面形状の二乗平均粗さRq(RMS)として算出した。(なお、端部の微小うねりRqの測定概念については図8参照)。
(3)「端部形状」は、ある測定区間についての触針法による表面形状測定結果を用い、この測定区間の両端を結んだ仮想線を基準としたときに、この仮想線から表面までの距離が最大に乖離する位置を特定し、この位置における仮想線から表面までの乖離距離を端部形状として算出した。表2における「端部形状」の値は絶対値であり、図8に示すように「端部だれ」の大きさを示す。
(10) Evaluation process Table 2 and Figs. 1 to 3 show various measurement results of the glass substrate surface thus obtained.
In addition, the measurement conditions in Table 2 are as shown in the following (1) to (3).
(1) “Surface roughness Ra” was calculated in accordance with the arithmetic average roughness Ra of Japanese Industrial Standard JISB0601, using the surface shape measurement result by atomic force microscope (AFM) for the surface of the 5 square μm rectangular region. .
For each sample, the surface roughness (measurement position = radius 23 mm) of the middle circumference was measured by the above method, and for each sample, the mirror surface within the predetermined range to be obtained by the present invention (Rmax: 5 nm) Hereinafter, it was confirmed that Ra was 0.5 nm or less). Specifically, when the surface roughness (measurement position = radius 23 mm) of the main surface of the sample of Example 1-1 was measured by the above method, it was 2.3 nm for Rmax, 0.24 nm for Ra, The same was true for the samples.
(2) “Micro wave swell Rq” is a surface by optical interferometry using a multi-function surface analyzer (MicroXAM) manufactured by Face Shift Technology, Inc., and using a light of 550 nm wavelength on a surface of 3.8 square mm rectangular area. Using the shape measurement results, a surface shape having a shape wavelength of 16 μm to 1,9 mm band was extracted and calculated as the root mean square roughness Rq (RMS) of this surface shape. (See FIG. 8 for the measurement concept of the minute undulation Rq at the end).
(3) “End shape” is a surface shape measurement result obtained by the stylus method for a certain measurement section, and a virtual line connecting both ends of this measurement section is used as a reference, from the virtual line to the surface. The position where the distance was the largest was identified, and the distance from the virtual line to the surface at this position was calculated as the end shape. The value of “end shape” in Table 2 is an absolute value, and indicates the size of “end droop” as shown in FIG.

Figure 0004199645
Figure 0004199645

4種類の研磨布と、基層側のポア径、圧縮率との関係を図2に示す。図2に示すように、基層側のポア径と圧縮率との間に相関関係があることがわかる。また、4種類の研磨布と、端部の微小うねりとの関係を図3に示す。さらに、4種類の研磨布と、端部形状との関係を図4に示す。
表2の実施例及び図3、4に示すように、発泡樹脂層の基層側のポア径の縮径の度合い、及び、研磨布の弾性率の度合い、に応じて、端部形状の乱れの低減(図3)、端部の微小うねりの低減(図4)が実現でき、しかも中心部の表面粗さについても本発明で得ようとする所定範囲内の鏡面(Rmaxで5nm以下、Raで0.5nm以下)が得られる。これに対し、表2の比較例及び図3、4に示すように、発泡樹脂層の基層側のポア径の縮径の度合い、及び、研磨布の弾性率の度合い、が不十分である研磨布を用いた場合、所定範囲内の鏡面は得られるもの、端部形状の乱れの低減、端部の微小うねりの低減が、いずれも不十分である。以上のことから、本発明によれば、ディスク表面の鏡面化と、端部形状の乱れ(端部の盛り上がりや端部のだれ)は、トレードオフの関係にあるという課題を解決し、所定範囲内の鏡面(Rmaxで5nm以下、Raで0.5nm以下)を有しかつ端部形状に十分又は顕著に優れた磁気ディスク用ガラス基板を得ることができることが判る。
FIG. 2 shows the relationship between the four types of polishing cloth, the pore diameter on the base layer side, and the compression rate. As shown in FIG. 2, it can be seen that there is a correlation between the pore diameter on the base layer side and the compression ratio. FIG. 3 shows the relationship between the four types of polishing cloth and the minute waviness at the end. Further, FIG. 4 shows the relationship between the four types of polishing cloth and the end shape.
As shown in the examples in Table 2 and FIGS. 3 and 4, depending on the degree of diameter reduction of the pore diameter on the base layer side of the foamed resin layer and the degree of elastic modulus of the polishing cloth, the end shape is disturbed. Reduction (FIG. 3), reduction of minute waviness at the end (FIG. 4), and also the surface roughness of the central portion within a predetermined range to be obtained by the present invention (Rmax 5 nm or less, Ra 0.5 nm or less) is obtained. On the other hand, as shown in the comparative example of Table 2 and FIGS. 3 and 4, polishing in which the degree of pore diameter reduction on the base layer side of the foamed resin layer and the degree of elastic modulus of the polishing cloth are insufficient. When a cloth is used, a mirror surface within a predetermined range can be obtained, and the end shape disturbance and the minute waviness at the end are all insufficient. From the above, according to the present invention, the problem that the mirror surface of the disk is mirror-finished and the end shape is disturbed (the bulge of the end and the sag of the end) are in a trade-off relationship, and the predetermined range is reached. It can be seen that a glass substrate for a magnetic disk having an inner mirror surface (Rmax of 5 nm or less, Ra of 0.5 nm or less) and having an edge shape sufficient or remarkably excellent can be obtained.

なお、上記実施例から、本発明方法によれば、ディスク主表面を原子間力顕微鏡で測定したときの表面粗さがRmaxで5nm以下、Raで0.5nm以下の磁気ディスク用ガラス基板であって、ディスク外周端からディスク中心方向に向かって0.34mmの主表面上の点をAとし、ディスク外周端からディスク中心方向に向かって3.54mmの主表面上の点をBとし、このA点とB点を結んだ仮想線を基準としたときに、前記仮想線から主表面までの乖離距離が50nm以下である、磁気ディスク用ガラス基板、を得ることができる。前記仮想線から主表面までの乖離距離は40nm以下、更に35nm以下であることが好ましい。
また上記実施例から、本発明方法によれば、ディスク主表面を原子間力顕微鏡で測定したときの表面粗さがRmaxで5nm以下、Raで0.5nm以下の磁気ディスク用ガラス基板であって、ディスク外周端からディスク中心方向に向かって2.5mmの主表面上の点を中心とした、3.8平方mmの矩形領域における表面形状のうち、形状波長が16μm〜1.9mm帯域の表面形状を抽出し、この表面形状のこ二乗平均粗さRq(RMS)を微小うねりRqとしたときに、前記微小うねりRqが1.42nm以下である磁気ディスク用ガラス基板、を得ることができる。前記微小うねりRqは0.9nm以下、更に0.7nm以下であることが好ましい。
なお、前記仮想線から主表面までの乖離距離と、前記微小うねりRqと、の双方を同時に満たすことは難しいことであるから、本発明では、これら双方を同時に満たすことが好ましい。
From the above examples, according to the method of the present invention, a magnetic disk glass substrate having a surface roughness Rmax of 5 nm or less and Ra of 0.5 nm or less when the disk main surface was measured with an atomic force microscope was used. A point on the main surface of 0.34 mm from the outer periphery of the disk toward the center of the disk is A, and B is a point on the main surface of 3.54 mm from the outer periphery of the disk toward the center of the disk. A glass substrate for a magnetic disk having a divergence distance from the virtual line to the main surface of 50 nm or less when a virtual line connecting the point and the point B is used as a reference can be obtained. The divergence distance from the imaginary line to the main surface is preferably 40 nm or less, more preferably 35 nm or less.
In addition, from the above examples, according to the method of the present invention, a glass substrate for a magnetic disk having a surface roughness Rmax of 5 nm or less and Ra of 0.5 nm or less when the disk main surface is measured with an atomic force microscope, Among the surface shapes in a rectangular area of 3.8 square mm centered on a point on the main surface of 2.5 mm from the outer peripheral edge of the disk toward the center of the disk, the surface having a shape wavelength of 16 μm to 1.9 mm When the shape is extracted and the root mean square roughness Rq (RMS) of the surface shape is defined as the fine waviness Rq, the glass substrate for a magnetic disk having the fine waviness Rq of 1.42 nm or less can be obtained. The minute undulation Rq is preferably 0.9 nm or less, more preferably 0.7 nm or less.
In addition, since it is difficult to satisfy both the divergence distance from the imaginary line to the main surface and the minute undulation Rq at the same time, it is preferable in the present invention to satisfy both of them simultaneously.

(11)磁気ディスクの製造工程
上述した工程を経て得られた磁気ディスク用ガラス基板に対し、インライン型スパッタリング装置にて、NiAlシード層、CrV下地層、CoPtCrB磁性層、水素化カーボン保護層を成膜し、ディップ法によりパーフルオロポリエーテル潤滑層を形成して磁気ディスクを作製した。
(11) Magnetic Disk Manufacturing Process A NiAl seed layer, a CrV underlayer, a CoPtCrB magnetic layer, and a hydrogenated carbon protective layer are formed on the glass substrate for a magnetic disk obtained through the above-described processes using an in-line sputtering apparatus. Then, a perfluoropolyether lubricating layer was formed by a dip method to produce a magnetic disk.

この得られた磁気ディスクに対しグライドハイト特性(nm)を、タッチダウンハイト評価法により、調べた。その結果を、表3及び図5に示す。表3及び図5に示すように、発泡樹脂層の基層側のポア径の縮径の度合い、及び、研磨布の圧縮率の度合い、に応じて、端部におけるグライドハイト特性(nm)の向上を図ることができることが判る。
これら磁気ディスクを、浮上量が10nmの磁気ヘッドを用いて、ロードアンロード耐久性試験(連続60万回のロードアンロード動作に耐久できるか否かの試験)を行った。その結果、実施例の磁気ディスクにおいては、フライスティクション障害のようなロードアンロード方式で顕著な障害の発生は起こらず、問題なく60万回耐久することができた。比較例の磁気ディスクにおいては、ディスクの外周端付近でフライスティクション障害が発生したために、20万回で故障した。従って、本発明によれば、フライスティクション障害を防止することができ、またロードアンロードタイプの磁気ディスク用ガラス基板及び磁気ディスクとして特に適する。
The glide height characteristic (nm) of the obtained magnetic disk was examined by a touchdown height evaluation method. The results are shown in Table 3 and FIG. As shown in Table 3 and FIG. 5, the glide height characteristic (nm) at the end portion is improved according to the degree of reduction in the pore diameter on the base layer side of the foamed resin layer and the degree of compressibility of the polishing cloth. It can be seen that
These magnetic disks were subjected to a load / unload durability test (whether or not they could endure a continuous load / unload operation of 600,000 times) using a magnetic head having a flying height of 10 nm. As a result, in the magnetic disk of the example, no significant failure occurred in the load / unload method such as the fly stiction failure, and it was able to endure 600,000 times without any problem. The magnetic disk of the comparative example failed at 200,000 times because a fly stiction failure occurred near the outer periphery of the disk. Therefore, according to the present invention, fly stiction failure can be prevented, and it is particularly suitable as a glass substrate for a load / unload type magnetic disk and a magnetic disk.

Figure 0004199645
Figure 0004199645

4種類の各研磨布の縦断面の走査型電子顕微鏡写真(SEM写真)を示す図である。It is a figure which shows the scanning electron micrograph (SEM photograph) of the longitudinal cross-section of four types of each polishing cloth. 4種類の研磨布と、基層側のポア径、圧縮率との関係を示す図である。It is a figure which shows the relationship between four types of polishing cloth, the pore diameter of a base layer side, and a compression rate. 4種類の研磨布と、端部の微小うねりとの関係を示す図である。It is a figure which shows the relationship between four types of polishing cloth and the microwaviness of an edge part. 4種類の研磨布と、端部形状との関係を示す図である。It is a figure which shows the relationship between four types of polishing cloth and an edge shape. 4種類の各研磨布のグライドハイト特性(nm)を調べた結果を示す図である。It is a figure which shows the result of having investigated the glide height characteristic (nm) of four types of each polishing cloth. スエードタイプの研磨布(研磨パッド)を説明するための模式図である。It is a schematic diagram for demonstrating a suede type polishing cloth (polishing pad). 微小うねりの低減効果を説明するための模式図である。It is a schematic diagram for demonstrating the reduction effect of micro waviness. 端部形状の測定概念及び「端部だれ」を説明するための模式図である。It is a schematic diagram for demonstrating the measurement concept of an end shape, and "end droop". 上下定盤を有する研磨装置の主要部断面図である。It is principal part sectional drawing of the grinding | polishing apparatus which has an upper and lower surface plate. 研磨装置の駆動機構部の説明図である。It is explanatory drawing of the drive mechanism part of a grinding | polishing apparatus.

符号の説明Explanation of symbols

4 ガラスディスク
53a 研磨布
54a 研磨布
4 Glass disk 53a Polishing cloth 54a Polishing cloth

Claims (7)

基層と発泡樹脂層を備える研磨布を用い、ガラスディスクと研磨布とを相対的に移動さ
せて研磨を行なう磁気ディスク用ガラス基板の製造方法であって、
基層側のポア径が200μm以下の発泡樹脂層を備える研磨布を選択し、かつ、コロイ
ド粒子を含む研磨液を供給してガラスディスクを研磨することを特徴とする磁気ディスク
用ガラス基板の製造方法。
Using a polishing cloth comprising a base layer and a foamed resin layer, a method for producing a glass substrate for a magnetic disk that performs polishing by relatively moving the glass disk and the polishing cloth,
A method for producing a glass substrate for a magnetic disk, comprising selecting a polishing cloth provided with a foamed resin layer having a pore diameter of 200 μm or less on the base layer side, and polishing a glass disk by supplying a polishing liquid containing colloidal particles. .
請求項1に記載の磁気ディスク用ガラス基板の製造方法であって、
前記研磨布の圧縮率を測定し、前記圧縮率が1.0%以下の研磨布を選択し、かつ、コ
ロイド粒子を含む研磨液を供給してガラスディスクを研磨することを特徴とする磁気ディ
スク用ガラス基板の製造方法。
It is a manufacturing method of the glass substrate for magnetic discs of Claim 1, Comprising:
A magnetic disk comprising: measuring a compressibility of the polishing cloth; selecting a polishing cloth having a compressibility of 1.0% or less; and supplying a polishing liquid containing colloidal particles to polish a glass disk. Method for manufacturing glass substrate.
請求項1に記載の磁気ディスク用ガラス基板の製造方法であって、
研磨面に開口するポア径が50μm以下の発泡樹脂層を備える研磨布を選択してガラス
ディスクを研磨することを特徴とする磁気ディスク用ガラス基板の製造方法。
It is a manufacturing method of the glass substrate for magnetic discs of Claim 1, Comprising:
A method for producing a glass substrate for a magnetic disk, comprising polishing a glass disk by selecting a polishing cloth provided with a foamed resin layer having a pore diameter of 50 μm or less opened on a polished surface.
前記研磨液に含まれるコロイド粒子は、平均粒径(D50)が、10nm〜120nm
であることを特徴とする請求項1〜3の何れかに記載の磁気ディスク用ガラス基板の製造
方法。
Colloidal particles contained in the polishing liquid, the average particle diameter (D 50), 10Nm~120nm
The method for producing a glass substrate for a magnetic disk according to any one of claims 1 to 3, wherein:
前記研磨液に含まれるコロイド粒子は、コロイダルシリカ研磨砥粒であることを特徴と
する請求項1〜4の何れかに記載の磁気ディスク用ガラス基板の製造方法。
The method for producing a glass substrate for a magnetic disk according to claim 1, wherein the colloidal particles contained in the polishing liquid are colloidal silica abrasive grains.
請求項1〜5の何れかに記載の磁気ディスク用ガラス基板の製造方法であって、
前記研磨布の基層側から研磨布を付圧して研磨することを特徴とする磁気ディスク用ガ
ラス基板の製造方法。
It is a manufacturing method of the glass substrate for magnetic discs in any one of Claims 1-5,
A method for producing a glass substrate for a magnetic disk, comprising polishing by pressing a polishing cloth from a base layer side of the polishing cloth.
請求項1〜6の何れかに記載の磁気ディスク用ガラス基板上に磁性層を形成することを
特徴とする磁気ディスクの製造方法。
A method for producing a magnetic disk, comprising forming a magnetic layer on the glass substrate for a magnetic disk according to claim 1.
JP2003378532A 2003-11-07 2003-11-07 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk Expired - Lifetime JP4199645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378532A JP4199645B2 (en) 2003-11-07 2003-11-07 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378532A JP4199645B2 (en) 2003-11-07 2003-11-07 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk

Publications (2)

Publication Number Publication Date
JP2005141852A JP2005141852A (en) 2005-06-02
JP4199645B2 true JP4199645B2 (en) 2008-12-17

Family

ID=34688889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378532A Expired - Lifetime JP4199645B2 (en) 2003-11-07 2003-11-07 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk

Country Status (1)

Country Link
JP (1) JP4199645B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108564969A (en) * 2013-02-08 2018-09-21 Hoya株式会社 The manufacturing method of substrate for magnetic disc and the grinding pad used in the manufacture of substrate for magnetic disc

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957284B2 (en) * 2006-04-28 2012-06-20 旭硝子株式会社 Manufacturing method of glass substrate for magnetic disk and magnetic disk
JP5518166B2 (en) * 2006-09-19 2014-06-11 Hoya株式会社 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP2008204499A (en) * 2007-02-16 2008-09-04 Konica Minolta Opto Inc Glass substrate for information recording medium and magnetic recording medium
MY163763A (en) 2007-02-20 2017-10-31 Hoya Corp Magnetic disk substrate, magnetic disk, and magnetic disk device
SG186602A1 (en) * 2007-09-27 2013-01-30 Hoya Corp
JP5005645B2 (en) * 2007-09-27 2012-08-22 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2009099250A (en) * 2007-09-28 2009-05-07 Hoya Corp Method of manufacturing glass substrate for magnetic disk and method of manufacturing magnetic disk
JP2009154232A (en) * 2007-12-26 2009-07-16 Hoya Corp Method of manufacturing glass substrate for magnetic disk
MY156392A (en) * 2007-12-28 2016-02-15 Hoya Corp Glass substrate for a magnetic disk, magnetic disk and method of manufacturing a magnetic disk
JP2010086597A (en) * 2008-09-30 2010-04-15 Hoya Corp Method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP5501722B2 (en) * 2009-09-30 2014-05-28 富士紡ホールディングス株式会社 Polishing pad and method of manufacturing polishing pad
JP5608398B2 (en) * 2010-03-26 2014-10-15 富士紡ホールディングス株式会社 Polishing pad
WO2015037606A1 (en) * 2013-09-11 2015-03-19 富士紡ホールディングス株式会社 Polishing pad and method for manufacturing same
JP6280349B2 (en) * 2013-11-18 2018-02-14 Hoya株式会社 Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and method for manufacturing substrate for magnetic disk
CN107498455A (en) * 2017-10-25 2017-12-22 德清凯晶光电科技有限公司 A kind of path transfer formula erratic star wheel for cylindrical wafer grinding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108564969A (en) * 2013-02-08 2018-09-21 Hoya株式会社 The manufacturing method of substrate for magnetic disc and the grinding pad used in the manufacture of substrate for magnetic disc

Also Published As

Publication number Publication date
JP2005141852A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4199645B2 (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP5371183B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5142548B2 (en) Manufacturing method of glass substrate for magnetic disk and polishing pad
JP6089039B2 (en) Glass substrate for magnetic disk, magnetic disk
US7255943B2 (en) Glass substrate for a magnetic disk, magnetic disk, and methods of producing the glass substrate and the magnetic disk
JP4190398B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JPWO2009031401A1 (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
JP4562274B2 (en) Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium
JP2002092867A (en) Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium
JP6031593B2 (en) Method of manufacturing glass substrate for magnetic disk, method of manufacturing magnetic disk, and polishing pad
JP4615027B2 (en) Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium
JP4808985B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP3981374B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5242015B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2006082138A (en) Method of manufacturing glass substrate for magnetic disk, and glass substrate for magnetic disk, as well as method of manufacturing magnetic disk, and magnetic disk
JP2007122849A (en) Method of manufacturing glass substrate for magnetic disk and method of manufacturing magnetic disk
JP5306759B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2007111852A (en) Manufacturing method for glass substrate for magnetic disk, manufacturing method for magnetic disk, and abrasive cloth
JP2007090452A (en) Manufacturing method of glass substrate for magnetic disc and manufacturing method of magnetic disc
JP4347146B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP4942305B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5518166B2 (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP2005141824A (en) Manufacturing method of glass substrate for magnetic disk , and manufacturing method of the magnetic disk
JP6328052B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing information recording medium, and polishing pad
JP3766424B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4199645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250