WO2015037606A1 - Polishing pad and method for manufacturing same - Google Patents

Polishing pad and method for manufacturing same Download PDF

Info

Publication number
WO2015037606A1
WO2015037606A1 PCT/JP2014/073896 JP2014073896W WO2015037606A1 WO 2015037606 A1 WO2015037606 A1 WO 2015037606A1 JP 2014073896 W JP2014073896 W JP 2014073896W WO 2015037606 A1 WO2015037606 A1 WO 2015037606A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polishing
polishing pad
sheet
isocyanate compound
Prior art date
Application number
PCT/JP2014/073896
Other languages
French (fr)
Japanese (ja)
Inventor
博仁 宮坂
哲平 立野
香枝 喜樂
立馬 松岡
Original Assignee
富士紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士紡ホールディングス株式会社 filed Critical 富士紡ホールディングス株式会社
Priority to JP2015536596A priority Critical patent/JP6567420B2/en
Publication of WO2015037606A1 publication Critical patent/WO2015037606A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6648Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6651Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38

Definitions

  • the present invention relates to a polishing pad and a manufacturing method thereof, and more particularly to a polishing pad for finishing and a manufacturing method thereof.
  • polishing is a process in which a polishing pad (slurry) in which abrasive grains are dispersed in an alkaline solution or the like is supplied to a surface to be polished and a polishing pad is pressed against the surface to be polished and rotated. This is called polishing (hereinafter referred to as “CMP”).
  • CMP polishing
  • the polishing pad is made of various materials depending on the required smoothness.
  • a polyurethane foam sheet formed by a wet film forming method is often used for a polishing pad for finishing (see, for example, Patent Document 1).
  • demands for defect-free and flattening are increasing. For example, scratches that have not been a problem as a result of miniaturization become fatal defects, and therefore, polishing processing with such low damage is required.
  • the polishing rate is greatly influenced by the contact state between the surface to be polished of the object to be polished and the polishing pad, the surface state of the polishing pad is likely to change at the initial stage of polishing, and the polishing rate is not stable.
  • Patent Document 2 a method of keeping the polishing pad wet (see Patent Document 2) or a method of controlling the surface roughness of the polishing pad (Patent Document 2) in order to shorten the time during which the initial polishing rate is unstable. 3 and 4).
  • a method of polishing with a soft polishing pad using a polishing slurry containing a silica-based or alumina-based abrasive having a small particle size is considered effective.
  • a polishing slurry with a chemical element higher than that of a mechanical element and polishing with a soft polishing pad the stress in the local microregion can be dispersed in the object to be polished at the time of polishing.
  • the degree of contact between the abrasive grains and the polishing product that come into contact can be reduced, and scratches can be reduced.
  • the polishing pad is likely to be deteriorated.
  • a softened polishing pad containing polyurethane since the polyurethane has few cross-linking points and is structurally weak, there is a further concern about deterioration due to the polishing slurry.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polishing pad that can quickly stabilize the polishing rate at the initial stage of polishing and that suppresses fluctuations in the polishing rate, and a method for manufacturing the same. .
  • the inventors of the present invention can quickly stabilize the polishing rate at the initial stage of polishing because the polishing surface of the polishing pad has a predetermined surface property, and The inventors have found that the fluctuation of the polishing rate can be suppressed and have completed the present invention.
  • the polishing pad of the present invention is a polishing pad comprising a resin sheet, and the polishing surface of the sheet after undergoing a predetermined polishing test has a roughness of ⁇ 2.00 or more and ⁇ 0.20 or less. It has a skewness Rsk of a curve and a height distribution variation coefficient of 0.5% or more and 2.5% or less.
  • the sheet preferably has a durometer hardness (type A) of 0 to 25, preferably a wet film formed, and a resin contained in the sheet is 3.0 MPa to 10 MPa. It is preferable to have a 100% modulus of 0.0 MPa.
  • the resin includes a second resin having a bond generated by a reaction between an active hydrogen atom in the first resin having an active hydrogen atom and an isocyanate group derived from a blocked isocyanate compound, and the bond is bonded to the first resin. It is preferable to have 2.0 to 15.0 parts by mass in terms of a blocked isocyanate compound with respect to 100 parts by mass. Furthermore, the blocked isocyanate compound is preferably one obtained by blocking one or more compounds selected from the group consisting of polyvalent isocyanate compounds other than aromatic polyvalent isocyanate compounds with a blocking agent. Further, the first resin is preferably a polyurethane resin.
  • the manufacturing method of the polishing pad of the present invention is the manufacturing method of the polishing pad of the present invention, wherein the sheet provided in the polishing pad contains the second resin, the first resin having active hydrogen atoms and the block A step of coagulating and regenerating the first resin in the resin solution containing the isocyanate compound and the solvent, and reacting the active hydrogen atom of the first resin with the isocyanate group derived from the blocked isocyanate compound to obtain the second resin
  • the second resin has a bond produced by a reaction between an active hydrogen atom and an isocyanate group in an amount of 2.0 to 15 parts by mass in terms of a blocked isocyanate compound with respect to 100 parts by mass of the first resin. It has 0 part by mass.
  • the present invention it is possible to provide a polishing pad that can quickly stabilize the polishing rate in the initial stage of polishing and suppress the fluctuation of the polishing rate, and a method for manufacturing the same.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail with reference to the drawings as necessary.
  • the present invention is limited to the following embodiment. It is not a thing.
  • the present invention can be variously modified without departing from the gist thereof.
  • the polishing pad of this embodiment is a polishing pad provided with a sheet made of resin (hereinafter also simply referred to as “resin sheet”), and the polishing surface of the resin sheet after passing through a predetermined polishing test is -2. It has a skewness of a roughness curve of 00 or more and ⁇ 0.20 or less (hereinafter simply referred to as “Rsk”), and a height distribution variation coefficient of 2.5% or less.
  • the resin sheet has a polished surface, and the Rsk after the predetermined polishing test is ⁇ 0.20 or less, preferably ⁇ 0.25 or less, and ⁇ 0.30 or less. More preferably, it is more preferably ⁇ 0.35 or less. Further, Rsk after passing through a predetermined polishing test is preferably ⁇ 2.00 or more, more preferably ⁇ 1.90 or more. Further, the polished surface of the resin sheet has a coefficient of variation in height distribution after passing a predetermined polishing test of 2.5% or less, preferably 2.0% or less, and more preferably 1.5% or less. Preferably, it is more preferably 1.3% or less, and particularly preferably 1.2% or less.
  • the lower limit is preferably as small as possible, but the height distribution variation coefficient is preferably 0.5% or more, more preferably 0.7% or more.
  • Rsk and the height distribution variation coefficient are parameters obtained by measuring the resin portion of the polished surface of the resin sheet and are closely related to tribology (friction).
  • Rsk and the height distribution variation coefficient are measured on the resin portion of the polishing surface excluding the opening portion. It is a thing.
  • the “predetermined polishing test” means a polishing test that imitates the pad surface after polishing the dummy wafer before the main polishing, and is performed using the polishing pad under the following conditions. That is, the polishing pad after the predetermined polishing test represents the surface state of the polishing pad used in the polishing test.
  • -Polishing machine Model number "F-REX300” manufactured by Ebara Manufacturing Co., Ltd.
  • Polishing head manufactured by Ebara Manufacturing Co., Ltd., model number “GII” ⁇ Polishing slurry: manufactured by Cabot, model number “SS-25”, 20 times dilution ⁇ Polished object: 300 mm ⁇ silicon wafer with silica film ⁇ Polishing pad diameter: 740 mm ⁇ ⁇
  • Pad break-in conditions 100 N ⁇ 10 minutes, diamond dresser # 100 (pellet type) rotation speed 20 rpm, surface plate rotation speed 80 rpm, ultrapure water supply amount 500 mL / min ⁇ Polishing conditions: surface plate rotation speed 70 rpm, polishing head rotation 71 rpm, polishing slurry flow rate 200 mL / min, polishing time 60 minutes (10 minutes ⁇ 6 wafers), polishing pressure 2.5 psi (1.7 ⁇ 10 4 Pa)
  • Rsk is a value obtained by normalizing the third moment around the average value by Rq3 (the cube of the root mean square roughness), and the deviation of the surface roughness from the average line m, that is, the asymmetry around the average value (convex) It is an index indicating the objectivity of the concave.
  • Rq3 the cube of the root mean square roughness
  • Rsk the deviation of the surface roughness from the average line m, that is, the asymmetry around the average value (convex) It is an index indicating the objectivity of the concave.
  • the cross-sectional shape of the polished surface is biased in the positive direction or in the negative direction, Rsk is separated from 0.
  • Rsk is positive, it means that the roughness is convex upward (mountain), and there are many protrusions.
  • Rsk being negative means that the roughness is convex downward (valley), and there are many flat portions on the surface.
  • Rsk becomes negative it means that the resin sheet has a recess for holding the slurry.
  • the smoother (flattening) the flat region other than the concave portion becomes wider and wider. That is, when the Rsk of the polished surface is ⁇ 0.20 or less, it means that the amount of slurry retained is increased.
  • the polishing pad of this embodiment provided with such a resin sheet it becomes easy to stabilize the polishing rate.
  • the polishing pad of this embodiment provided with such a resin sheet is easy to smooth because the convex part of the polishing surface is removed after the dressing process and the concave part and the flat region are formed easily, and the smoothness is maintained even by the polishing process. Since the surface state of the polished surface hardly changes, the polishing rate at the initial stage of polishing can be quickly stabilized.
  • Rsk is larger than ⁇ 0.20, the number of concave portions is too small and the amount of slurry retained is reduced, and it takes a considerable time to stabilize the polishing rate at the initial stage of polishing. Further, when Rsk is ⁇ 2.00 or more, it is possible to more effectively prevent the amount of slurry retained and the polishing rate from being lowered because the number of concave portions is too small.
  • FIG. 1 is a diagram schematically showing a cross section near the surface of a resin sheet. The smaller the value of Rsk, the closer to the shape shown in (a), and the larger the value, the closer to the shape shown in (b).
  • the height distribution variation coefficient is obtained by dividing the standard deviation ⁇ of the height of the polishing surface of the polishing pad by the average of the height, and is an index indicating the smoothness of the polishing surface. Since the height measurement varies depending on the measurement location, the height distribution variation coefficient is obtained by subtracting the variation due to the measurement point.
  • the height distribution variation coefficient is 2.5% or less, the smoothness of the polished surface can be transferred to the object to be polished, and the object to be polished can be highly planarized.
  • the height distribution variation coefficient exceeds 2.5%, the surface unevenness is large, and the object to be polished cannot be flattened to a high degree.
  • Rsk and height distribution variation coefficient can be measured according to the method described in the examples.
  • a block described later An isocyanate compound may be appropriately selected and used.
  • the polishing surface can be more easily adjusted to the Rsk and the height distribution within the above numerical range by appropriately adjusting the amount used.
  • a resin sheet having a coefficient of variation can be obtained.
  • the surface roughness (arithmetic mean roughness: Ra) of the resin sheet after undergoing a predetermined polishing test is not particularly limited, but from the viewpoint of more effectively and reliably achieving the effects of the present invention, 1.0 to 10. It is preferably 0 ⁇ m, more preferably 2.0 to 8.0 ⁇ m, and even more preferably 2.0 to 5.0 ⁇ m.
  • the surface roughness can be measured according to the method described in the examples.
  • the resin sheet has a durometer hardness (type A) of preferably 0 to 25, more preferably 10 to 25, and even more preferably 10 to 20.
  • a polishing pad provided with a resin sheet having such durometer hardness (type A) is soft and is preferably used for final finishing of a semiconductor device or the like.
  • the polishing pad of this embodiment is also related to softness. In particular, it is particularly useful in that the polishing rate at the initial stage of polishing can be quickly stabilized, and fluctuations in the polishing rate can be suppressed.
  • the durometer hardness (type A) is measured at 25 ° C. and measured in accordance with Japanese Industrial Standard (JIS K 6253).
  • a sample having a size of 30 mm ⁇ 30 mm is measured using a Shore A durometer according to JIS K 7311.
  • a sample is produced by stacking a plurality of sheets as necessary so that the resin sheet has a total thickness of 4.5 mm or more. And three different places in a sample are measured, and let an average value be the value of durometer hardness (type A).
  • a sample having a durometer hardness (type A) of 0 may be evaluated with a type C hardness that can measure a softer material.
  • the hardness of type C is a value measured using an Asker rubber hardness meter C type, and is measured in accordance with JIS K7312 for a sample having a dimension of 30 mm ⁇ 30 mm. At 25 ° C., a resin sheet having such durometer hardness (type A) can be obtained by a wet film formation method.
  • the resin sheet preferably has a plurality of bubbles, and the composition thereof is not particularly limited as long as it is a composition that contains the most resin (hereinafter referred to as “matrix resin”) serving as a matrix surrounding the plurality of bubbles. .
  • the resin sheet may contain 70 to 100% by mass of the matrix resin with respect to the total amount.
  • the resin sheet contains the matrix resin more preferably 80 to 95% by mass, and still more preferably 85 to 95% by mass, based on the total amount.
  • the resin sheet contains the second resin can also be determined by whether or not it dissolves in N, N-dimethylformamide (DMF).
  • DMF N, N-dimethylformamide
  • the matrix resin preferably contains 50% by mass or more of the second resin, more preferably 80% by mass or more, and still more preferably 90% by mass or more, based on the total amount of the matrix resin. It is particularly preferable to contain 95% by mass or more.
  • the present inventors consider the factor as follows. However, the factors are not limited to the following.
  • the matrix resin in the vicinity of the polishing surface has a higher elongation and viscosity, and the state of the polishing surface, etc. gradually changes while repeating the process of being stretched and recovered by the friction described above. It takes a long time until the contributing working surface becomes stable.
  • a matrix resin having high elongation and viscosity such as durometer hardness (type A) of 0 to 25 is used, the polishing rate at the initial stage of polishing is difficult to stabilize.
  • the second resin herein after bonding
  • pre-bonding resin has the above bond between the molecules of the first resin (hereinafter referred to as “pre-bonding resin”). Increased binding power.
  • the post-bonding resin is less brittle with reduced elongation and viscosity than the pre-bonded resin, and therefore is easily collapsed by friction with the object to be polished on the polished surface during polishing. That is, the matrix resin containing the post-bonding resin tends to cause permanent distortion in the vicinity of the polished surface, and as a result of the collapse and removal of the portion, the polished surface is smoothed at an early stage. If the polishing surface is smoothed, the surface shape of the polishing pad is unlikely to change, and as a result, the polishing rate at the initial stage of polishing is considered to stabilize early.
  • smoothing shown here shows smoothing about resin parts other than the opening part which stores and hold
  • the chemical resistance of the resin sheet is improved as a result of a decrease in solubility in chemical components.
  • the pre-bonding resin a polyurethane resin is preferable from the viewpoint of more effectively and reliably achieving the effects of the present invention.
  • the pre-bonding resins are used alone or in combination of two or more.
  • the polyurethane resin for example, a polyisocyanate compound and a polyol compound, or a product obtained by reacting a polyisocyanate compound, a polyol compound and a polyamine compound as main components can be used.
  • the polyurethane resin is preferably a polyurethane resin (polyurethane polyurea resin) containing a polyamine compound from the viewpoint of more effectively achieving the effects of the present invention.
  • the polyisocyanate compound is not particularly limited as long as it has two or more isocyanate groups in the molecule.
  • tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), xylylene diisocyanate, naphthalene-1,5-diisocyanate, p-phenylene diisocyanate, dibenzyl diisocyanate, diphenyl ether diisocyanate, m-tetramethylxylylene diisocyanate, p-tetra Aromatic diisocyanate compounds such as methylxylylene diisocyanate, aromatic triisocyanate compounds such as triphenylmethane triisocyanate, hydrogenated tolylene diisocyanate, hydrogenated diphenylmethane-4,4′-diisocyanate, hydrogenated xylylene diisocyanate, cyclohexyl-1 Alicyclic diisocyanate compounds such as 1,4-diisocyanate and isophorone diisocyanate, La diisocyanate, aliphatic
  • an aromatic diisocyanate compound is preferable from the viewpoint of more effectively and reliably achieving the effects of the present invention, and MDI is preferable as the aromatic diisocyanate compound.
  • MDI is preferable as the aromatic diisocyanate compound.
  • modified polyisocyanate compounds such as polyisocyanurate type polyisocyanates having three or more functionalities based on these diisocyanate compounds or biuret type polyisocyanates can also be used.
  • the polyol compound to be reacted with the polyisocyanate compound has two or more hydroxyl groups in the molecule, and examples thereof include a low molecular weight polyol compound and a high molecular weight polyol compound.
  • examples of the low molecular weight polyol compound include a diol compound and a triol compound, and more specifically, ethylene glycol, butylene glycol, and 1,4-butanediol.
  • the high molecular weight polyol compound examples include polyether polyol compounds such as polyethylene glycol (PEG), polypropylene glycol (PPG), and polytetramethylene glycol (PTMG), a reaction product of ethylene glycol and adipic acid, and butylene glycol and adipic acid.
  • a polyol compound is used individually by 1 type or in combination of 2 or more types.
  • the polyamine compound to be reacted with the polyisocyanate compound has two or more amino groups in the molecule, and examples thereof include an aliphatic polyamine compound and an aromatic polyamine compound. More specifically, ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4′-diamine, 3,3′-dichloro-4,4′-diaminodiphenylmethane (MOCA), similar to MOCA Examples include polyamine compounds having a structure. Of these, aliphatic polyamines are preferred from the viewpoint of more effectively and reliably achieving the effects of the present invention, and ethylenediamine is preferred as the aliphatic polyamine.
  • the polyamine compound may have a hydroxyl group.
  • examples of such a compound include 2-hydroxyethylethylenediamine, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, di-2-hydroxyethylpropylene.
  • examples thereof include diamine, 2-hydroxypropylethylenediamine, and di-2-hydroxypropylethylenediamine. These are used singly or in combination of two or more.
  • the blocked isocyanate compound used to obtain the resin after bonding is obtained by reacting one or more isocyanate compounds with one or more blocking agents that are compounds having active hydrogen.
  • the blocking agent is dissociated by heating to regenerate the isocyanate group, so that it reacts with the polyurethane resin having an active hydrogen atom to form a bond.
  • the isocyanate compound is preferably a polyvalent isocyanate compound having an average number of isocyanate groups of 2 or more per molecule from the viewpoint of forming many crosslinks with the pre-bonding resin.
  • the resin after bonding has no aromatic ring from the viewpoint of exhibiting low hardness without being too hard compared with the resin before bonding, that is, the aromatic polyvalent isocyanate compound.
  • Polyisocyanate compounds other than those are preferred, aliphatic polyisocyanate compounds and alicyclic polyisocyanate compounds are preferred, and aliphatic polyisocyanate compounds are more preferred.
  • a diisocyanate compound is preferable from the viewpoint of ensuring the flexibility of the resin sheet.
  • diisocyanate compounds include TDI, MDI, xylylene diisocyanate, naphthalene-1,5-diisocyanate, p-phenylene diisocyanate, dibenzyl diisocyanate, diphenyl ether diisocyanate, m-tetramethylxylylene diisocyanate, p-tetramethyl.
  • Aromatic diisocyanate compounds such as xylylene diisocyanate, aromatic triisocyanate compounds such as triphenylmethane triisocyanate, hydrogenated tolylene diisocyanate, hydrogenated diphenylmethane-4,4′-diisocyanate, hydrogenated xylylene diisocyanate, cyclohexyl-1, Alicyclic diisocyanate compounds such as 4-diisocyanate and isophorone diisocyanate, 1,4-tetramethylene diisocyanate Over DOO, aliphatic diisocyanate compounds such as HDI and the like.
  • an aliphatic diisocyanate compound and an alicyclic diisocyanate compound are preferable, an aliphatic diisocyanate compound is more preferable, and HDI is still more preferable from the viewpoint of more effectively and reliably achieving the effects of the present invention.
  • These are used singly or in combination of two or more.
  • modified polyvalent isocyanate compounds such as tri- or higher functional adduct type polyisocyanate, isocyanurate type polyisocyanate or biuret type polyisocyanate by a modified polyvalent isocyanate compound exhibiting elasticity can also be used.
  • adduct-type polyisocyanates and isocyanurate-type polyisocyanates are preferred, and adduct-type polyisocyanates are more preferred from the viewpoint of more effectively and reliably achieving the effects of the present invention.
  • adduct type HDI is preferable as the adduct type polyisocyanate
  • isocyanurate type HDI is preferable as the isocyanurate type polyisocyanate.
  • NCO% modified polyvalent isocyanate compounds
  • the polishing rate at the initial stage of polishing can be quickly stabilized, the working surface contributing to polishing is increased, and the polishing rate can be improved and the increased polishing rate can be maintained.
  • the upper limit value of NCO% is more preferably 10%, and further preferably 8%.
  • a lactone is subjected to a ring-opening addition polymerization reaction with a polyol compound to form a lactone-modified product (polylactone polyol ester), and the above-mentioned polyvalent isocyanate compound is added to the lactone-modified polyvalent isocyanate compound.
  • the lactone-modified polyvalent isocyanate compound corresponds to a compound in which a ring-opening polymer of lactone is interposed by an ester bond between the hydroxyl group of the polyol compound and the isocyanate group of the polyvalent isocyanate compound.
  • Such a lactone-modified polyvalent isocyanate compound is a soft resin sheet having a durometer hardness (type A) of 0 to 25 due to molecular flexibility due to an ester bond, and the resin sheet. Is preferable from the viewpoint of easily satisfying Rsk in the above range.
  • the modified polyisocyanate compound is a modified adduct, that is, the lactone ring-opening polymer is ester-bonded between the hydroxyl group of the polyol compound and the isocyanate group of the polyvalent isocyanate compound in the adduct-type polyisocyanate. It is more preferable that they are interposed.
  • the addition polymerization of lactone to polyol can be carried out using an organic compound such as tin, lead or manganese, a metal chelate or the like as a catalyst.
  • lactone examples include ⁇ -lactone, ⁇ -lactone, and ⁇ -lactone, and among them, ⁇ -caprolactone is preferable.
  • polyol a polyhydric alcohol having a relatively low molecular weight which is usually used for forming an adduct can be used.
  • the blocking agent for blocking the isocyanate group of the polyvalent isocyanate compound is not particularly limited as long as it is a generally known compound having an active hydrogen atom.
  • the blocking agent include alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, isobutanol, t-butanol and 2-ethylhexanol, ketoximes such as methyl ethyl ketoxime, phenol, and ⁇ -caprolactam. , Ethyl acetoacetate and diethyl malonate. These are used singly or in combination of two or more. Considering the dissociation property of the blocking agent, methyl ethyl ketoxime and ⁇ -caprolactam are preferable as the blocking agent, and methyl ethyl ketoxime is more preferable.
  • the post-bonding resin is composed of an active hydrogen atom and a blocked isocyanate.
  • the bond produced by the reaction with the isocyanate group derived from the compound is preferably 2.0 parts by mass to 15.0 parts by mass in terms of the blocked isocyanate compound, based on the resin before bonding (100 parts by mass), preferably 3.0 parts by mass. Part to 10.0 parts by weight, more preferably 5.0 parts to 7.5 parts by weight.
  • the matrix resin may include a resin contained in a resin sheet in a known polishing pad, represented by, for example, a polyurethane resin, a polysulfone resin, and a polyimide resin, in addition to the above-described post-bonding resin. These are used singly or in combination of two or more. Examples of the polyurethane resin include those described above.
  • Polysulfone resin may be synthesized by a conventional method, or a commercially available product may be obtained.
  • commercially available products include Udel (trade name manufactured by Solvay Advanced Polymers Co., Ltd.).
  • a polyimide resin may be synthesize
  • commercially available products include Aurum (trade name, manufactured by Mitsui Chemicals, Inc.).
  • the resin sheet may contain, in addition to the matrix resin, one or more of materials usually used for a resin sheet for a polishing pad, for example, a pigment such as carbon black, a hydrophilic additive and a hydrophobic additive. These arbitrarily used materials may be used to control the size and number of bubbles in the resin sheet. Furthermore, various materials such as a solvent used in the manufacturing process of the resin sheet may remain in the resin sheet as long as the problem of the present invention is not impaired.
  • materials usually used for a resin sheet for a polishing pad for example, a pigment such as carbon black, a hydrophilic additive and a hydrophobic additive.
  • the 100% modulus at 25 ° C. of the resin contained in the resin sheet is 3.0 to 10.0 MPa from the viewpoint of more effectively and surely achieving the operational effects of the above-described embodiment and making a soft resin sheet.
  • it is 4.0 MPa or more, more preferably 8.0 MPa or less.
  • the 100% modulus is a value obtained by dividing the load applied when the non-foamed resin sheet using the same material as the resin sheet is extended by 100%, that is, when the resin sheet is extended to twice the original length, by the cross-sectional area. .
  • the polishing pad of the present embodiment may have the same configuration as that of a conventional polishing pad, except that the polishing pad includes the resin sheet.
  • the polishing pad of this embodiment may include the resin sheet and a double-sided tape that is bonded and laminated to the resin sheet.
  • the double-sided tape is for attaching a polishing pad to a polishing machine.
  • the double-sided tape has a flexible film substrate such as a polyethylene terephthalate film, and an acrylic adhesive or the like is provided on both surfaces of the substrate. Each adhesive layer is formed.
  • the double-sided tape is bonded to a resin sheet with an adhesive layer on one side of the substrate, and the adhesive layer on the other side is covered with release paper.
  • the base material of the double-sided tape also serves as the base material of the polishing pad.
  • the manufacturing method of the polishing pad employs a so-called wet film-forming method, a step of coagulating and regenerating the pre-bonding resin in the resin solution containing the pre-bonding resin, the blocked isocyanate compound and the solvent (coagulation regenerating step); And a step (bonding step) of obtaining a resin after bonding by reacting an active hydrogen atom of the pre-bonding resin with an isocyanate group derived from a blocked isocyanate compound.
  • the polishing pad manufacturing method further includes a resin solution preparation step for preparing the resin solution, a coating step for applying the resin solution to the film-forming substrate before the coagulation regeneration step, and a resin obtained through the coagulation regeneration step.
  • a resin solution preparation step for preparing the resin solution
  • a coating step for applying the resin solution to the film-forming substrate before the coagulation regeneration step
  • a resin obtained through the coagulation regeneration step At least one of a solvent removal step of removing the solvent from the substrate, a grinding step of grinding the polished surface of the resin sheet, a groove forming step of forming a groove on the polished surface of the resin sheet, and a bonding step of bonding a double-sided tape to the resin sheet It is preferable to have two steps.
  • a resin solution containing a pre-bonding resin, a blocked isocyanate compound, and a solvent is prepared.
  • a preparation method is not specifically limited, For example, a resin solution can be obtained by mixing each raw material which should be contained in a resin solution, and fully stirring.
  • the pre-bonding resin and the blocked isocyanate compound may be those described above.
  • the content ratio of the blocked isocyanate compound in the resin solution is such that the post-bonding resin has a bond generated by a reaction between the active hydrogen atom of the pre-bonding resin and the isocyanate group derived from the blocked isocyanate compound in the above-described ratio. Is preferable.
  • solvent examples include DMF, N, N-dimethylacetamide (DMAc), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), and acetone. These are used singly or in combination of two or more.
  • the resin solution has a viscosity measured at 25 ° C. using a B-type rotational viscometer of 3 to 30 Pa ⁇ It is preferably in the range of s, more preferably in the range of 5 to 20 Pa ⁇ s.
  • the content of the pre-bonding resin in the resin solution is preferably in the range of 10 to 30% by mass, and in the range of 15 to 25% by mass. More preferred. Since the viscosity of the resin solution also depends on the type and molecular weight of the matrix resin to be used, the concentration of the pre-bonding resin in the resin solution may be set by comprehensively considering these.
  • the resin solution may optionally contain additives in addition to the above raw materials.
  • additives include pigments such as carbon black, hydrophilic activators that promote foaming, and hydrophobic activators that stabilize resin coagulation regeneration.
  • the resin solution is coated on the film forming substrate.
  • a coating device such as a knife coater may be used at room temperature to apply the sheet-like film-forming substrate substantially uniformly in a sheet shape.
  • the application thickness (application amount) of the resin solution can be adjusted by adjusting the gap (clearance) between the knife coater or the like and the film forming substrate.
  • the material for the film forming substrate include a resin film such as a PET film, a fabric, and a nonwoven fabric. Among these, a resin film such as a PET film that hardly penetrates the resin solution is preferable.
  • the coating film of the resin solution applied to the film-forming substrate is mainly composed of a poor solvent (for example, water for polyurethane resin) with respect to the resin contained in the resin solution such as the resin before bonding.
  • a poor solvent for example, water for polyurethane resin
  • an organic solvent such as a polar solvent other than the solvent in the resin solution may be added to the coagulation liquid.
  • the temperature of the coagulation liquid is not particularly limited as long as the resin in the resin solution can be coagulated.
  • the resin is a polyurethane resin, it may be, for example, 5 to 80 ° C., but preferably 15 ⁇ 20 ° C.
  • a film is formed at the interface between the coating film of the resin solution and the coagulating liquid, and a layer having innumerable fine bubbles called a skin layer is formed in the resin immediately adjacent to the film.
  • the regeneration of the resin having an open cell structure preferably proceeds, which is called a foamed resin region A region is formed.
  • the substrate for film formation is difficult to permeate the coagulation liquid (for example, a PET film)
  • substitution of the solvent in the resin solution with the poor solvent occurs preferentially on the skin layer side, and the foamed resin region Larger bubbles tend to be formed on the side than on the skin layer side.
  • the blocked isocyanate compound is mixed unreacted in the regenerated resin.
  • a sheet-like resin hereinafter also referred to as “film-forming resin” is formed on the film-forming substrate.
  • the solvent removal step the solvent remaining in the film-forming resin obtained through the coagulation regeneration step is removed.
  • a conventionally known water washing treatment can be used for removing the solvent.
  • the post-bonding resin is obtained by reacting the active hydrogen atom of the pre-bonding resin in the film-forming resin after removal of the solvent with the isocyanate group derived from the blocked isocyanate compound.
  • the film-forming resin is preferably subjected to a heat treatment in a temperature range of 145 to 180 ° C., more preferably in a temperature range of 150 to 165 ° C., and preferably for 15 to 20 minutes.
  • the film-forming resin is continuously passed through a heated atmosphere. By heating, the blocking agent is dissociated from the blocked isocyanate compound contained in the film-forming resin, and a reactive isocyanate group is regenerated.
  • This isocyanate group reacts with an active hydrogen atom of a resin before bonding, for example, when the resin before bonding is a polyurethane resin, and reacts with an active hydrogen atom constituting a urethane bond or a urea bond to obtain a resin after bonding. . Further, the resin dries with this heating.
  • the resin sheet containing the post-bonding resin thus obtained may be cut to an appropriate length and laid flat.
  • a grinding process is performed on the skin layer side of the resin sheet to make the thickness of the resin sheet uniform by buffing. That is, the substantially flat surface of the pressure welding jig is pressed against the surface of the resin sheet opposite to the skin layer, and buffing is performed on the skin layer side. Thereby, a part of air bubbles are opened in the polishing surface, and the thickness of the resin sheet is made uniform. Subsequently, in the groove forming step, the groove is formed by embossing or cutting the surface of the resin sheet on the skin layer side (the surface subjected to the grinding process).
  • the pressure-sensitive adhesive of the pressure-sensitive adhesive layer may be a conventionally known one, and may be a pressure-sensitive type or a heat-sensitive type.
  • the polishing method using the polishing pad of the present embodiment includes a step of polishing an object to be polished using the obtained polishing pad.
  • an object to be polished is held on a holding surface plate of a single-side polishing machine.
  • the polishing pad is mounted on the polishing surface plate disposed so as to face the holding surface plate.
  • the polishing pad includes release paper, the release paper is removed, and the exposed double-sided tape is brought into contact with the polishing surface plate and pressed.
  • the polishing pad is not provided with a double-sided tape, it is also possible to attach or apply an adhesive or an adhesive to the polishing pad and then attach it to the polishing surface plate.
  • a polishing slurry containing chemical components such as abrasives (polishing particles; for example, SiO 2 , CeO 2 ) and an oxidant represented by hydrogen peroxide is circulated and supplied between the object to be polished and the polishing pad.
  • the object to be polished is polished by CMP by rotating the polishing surface plate or holding surface plate while pressing the object to be polished toward the polishing pad with a predetermined polishing pressure.
  • the polishing pad of this embodiment is particularly suitably used for finish polishing of magnetic disk substrates, semiconductor devices, bare silicon, and glass substrates for liquid crystal displays.
  • the use of the polishing pad of this embodiment is not limited to them.
  • Example 1 First, as a polyurethane resin, a polyester polyol compound-MDI-ethylenediamine-based polyurethane resin (polyurethane polyurea resin) having a 100% modulus at 25 ° C. of 6.0 MPa was prepared. Also, a blocked isocyanate compound (solid content: 80%, NCO%: about 6.0%) prepared by blocking an HDI adduct with methyl ethyl ketoxime was prepared as a blocked isocyanate compound. A block isocyanate compound solution is mixed with a solution composed of 30 parts by mass of polyurethane resin and 70 parts by mass of DMF so as to have a ratio of 2.0 parts by mass (5.3 parts by mass with respect to 100 parts by mass of polyurethane resin).
  • a strip-like PET film was prepared as a film forming substrate.
  • the resin solution was applied onto the coating surface of the film-forming substrate using a knife coater to obtain a coating film.
  • the obtained coating film was immersed in a room temperature coagulation bath made of water as a coagulation liquid, and the resin was coagulated and regenerated to obtain a film forming resin.
  • the film-forming resin was taken out from the coagulation bath, peeled off from the film-forming substrate, and then immersed in a room temperature cleaning solution (desolvent bath) made of water to remove DMF.
  • the bonding step using a heating device (manufactured by Ichikin Kogyo Co., Ltd., model number “VIC-0326-1680”), after drying moisture at 120 ° C., the dried film is heated and crosslinked at 150 ° C. (bonding). Thus, a resin sheet was obtained.
  • the surface of the resin layer after the bonding step was buffed to obtain a resin sheet having a thickness of 0.80 mm and a durometer hardness (type A) of 19.
  • a base material was affixed to the non-buffed side of the resin sheet, and after embossing, it was affixed to a double-sided tape provided with release paper on one side to obtain an abrasive sheet.
  • a polishing test which is a “predetermined polishing test” was performed under the following conditions.
  • -Polishing machine Model number "F-REX300” manufactured by Ebara Manufacturing Co., Ltd.
  • Polishing head manufactured by Ebara Manufacturing Co., Ltd.
  • model number “GII” Polishing slurry: manufactured by Cabot, model number “SS-25”, diluted 20 times ⁇
  • Substance to be polished 300 mm ⁇ silicon wafer with tetraethylorthosilicate (TEOS) film ⁇ Polishing pad diameter: 740 mm ⁇ ⁇
  • Pad break-in conditions 100 N ⁇ 10 minutes, diamond dresser # 100 (pellet type) rotation speed 20 rpm, surface plate rotation speed 80 rpm, ultrapure water supply amount 500 mL / min ⁇ Polishing conditions: surface plate rotation speed 70 rpm, polishing head rotation 71 rpm, polishing slurry flow rate 200 mL / min, polishing time 60 minutes (10 minutes ⁇ 6 wafer
  • a sample obtained by cutting the resin sheet on the polishing pad after performing the above-mentioned “predetermined polishing test” into a 5 mm ⁇ 5 mm rectangle is placed on a sample holder of a 3D laser microscope (model number “VK8700”) manufactured by Keyence. It was installed so as not to occur. The sample was observed at a magnification of 200 times with the 3D laser microscope.
  • the measurement range is set to a range of 75 ⁇ m ⁇ 75 ⁇ m with no holes in 1.0 mm ⁇ 1.4 mm, and by setting the measurement condition to “filter; off”, Rsk, height distribution variation coefficient for each measurement point, Ra values were obtained.
  • the measurement points were randomly selected 20 points, and the arithmetic mean of them was Rsk, height distribution variation coefficient, and Ra of the sample.
  • Rsk height distribution variation coefficient
  • Ra Ra of the sample.
  • the area which is not opened is smaller than 75 micrometers x 75 micrometers, it is good also considering a measurement range as a range of 50 micrometers x 50 micrometers. The results are shown in Table 1.
  • Example 2 A polishing pad was prepared in the same manner as in Example 1 except that a polyester polyol compound-MDI-ethylenediamine-based polyurethane resin (polyurethane polyurea resin) having a 100% modulus at 25 ° C. of 3.0 MPa was used as the polyurethane resin. The surface properties were measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 12.4 Pa ⁇ s. The durometer hardness (type A) of the resin sheet was 0 (0.3 in hardness (type C)).
  • Example 3 A polishing pad was prepared in the same manner as in Example 1 except that a polyester polyol compound-MDI-ethylenediamine-based polyurethane resin (polyurethane polyurea resin) having a 100% modulus of 9.0 MPa at 25 ° C. was used as the polyurethane resin. The surface properties were measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 10.2 Pa ⁇ s. Further, the durometer hardness (type A) of the resin sheet was 22.
  • polyurethane polyurea resin polyester polyol compound-MDI-ethylenediamine-based polyurethane resin having a 100% modulus of 9.0 MPa at 25 ° C.
  • Example 4 A polishing pad was prepared in the same manner as in Example 1 except that the blocked isocyanate compound was mixed at a ratio of 5.0 parts by mass (13.3 parts by mass with respect to 100 parts by mass of the polyurethane resin). Was measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 11.9 Pa ⁇ s. The durometer hardness (type A) of the resin sheet was 21.
  • Example 5 Polishing pad in the same manner as in Example 1 except that a blocked isocyanate compound obtained by blocking an HDI isocyanurate form with methyl ethyl ketoxime (solid content: 80%, NCO%: about 12.5%) was used as the blocked isocyanate compound.
  • the surface properties were measured. The results are shown in Table 1.
  • the viscosity of the resin solution was measured in the same manner as in Example 1, it was 10.9 Pa ⁇ s.
  • the durometer hardness (type A) of the resin sheet was 20.
  • Example 1 A polishing pad was prepared in the same manner as in Example 1 except that the blocked isocyanate compound was not used, and the surface properties were measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 11.6 Pa ⁇ s. Further, the durometer hardness (type A) of the resin sheet was 19.
  • Example 2 A polishing pad was prepared in the same manner as in Example 1 except that a polyester polyol compound-MDI-ethylenediamine-based polyurethane resin (polyurethane polyurea resin) having a 100% modulus at 25 ° C. of 2.0 MPa was used as the polyurethane resin. The surface properties were measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 12.7 Pa ⁇ s. Further, the durometer hardness (type A) of the resin sheet was 0 (0.5 (hardness (type C)).
  • Example 3 A polishing pad was prepared in the same manner as in Example 1 except that a polyester polyol compound-MDI-ethylenediamine-based polyurethane resin (polyurethane polyurea resin) having a 100% modulus at 25 ° C. of 15.0 MPa was used as the polyurethane resin. The surface properties were measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 11.0 Pa ⁇ s. Moreover, the durometer hardness (type A) of the resin sheet was 26.
  • Example 4 A polishing pad was prepared in the same manner as in Example 1 except that the blocked isocyanate compound was mixed at a ratio of 7.0 parts by mass (18.6 parts by mass with respect to 100 parts by mass of the polyurethane resin). Was measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 12.2 Pa ⁇ s. Further, the durometer hardness (type A) of the resin sheet was 22.
  • Example 5 A polishing pad as in Example 1 except that a blocked isocyanate compound obtained by blocking an HDI adduct with methyl ethyl ketoxime (solid content: 80%, NCO%: about 15.5%) was used as the blocked isocyanate compound. The surface properties were measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 10.8 Pa ⁇ s. The durometer hardness (type A) of the resin sheet was 21.
  • Polishing test A polishing test was performed using the polishing pad under the following conditions.
  • -Polishing machine Model number "F-REX300” manufactured by Ebara Manufacturing Co., Ltd.
  • Polishing head manufactured by Ebara Manufacturing Co., Ltd.
  • model number “GII” Polishing slurry Planar, model number “ER8176C”, 2-fold dilution, hydrogen peroxide concentration 0.8 mass%
  • Polished object 300 mm ⁇ silicon wafer with silica (TEOS) film
  • Polishing pad diameter 740 mm ⁇ ⁇
  • Dresser 3M diamond dresser, model number “A188” ⁇
  • Pad break-in condition 30 N ⁇ 30 minutes, dresser rotation speed 54 rpm, surface plate rotation speed 80 rpm, ultrapure water supply amount 500 mL / min ⁇ conditioning: Ex-situ 30 N, 4 scans, 16 seconds ⁇ Polishing condition: fixed Plate rotation speed 70 rpm, polishing head rotation speed 71 rpm, polishing slurry flow rate 200
  • the polishing rate ( ⁇ ⁇ ⁇ / min) was determined by dividing the thickness polished at each point by the polishing time from the thickness measurement results at 121 locations. The thickness was measured in the DBS mode of an optical film thickness measuring instrument (manufactured by KLA Tencor, model number “ASET-F5x”).
  • polishing rate stability has a lower numerical value, and the smaller the variation due to the number of processed sheets, the higher the polishing stability. Further, the polishing uniformity indicates that the lower the numerical value, the less the polishing unevenness and the more uniformly the wafer surface is polished. The results are shown in Table 1.
  • a resin sheet was cut into a 5 mm ⁇ 30 mm rectangle to obtain a sample.
  • the sample was put into a test tube containing 30 mL of DMF.
  • the test tube in which the sample was introduced was stirred for 1 minute, then allowed to stand for 10 minutes, and further stirred for 2 minutes.
  • the sample contained in the test tube is filtered together with DMF using a 50 mesh (mesh opening 300 ⁇ m) test sieve, and whether or not solid matter remains on the sieve is determined. It was confirmed visually.
  • the solid substance remained, it was evaluated as “A” because it was excellent in chemical resistance, and when the solid substance did not remain, it was evaluated as “B” because it was not excellent in chemical resistance.
  • Table 1 The results are shown in Table 1.
  • FIGS. 2 and 3 photographs of the cross sections of the resin sheets of Example 1 and Comparative Example 1 observed with an electron microscope are shown in FIGS. 2 and 3, respectively.
  • the boundary with the upper black portion indicates the surface of the resin sheet. From the comparison of these photographs, the resin sheet according to the example has less surface irregularities than the resin sheet according to the comparative example. It was found that the flatness was high.
  • the present invention it is possible to provide a polishing pad that can quickly stabilize the polishing rate at the initial stage of polishing and that suppresses fluctuations in the polishing rate, and a method for manufacturing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

 A polishing pad provided with a plastic sheet, wherein after a prescribed polishing test, the polishing surface of the sheet has a roughness curve skewness (Rsk) of -2.00 to -0.20, and a height distribution variation coefficient of 0.5-2.5 %.

Description

研磨パッド及びその製造方法Polishing pad and manufacturing method thereof
 本発明は、研磨パッド及びその製造方法、特に仕上げ用研磨パッド及びその製造方法に関する。 The present invention relates to a polishing pad and a manufacturing method thereof, and more particularly to a polishing pad for finishing and a manufacturing method thereof.
 ベアシリコン、半導体デバイス、磁気ディスク基板等は、その表面を平滑にするために研磨加工が施される。かかる研磨加工は、砥粒をアルカリ溶液等に分散させた研磨液(スラリー)を被研磨面に供給しながら、当該被研磨面に対し研磨パッドを押し当てて回転させるものであり、所謂化学機械研磨(以下、「CMP」という。)と称されるものである。 Bare silicon, semiconductor devices, magnetic disk substrates, etc. are polished to smooth their surfaces. Such polishing is a process in which a polishing pad (slurry) in which abrasive grains are dispersed in an alkaline solution or the like is supplied to a surface to be polished and a polishing pad is pressed against the surface to be polished and rotated. This is called polishing (hereinafter referred to as “CMP”).
 研磨パッドには、求められる平滑度に応じて種々の材質のものが用いられる。一般に、仕上げ用の研磨パッドには、湿式成膜法で形成されたポリウレタン製の発泡シートが用いられることが多い(例えば特許文献1参照)。微細化が進む半導体デバイスなどの最終仕上げに用いられる研磨パッドでは、無欠陥化、平坦化への要求がますます強くなっている。例えば、微細化することによって今まで問題にならなかった傷(スクラッチ)が致命的な欠陥(ディフェクト)となるため、そのようなダメージの低い研磨加工が必要とされている。 The polishing pad is made of various materials depending on the required smoothness. Generally, a polyurethane foam sheet formed by a wet film forming method is often used for a polishing pad for finishing (see, for example, Patent Document 1). For polishing pads used for final finishing of semiconductor devices and the like that are becoming finer, demands for defect-free and flattening are increasing. For example, scratches that have not been a problem as a result of miniaturization become fatal defects, and therefore, polishing processing with such low damage is required.
 また、CMP技術では、生産性の効率化や歩留まり向上の観点から研磨レートを安定化させる必要がある。研磨レートは、被研磨物の被研磨面と研磨パッドとの接触状態等に大きく影響を受けるため、研磨初期は研磨パッドの表面状態が変化しやすく研磨レートが安定しない。 Also, in the CMP technique, it is necessary to stabilize the polishing rate from the viewpoint of increasing the efficiency of productivity and improving the yield. Since the polishing rate is greatly influenced by the contact state between the surface to be polished of the object to be polished and the polishing pad, the surface state of the polishing pad is likely to change at the initial stage of polishing, and the polishing rate is not stable.
 そこで、従来、研磨初期の研磨レートが不安定な時間を短くするため、研磨パッドを湿潤した状態にしておく手法(特許文献2参照)、あるいは研磨パッドの表面粗さを制御する手法(特許文献3、4参照)が採られている。 Therefore, conventionally, a method of keeping the polishing pad wet (see Patent Document 2) or a method of controlling the surface roughness of the polishing pad (Patent Document 2) in order to shorten the time during which the initial polishing rate is unstable. 3 and 4).
特開2002-059356号公報JP 2002-059356 A 特開2009-148876号公報JP 2009-148876 A 特開2010-253665号公報JP 2010-253665 A 特開2009-154291号公報JP 2009-154291 A
 ダメージの低い研磨加工としては、粒径の小さなシリカ系やアルミナ系の研磨材を含む研磨スラリーを用いて、軟らかい研磨パッドによって研磨加工する方法が有効と考えられる。機械的要素よりも化学的要素の高い研磨スラリーを用い、柔らかな研磨パッドを用いて研磨することによって、研磨時の被研磨物において、局部の微小領域での応力を分散でき、被研磨物へ接触する砥粒や研磨生成物の接触の程度を緩和することができ、スクラッチを低減できる。しかしながら、研磨スラリーに含まれる化学成分による寄与が強まると、研磨パッドの劣化が発生しやすくなる。特にポリウレタンを含む軟質化した研磨パッドの場合、そのポリウレタンの架橋点が少なく構造的に弱いため、より一層、研磨スラリーによる劣化が懸念される。 As a polishing process with low damage, a method of polishing with a soft polishing pad using a polishing slurry containing a silica-based or alumina-based abrasive having a small particle size is considered effective. By using a polishing slurry with a chemical element higher than that of a mechanical element and polishing with a soft polishing pad, the stress in the local microregion can be dispersed in the object to be polished at the time of polishing. The degree of contact between the abrasive grains and the polishing product that come into contact can be reduced, and scratches can be reduced. However, when the contribution of chemical components contained in the polishing slurry is increased, the polishing pad is likely to be deteriorated. In particular, in the case of a softened polishing pad containing polyurethane, since the polyurethane has few cross-linking points and is structurally weak, there is a further concern about deterioration due to the polishing slurry.
 また、特許文献2~4に記載された手法において、研磨中に研磨スラリーの目詰まり改善を目的としたドレス処理を施したり、あるいは、研磨加工を一時停止して湿潤状態で待機したりした後に研磨加工を再開すると、研磨パッドの表面状態又は砥粒保持量が変化する。その結果、研磨加工の再開後しばらくの間は被研磨物全体の平均研磨レートが低下、もしくは研磨レートのプロファイルの均一性が悪化し、安定した研磨レートを得るのが困難である。研磨レートを安定化させるためには研磨パッドの表面が常に同じ状態であるほど有効であり、言い換えれば、研磨加工中の表面状態が変化し難い研磨パッドが望ましい。 In addition, in the methods described in Patent Documents 2 to 4, after performing dressing for the purpose of improving clogging of the polishing slurry during polishing, or after temporarily stopping the polishing process and waiting in a wet state When the polishing process is resumed, the surface state of the polishing pad or the amount of abrasive grains retained changes. As a result, for a while after resuming the polishing process, the average polishing rate of the entire object to be polished decreases, or the uniformity of the polishing rate profile deteriorates, making it difficult to obtain a stable polishing rate. In order to stabilize the polishing rate, it is more effective that the surface of the polishing pad is always in the same state. In other words, a polishing pad in which the surface state during polishing is difficult to change is desirable.
 本発明は上記事情にかんがみてなされたものであり、研磨初期の研磨レートを速やかに安定化でき、かつ、研磨レートの変動が抑制された研磨パッド及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polishing pad that can quickly stabilize the polishing rate at the initial stage of polishing and that suppresses fluctuations in the polishing rate, and a method for manufacturing the same. .
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、研磨パッドの研磨面が所定の表面性状を有することにより、研磨初期の研磨レートを速やかに安定化することができ、かつ、研磨レートの変動も抑制できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the inventors of the present invention can quickly stabilize the polishing rate at the initial stage of polishing because the polishing surface of the polishing pad has a predetermined surface property, and The inventors have found that the fluctuation of the polishing rate can be suppressed and have completed the present invention.
 すなわち、本発明の研磨パッドは、樹脂からなるシートを備える研磨パッドであって、所定の研磨試験を経た後の上記シートの研磨面が、-2.00以上、-0.20以下の粗さ曲線のスキューネスRskを有し、かつ、0.5%以上、2.5%以下の高さ分布変動係数を有する。本発明の研磨パッドにおいて、上記シートは、0~25のデュロメータ硬さ(タイプA)を有すると好ましく、湿式成膜されたものであると好ましく、シートに含有される樹脂が3.0MPa~10.0MPaの100%モジュラスを有するものであると好ましい。また、上記樹脂は、活性水素原子を有する第1の樹脂における活性水素原子とブロックイソシアネート化合物由来のイソシアネート基との反応により生じる結合を有する第2の樹脂を含み、上記結合を、第1の樹脂100質量部に対して、ブロックイソシアネート化合物換算で2.0質量部~15.0質量部有するものであると好ましい。さらに、ブロックイソシアネート化合物は、芳香族多価イソシアネート化合物以外の多価イソシアネート化合物からなる群より選ばれる1種以上の化合物をブロック剤によりブロック化したものであると好ましい。また、第1の樹脂は、ポリウレタン樹脂であると好ましい。 That is, the polishing pad of the present invention is a polishing pad comprising a resin sheet, and the polishing surface of the sheet after undergoing a predetermined polishing test has a roughness of −2.00 or more and −0.20 or less. It has a skewness Rsk of a curve and a height distribution variation coefficient of 0.5% or more and 2.5% or less. In the polishing pad of the present invention, the sheet preferably has a durometer hardness (type A) of 0 to 25, preferably a wet film formed, and a resin contained in the sheet is 3.0 MPa to 10 MPa. It is preferable to have a 100% modulus of 0.0 MPa. The resin includes a second resin having a bond generated by a reaction between an active hydrogen atom in the first resin having an active hydrogen atom and an isocyanate group derived from a blocked isocyanate compound, and the bond is bonded to the first resin. It is preferable to have 2.0 to 15.0 parts by mass in terms of a blocked isocyanate compound with respect to 100 parts by mass. Furthermore, the blocked isocyanate compound is preferably one obtained by blocking one or more compounds selected from the group consisting of polyvalent isocyanate compounds other than aromatic polyvalent isocyanate compounds with a blocking agent. Further, the first resin is preferably a polyurethane resin.
 本発明の研磨パッドの製造方法は、本発明の上記研磨パッドの製造方法であって、上記研磨パッドに備えられるシートは第2の樹脂を含有し、活性水素原子を有する第1の樹脂とブロックイソシアネート化合物と溶媒とを含む樹脂溶液中の第1の樹脂を凝固再生する工程と、第1の樹脂が有する活性水素原子とブロックイソシアネート化合物由来のイソシアネート基とを反応させて第2の樹脂を得る工程とを有し、第2の樹脂は、活性水素原子とイソシアネート基との反応により生じる結合を、第1の樹脂100質量部に対して、ブロックイソシアネート化合物換算で2.0質量部~15.0質量部有するものである。 The manufacturing method of the polishing pad of the present invention is the manufacturing method of the polishing pad of the present invention, wherein the sheet provided in the polishing pad contains the second resin, the first resin having active hydrogen atoms and the block A step of coagulating and regenerating the first resin in the resin solution containing the isocyanate compound and the solvent, and reacting the active hydrogen atom of the first resin with the isocyanate group derived from the blocked isocyanate compound to obtain the second resin The second resin has a bond produced by a reaction between an active hydrogen atom and an isocyanate group in an amount of 2.0 to 15 parts by mass in terms of a blocked isocyanate compound with respect to 100 parts by mass of the first resin. It has 0 part by mass.
 本発明によれば、研磨初期の研磨レートを速やかに安定化でき、かつ、研磨レートの変動が抑制された研磨パッド及びその製造方法を提供することが可能となる。 According to the present invention, it is possible to provide a polishing pad that can quickly stabilize the polishing rate in the initial stage of polishing and suppress the fluctuation of the polishing rate, and a method for manufacturing the same.
スキューネスが互いに異なる樹脂シートの表面付近の断面を示す概念図である。It is a conceptual diagram which shows the cross section of the surface vicinity of the resin sheet from which skewness differs mutually. 本発明に係る樹脂シートの表面付近の断面を示す電子顕微鏡写真である。It is an electron micrograph which shows the cross section of the surface vicinity of the resin sheet which concerns on this invention. 比較例に係る樹脂シートの表面付近の断面を示す電子顕微鏡写真である。It is an electron micrograph which shows the cross section of the surface vicinity of the resin sheet which concerns on a comparative example.
 以下、必要に応じて図面を参照しつつ、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明するが、本発明は下記本実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail with reference to the drawings as necessary. However, the present invention is limited to the following embodiment. It is not a thing. The present invention can be variously modified without departing from the gist thereof.
 本実施形態の研磨パッドは、樹脂からなるシート(以下、単に「樹脂シート」ともいう。)を備える研磨パッドであって、所定の研磨試験を経た後の樹脂シートの研磨面が、-2.00以上、-0.20以下の粗さ曲線のスキューネス(以下、単に「Rsk」と表記する。)を有し、かつ、2.5%以下の高さ分布変動係数を有するものである。 The polishing pad of this embodiment is a polishing pad provided with a sheet made of resin (hereinafter also simply referred to as “resin sheet”), and the polishing surface of the resin sheet after passing through a predetermined polishing test is -2. It has a skewness of a roughness curve of 00 or more and −0.20 or less (hereinafter simply referred to as “Rsk”), and a height distribution variation coefficient of 2.5% or less.
 樹脂シートは研磨面を有し、その研磨面は、所定の研磨試験を経た後のRskが-0.20以下であり、-0.25以下であると好ましく、-0.30以下であるとより好ましく、-0.35以下であると更に好ましい。また、所定の研磨試験を経た後のRskが-2.00以上であることが好ましく、-1.90以上であることがより好ましい。さらに、樹脂シートの研磨面は、所定の研磨試験を経た後の高さ分布変動係数が2.5%以下であり、2.0%以下であると好ましく、1.5%以下であるとより好ましく、1.3%以下であると更に好ましく、1.2%以下であると特に好ましい。また、その下限は小さいほど好ましく特に限定されないが、高さ分布変動係数は0.5%以上であることが好ましく、0.7%以上であることがより好ましい。ここで、Rsk及び高さ分布変動係数は、樹脂シートの研磨面の樹脂部分を測定したものであり、トライボロジー(摩擦)と関係の深いパラメータである。なお、樹脂シートが複数の気泡を有するものであって、研磨面にその気泡由来の開孔部を有する場合、Rsk及び高さ分布変動係数は、開孔部を除く研磨面の樹脂部分を測定したものである。 The resin sheet has a polished surface, and the Rsk after the predetermined polishing test is −0.20 or less, preferably −0.25 or less, and −0.30 or less. More preferably, it is more preferably −0.35 or less. Further, Rsk after passing through a predetermined polishing test is preferably −2.00 or more, more preferably −1.90 or more. Further, the polished surface of the resin sheet has a coefficient of variation in height distribution after passing a predetermined polishing test of 2.5% or less, preferably 2.0% or less, and more preferably 1.5% or less. Preferably, it is more preferably 1.3% or less, and particularly preferably 1.2% or less. Further, the lower limit is preferably as small as possible, but the height distribution variation coefficient is preferably 0.5% or more, more preferably 0.7% or more. Here, Rsk and the height distribution variation coefficient are parameters obtained by measuring the resin portion of the polished surface of the resin sheet and are closely related to tribology (friction). In addition, when the resin sheet has a plurality of bubbles and the polishing surface has an opening portion derived from the bubbles, Rsk and the height distribution variation coefficient are measured on the resin portion of the polishing surface excluding the opening portion. It is a thing.
 「所定の研磨試験」とは、本研磨の前のダミーウエハ研磨後のパッド表面を模した研磨試験を意味し、研磨パッドを用いて下記の条件により行われる。すなわち、所定の研磨試験後の研磨パッドは本研磨試験に供する研磨パッドの表面状態を表している。
・研磨機:株式会社荏原製作所製、型番「F-REX300」
・研磨ヘッド:株式会社荏原製作所社製、型番「GII」
・研磨スラリー:Cabot社製、型番「SS-25」、20倍希釈
・被研磨物:シリカ膜付き300mmφのシリコンウエハ
・研磨パッド径:740mmφ
・パッド・ブレークイン条件:100N×10分、ダイヤモンドドレッサー#100(ペレットタイプ)回転数20rpm、定盤回転数80rpm、超純水供給量500mL/分・研磨条件:定盤回転数70rpm、研磨ヘッド回転数71rpm、研磨スラリー流量200mL/分、研磨時間60分間(10分間×6枚のウエハ)、研磨圧2.5psi(1.7×10Pa)
The “predetermined polishing test” means a polishing test that imitates the pad surface after polishing the dummy wafer before the main polishing, and is performed using the polishing pad under the following conditions. That is, the polishing pad after the predetermined polishing test represents the surface state of the polishing pad used in the polishing test.
-Polishing machine: Model number "F-REX300" manufactured by Ebara Manufacturing Co., Ltd.
Polishing head: manufactured by Ebara Manufacturing Co., Ltd., model number “GII”
・ Polishing slurry: manufactured by Cabot, model number “SS-25”, 20 times dilution ・ Polished object: 300 mmφ silicon wafer with silica film ・ Polishing pad diameter: 740 mmφ
・ Pad break-in conditions: 100 N × 10 minutes, diamond dresser # 100 (pellet type) rotation speed 20 rpm, surface plate rotation speed 80 rpm, ultrapure water supply amount 500 mL / min ・ Polishing conditions: surface plate rotation speed 70 rpm, polishing head rotation 71 rpm, polishing slurry flow rate 200 mL / min, polishing time 60 minutes (10 minutes × 6 wafers), polishing pressure 2.5 psi (1.7 × 10 4 Pa)
 Rskは、平均値のまわりの三次モーメントをRq3(二乗平均平方根粗さの3乗)で正規化した値であり、表面粗さの平均線mに対する偏り、つまり平均値のまわりの非対称性(凸と凹の対象性)を示す指標である。研磨面の断面形状が、表面粗さの平均線mに対して正負の両方向に正規分布の繰り返しを示す曲線に近いほど、Rskは0に近づく。その一方で、研磨面の断面形状が、正の方向又は負の方向に偏るほど、Rskは0から離れる。そして、Rskが正であることは、粗さ形状として上に凸(山)ということを意味し、突起が多くあるということである。逆に、Rskが負であることは、粗さ形状として下に凸(谷)ということを意味し、表面に平坦部が多くあるということである。Rskが負になる場合は、樹脂シートがスラリーを保持する凹部を有することを意味する。また、その値が小さい(絶対値が大きい)ほど、凹部以外の平坦な領域が益々広くなって平滑化(平坦化)することを意味する。つまり、研磨面のRskを-0.20以下にすることにより、スラリーの保持量が増大することを意味する。その結果、このような樹脂シートを備える本実施形態の研磨パッドを用いると、研磨レートを安定させやすくなる。また、かかる樹脂シートを備える本実施形態の研磨パッドは、ドレス処理後に研磨面の凸部が除され凹部分と平坦領域がすぐに形成され平滑化しやすく、研磨加工によってもその平滑性は維持され研磨面の表面状態が変化しにくいため、研磨初期の研磨レートを速やかに安定化することができる。一方、Rskが-0.20よりも大きいと、凹部が少なすぎるためスラリーの保持量が減少し、研磨初期の研磨レートを安定化させるのに相当の時間を要する。また、Rskが-2.00以上であると、凹部が少なすぎるためスラリーの保持量が減少し研磨レートが低下することをより有効に防ぐことができる。 Rsk is a value obtained by normalizing the third moment around the average value by Rq3 (the cube of the root mean square roughness), and the deviation of the surface roughness from the average line m, that is, the asymmetry around the average value (convex) It is an index indicating the objectivity of the concave. The closer the cross-sectional shape of the polished surface is to a curve showing repetition of normal distribution in both positive and negative directions with respect to the average line m of surface roughness, Rsk approaches 0. On the other hand, as the cross-sectional shape of the polished surface is biased in the positive direction or in the negative direction, Rsk is separated from 0. When Rsk is positive, it means that the roughness is convex upward (mountain), and there are many protrusions. On the contrary, Rsk being negative means that the roughness is convex downward (valley), and there are many flat portions on the surface. When Rsk becomes negative, it means that the resin sheet has a recess for holding the slurry. Further, it means that the smaller the value (the larger the absolute value), the smoother (flattening) the flat region other than the concave portion becomes wider and wider. That is, when the Rsk of the polished surface is −0.20 or less, it means that the amount of slurry retained is increased. As a result, when the polishing pad of this embodiment provided with such a resin sheet is used, it becomes easy to stabilize the polishing rate. Further, the polishing pad of this embodiment provided with such a resin sheet is easy to smooth because the convex part of the polishing surface is removed after the dressing process and the concave part and the flat region are formed easily, and the smoothness is maintained even by the polishing process. Since the surface state of the polished surface hardly changes, the polishing rate at the initial stage of polishing can be quickly stabilized. On the other hand, if Rsk is larger than −0.20, the number of concave portions is too small and the amount of slurry retained is reduced, and it takes a considerable time to stabilize the polishing rate at the initial stage of polishing. Further, when Rsk is −2.00 or more, it is possible to more effectively prevent the amount of slurry retained and the polishing rate from being lowered because the number of concave portions is too small.
 図1は、樹脂シートの表面付近の断面を模式的に示す図であり、Rskの値が小さいほど(a)に示す形状に近くなり、大きいほど(b)に示す形状に近くなる。 FIG. 1 is a diagram schematically showing a cross section near the surface of a resin sheet. The smaller the value of Rsk, the closer to the shape shown in (a), and the larger the value, the closer to the shape shown in (b).
 高さ分布変動係数は、研磨パッドの研磨面における高さの標準偏差σを、高さの平均で除したものであり、研磨面の平滑度を示す指標である。高さ測定は測定場所により変動するため、測定ポイントによる変動を差し引いたものが高さ分布変動係数である。高さ分布変動係数が2.5%以下であることにより、研磨面の平滑性を被研磨物に転写させることができ、被研磨物を高度に平坦化させることができる。高さ分布変動係数が2.5%を超えると、表面の凹凸が大きく、被研磨物を高度に平坦化させることができない。 The height distribution variation coefficient is obtained by dividing the standard deviation σ of the height of the polishing surface of the polishing pad by the average of the height, and is an index indicating the smoothness of the polishing surface. Since the height measurement varies depending on the measurement location, the height distribution variation coefficient is obtained by subtracting the variation due to the measurement point. When the height distribution variation coefficient is 2.5% or less, the smoothness of the polished surface can be transferred to the object to be polished, and the object to be polished can be highly planarized. When the height distribution variation coefficient exceeds 2.5%, the surface unevenness is large, and the object to be polished cannot be flattened to a high degree.
 Rsk及び高さ分布変動係数は、実施例に記載の方法に準じて測定することができる。また、所定の研磨試験を経た後の樹脂シートの研磨面が、上記数値範囲のRsk及び高さ分布変動係数を有するには、例えば、湿式成膜法により樹脂シートを得る際に、後述のブロックイソシアネート化合物を適宜選択して用いればよい。その際に、ブロックイソシアネート化合物のブロック剤以外の部分の鎖長や分子の屈曲性を考慮し、使用量を適宜調整することで、より容易に、研磨面が上記数値範囲のRsk及び高さ分布変動係数を有する樹脂シートを得ることができる。 Rsk and height distribution variation coefficient can be measured according to the method described in the examples. In addition, in order for the polished surface of the resin sheet after undergoing a predetermined polishing test to have Rsk and height distribution variation coefficient in the above numerical range, for example, when a resin sheet is obtained by a wet film forming method, a block described later An isocyanate compound may be appropriately selected and used. At that time, by considering the chain length of the portion other than the blocking agent of the blocked isocyanate compound and the flexibility of the molecule, the polishing surface can be more easily adjusted to the Rsk and the height distribution within the above numerical range by appropriately adjusting the amount used. A resin sheet having a coefficient of variation can be obtained.
 所定の研磨試験を経た後の樹脂シートの表面粗さ(算術平均粗さ:Ra)は、特に限定されないが、本発明による作用効果をより有効かつ確実に奏する観点から、1.0~10.0μmであると好ましく、2.0~8.0μmであるとより好ましく、2.0~5.0μmであると更に好ましい。表面粗さは、実施例に記載の方法に準じて測定することができる。 The surface roughness (arithmetic mean roughness: Ra) of the resin sheet after undergoing a predetermined polishing test is not particularly limited, but from the viewpoint of more effectively and reliably achieving the effects of the present invention, 1.0 to 10. It is preferably 0 μm, more preferably 2.0 to 8.0 μm, and even more preferably 2.0 to 5.0 μm. The surface roughness can be measured according to the method described in the examples.
 樹脂シートは、そのデュロメータ硬さ(タイプA)が、0~25であると好ましく、10~25であるとより好ましく、10~20であると更に好ましい。このようなデュロメータ硬さ(タイプA)を有する樹脂シートを備える研磨パッドは軟質であり、半導体デバイスなどの最終仕上げに用いられると好適であるところ、本実施形態の研磨パッドは、軟質にも関わらず、研磨初期の研磨レートを速やかに安定化することができ、かつ、研磨レートの変動も抑制できる点で特に有用である。デュロメータ硬さ(タイプA)は、25℃におけるものであり、日本工業規格(JIS K 6253)に準拠して測定される。より詳しくは、寸法が30mm×30mmの試料について、JIS K 7311に従って、ショアAデュロメータを用いて測定される。なお、試料は、樹脂シートが少なくとも総厚さ4.5mm以上になるように、必要に応じて複数枚重ねて作製する。そして、試料内の異なる3箇所を測定して、平均値をデュロメータ硬さ(タイプA)の値とする。また、その測定方法において、デュロメータ硬さ(タイプA)が0となる試料については、より軟質な材料を測定できるタイプCの硬さで評価を行ってもよい。タイプCの硬さは、アスカーゴム硬度計C型を使用して測定される値であり、寸法が30mm×30mmの試料について、JIS K7312に準拠して測定される。25℃において、かかるデュロメータ硬さ(タイプA)を有する樹脂シートは、湿式成膜法により得ることができる。 The resin sheet has a durometer hardness (type A) of preferably 0 to 25, more preferably 10 to 25, and even more preferably 10 to 20. A polishing pad provided with a resin sheet having such durometer hardness (type A) is soft and is preferably used for final finishing of a semiconductor device or the like. However, the polishing pad of this embodiment is also related to softness. In particular, it is particularly useful in that the polishing rate at the initial stage of polishing can be quickly stabilized, and fluctuations in the polishing rate can be suppressed. The durometer hardness (type A) is measured at 25 ° C. and measured in accordance with Japanese Industrial Standard (JIS K 6253). More specifically, a sample having a size of 30 mm × 30 mm is measured using a Shore A durometer according to JIS K 7311. In addition, a sample is produced by stacking a plurality of sheets as necessary so that the resin sheet has a total thickness of 4.5 mm or more. And three different places in a sample are measured, and let an average value be the value of durometer hardness (type A). Further, in the measurement method, a sample having a durometer hardness (type A) of 0 may be evaluated with a type C hardness that can measure a softer material. The hardness of type C is a value measured using an Asker rubber hardness meter C type, and is measured in accordance with JIS K7312 for a sample having a dimension of 30 mm × 30 mm. At 25 ° C., a resin sheet having such durometer hardness (type A) can be obtained by a wet film formation method.
 樹脂シートは、複数の気泡を有するものであると好ましく、その組成は、複数の気泡を包囲するマトリックスとなる樹脂(以下、「マトリックス樹脂」という。)を最も多く含む組成であれば特に限定されない。具体的には、樹脂シートは、その全体量に対して、マトリックス樹脂を70~100質量%含むものであってもよい。樹脂シートは、その全体量に対して、マトリックス樹脂をより好ましくは80~95質量%含み、更に好ましくは85~95質量%含む。 The resin sheet preferably has a plurality of bubbles, and the composition thereof is not particularly limited as long as it is a composition that contains the most resin (hereinafter referred to as “matrix resin”) serving as a matrix surrounding the plurality of bubbles. . Specifically, the resin sheet may contain 70 to 100% by mass of the matrix resin with respect to the total amount. The resin sheet contains the matrix resin more preferably 80 to 95% by mass, and still more preferably 85 to 95% by mass, based on the total amount.
 マトリックス樹脂は、研磨初期の研磨レートを速やかに安定化する観点、及び/又は、研磨スラリーに含まれる化学成分に対する樹脂シートの耐性(以下、「耐薬品性」という。)を更に高める観点から、活性水素原子を有する第1の樹脂における活性水素原子と、ブロックイソシアネート化合物由来のイソシアネート基と、の反応により生じる結合を有する第2の樹脂を含むと好ましい。樹脂シートが第2の樹脂を含むか否かは、N,N-ジメチルホルムアミド(DMF)に対して溶解するか否かで判断することもできる。同様の観点から、マトリックス樹脂は、その全体量に対して、第2の樹脂を50質量%以上含むことが好ましく、80質量%以上含むことがより好ましく、90質量%以上含むことが更に好ましく、95質量%以上含むことが特に好ましい。 From the viewpoint of quickly stabilizing the polishing rate at the initial stage of polishing and / or further enhancing the resistance of the resin sheet to the chemical components contained in the polishing slurry (hereinafter referred to as “chemical resistance”), It is preferable to include a second resin having a bond generated by a reaction between an active hydrogen atom in the first resin having an active hydrogen atom and an isocyanate group derived from a blocked isocyanate compound. Whether or not the resin sheet contains the second resin can also be determined by whether or not it dissolves in N, N-dimethylformamide (DMF). From the same viewpoint, the matrix resin preferably contains 50% by mass or more of the second resin, more preferably 80% by mass or more, and still more preferably 90% by mass or more, based on the total amount of the matrix resin. It is particularly preferable to contain 95% by mass or more.
 マトリックス樹脂が第2の樹脂を含むことにより、上述の作用効果を奏する要因は現在のところ詳細には明らかにされていないが、本発明者らはその要因を下記のように考えている。ただし、要因は下記のものに限定されない。 Although the factor that exhibits the above-described effects by including the second resin in the matrix resin has not been clarified in detail at present, the present inventors consider the factor as follows. However, the factors are not limited to the following.
 従来、研磨面付近のマトリックス樹脂は、伸びや粘性が高いほど、上記摩擦により引き延ばされては回復する過程を繰り返しながら、徐々に研磨面の形状などの状態が変化し続けるため、研磨に寄与する作用面が安定な状態になるまで長時間を要する。その結果、デュロメータ硬さ(タイプA)が0~25であるような、伸びや粘性の高いマトリックス樹脂を用いる場合、研磨初期における研磨レートが安定し難い。一方、第2の樹脂(以下、「結合後樹脂」という。)は、第1の樹脂(以下、「結合前樹脂」という。)の分子間で上記結合を有することにより、その分子間での拘束力が高まる。これにより、結合後樹脂は、結合前樹脂よりも伸びや粘性が低減し脆くなるため、研磨加工時の研磨面における被研磨物との摩擦により崩壊しやすくなる。つまり、結合後樹脂を含むマトリックス樹脂は、研磨面付近において、永久歪みを生じやすくなり、その部分が崩壊して除去される結果、早期に研磨面が平滑化される。研磨面が平滑化されれば、研磨パッドの表面形状が変化し難くなり、その結果、研磨初期における研磨レートが早期に安定すると考えられる。なお、ここで示す平滑化とは、スラリーを貯留・保持する開孔部以外の樹脂部分についての平滑化を示し、スラリー屑等が開孔部に詰まり開孔がなくなったことによる研磨面全体の平滑化とは異なる。 Conventionally, the matrix resin in the vicinity of the polishing surface has a higher elongation and viscosity, and the state of the polishing surface, etc. gradually changes while repeating the process of being stretched and recovered by the friction described above. It takes a long time until the contributing working surface becomes stable. As a result, when a matrix resin having high elongation and viscosity such as durometer hardness (type A) of 0 to 25 is used, the polishing rate at the initial stage of polishing is difficult to stabilize. On the other hand, the second resin (hereinafter referred to as “resin after bonding”) has the above bond between the molecules of the first resin (hereinafter referred to as “pre-bonding resin”). Increased binding power. As a result, the post-bonding resin is less brittle with reduced elongation and viscosity than the pre-bonded resin, and therefore is easily collapsed by friction with the object to be polished on the polished surface during polishing. That is, the matrix resin containing the post-bonding resin tends to cause permanent distortion in the vicinity of the polished surface, and as a result of the collapse and removal of the portion, the polished surface is smoothed at an early stage. If the polishing surface is smoothed, the surface shape of the polishing pad is unlikely to change, and as a result, the polishing rate at the initial stage of polishing is considered to stabilize early. In addition, smoothing shown here shows smoothing about resin parts other than the opening part which stores and hold | maintains a slurry, The slurry surface etc. are clogged by the opening part, and the whole grinding | polishing surface by the absence of an opening is shown. It is different from smoothing.
 また、結合後樹脂の分子間で上記結合を有することにより、化学成分に対する溶解性が低下する結果、樹脂シートの耐薬品性が向上する。 Also, by having the above bonds between the molecules of the resin after bonding, the chemical resistance of the resin sheet is improved as a result of a decrease in solubility in chemical components.
 結合前樹脂としては、本発明による作用効果をより有効かつ確実に奏する観点から、ポリウレタン樹脂が好ましい。結合前樹脂は1種を単独で又は2種以上を組み合わせて用いられる。 As the pre-bonding resin, a polyurethane resin is preferable from the viewpoint of more effectively and reliably achieving the effects of the present invention. The pre-bonding resins are used alone or in combination of two or more.
 ポリウレタン樹脂としては、例えば、ポリイソシアネート化合物とポリオール化合物、又は、ポリイソシアネート化合物とポリオール化合物とポリアミン化合物とを主成分として反応させたものを用いることができる。本発明による作用効果をより有効に奏する観点から、ポリウレタン樹脂は、ポリアミン化合物を含むポリウレタン樹脂(ポリウレタンポリウレア樹脂)であることが好ましい。ポリイソシアネート化合物としては、分子内に2つ以上のイソシアネート基を有していれば特に制限されるものではない。例えば、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、p-フェニレンジイソシアネート、ジベンジルジイソシアネート、ジフェニルエーテルジイソシアネート、m-テトラメチルキシリレンジイソシアネート、p-テトラメチルキシリレンジイソシアネート等の芳香族ジイソシアネート化合物、トリフェニルメタントリイソシアネート等の芳香族トリイソシアネート化合物、水添トリレンジイソシアネート、水添ジフェニルメタン-4,4’-ジイソシアネート、水添キシリレンジイソシアネート、シクロヘキシル-1,4-ジイソシアネート、イソホロンジイソシアネート等の脂環族ジイソシアネート化合物、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート(HDI)等の脂肪族ジイソシアネート化合物が挙げられる。これらの中では、本発明による作用効果をより有効かつ確実に奏する観点から、芳香族ジイソシアネート化合物が好ましく、芳香族ジイソシアネート化合物としてはMDIが好ましい。これらは1種を単独で又は2種以上を組み合わせて用いられる。さらに、これらのジイソシアネート化合物による3官能以上のポリイソシアヌレート型多価イソシアネート又はビウレット型多価イソシアネート等の各種の変性多価イソシアネート化合物を用いることもできる。 As the polyurethane resin, for example, a polyisocyanate compound and a polyol compound, or a product obtained by reacting a polyisocyanate compound, a polyol compound and a polyamine compound as main components can be used. The polyurethane resin is preferably a polyurethane resin (polyurethane polyurea resin) containing a polyamine compound from the viewpoint of more effectively achieving the effects of the present invention. The polyisocyanate compound is not particularly limited as long as it has two or more isocyanate groups in the molecule. For example, tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), xylylene diisocyanate, naphthalene-1,5-diisocyanate, p-phenylene diisocyanate, dibenzyl diisocyanate, diphenyl ether diisocyanate, m-tetramethylxylylene diisocyanate, p-tetra Aromatic diisocyanate compounds such as methylxylylene diisocyanate, aromatic triisocyanate compounds such as triphenylmethane triisocyanate, hydrogenated tolylene diisocyanate, hydrogenated diphenylmethane-4,4′-diisocyanate, hydrogenated xylylene diisocyanate, cyclohexyl-1 Alicyclic diisocyanate compounds such as 1,4-diisocyanate and isophorone diisocyanate, La diisocyanate, aliphatic diisocyanate compounds such as 1,6-hexamethylene diisocyanate (HDI) and the like. Among these, an aromatic diisocyanate compound is preferable from the viewpoint of more effectively and reliably achieving the effects of the present invention, and MDI is preferable as the aromatic diisocyanate compound. These are used singly or in combination of two or more. Furthermore, various modified polyisocyanate compounds such as polyisocyanurate type polyisocyanates having three or more functionalities based on these diisocyanate compounds or biuret type polyisocyanates can also be used.
 ポリイソシアネート化合物と反応させるポリオール化合物は、分子内に2つ以上の水酸基を有するものであり、例えば、低分子量ポリオール化合物及び高分子量ポリオール化合物が挙げられる。低分子量ポリオール化合物としては、例えば、ジオール化合物、トリオール化合物が挙げられ、より具体的には、エチレングリコール、ブチレングリコール、1,4-ブタンジオールが挙げられる。高分子量ポリオール化合物としては、例えば、ポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリテトラメチレングリコール(PTMG)等のポリエーテルポリオール化合物、エチレングリコールとアジピン酸との反応物やブチレングリコールとアジピン酸との反応物等のポリエステルポリオール化合物、ポリカーボネートポリオール化合物、ポリカプロラクトンポリオール化合物が挙げられる。これらの中では、本発明による作用効果をより有効かつ確実に奏する観点から、ポリエステルポリオール化合物が好ましい。ポリオール化合物は1種を単独で又は2種以上を組み合わせて用いられる。 The polyol compound to be reacted with the polyisocyanate compound has two or more hydroxyl groups in the molecule, and examples thereof include a low molecular weight polyol compound and a high molecular weight polyol compound. Examples of the low molecular weight polyol compound include a diol compound and a triol compound, and more specifically, ethylene glycol, butylene glycol, and 1,4-butanediol. Examples of the high molecular weight polyol compound include polyether polyol compounds such as polyethylene glycol (PEG), polypropylene glycol (PPG), and polytetramethylene glycol (PTMG), a reaction product of ethylene glycol and adipic acid, and butylene glycol and adipic acid. Polyester polyol compounds, polycarbonate polyol compounds, and polycaprolactone polyol compounds. Among these, a polyester polyol compound is preferred from the viewpoint of more effectively and reliably achieving the effects of the present invention. A polyol compound is used individually by 1 type or in combination of 2 or more types.
 ポリイソシアネート化合物と反応させるポリアミン化合物は、分子内に2つ以上のアミノ基を有するものであり、例えば、脂肪族ポリアミン化合物及び芳香族ポリアミン化合物が挙げられる。より具体的には、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン(MOCA)、MOCAと同様の構造を有するポリアミン化合物が挙げられる。これらの中では、本発明による作用効果をより有効かつ確実に奏する観点から、脂肪族ポリアミンが好ましく、脂肪族ポリアミンとしてはエチレンジアミンが好ましい。また、ポリアミン化合物が水酸基を有していてもよく、このような化合物として、例えば、2-ヒドロキシエチルエチレンジアミン、2-ヒドロキシエチルプロピレンジアミン、ジ-2-ヒドロキシエチルエチレンジアミン、ジ-2-ヒドロキシエチルプロピレンジアミン、2-ヒドロキシプロピルエチレンジアミン、ジ-2-ヒドロキシプロピルエチレンジアミンが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。 The polyamine compound to be reacted with the polyisocyanate compound has two or more amino groups in the molecule, and examples thereof include an aliphatic polyamine compound and an aromatic polyamine compound. More specifically, ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4′-diamine, 3,3′-dichloro-4,4′-diaminodiphenylmethane (MOCA), similar to MOCA Examples include polyamine compounds having a structure. Of these, aliphatic polyamines are preferred from the viewpoint of more effectively and reliably achieving the effects of the present invention, and ethylenediamine is preferred as the aliphatic polyamine. The polyamine compound may have a hydroxyl group. Examples of such a compound include 2-hydroxyethylethylenediamine, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, di-2-hydroxyethylpropylene. Examples thereof include diamine, 2-hydroxypropylethylenediamine, and di-2-hydroxypropylethylenediamine. These are used singly or in combination of two or more.
 結合後樹脂を得るのに用いられるブロックイソシアネート化合物は、イソシアネート化合物の1種以上と、活性水素を有する化合物であるブロック化剤の1種以上とを反応して得られるものである。このブロックイソネート化合物は、加熱によりブロック化剤が解離し、イソシアネート基を再生するため、活性水素原子を有するポリウレタン樹脂と反応し結合を形成する。イソシアネート化合物は、結合前樹脂に対して多くの架橋を形成する観点から、一分子当たりの平均のイソシアネート基数が2以上である多価イソシアネート化合物であると好ましい。 The blocked isocyanate compound used to obtain the resin after bonding is obtained by reacting one or more isocyanate compounds with one or more blocking agents that are compounds having active hydrogen. In this blocked isonate compound, the blocking agent is dissociated by heating to regenerate the isocyanate group, so that it reacts with the polyurethane resin having an active hydrogen atom to form a bond. The isocyanate compound is preferably a polyvalent isocyanate compound having an average number of isocyanate groups of 2 or more per molecule from the viewpoint of forming many crosslinks with the pre-bonding resin.
 ブロックイソシアネート化合物に用いられる多価イソシアネート化合物としては、結合後樹脂が結合前樹脂と比べて硬質化しすぎず低硬度を発現させる観点から、芳香族環を有しないもの、すなわち芳香族多価イソシアネート化合物以外の多価イソシアネート化合物が好ましく、脂肪族多価イソシアネート化合物、及び脂環族多価イソシアネート化合物が好ましく、脂肪族多価イソシアネート化合物がより好ましい。 As the polyvalent isocyanate compound used for the blocked isocyanate compound, the resin after bonding has no aromatic ring from the viewpoint of exhibiting low hardness without being too hard compared with the resin before bonding, that is, the aromatic polyvalent isocyanate compound. Polyisocyanate compounds other than those are preferred, aliphatic polyisocyanate compounds and alicyclic polyisocyanate compounds are preferred, and aliphatic polyisocyanate compounds are more preferred.
 多価イソシアネート化合物としては、樹脂シートの軟質性を確保する観点から、ジイソシアネート化合物が好ましい。そのようなジイソシアネート化合物としては、例えば、TDI、MDI、キシリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、p-フェニレンジイソシアネート、ジベンジルジイソシアネート、ジフェニルエーテルジイソシアネート、m-テトラメチルキシリレンジイソシアネート、p-テトラメチルキシリレンジイソシアネート等の芳香族ジイソシアネート化合物、トリフェニルメタントリイソシアネート等の芳香族トリイソシアネート化合物、水添トリレンジイソシアネート、水添ジフェニルメタン-4,4’-ジイソシアネート、水添キシリレンジイソシアネート、シクロヘキシル-1,4-ジイソシアネート、イソホロンジイソシアネート等の脂環族ジイソシアネート化合物、1,4-テトラメチレンジイソシアネート、HDI等の脂肪族ジイソシアネート化合物が挙げられる。これらの中では、本発明による作用効果をより有効かつ確実に奏する観点から、脂肪族ジイソシアネート化合物及び脂環族ジイソシアネート化合物が好ましく、脂肪族ジイソシアネート化合物がより好ましく、HDIが更に好ましい。これらは1種を単独で又は2種以上を組み合わせて用いられる。 As the polyvalent isocyanate compound, a diisocyanate compound is preferable from the viewpoint of ensuring the flexibility of the resin sheet. Examples of such diisocyanate compounds include TDI, MDI, xylylene diisocyanate, naphthalene-1,5-diisocyanate, p-phenylene diisocyanate, dibenzyl diisocyanate, diphenyl ether diisocyanate, m-tetramethylxylylene diisocyanate, p-tetramethyl. Aromatic diisocyanate compounds such as xylylene diisocyanate, aromatic triisocyanate compounds such as triphenylmethane triisocyanate, hydrogenated tolylene diisocyanate, hydrogenated diphenylmethane-4,4′-diisocyanate, hydrogenated xylylene diisocyanate, cyclohexyl-1, Alicyclic diisocyanate compounds such as 4-diisocyanate and isophorone diisocyanate, 1,4-tetramethylene diisocyanate Over DOO, aliphatic diisocyanate compounds such as HDI and the like. Among these, an aliphatic diisocyanate compound and an alicyclic diisocyanate compound are preferable, an aliphatic diisocyanate compound is more preferable, and HDI is still more preferable from the viewpoint of more effectively and reliably achieving the effects of the present invention. These are used singly or in combination of two or more.
 さらに、弾性を示す変性多価イソシアネート化合物による3官能以上のアダクト型ポリイソシアネート、イソシアヌレート型ポリイソシアネート又はビウレット型ポリイソシアネート等の各種の変性多価イソシアネート化合物を用いることもできる。これらの中では、本発明による作用効果をより有効かつ確実に奏する観点から、アダクト型ポリイソシアネート及びイソシアヌレート型ポリイソシアネートが好ましく、アダクト型ポリイソシアネートがより好ましい。また、同様の観点から、アダクト型ポリイソシアネートとしてはアダクト型HDIが好ましく、イソシアヌレート型ポリイソシアネートとしては、イソシアヌレート型HDIが好ましい。これらの変性多価イソシアネート化合物のイソシアネート基含有率(以下、「NCO%」と表記する。)が13%以下であると、ポリイソシアネート分子中のイソシアネート基間の鎖の炭素数が多く、イソシアネート基間の距離が比較的長くなるため、複数のイソシアネート基とポリウレタン樹脂の複数の活性水素原子とが結合した場合に結合間(架橋点間)距離が長くなる。これによって、結合前樹脂の柔軟さを維持しつつ、規則正しい架橋構造をなしていないため、塑性変形した樹脂が部分的にゴム的な回復特性を発現せず、研磨面において局所的に永久歪みが生じ得ると考えられる。その結果、研磨初期の研磨レートを速やかに安定化でき、研磨に寄与する作用面が増大し、研磨レートの向上及び高くなった研磨レートの維持が可能になると推測される。同様の観点から、NCO%の上限値は10%であるとより好ましく、8%であると更に好ましい。NCO%の下限値は、好ましくは3質量%、より好ましくは5質量%である。NCO%が上記下限値以上であることにより、架橋構造をより十分に形成することができる。なお、NCO%は下記式により示される。
 NCO%=(42×NCO基数)/イソシアネート化合物の分子量
Furthermore, various modified polyvalent isocyanate compounds such as tri- or higher functional adduct type polyisocyanate, isocyanurate type polyisocyanate or biuret type polyisocyanate by a modified polyvalent isocyanate compound exhibiting elasticity can also be used. Of these, adduct-type polyisocyanates and isocyanurate-type polyisocyanates are preferred, and adduct-type polyisocyanates are more preferred from the viewpoint of more effectively and reliably achieving the effects of the present invention. From the same viewpoint, adduct type HDI is preferable as the adduct type polyisocyanate, and isocyanurate type HDI is preferable as the isocyanurate type polyisocyanate. When the isocyanate group content of these modified polyvalent isocyanate compounds (hereinafter referred to as “NCO%”) is 13% or less, the number of carbon atoms in the chain between the isocyanate groups in the polyisocyanate molecule is large, and the isocyanate group Since the distance between them becomes relatively long, the distance between the bonds (between the crosslinking points) becomes long when the plurality of isocyanate groups and the plurality of active hydrogen atoms of the polyurethane resin are bonded. This maintains the flexibility of the pre-bonding resin and does not have a regular cross-linked structure, so the plastically deformed resin does not partially exhibit rubber-like recovery characteristics, and there is local permanent distortion on the polished surface. It is thought that it can occur. As a result, it is presumed that the polishing rate at the initial stage of polishing can be quickly stabilized, the working surface contributing to polishing is increased, and the polishing rate can be improved and the increased polishing rate can be maintained. From the same viewpoint, the upper limit value of NCO% is more preferably 10%, and further preferably 8%. The lower limit value of NCO% is preferably 3% by mass, more preferably 5% by mass. When NCO% is not less than the above lower limit, a crosslinked structure can be more sufficiently formed. NCO% is expressed by the following formula.
NCO% = (42 × NCO group number) / Molecular weight of isocyanate compound
 また、多価イソシアネート化合物として、ポリオール化合物にラクトンを開環付加重合反応させてラクトン変性体(ポリラクトンポリオールエステル)を形成し、これに上述の多価イソシアネート化合物を付加したラクトン変性多価イソシアネート化合物を用いてもよい。つまり、このラクトン変性多価イソシアネート化合物は、ポリオール化合物の水酸基と多価イソシアネート化合物のイソシアネート基との間に、ラクトンの開環重合体がエステル結合して介在したものに相当する。このようなラクトン変性多価イソシアネート化合物は、エステル結合による分子の屈曲性などに起因して、デュロメータ硬さ(タイプA)が0~25である軟質な樹脂シートであって、かつ、その樹脂シートが上記範囲のRskを満足しやすい観点から好ましい。同様の観点から、その変性多価イソシアネート化合物が変性アダクト体、つまり、アダクト型ポリイソシアネートにおけるポリオール化合物の水酸基と多価イソシアネート化合物のイソシアネート基との間に、ラクトンの開環重合体がエステル結合して介在したものであるとより好ましい。なお、ポリオールに対するラクトンの付加重合は、錫、鉛、マンガン等の有機化合物、金属キレート化物等を触媒として行うことができる。 Also, as a polyvalent isocyanate compound, a lactone is subjected to a ring-opening addition polymerization reaction with a polyol compound to form a lactone-modified product (polylactone polyol ester), and the above-mentioned polyvalent isocyanate compound is added to the lactone-modified polyvalent isocyanate compound. May be used. That is, the lactone-modified polyvalent isocyanate compound corresponds to a compound in which a ring-opening polymer of lactone is interposed by an ester bond between the hydroxyl group of the polyol compound and the isocyanate group of the polyvalent isocyanate compound. Such a lactone-modified polyvalent isocyanate compound is a soft resin sheet having a durometer hardness (type A) of 0 to 25 due to molecular flexibility due to an ester bond, and the resin sheet. Is preferable from the viewpoint of easily satisfying Rsk in the above range. From the same point of view, the modified polyisocyanate compound is a modified adduct, that is, the lactone ring-opening polymer is ester-bonded between the hydroxyl group of the polyol compound and the isocyanate group of the polyvalent isocyanate compound in the adduct-type polyisocyanate. It is more preferable that they are interposed. The addition polymerization of lactone to polyol can be carried out using an organic compound such as tin, lead or manganese, a metal chelate or the like as a catalyst.
 ラクトンとしては、例えば、γ-ラクトン、δ-ラクトン、ε-ラクトンが挙げられ、それらの中でも、ε-カプロラクトンが好ましい。また、ポリオールとしては、アダクト体の形成に通常使用されている比較的低分子量の多価アルコールを使用することができ、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール等のジオール、グリセリン、トリメチロールプロパン、トリメチロールブタン等のトリオールが挙げられる。 Examples of the lactone include γ-lactone, δ-lactone, and ε-lactone, and among them, ε-caprolactone is preferable. As the polyol, a polyhydric alcohol having a relatively low molecular weight which is usually used for forming an adduct can be used. For example, ethylene glycol, propylene glycol, butylene glycol, 1,4-butanediol, Diols such as 6-hexanediol, and triols such as glycerin, trimethylolpropane and trimethylolbutane.
 多価イソシアネート化合物のイソシアネート基をブロックするブロック化剤としては、一般に公知の活性水素原子を有する化合物であれば特に限定されない。ブロック化剤としては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノール、t-ブタノール、2-エチルヘキサノール等のアルコール、メチルエチルケトオキシム等のケトオキシム、フェノール、ε-カプロラクタム、アセト酢酸エチル、マロン酸ジエチルが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。ブロック化剤の解離性を考慮すれば、ブロック化剤としてメチルエチルケトオキシム及びε-カプロラクタムが好ましく、メチルエチルケトオキシムがより好ましい。 The blocking agent for blocking the isocyanate group of the polyvalent isocyanate compound is not particularly limited as long as it is a generally known compound having an active hydrogen atom. Examples of the blocking agent include alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, isobutanol, t-butanol and 2-ethylhexanol, ketoximes such as methyl ethyl ketoxime, phenol, and ε-caprolactam. , Ethyl acetoacetate and diethyl malonate. These are used singly or in combination of two or more. Considering the dissociation property of the blocking agent, methyl ethyl ketoxime and ε-caprolactam are preferable as the blocking agent, and methyl ethyl ketoxime is more preferable.
 結合後樹脂は、研磨初期の研磨レートを速やかに安定化する観点、及び/又は、研磨スラリーに含まれる化学成分に対する耐薬品性を更に高める観点から、結合前樹脂の活性水素原子と、ブロックイソシアネート化合物由来のイソシアネート基との反応により生じる結合を、結合前樹脂を基準(100質量部)として、ブロックイソシアネート化合物換算で、2.0質量部~15.0質量部有すると好ましく、3.0質量部~10.0質量部有するとより好ましく、5.0質量部~7.5質量部有すると更に好ましい。ブロックイソシアネート化合物換算で2.0質量部以上とすることにより、耐薬品性により優れたものとなる。ブロックイソシアネート化合物換算で15.0質量部以下とすることにより、結合しないイソシアネート化合物が少なくなり、樹脂シートが過剰に脆くなることを更に抑制することができるため、研磨レートの安定性が向上する。 From the viewpoint of promptly stabilizing the polishing rate at the initial stage of polishing and / or further improving chemical resistance against chemical components contained in the polishing slurry, the post-bonding resin is composed of an active hydrogen atom and a blocked isocyanate. The bond produced by the reaction with the isocyanate group derived from the compound is preferably 2.0 parts by mass to 15.0 parts by mass in terms of the blocked isocyanate compound, based on the resin before bonding (100 parts by mass), preferably 3.0 parts by mass. Part to 10.0 parts by weight, more preferably 5.0 parts to 7.5 parts by weight. By setting it as 2.0 mass parts or more in conversion of a block isocyanate compound, it will become more excellent in chemical resistance. By setting it as 15.0 mass parts or less in conversion of a block isocyanate compound, since the isocyanate compound which does not couple | bonds decreases and it can further suppress that a resin sheet becomes too brittle, stability of a polishing rate improves.
 マトリックス樹脂は、上記結合後樹脂の他、例えば、ポリウレタン樹脂、ポリサルホン樹脂及びポリイミド樹脂に代表される、公知の研磨パッドにおける樹脂シートに含まれる樹脂を含んでもよい。これらは1種を単独で又は2種以上を組み合わせて用いられる。ポリウレタン樹脂としては、上述のものが例示される。 The matrix resin may include a resin contained in a resin sheet in a known polishing pad, represented by, for example, a polyurethane resin, a polysulfone resin, and a polyimide resin, in addition to the above-described post-bonding resin. These are used singly or in combination of two or more. Examples of the polyurethane resin include those described above.
 ポリサルホン樹脂は、常法により合成してもよく、市販品を入手してもよい。市販品としては、例えば、ユーデル(ソルベイアドバンストポリマーズ(株)製商品名)が挙げられる。また、ポリイミド樹脂は、常法により合成してもよく、市販品を入手してもよい。市販品としては、例えば、オーラム(三井化学(株)製商品名)が挙げられる。 Polysulfone resin may be synthesized by a conventional method, or a commercially available product may be obtained. Examples of commercially available products include Udel (trade name manufactured by Solvay Advanced Polymers Co., Ltd.). Moreover, a polyimide resin may be synthesize | combined by a conventional method and a commercial item may be obtained. Examples of commercially available products include Aurum (trade name, manufactured by Mitsui Chemicals, Inc.).
 樹脂シートは、マトリックス樹脂以外に、研磨パッド用の樹脂シートに通常用いられる材料、例えば、カーボンブラックなどの顔料、親水性添加剤及び疎水性添加剤の1種又は2種以上を含んでもよい。これらの任意に用いられる材料は、樹脂シート中の気泡の大きさや個数を制御するのに用いられてもよい。さらには、樹脂シートの製造過程において用いられた溶媒などの各種の材料が、本発明の課題解決を阻害しない範囲で樹脂シート内に残存していてもよい。 The resin sheet may contain, in addition to the matrix resin, one or more of materials usually used for a resin sheet for a polishing pad, for example, a pigment such as carbon black, a hydrophilic additive and a hydrophobic additive. These arbitrarily used materials may be used to control the size and number of bubbles in the resin sheet. Furthermore, various materials such as a solvent used in the manufacturing process of the resin sheet may remain in the resin sheet as long as the problem of the present invention is not impaired.
 上述の本実施形態による作用効果をより有効且つ確実に奏し、かつ軟質な樹脂シートとする観点から、樹脂シートに含まれる樹脂の25℃における100%モジュラスは、3.0~10.0MPaであると好ましく、4.0MPa以上であるとより好ましく、8.0MPa以下であるとより好ましい。100%モジュラスは、樹脂シートと同じ材料を用いた無発泡の樹脂シートを100%伸ばしたとき、すなわち元の長さの2倍に伸ばしたとき、に掛かる荷重を断面積で割った値である。 The 100% modulus at 25 ° C. of the resin contained in the resin sheet is 3.0 to 10.0 MPa from the viewpoint of more effectively and surely achieving the operational effects of the above-described embodiment and making a soft resin sheet. Preferably, it is 4.0 MPa or more, more preferably 8.0 MPa or less. The 100% modulus is a value obtained by dividing the load applied when the non-foamed resin sheet using the same material as the resin sheet is extended by 100%, that is, when the resin sheet is extended to twice the original length, by the cross-sectional area. .
 本実施形態の研磨パッドは上記樹脂シートを備える他は、従来の研磨パッドと同様の構成を備えていてもよい。例えば、本実施形態の研磨パッドは、上記樹脂シートと、その樹脂シートに接合して積層された両面テープとを備えていてもよい。両面テープは、研磨機に研磨パッドを装着するためのものであり、例えば、ポリエチレンテレフタレート製フィルム等の可撓性フィルムの基材を有しており、基材の両面にアクリル系粘着剤等の粘着剤層がそれぞれ形成されている。両面テープは、基材の一面側の粘着剤層で樹脂シートと貼り合わされており、他面側の粘着剤層が剥離紙で覆われている。両面テープの基材は、研磨パッドの基材を兼ねるものである。 The polishing pad of the present embodiment may have the same configuration as that of a conventional polishing pad, except that the polishing pad includes the resin sheet. For example, the polishing pad of this embodiment may include the resin sheet and a double-sided tape that is bonded and laminated to the resin sheet. The double-sided tape is for attaching a polishing pad to a polishing machine. For example, the double-sided tape has a flexible film substrate such as a polyethylene terephthalate film, and an acrylic adhesive or the like is provided on both surfaces of the substrate. Each adhesive layer is formed. The double-sided tape is bonded to a resin sheet with an adhesive layer on one side of the substrate, and the adhesive layer on the other side is covered with release paper. The base material of the double-sided tape also serves as the base material of the polishing pad.
 次に、上述の本実施形態の研磨パッドを製造する方法の一例について説明する。その研磨パッドの製造方法は、いわゆる湿式成膜法を採用したものであり、結合前樹脂とブロックイソシアネート化合物と溶媒とを含む樹脂溶液中の結合前樹脂を凝固再生する工程(凝固再生工程)と、結合前樹脂が有する活性水素原子とブロックイソシアネート化合物由来のイソシアネート基とを反応させて結合後樹脂を得る工程(結合工程)とを有する。この研磨パッドの製造方法は、さらに、上記樹脂溶液を調製する樹脂溶液調製工程、凝固再生工程の前に樹脂溶液を成膜用基材に塗布する塗布工程、凝固再生工程を経て得られた樹脂から溶媒を除去する溶媒除去工程、樹脂シートの研磨面を研削する研削工程、樹脂シートの研磨面に溝を形成する溝形成工程、及び樹脂シートに両面テープを貼り合わせる貼り合わせ工程のうち少なくとも1つの工程を有することが好ましい。 Next, an example of a method for manufacturing the above-described polishing pad of this embodiment will be described. The manufacturing method of the polishing pad employs a so-called wet film-forming method, a step of coagulating and regenerating the pre-bonding resin in the resin solution containing the pre-bonding resin, the blocked isocyanate compound and the solvent (coagulation regenerating step); And a step (bonding step) of obtaining a resin after bonding by reacting an active hydrogen atom of the pre-bonding resin with an isocyanate group derived from a blocked isocyanate compound. The polishing pad manufacturing method further includes a resin solution preparation step for preparing the resin solution, a coating step for applying the resin solution to the film-forming substrate before the coagulation regeneration step, and a resin obtained through the coagulation regeneration step. At least one of a solvent removal step of removing the solvent from the substrate, a grinding step of grinding the polished surface of the resin sheet, a groove forming step of forming a groove on the polished surface of the resin sheet, and a bonding step of bonding a double-sided tape to the resin sheet It is preferable to have two steps.
 樹脂溶液調製工程では、結合前樹脂とブロックイソシアネート化合物と溶媒とを含む樹脂溶液を調製する。調製方法は特に限定されず、例えば、樹脂溶液に含まれるべき各原材料を混合して十分に撹拌することによって、樹脂溶液を得ることができる。結合前樹脂及びブロックイソシアネート化合物は、上述のものであればよい。また、樹脂溶液におけるブロックイソシアネート化合物の含有割合は、結合後樹脂が、結合前樹脂の活性水素原子と、ブロックイソシアネート化合物由来のイソシアネート基との反応により生じる結合を、上述の割合で有するような割合であると好ましい。 In the resin solution preparation step, a resin solution containing a pre-bonding resin, a blocked isocyanate compound, and a solvent is prepared. A preparation method is not specifically limited, For example, a resin solution can be obtained by mixing each raw material which should be contained in a resin solution, and fully stirring. The pre-bonding resin and the blocked isocyanate compound may be those described above. Further, the content ratio of the blocked isocyanate compound in the resin solution is such that the post-bonding resin has a bond generated by a reaction between the active hydrogen atom of the pre-bonding resin and the isocyanate group derived from the blocked isocyanate compound in the above-described ratio. Is preferable.
 溶媒としては、例えば、DMF、N,N-ジメチルアセトアミド(DMAc)、テトラヒドロフラン(THF)、ジメチルスルホキシド(DMSO)、及びアセトンが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。 Examples of the solvent include DMF, N, N-dimethylacetamide (DMAc), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), and acetone. These are used singly or in combination of two or more.
 樹脂シートの研磨能力を確保し、樹脂シートが有する気泡中に研磨スラリーをより十分に保持する観点から、樹脂溶液について、B型回転粘度計を用いて25℃で測定した粘度が3~30Pa・sの範囲であると好ましく、5~20Pa・sの範囲であるとより好ましい。そのような粘度の数値範囲にある樹脂溶液を得る観点から、樹脂溶液中の結合前樹脂の含有割合は、10~30質量%の範囲であると好ましく、15~25質量%の範囲であるとより好ましい。樹脂溶液の粘性は、用いるマトリックス樹脂の種類及び分子量にも依存するため、これらを総合的に考慮し、樹脂溶液中の結合前樹脂の濃度を設定すればよい。 From the viewpoint of ensuring the polishing ability of the resin sheet and more sufficiently holding the polishing slurry in the bubbles of the resin sheet, the resin solution has a viscosity measured at 25 ° C. using a B-type rotational viscometer of 3 to 30 Pa · It is preferably in the range of s, more preferably in the range of 5 to 20 Pa · s. From the viewpoint of obtaining a resin solution having such a numerical value range of viscosity, the content of the pre-bonding resin in the resin solution is preferably in the range of 10 to 30% by mass, and in the range of 15 to 25% by mass. More preferred. Since the viscosity of the resin solution also depends on the type and molecular weight of the matrix resin to be used, the concentration of the pre-bonding resin in the resin solution may be set by comprehensively considering these.
 樹脂溶液は、上記の各原材料以外に、任意に添加剤を含んでもよい。任意の添加剤としては、例えば、カーボンブラック等の顔料、発泡を促進させる親水性活性剤、樹脂の凝固再生を安定化させる疎水性活性剤が挙げられる。 The resin solution may optionally contain additives in addition to the above raw materials. Examples of optional additives include pigments such as carbon black, hydrophilic activators that promote foaming, and hydrophobic activators that stabilize resin coagulation regeneration.
 塗布工程では、樹脂溶液を成膜用基材に塗布する。塗布方法は、例えば、常温下でナイフコータ等の塗布装置を用いて、帯状の成膜用基材にシート状に略均一に塗布すればよい。このとき、ナイフコータ等と成膜用基材との間隙(クリアランス)を調整することで、樹脂溶液の塗布厚さ(塗布量)を調整することができる。成膜用基材の材質としては、例えば、PETフィルムなどの樹脂製フィルム、布帛及び不織布が挙げられる。これらの中では、樹脂溶液を浸透し難いPETフィルムなどの樹脂製フィルムが好ましい。 In the coating process, the resin solution is coated on the film forming substrate. As a coating method, for example, a coating device such as a knife coater may be used at room temperature to apply the sheet-like film-forming substrate substantially uniformly in a sheet shape. At this time, the application thickness (application amount) of the resin solution can be adjusted by adjusting the gap (clearance) between the knife coater or the like and the film forming substrate. Examples of the material for the film forming substrate include a resin film such as a PET film, a fabric, and a nonwoven fabric. Among these, a resin film such as a PET film that hardly penetrates the resin solution is preferable.
 凝固再生工程では、成膜用基材に塗布された樹脂溶液の塗膜を、結合前樹脂等の樹脂溶液に含まれる樹脂に対する貧溶媒(例えばポリウレタン樹脂に対しては水)を主成分とする凝固液中に連続的に案内する。凝固液には、樹脂溶液に含まれる樹脂の再生速度を調整するために、樹脂溶液中の溶媒以外の極性溶媒等の有機溶媒を添加してもよい。また、凝固液の温度は、樹脂溶液中の樹脂を凝固できる温度であれば特に限定されず、その樹脂がポリウレタン樹脂である場合、例えば、5~80℃であってもよいが、好ましくは15~20℃である。凝固液中では、まず、樹脂溶液の塗膜と凝固液との界面に皮膜が形成され、皮膜の直近の樹脂中にスキン層と呼ばれる無数の微細な気泡を有する層が形成される。その後、樹脂溶液に含まれる溶媒の凝固液中への拡散と、樹脂中への貧溶媒の浸入との協調現象により、好ましくは連続気泡構造を有する樹脂の再生が進行し、発砲樹脂領域と呼ばれる領域が形成される。このとき、成膜用基材が凝固液を浸透し難いもの(例えばPET製フィルム)であると、樹脂溶液中の溶媒と貧溶媒との置換がスキン層側で優先的に生じ、発泡樹脂領域側にスキン層側よりも大きな気泡が形成される傾向にある。このとき、ブロックイソシアネート化合物は、再生した樹脂中に未反応のまま混在している。こうして、成膜用基材上に、シート状の樹脂(以下、「成膜樹脂」ともいう。)が形成される。 In the coagulation regeneration process, the coating film of the resin solution applied to the film-forming substrate is mainly composed of a poor solvent (for example, water for polyurethane resin) with respect to the resin contained in the resin solution such as the resin before bonding. Guide continuously into the coagulation liquid. In order to adjust the regeneration speed of the resin contained in the resin solution, an organic solvent such as a polar solvent other than the solvent in the resin solution may be added to the coagulation liquid. The temperature of the coagulation liquid is not particularly limited as long as the resin in the resin solution can be coagulated. When the resin is a polyurethane resin, it may be, for example, 5 to 80 ° C., but preferably 15 ~ 20 ° C. In the coagulating liquid, first, a film is formed at the interface between the coating film of the resin solution and the coagulating liquid, and a layer having innumerable fine bubbles called a skin layer is formed in the resin immediately adjacent to the film. Thereafter, due to the cooperative phenomenon of the diffusion of the solvent contained in the resin solution into the coagulation liquid and the penetration of the poor solvent into the resin, the regeneration of the resin having an open cell structure preferably proceeds, which is called a foamed resin region A region is formed. At this time, if the substrate for film formation is difficult to permeate the coagulation liquid (for example, a PET film), substitution of the solvent in the resin solution with the poor solvent occurs preferentially on the skin layer side, and the foamed resin region Larger bubbles tend to be formed on the side than on the skin layer side. At this time, the blocked isocyanate compound is mixed unreacted in the regenerated resin. Thus, a sheet-like resin (hereinafter also referred to as “film-forming resin”) is formed on the film-forming substrate.
 次に、溶媒除去工程では、凝固再生工程を経て得られた成膜樹脂中に残存する溶媒を除去する。溶媒の除去には、従来知られている水洗処理を用いることができる。 Next, in the solvent removal step, the solvent remaining in the film-forming resin obtained through the coagulation regeneration step is removed. For removing the solvent, a conventionally known water washing treatment can be used.
 次いで、結合工程では、溶媒除去後の成膜樹脂中の結合前樹脂が有する活性水素原子とブロックイソシアネート化合物由来のイソシアネート基とを反応させて結合後樹脂を得る。この際、成膜樹脂に、好ましくは145~180℃の温度範囲で、より好ましくは150~165℃の温度範囲で、好ましくは15~20分間の熱処理を施す。熱処理の際は、例えば、成膜樹脂を加熱雰囲気下に連続的に通過させる。加熱により、成膜樹脂中に含まれているブロックイソシアネート化合物からブロック化剤が解離して、反応性を有するイソシアネート基が再生する。このイソシアネート基が、結合前樹脂の活性水素原子、例えば、結合前樹脂がポリウレタン樹脂である場合はウレタン結合やウレア結合を構成する活性水素原子と反応して結合することで結合後樹脂が得られる。また、この加熱に伴い、樹脂は乾燥する。こうして得られた結合後樹脂を含む樹脂シートは、適当な長さに切断し、平置きしてもよい。 Next, in the bonding step, the post-bonding resin is obtained by reacting the active hydrogen atom of the pre-bonding resin in the film-forming resin after removal of the solvent with the isocyanate group derived from the blocked isocyanate compound. At this time, the film-forming resin is preferably subjected to a heat treatment in a temperature range of 145 to 180 ° C., more preferably in a temperature range of 150 to 165 ° C., and preferably for 15 to 20 minutes. In the heat treatment, for example, the film-forming resin is continuously passed through a heated atmosphere. By heating, the blocking agent is dissociated from the blocked isocyanate compound contained in the film-forming resin, and a reactive isocyanate group is regenerated. This isocyanate group reacts with an active hydrogen atom of a resin before bonding, for example, when the resin before bonding is a polyurethane resin, and reacts with an active hydrogen atom constituting a urethane bond or a urea bond to obtain a resin after bonding. . Further, the resin dries with this heating. The resin sheet containing the post-bonding resin thus obtained may be cut to an appropriate length and laid flat.
 研削工程では、樹脂シートのスキン層側にバフ処理によって樹脂シートの厚みを均一化させる研削処理を施す。すなわち、圧接治具の略平坦な表面を樹脂シートのスキン層と反対側の面に圧接し、スキン層側にバフ処理を施す。これにより、一部の気泡が研磨面で開孔し、樹脂シートの厚みが均一化される。続いて、溝形成工程では、樹脂シートのスキン層側の表面(研削処理が施された面)に、エンボス加工又は切削加工を施して溝を形成する。 In the grinding process, a grinding process is performed on the skin layer side of the resin sheet to make the thickness of the resin sheet uniform by buffing. That is, the substantially flat surface of the pressure welding jig is pressed against the surface of the resin sheet opposite to the skin layer, and buffing is performed on the skin layer side. Thereby, a part of air bubbles are opened in the polishing surface, and the thickness of the resin sheet is made uniform. Subsequently, in the groove forming step, the groove is formed by embossing or cutting the surface of the resin sheet on the skin layer side (the surface subjected to the grinding process).
 貼り合わせ工程では、樹脂シートに両面テープを貼り合わせて研磨シートを得る。このとき、樹脂シートの発泡樹脂領域側の面と両面テープの一側の粘着剤層とを貼り合わせる。粘着剤層の粘着剤は、従来知られているものであってもよく、感圧型であっても感熱型であってもよい。 In the bonding process, a double-sided tape is bonded to the resin sheet to obtain an abrasive sheet. At this time, the surface of the resin sheet on the foamed resin region side and the adhesive layer on one side of the double-sided tape are bonded together. The pressure-sensitive adhesive of the pressure-sensitive adhesive layer may be a conventionally known one, and may be a pressure-sensitive type or a heat-sensitive type.
 本実施形態の研磨パッドを用いた研磨方法は、得られた研磨パッドを用いて被研磨物を研磨する工程を有する。その具体例の一つを以下に説明する。まず、片面研磨機の保持定盤に被研磨物を保持させる。次いで、保持定盤と対向するように配置された研磨定盤に研磨パッドを装着する。研磨定盤に研磨パッドを装着する際、研磨パッドが剥離紙を備えている場合は剥離紙を取り除いて、露出した両面テープを研磨定盤に接触させ押圧する。なお、研磨パッドが両面テープを備えていない場合は、粘着剤又は接着剤を研磨パッドに塗布又は貼り付けてから研磨定盤に装着することもできる。そして、被研磨物と研磨パッドとの間に、砥粒(研磨粒子;例えば、SiO、CeO)及び過酸化水素に代表される酸化剤などの化学成分を含む研磨スラリーを循環供給すると共に、被研磨物を研磨パッドの方に所定の研磨圧にて押圧しながら研磨定盤ないし保持定盤を回転させることで、被研磨物をCMPにより研磨する。 The polishing method using the polishing pad of the present embodiment includes a step of polishing an object to be polished using the obtained polishing pad. One specific example will be described below. First, an object to be polished is held on a holding surface plate of a single-side polishing machine. Next, the polishing pad is mounted on the polishing surface plate disposed so as to face the holding surface plate. When the polishing pad is mounted on the polishing surface plate, if the polishing pad includes release paper, the release paper is removed, and the exposed double-sided tape is brought into contact with the polishing surface plate and pressed. In addition, when the polishing pad is not provided with a double-sided tape, it is also possible to attach or apply an adhesive or an adhesive to the polishing pad and then attach it to the polishing surface plate. A polishing slurry containing chemical components such as abrasives (polishing particles; for example, SiO 2 , CeO 2 ) and an oxidant represented by hydrogen peroxide is circulated and supplied between the object to be polished and the polishing pad. The object to be polished is polished by CMP by rotating the polishing surface plate or holding surface plate while pressing the object to be polished toward the polishing pad with a predetermined polishing pressure.
 本実施形態の研磨パッドは、磁気ディスク基板、半導体デバイス、ベアシリコン及び液晶ディスプレイ用ガラス基板の仕上げ研磨に特に好適に用いられる。ただし、本実施形態の研磨パッドの用途はそれらに限定されない。 The polishing pad of this embodiment is particularly suitably used for finish polishing of magnetic disk substrates, semiconductor devices, bare silicon, and glass substrates for liquid crystal displays. However, the use of the polishing pad of this embodiment is not limited to them.
 以上、本発明を実施するための形態について説明したが、本発明は上記本実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。 As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said this embodiment. The present invention can be variously modified without departing from the gist thereof.
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(実施例1)
 まず、ポリウレタン樹脂として、25℃における100%モジュラスが6.0MPaであるポリエステルポリオール化合物-MDI-エチレンジアミン系のポリウレタン樹脂(ポリウレタンポリウレア樹脂)を準備した。また、ブロックイソシアネート化合物として、HDIアダクト体を、メチルエチルケトオキシムでブロック化したブロックイソシアネート化合物(固形分:80%、NCO%:約6.0%)を準備した。ポリウレタン樹脂30質量部とDMF70質量部とからなる溶液に、ブロックイソシアネート化合物溶液を2.0質量部(ポリウレタン樹脂100質量部に対して5.3質量部)の割合となるように混合して、そこに更にDMF31.8質量部を添加し混合撹拌することにより、樹脂溶液を得た。その25℃での粘度をB型回転粘度計(東機産業株式会社製、商品名「TVB-10型」)を用いて測定したところ、11.0Pa・sであった。
Example 1
First, as a polyurethane resin, a polyester polyol compound-MDI-ethylenediamine-based polyurethane resin (polyurethane polyurea resin) having a 100% modulus at 25 ° C. of 6.0 MPa was prepared. Also, a blocked isocyanate compound (solid content: 80%, NCO%: about 6.0%) prepared by blocking an HDI adduct with methyl ethyl ketoxime was prepared as a blocked isocyanate compound. A block isocyanate compound solution is mixed with a solution composed of 30 parts by mass of polyurethane resin and 70 parts by mass of DMF so as to have a ratio of 2.0 parts by mass (5.3 parts by mass with respect to 100 parts by mass of polyurethane resin). Further, 31.8 parts by mass of DMF was added thereto and mixed and stirred to obtain a resin solution. The viscosity at 25 ° C. was measured with a B-type rotational viscometer (trade name “TVB-10 type” manufactured by Toki Sangyo Co., Ltd.) and found to be 11.0 Pa · s.
 次に、成膜用基材として、帯状のPETフィルムを準備した。その成膜用基材の塗布面に、上記樹脂溶液を、ナイフコータを用いて塗布して塗膜を得た。次いで、得られた塗膜を、凝固液である水からなる室温の凝固浴に浸漬し、樹脂を凝固再生して成膜樹脂を得た。成膜樹脂を凝固浴から取り出し、成膜用基材から成膜樹脂を剥離した後、水からなる室温の洗浄液(脱溶媒浴)に浸漬し、DMFを除去した。 Next, a strip-like PET film was prepared as a film forming substrate. The resin solution was applied onto the coating surface of the film-forming substrate using a knife coater to obtain a coating film. Next, the obtained coating film was immersed in a room temperature coagulation bath made of water as a coagulation liquid, and the resin was coagulated and regenerated to obtain a film forming resin. The film-forming resin was taken out from the coagulation bath, peeled off from the film-forming substrate, and then immersed in a room temperature cleaning solution (desolvent bath) made of water to remove DMF.
 その後、結合工程において、加熱装置(株式会社市金工業社製、型番「VIC-0326-1680」)を用いて、120℃で水分を乾燥後、乾燥したフィルムを150℃で加熱架橋(結合)して樹脂シートを得た。次いで、結合工程を経た樹脂シートのスキン層側の表面にバフ処理を施し、厚さ0.80mm、デュロメータ硬さ(タイプA)が19の樹脂シートを得た。樹脂シートのバフ処理されていない面側に基材を貼りつけて、エンボス加工後、片面に剥離紙を備えた両面テープに貼り付けて研磨シートを得た。 Then, in the bonding step, using a heating device (manufactured by Ichikin Kogyo Co., Ltd., model number “VIC-0326-1680”), after drying moisture at 120 ° C., the dried film is heated and crosslinked at 150 ° C. (bonding). Thus, a resin sheet was obtained. Next, the surface of the resin layer after the bonding step was buffed to obtain a resin sheet having a thickness of 0.80 mm and a durometer hardness (type A) of 19. A base material was affixed to the non-buffed side of the resin sheet, and after embossing, it was affixed to a double-sided tape provided with release paper on one side to obtain an abrasive sheet.
〔表面性状の測定方法〕
 下記の条件により「所定の研磨試験」である研磨試験を行った。
・研磨機:株式会社荏原製作所製、型番「F-REX300」
・研磨ヘッド:株式会社荏原製作所社製、型番「GII」
・研磨スラリー:Cabot社製、型番「SS-25」、20倍希釈
・被研磨物:テトラエチルオルトシリケート(TEOS)膜付き300mmφのシリコンウエハ
・研磨パッド径:740mmφ
・パッド・ブレークイン条件:100N×10分、ダイヤモンドドレッサー#100(ペレットタイプ)回転数20rpm、定盤回転数80rpm、超純水供給量500mL/分・研磨条件:定盤回転数70rpm、研磨ヘッド回転数71rpm、研磨スラリー流量200mL/分、研磨時間60分間(10分間×6枚のウエハ)、研磨圧2.5psi(1.7×10Pa)
[Method for measuring surface properties]
A polishing test which is a “predetermined polishing test” was performed under the following conditions.
-Polishing machine: Model number "F-REX300" manufactured by Ebara Manufacturing Co., Ltd.
Polishing head: manufactured by Ebara Manufacturing Co., Ltd., model number “GII”
・ Polishing slurry: manufactured by Cabot, model number “SS-25”, diluted 20 times ・ Substance to be polished: 300 mmφ silicon wafer with tetraethylorthosilicate (TEOS) film ・ Polishing pad diameter: 740 mmφ
・ Pad break-in conditions: 100 N × 10 minutes, diamond dresser # 100 (pellet type) rotation speed 20 rpm, surface plate rotation speed 80 rpm, ultrapure water supply amount 500 mL / min ・ Polishing conditions: surface plate rotation speed 70 rpm, polishing head rotation 71 rpm, polishing slurry flow rate 200 mL / min, polishing time 60 minutes (10 minutes × 6 wafers), polishing pressure 2.5 psi (1.7 × 10 4 Pa)
 上述の「所定の研磨試験」を行った後の研磨パッドにおける樹脂シートを5mm×5mmの矩形に切断して得たサンプルを、キーエンス製の3Dレーザー顕微鏡(型番「VK8700」)のサンプルホルダーに皺が発生しないように設置した。その3Dレーザー顕微鏡により、サンプルを倍率200倍にて観測した。測定範囲は1.0mm×1.4mm中の開孔していない75μm×75μmの範囲とし、測定条件を「フィルター;オフ」に設定することによって、測定ポイント毎のRsk、高さ分布変動係数、Raの値を得た。測定ポイントは無作為に選んだ20ポイントとし、それらの相加平均をサンプルのRsk、高さ分布変動係数、Raとした。なお、開孔していない面積が75μm×75μmよりも小さい場合、測定範囲を50μm×50μmの範囲としてもよい。結果を表1に示す。 A sample obtained by cutting the resin sheet on the polishing pad after performing the above-mentioned “predetermined polishing test” into a 5 mm × 5 mm rectangle is placed on a sample holder of a 3D laser microscope (model number “VK8700”) manufactured by Keyence. It was installed so as not to occur. The sample was observed at a magnification of 200 times with the 3D laser microscope. The measurement range is set to a range of 75 μm × 75 μm with no holes in 1.0 mm × 1.4 mm, and by setting the measurement condition to “filter; off”, Rsk, height distribution variation coefficient for each measurement point, Ra values were obtained. The measurement points were randomly selected 20 points, and the arithmetic mean of them was Rsk, height distribution variation coefficient, and Ra of the sample. In addition, when the area which is not opened is smaller than 75 micrometers x 75 micrometers, it is good also considering a measurement range as a range of 50 micrometers x 50 micrometers. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
(実施例2)
 ポリウレタン樹脂として、25℃における100%モジュラスが3.0MPaであるポリエステルポリオール化合物-MDI-エチレンジアミン系のポリウレタン樹脂(ポリウレタンポリウレア樹脂)を用いた他は、実施例1と同様にして研磨パッドを作製し、表面性状を測定した。結果を表1に示す。実施例1と同様にして、樹脂溶液の粘度を測定したところ、12.4Pa・sであった。また、樹脂シートのデュロメータ硬さ(タイプA)は0(硬さ(タイプC)で0.3)であった。
(Example 2)
A polishing pad was prepared in the same manner as in Example 1 except that a polyester polyol compound-MDI-ethylenediamine-based polyurethane resin (polyurethane polyurea resin) having a 100% modulus at 25 ° C. of 3.0 MPa was used as the polyurethane resin. The surface properties were measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 12.4 Pa · s. The durometer hardness (type A) of the resin sheet was 0 (0.3 in hardness (type C)).
(実施例3)
 ポリウレタン樹脂として、25℃における100%モジュラスが9.0MPaであるポリエステルポリオール化合物-MDI-エチレンジアミン系のポリウレタン樹脂(ポリウレタンポリウレア樹脂)を用いた他は、実施例1と同様にして研磨パッドを作製し、表面性状を測定した。結果を表1に示す。実施例1と同様にして、樹脂溶液の粘度を測定したところ、10.2Pa・sであった。また、樹脂シートのデュロメータ硬さ(タイプA)は22であった。
Example 3
A polishing pad was prepared in the same manner as in Example 1 except that a polyester polyol compound-MDI-ethylenediamine-based polyurethane resin (polyurethane polyurea resin) having a 100% modulus of 9.0 MPa at 25 ° C. was used as the polyurethane resin. The surface properties were measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 10.2 Pa · s. Further, the durometer hardness (type A) of the resin sheet was 22.
(実施例4)
 ブロックイソシアネート化合物を5.0質量部(ポリウレタン樹脂100質量部に対して13.3質量部)の割合となるように混合した他は、実施例1と同様にして研磨パッドを作製し、表面性状を測定した。結果を表1に示す。実施例1と同様にして、樹脂溶液の粘度を測定したところ、11.9Pa・sであった。また、樹脂シートのデュロメータ硬さ(タイプA)は21であった。
Example 4
A polishing pad was prepared in the same manner as in Example 1 except that the blocked isocyanate compound was mixed at a ratio of 5.0 parts by mass (13.3 parts by mass with respect to 100 parts by mass of the polyurethane resin). Was measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 11.9 Pa · s. The durometer hardness (type A) of the resin sheet was 21.
(実施例5)
 ブロックイソシアネート化合物として、HDIイソシアヌレート体をメチルエチルケトオキシムでブロック化したブロックイソシアネート化合物(固形分:80%、NCO%:約12.5%)を用いた他は、実施例1と同様にして研磨パッドを作製し、表面性状を測定した。結果を表1に示す。実施例1と同様にして、樹脂溶液の粘度を測定したところ、10.9Pa・sであった。また、樹脂シートのデュロメータ硬さ(タイプA)は20であった。
(Example 5)
Polishing pad in the same manner as in Example 1 except that a blocked isocyanate compound obtained by blocking an HDI isocyanurate form with methyl ethyl ketoxime (solid content: 80%, NCO%: about 12.5%) was used as the blocked isocyanate compound. The surface properties were measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 10.9 Pa · s. Moreover, the durometer hardness (type A) of the resin sheet was 20.
(比較例1)
 ブロックイソシアネート化合物を用いない他は、実施例1と同様にして研磨パッドを作製し、表面性状を測定した。結果を表1に示す。実施例1と同様にして、樹脂溶液の粘度を測定したところ、11.6Pa・sであった。また、樹脂シートのデュロメータ硬さ(タイプA)は19であった。
(Comparative Example 1)
A polishing pad was prepared in the same manner as in Example 1 except that the blocked isocyanate compound was not used, and the surface properties were measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 11.6 Pa · s. Further, the durometer hardness (type A) of the resin sheet was 19.
(比較例2)
 ポリウレタン樹脂として、25℃における100%モジュラスが2.0MPaであるポリエステルポリオール化合物-MDI-エチレンジアミン系のポリウレタン樹脂(ポリウレタンポリウレア樹脂)を用いた他は、実施例1と同様にして研磨パッドを作製し、表面性状を測定した。結果を表1に示す。実施例1と同様にして、樹脂溶液の粘度を測定したところ、12.7Pa・sであった。また、樹脂シートのデュロメータ硬さ(タイプA)は0(硬さ(タイプC)で0.5)であった。
(Comparative Example 2)
A polishing pad was prepared in the same manner as in Example 1 except that a polyester polyol compound-MDI-ethylenediamine-based polyurethane resin (polyurethane polyurea resin) having a 100% modulus at 25 ° C. of 2.0 MPa was used as the polyurethane resin. The surface properties were measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 12.7 Pa · s. Further, the durometer hardness (type A) of the resin sheet was 0 (0.5 (hardness (type C)).
(比較例3)
 ポリウレタン樹脂として、25℃における100%モジュラスが15.0MPaであるポリエステルポリオール化合物-MDI-エチレンジアミン系のポリウレタン樹脂(ポリウレタンポリウレア樹脂)を用いた他は、実施例1と同様にして研磨パッドを作製し、表面性状を測定した。結果を表1に示す。実施例1と同様にして、樹脂溶液の粘度を測定したところ、11.0Pa・sであった。また、樹脂シートのデュロメータ硬さ(タイプA)は26であった。
(Comparative Example 3)
A polishing pad was prepared in the same manner as in Example 1 except that a polyester polyol compound-MDI-ethylenediamine-based polyurethane resin (polyurethane polyurea resin) having a 100% modulus at 25 ° C. of 15.0 MPa was used as the polyurethane resin. The surface properties were measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 11.0 Pa · s. Moreover, the durometer hardness (type A) of the resin sheet was 26.
(比較例4)
 ブロックイソシアネート化合物を7.0質量部(ポリウレタン樹脂100質量部に対して18.6質量部)の割合となるように混合した他は、実施例1と同様にして研磨パッドを作製し、表面性状を測定した。結果を表1に示す。実施例1と同様にして、樹脂溶液の粘度を測定したところ、12.2Pa・sであった。また、樹脂シートのデュロメータ硬さ(タイプA)は22であった。
(Comparative Example 4)
A polishing pad was prepared in the same manner as in Example 1 except that the blocked isocyanate compound was mixed at a ratio of 7.0 parts by mass (18.6 parts by mass with respect to 100 parts by mass of the polyurethane resin). Was measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 12.2 Pa · s. Further, the durometer hardness (type A) of the resin sheet was 22.
(比較例5)
 ブロックイソシアネート化合物として、HDIアダクト体を、メチルエチルケトオキシムでブロック化したブロックイソシアネート化合物(固形分:80%、NCO%:約15.5%)を用いた他は、実施例1と同様にして研磨パッドを作製し、表面性状を測定した。結果を表1に示す。実施例1と同様にして、樹脂溶液の粘度を測定したところ、10.8Pa・sであった。また、樹脂シートのデュロメータ硬さ(タイプA)は21であった。
(Comparative Example 5)
A polishing pad as in Example 1 except that a blocked isocyanate compound obtained by blocking an HDI adduct with methyl ethyl ketoxime (solid content: 80%, NCO%: about 15.5%) was used as the blocked isocyanate compound. The surface properties were measured. The results are shown in Table 1. When the viscosity of the resin solution was measured in the same manner as in Example 1, it was 10.8 Pa · s. The durometer hardness (type A) of the resin sheet was 21.
〔研磨試験〕
 研磨パッドを用いて下記の条件により研磨試験を行った。
・研磨機:株式会社荏原製作所製、型番「F-REX300」
・研磨ヘッド:株式会社荏原製作所社製、型番「GII」
・研磨スラリー:Planar社製、型番「ER8176C」、2倍希釈、過酸化水素濃度0.8質量%
・被研磨物:シリカ(TEOS)膜付き300mmφのシリコンウエハ
・研磨パッド径:740mmφ
・ドレッサー:3M社製ダイヤモンドドレッサー、型番「A188」
・パッド・ブレークイン条件:30N×30分、ドレッサー回転数54rpm、定盤回転数80rpm、超純水供給量500mL/分
・コンディショニング:Ex-situ、30N、4スキャン、16秒
・研磨条件:定盤回転数70rpm、研磨ヘッド回転数71rpm、研磨スラリー流量200mL/分、研磨時間1分間(1枚のウエハ当たり)、研磨圧2.5psi(1.7×10Pa)
[Polishing test]
A polishing test was performed using the polishing pad under the following conditions.
-Polishing machine: Model number "F-REX300" manufactured by Ebara Manufacturing Co., Ltd.
Polishing head: manufactured by Ebara Manufacturing Co., Ltd., model number “GII”
Polishing slurry: Planar, model number “ER8176C”, 2-fold dilution, hydrogen peroxide concentration 0.8 mass%
・ Polished object: 300 mmφ silicon wafer with silica (TEOS) film ・ Polishing pad diameter: 740 mmφ
・ Dresser: 3M diamond dresser, model number “A188”
・ Pad break-in condition: 30 N × 30 minutes, dresser rotation speed 54 rpm, surface plate rotation speed 80 rpm, ultrapure water supply amount 500 mL / min ・ conditioning: Ex-situ 30 N, 4 scans, 16 seconds ・ Polishing condition: fixed Plate rotation speed 70 rpm, polishing head rotation speed 71 rpm, polishing slurry flow rate 200 mL / min, polishing time 1 minute (per wafer), polishing pressure 2.5 psi (1.7 × 10 4 Pa)
<研磨レート>
 研磨試験前後のウエハ上のTEOS膜について、121箇所の厚さ測定結果から、各点において研磨された厚さを研磨時間で除することにより研磨レート(Å/分)を求めた。なお、厚さ測定は、光学式膜厚膜質測定器(KLAテンコール社製、型番「ASET-F5x」)のDBSモードにて測定した。
<Polishing rate>
For the TEOS film on the wafer before and after the polishing test, the polishing rate (レ ー ト / min) was determined by dividing the thickness polished at each point by the polishing time from the thickness measurement results at 121 locations. The thickness was measured in the DBS mode of an optical film thickness measuring instrument (manufactured by KLA Tencor, model number “ASET-F5x”).
<立ち上げ処理枚数>
 研磨初期の研磨レートが速やかに安定化するか否かを下記のように評価した。すなわち、ウエハの研磨処理枚数に対する研磨レートを追跡し、傾向としての研磨レートの増加が見られなくなった研磨処理枚数を「立ち上げ処理枚数」とした。この「立ち上げ処理枚数」が少ないほど、研磨初期の研磨レートが速やかに安定化することを意味する。結果を表1に示す。
<Number of startup processing>
Whether or not the polishing rate at the initial stage of polishing was quickly stabilized was evaluated as follows. That is, the polishing rate with respect to the number of wafers to be polished was tracked, and the number of polishing processes in which the increase in the polishing rate as a trend was not observed was defined as the “number of startup processes”. It means that the smaller the “number of start-up treatments”, the faster the polishing rate at the initial stage of polishing is stabilized. The results are shown in Table 1.
<研磨レート安定性及び研磨均一性の評価>
 ウエハの研磨処理枚数1~600枚までの各研磨レートを求め、処理枚数100枚、300枚、600枚における研磨レートの最大値、最小値、平均値、及び研磨レートの標準偏差を求め、下記式により研磨レート安定性及び研磨均一性を評価した。
 研磨レート安定性(%)=(研磨レート最大値-研磨レート最小値)/研磨レート平均値×100
 研磨均一性(%)=(研磨レート標準偏差/研磨レート平均値)×100
 なお、研磨レート安定性は数値が低く、かつ、処理枚数による変動が小さいほど、研磨安定性が高いことを示す。また、研磨均一性は、数値が低いほど研磨ムラが少なくウエハ面内が均一に研磨されていることを示す。結果を表1に示す。
<Evaluation of polishing rate stability and polishing uniformity>
Each polishing rate from 1 to 600 wafers is determined, and the maximum, minimum, average, and standard deviation of the polishing rate for 100, 300, and 600 processed wafers are calculated. The polishing rate stability and polishing uniformity were evaluated by the formula.
Polishing rate stability (%) = (maximum polishing rate−minimum polishing rate) / average polishing rate × 100
Polishing uniformity (%) = (polishing rate standard deviation / polishing rate average value) × 100
The polishing rate stability has a lower numerical value, and the smaller the variation due to the number of processed sheets, the higher the polishing stability. Further, the polishing uniformity indicates that the lower the numerical value, the less the polishing unevenness and the more uniformly the wafer surface is polished. The results are shown in Table 1.
<耐薬品性の評価>
 極性の高いDMFに対する溶解性の有無で耐薬品性を判断した。DMFに溶解しない場合、耐薬品性に優れているといえる。
<Evaluation of chemical resistance>
The chemical resistance was judged by the presence or absence of solubility in DMF with high polarity. When not dissolved in DMF, it can be said that the chemical resistance is excellent.
 まず、樹脂シートを5mm×30mmの矩形に切断しサンプルを得た。次いで、DMFが30mL収容された試験管に、サンプルを投入した。サンプルが投入された試験管内を1分間撹拌した後、10分間静置し、更に2分間撹拌した。次いで、試験管を5分間静置した後、50メッシュ(目開き300μm)の試験用ふるいを用いて試験管に収容されたサンプルをDMFと共にろ過し、ふるいに固形物が残存するか否かを目視にて確認した。固形物が残存した場合、耐薬品性に優れているとして「A」と評価し、固形物が残存しなかった場合、耐薬品性に優れていないとして「B」と評価した。結果を表1に示す。 First, a resin sheet was cut into a 5 mm × 30 mm rectangle to obtain a sample. Next, the sample was put into a test tube containing 30 mL of DMF. The test tube in which the sample was introduced was stirred for 1 minute, then allowed to stand for 10 minutes, and further stirred for 2 minutes. Next, after allowing the test tube to stand for 5 minutes, the sample contained in the test tube is filtered together with DMF using a 50 mesh (mesh opening 300 μm) test sieve, and whether or not solid matter remains on the sieve is determined. It was confirmed visually. When the solid substance remained, it was evaluated as “A” because it was excellent in chemical resistance, and when the solid substance did not remain, it was evaluated as “B” because it was not excellent in chemical resistance. The results are shown in Table 1.
 また、実施例1と比較例1の樹脂シートについて、その断面を電子顕微鏡で観察した写真を、それぞれ図2、図3に示す。図中、上方の黒い部分との境界が樹脂シートの表面を示しており、これらの写真の対比から、実施例に係る樹脂シートの方が、比較例に係る樹脂シートよりも表面の凹凸が少なく、平坦性が高いことが分かった。 Further, photographs of the cross sections of the resin sheets of Example 1 and Comparative Example 1 observed with an electron microscope are shown in FIGS. 2 and 3, respectively. In the figure, the boundary with the upper black portion indicates the surface of the resin sheet. From the comparison of these photographs, the resin sheet according to the example has less surface irregularities than the resin sheet according to the comparative example. It was found that the flatness was high.
 実施例と比較例とを対比すると、実施例の方がウエハの処理枚数を増やしても研磨レートや研磨均一性の変動が小さい傾向にあることが分かった。また、立ち上がり処理枚数について、従来モジュラスの高い樹脂を使用すると立ち上がりが早い傾向にあるものの、実施例1及び3では100%モジュラスやデュロメータ硬さ(タイプA)が比較例3よりも低いにも関わらず、立ち上がり処理枚数は少なく、研磨初期の研磨レートが速やかに安定化することが分かった。さらに、実施例2と比較例2とを対比すると、いずれも100%モジュラスやデュロメータ硬さ(タイプA)が低い、かなり軟質な研磨パッドであるものの、実施例2の方が、立ち上げ処理枚数、研磨レート安定性及び研磨均一性のいずれも優れた結果となった。 When the example and the comparative example were compared, it was found that the fluctuation of the polishing rate and the polishing uniformity tended to be smaller in the example even when the number of processed wafers was increased. Further, regarding the number of rising treatments, although a conventional resin having a high modulus tends to rise quickly, in Examples 1 and 3, the 100% modulus and durometer hardness (type A) are lower than those in Comparative Example 3. As a result, it was found that the number of rising treatments was small, and the polishing rate at the initial stage of polishing was quickly stabilized. Further, when Example 2 and Comparative Example 2 are compared with each other, both are 100% modulus and durometer hardness (type A), which is a fairly soft polishing pad, but Example 2 is the number of startup treatments. Both the polishing rate stability and the polishing uniformity were excellent.
 本発明によれば、研磨初期の研磨レートを速やかに安定化でき、かつ、研磨レートの変動が抑制された研磨パッド及びその製造方法を提供することが可能となるので、特に、磁気ディスク等の半導体デバイス、ベアシリコン及び液晶ディスプレイ用ガラス基板の仕上げ研磨に産業上の利用可能性がある。 According to the present invention, it is possible to provide a polishing pad that can quickly stabilize the polishing rate at the initial stage of polishing and that suppresses fluctuations in the polishing rate, and a method for manufacturing the same. There is industrial applicability to finish polishing of semiconductor devices, bare silicon, and glass substrates for liquid crystal displays.

Claims (8)

  1.  樹脂からなるシートを備える研磨パッドであって、
     所定の研磨試験を経た後の前記シートの研磨面が、-2.00以上、-0.20以下の粗さ曲線のスキューネスRskを有し、かつ、0.5%以上、2.5%以下の高さ分布変動係数を有する、研磨パッド。
    A polishing pad comprising a resin sheet,
    The polished surface of the sheet after undergoing a predetermined polishing test has a skewness Rsk of a roughness curve of −2.00 or more and −0.20 or less, and 0.5% or more and 2.5% or less. A polishing pad having a coefficient of variation of height distribution.
  2.  前記シートが、0~25のデュロメータ硬さ(タイプA)を有する、請求項1に記載の研磨パッド。 The polishing pad according to claim 1, wherein the sheet has a durometer hardness (type A) of 0 to 25.
  3.  前記シートは湿式成膜されたものである、請求項1又は2に記載の研磨パッド。 The polishing pad according to claim 1 or 2, wherein the sheet is formed by wet film formation.
  4.  前記シートに含有される前記樹脂は、3.0MPa~10.0MPaの100%モジュラスを有する、請求項1~3のいずれか1項に記載の研磨パッド。 The polishing pad according to any one of claims 1 to 3, wherein the resin contained in the sheet has a 100% modulus of 3.0 MPa to 10.0 MPa.
  5.  前記樹脂は、活性水素原子を有する第1の樹脂における前記活性水素原子とブロックイソシアネート化合物由来のイソシアネート基との反応により生じる結合を有する第2の樹脂を含み、前記結合を、前記第1の樹脂100質量部に対して、前記ブロックイソシアネート化合物換算で2.0質量部~15.0質量部有する、請求項1~4のいずれか1項に記載の研磨パッド。 The resin includes a second resin having a bond generated by a reaction between the active hydrogen atom in the first resin having an active hydrogen atom and an isocyanate group derived from a blocked isocyanate compound, and the bond is included in the first resin. The polishing pad according to any one of claims 1 to 4, wherein the polishing pad has 2.0 to 15.0 parts by mass in terms of the blocked isocyanate compound with respect to 100 parts by mass.
  6.  前記ブロックイソシアネート化合物は、芳香族多価イソシアネート化合物以外の多価イソシアネート化合物からなる群より選ばれる1種以上の化合物をブロック剤によりブロック化したものである、請求項5記載の研磨パッド。 The polishing pad according to claim 5, wherein the blocked isocyanate compound is obtained by blocking one or more compounds selected from the group consisting of polyvalent isocyanate compounds other than aromatic polyvalent isocyanate compounds with a blocking agent.
  7.  前記第1の樹脂は、ポリウレタン樹脂である、請求項5又は6に記載の研磨パッド。 The polishing pad according to claim 5 or 6, wherein the first resin is a polyurethane resin.
  8.  請求項1~7のいずれか1項に記載の研磨パッドの製造方法であって、
     前記研磨パッドに備えられるシートは、第2の樹脂を含有し、
     活性水素原子を有する第1の樹脂とブロックイソシアネート化合物と溶媒とを含む樹脂溶液中の前記第1の樹脂を凝固再生する工程と、
     前記第1の樹脂が有する前記活性水素原子と前記ブロックイソシアネート化合物由来のイソシアネート基とを反応させて前記第2の樹脂を得る工程と、を有し、
     前記第2の樹脂は、前記活性水素原子と前記イソシアネート基との反応により生じる結合を、前記第1の樹脂100質量部に対して、前記ブロックイソシアネート化合物換算で2.0質量部~15.0質量部有する、製造方法。
    A method for producing a polishing pad according to any one of claims 1 to 7,
    The sheet provided in the polishing pad contains a second resin,
    A step of coagulating and regenerating the first resin in a resin solution containing a first resin having an active hydrogen atom, a blocked isocyanate compound, and a solvent;
    Reacting the active hydrogen atom of the first resin with the isocyanate group derived from the blocked isocyanate compound to obtain the second resin,
    In the second resin, a bond generated by the reaction between the active hydrogen atom and the isocyanate group is 2.0 parts by mass to 15.0 parts in terms of the blocked isocyanate compound with respect to 100 parts by mass of the first resin. The manufacturing method which has a mass part.
PCT/JP2014/073896 2013-09-11 2014-09-10 Polishing pad and method for manufacturing same WO2015037606A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015536596A JP6567420B2 (en) 2013-09-11 2014-09-10 Polishing pad and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-188402 2013-09-11
JP2013188402 2013-09-11

Publications (1)

Publication Number Publication Date
WO2015037606A1 true WO2015037606A1 (en) 2015-03-19

Family

ID=52665708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073896 WO2015037606A1 (en) 2013-09-11 2014-09-10 Polishing pad and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP6567420B2 (en)
TW (1) TWI648129B (en)
WO (1) WO2015037606A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10391606B2 (en) 2017-06-06 2019-08-27 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pads for improved removal rate and planarization
US10722999B2 (en) 2016-06-17 2020-07-28 Rohm And Haas Electronic Materials Cmp Holdings, Inc. High removal rate chemical mechanical polishing pads and methods of making
US11667061B2 (en) 2020-04-18 2023-06-06 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of forming leveraged poromeric polishing pad

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439963B2 (en) * 2014-08-22 2018-12-19 富士紡ホールディングス株式会社 Holding tool and manufacturing method thereof
KR102489678B1 (en) * 2020-12-07 2023-01-17 에스케이엔펄스 주식회사 Sheet for polishing pad, poishing pad and manufacturing method for semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518943A (en) * 2003-02-25 2006-08-17 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド Polishing pad apparatus and method
JP2009101504A (en) * 2007-10-03 2009-05-14 Fujibo Holdings Inc Polishing cloth
JP2011073112A (en) * 2009-09-30 2011-04-14 Fujibo Holdings Inc Polishing pad and method of manufacturing polishing pad
JP2012110970A (en) * 2010-11-19 2012-06-14 Fujibo Holdings Inc Polishing pad and method for manufacturing the same
US20140287586A1 (en) * 2013-03-19 2014-09-25 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224465B1 (en) * 1997-06-26 2001-05-01 Stuart L. Meyer Methods and apparatus for chemical mechanical planarization using a microreplicated surface
US6659846B2 (en) * 2001-09-17 2003-12-09 Agere Systems, Inc. Pad for chemical mechanical polishing
JP4199645B2 (en) * 2003-11-07 2008-12-17 Hoya株式会社 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP5822159B2 (en) * 2011-12-27 2015-11-24 富士紡ホールディングス株式会社 Polishing pad and polishing pad manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518943A (en) * 2003-02-25 2006-08-17 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド Polishing pad apparatus and method
JP2009101504A (en) * 2007-10-03 2009-05-14 Fujibo Holdings Inc Polishing cloth
JP2011073112A (en) * 2009-09-30 2011-04-14 Fujibo Holdings Inc Polishing pad and method of manufacturing polishing pad
JP2012110970A (en) * 2010-11-19 2012-06-14 Fujibo Holdings Inc Polishing pad and method for manufacturing the same
US20140287586A1 (en) * 2013-03-19 2014-09-25 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10722999B2 (en) 2016-06-17 2020-07-28 Rohm And Haas Electronic Materials Cmp Holdings, Inc. High removal rate chemical mechanical polishing pads and methods of making
US10391606B2 (en) 2017-06-06 2019-08-27 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pads for improved removal rate and planarization
US11667061B2 (en) 2020-04-18 2023-06-06 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of forming leveraged poromeric polishing pad

Also Published As

Publication number Publication date
TW201519994A (en) 2015-06-01
JP6567420B2 (en) 2019-08-28
JPWO2015037606A1 (en) 2017-03-02
TWI648129B (en) 2019-01-21

Similar Documents

Publication Publication Date Title
JP4593643B2 (en) Polishing pad
JP5501722B2 (en) Polishing pad and method of manufacturing polishing pad
JP6567420B2 (en) Polishing pad and manufacturing method thereof
JP5254729B2 (en) Polishing pad
JP2014233834A (en) Chemical mechanical window abrasive pad which is soft and capable of being conditioned
JP5254727B2 (en) Polishing pad
JP2017074649A (en) Polishing pad
JP6178191B2 (en) Polishing pad
JP6228546B2 (en) Polishing pad
TWI429503B (en) Polishing pad and manufacturing method thereof, and manufacturing method of semiconductor device
JP5534907B2 (en) Polishing pad and method of manufacturing polishing pad
JP6311186B2 (en) Polishing pad and manufacturing method thereof
WO2022071383A1 (en) Polishing pad
JP4636787B2 (en) Fixed abrasive polishing pad, polishing equipment
WO2022210037A1 (en) Polishing pad and method for manufacturing polishing pad
WO2022071205A1 (en) Polishing pad and method for manufacturing polished product
JP7137505B2 (en) Polishing pad, method for manufacturing polishing pad, method for polishing surface of optical material or semiconductor material, and method for evaluating polishing pad
WO2020067401A1 (en) Polishing pad and method for producing polished article
JP7088647B2 (en) Polishing pad and manufacturing method of polishing pad
JP7269062B2 (en) Holding pad and manufacturing method thereof
TWI850769B (en) Refresh method of polishing pad, manufacturing method of semiconductor device and manufacturing device
JP2018065246A (en) Abrasive pad and method for manufacturing the same
JP7186340B2 (en) polishing sheet
JP2024049003A (en) Polishing pad and manufacturing method of the same
JP2022057477A (en) Polishing pad

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536596

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844808

Country of ref document: EP

Kind code of ref document: A1