JP4196335B2 - 薄型基板検出方法 - Google Patents

薄型基板検出方法 Download PDF

Info

Publication number
JP4196335B2
JP4196335B2 JP2003164660A JP2003164660A JP4196335B2 JP 4196335 B2 JP4196335 B2 JP 4196335B2 JP 2003164660 A JP2003164660 A JP 2003164660A JP 2003164660 A JP2003164660 A JP 2003164660A JP 4196335 B2 JP4196335 B2 JP 4196335B2
Authority
JP
Japan
Prior art keywords
thin substrate
peak
determination area
slot
insertion determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003164660A
Other languages
English (en)
Other versions
JP2005005347A (ja
Inventor
俊充 入江
幸人 嵯峨崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003164660A priority Critical patent/JP4196335B2/ja
Publication of JP2005005347A publication Critical patent/JP2005005347A/ja
Application granted granted Critical
Publication of JP4196335B2 publication Critical patent/JP4196335B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ウェハ等の薄型基板をスロットに格納しているキャリア内において、薄型基板の格納状態を検出する薄型基板検出方法に関する。
【0002】
【従来の技術】
ウェハ等の薄型基板をスロットに格納しているキャリア内を、CCDカメラ等の撮像手段で撮像してキャリア内の画像を取得し、その画像を画像処理装置で処理してキャリア内のウェハの格納状態を検出する方法が従来から開示されている。
例えば、特許文献1では、キャリアの斜め上方にカメラを配置して、カメラで取得した画像を処理してウェハの格納状態を検出している。また、特許文献2では、ロードポートと呼ばれるキャリアの蓋を開閉する装置のドアにカメラを装着して各スロットに対して画像を取得、処理してウェハの格納状態を検出している。
【0003】
【特許文献1】
特開2000−174103号公報
【特許文献2】
特開平11−354609号公報
【0004】
まず、第1の従来技術として特許文献1を例に、ウェハ検出技術の概要を説明する。
図28は、特許文献1に示されている薄型基板検出方法の原理を説明する図である。図28の(a)において、1はキャリア、2はウェハで、ウェハ2(2−1〜2−n)がキャリア1内の各スロットに格納されている。4はカメラでキャリア1内部の画像を取得するようにキャリア1の斜め上方に配置されている。カメラ4がキャリア1内部を撮像すると、取得される画像は(b)に示すようになる。カメラ4はキャリア1との位置関係を予めキャリブレーションして配置されているため、カメラ4に設置されたu―v座標系で表されている(b)の画像を、(a)に示したθ―z座標系に幾何補正することができる。(c)は幾何補正後の画像で、ウェハ2のエッジが平行な直線群となって表されるようになる。特許文献1では、この(c)の幾何補正後の画像、すなわちθ―z画像を用いてウェハの格納状態を検出する。
【0005】
図29は、ウェハの有無を判断する際に求められる処理結果例を表す図である。図29の(a)は、図28(c)のθ―z画像の各画素の輝度をz方向に積分した輝度分布である。Zi(i=1〜n)はi番目のウェハ2のz座標位置を示しており、この例では3番目のスロットにウェハ2−3が挿入されていないため、その位置に対応する輝度分布にピークが現われていない。図29(b)は、図29(a)の輝度分布を適当な閾値thによって2値化した結果である。ウェハ2が存在するz座標位置の2値化結果は「1」、存在しない2値化結果は「0」となる。この例の場合、(a)の輝度分布にピークのない3番目のスロットに対応する2値化結果が「0」となるため、3番目のスロットにウェハ2がないと判断される。それ以外のスロットについては2値化結果が「1」であるため、ウェハ2が挿入されていると判断される。
【0006】
図30は、ウェハの飛び出しを判断する際に求められる処理結果例を表す図である。上述の図29を用いて説明したのと同様、図30(a)はθ―z画像の各画素の輝度をz方向に積分した輝度分布、(b)はこの輝度分布を適当な閾値thによって2値化した結果である。この例では、3番目のスロットにウェハ2−3が飛び出して挿入されているため、その位置に対応する輝度分布のピークが座標位置Z3に対してずれて現われる。この場合、2値化結果の「1」のz座標位置がずれているため、3番目のスロットにはウェハ2が飛び出して挿入されていると判断され、それ以外のスロットについては本来あるべきz座標位置が「1」となるため、正常に挿入されていると判断される。
【0007】
図31は、ウェハの複数枚を判断する際に求められる処理結果例を表す図である。上述の図29を用いて説明したのと同様、図31(a)はθ―z画像の各画素の輝度をz方向に積分した輝度分布、(b)はこの輝度分布を適当な閾値thによって2値化した結果である。この例では、3番目のスロットにウェハ2−3が複数枚挿入されているため、その位置に対応する輝度分布のピークの幅が広く現われる。この場合、2値化結果の「1」の幅が2枚分以上に相当するため、3番目のスロットにはウェハ2が複数枚挿入されていると判断され、それ以外のスロットについては「1」の幅が1枚分に相当するため、1枚が挿入されていると判断される。
【0008】
ところで、これまで述べてきた特許文献1の薄型基板検出方法では、ウェハ2の斜め挿入を判断することができない。従って、特許文献1では、斜め挿入の判断が行える方法としてハフ変換による直線抽出方法を用いたウェハ検出技術も加えて開示している。
図32は、特許文献1に示されているハフ変換を用いた薄型基板検出方法の処理結果例を表す図である。図32の(a)、(b)は、上述の図28を用いて説明したのと同様、それぞれ、キャリア1内部を撮像した画像、幾何補正後のθ―z画像である。図32の(c)、(d)、(e)、(f)、(g)は、(b)のθ―z画像をハフ変換したものである。ハフ変換は、(b)のθ―z画像上の直線をこの直線と直交するθ―z画像の原点からの垂線の長さρとその垂線とθ軸との成す角ψで表されるψ―ρ空間の点に変換するものである。すなわち、ハフ変換によって、θ―z空間の直線がψ―ρ空間の輝点として表現される。
ハフ変換結果が、図32の(c)のように、ψ=90°、ρ座標位置のZi位置に全て輝点が存在する場合は、キャリア1内の全てのスロットにウェハ2が正常に挿入されていることを表している。(d)のように、ρ座標位置のZ3位置に輝点が存在しない場合は、3番目のスロットにウェハ2がないことを表している。(e)のように、ρ座標位置のZ3位置の輝点がψ方向にずれて存在する場合は、3番目のスロットにウェハ2―3が斜めに挿入されていることを表している。(f)のように、ρ座標位置のZ3位置の輝点がρ方向にずれて存在する場合は、3番目のスロットにウェハ2−3が飛び出して挿入されていることを表している。(g)のように、ρ座標位置のZ3位置の輝点がρ方向にウェハ2の枚数分長く存在する場合は、3番目のスロットにウェハ2−3が複数枚挿入されていることを表している。
以上のようにハフ変換を用いた薄型基板検出方法では、ハフ変換結果からウェハの有無、飛び出し挿入、複数枚挿入、斜め挿入を判断する。
【0009】
次に、第2の従来技術として特許文献2を例に、ウェハ検出技術の概要を説明する。図33は、特許文献2に示されている薄型基板を検出する装置の構成図である。図33に示した装置は、キャリア1の蓋を開閉する装置であり広くロードポートと呼ばれるものである。尚、以降では、前出の図を用いて説明した各構成要素には同一の符号を付してその説明を省略する。
12はテーブルで、ウェハ2(2−1〜2−n)が格納されているキャリア1がテーブル12に載せられる。72はキャリア1の蓋、13はロードポートのドアで、ドア13が蓋72を保持し、a方向右に移動、b方向下に下降してキャリア1の開口部を開く。29は照明で、この下降時、照明29を点灯し、カメラ4がキャリア1内の各スロットを撮像する。カメラ4と照明29はドア13上部に装着されている。23は画像処理装置で、カメラ4で撮像された各スロットの画像を処理してウェハ2(2−1〜2−n)の格納状態を検出する。
画像処理装置23では、2値化処理等必要な前処理を行った後、各スロット毎の画像と格納状態の正常、異常を判断するための基準となる基準データとを比較し、各スロット毎のウェハ2(2−1〜2−n)の格納状態の正常、異常を判断する。
【0010】
【発明が解決しようとする課題】
しかしながら、第1の従来技術(特許文献1)の薄型基板検出方法では、カメラ4をキャリア1の斜め上方に配置する際、ウェハ2のエッジが平行な直線群となるような幾何補正が実現できるように精度良くキャリブレーションをする必要があり、手間を要し、難しいという問題がある。精度が悪ければ、幾何補正をしてもウェハ2のエッジが直線とならず、その後の積分処理等に支障をきたし、ウェハ2の格納状態を正しく検出することができなくなる。また、図29から図31までの積分した輝度分布を2値化して判断する方法では、斜め挿入を判断することができないという問題がある。ハフ変換を用いる方法では、斜め挿入の判断を可能としているが、ハフ変換を安定的に少ない演算量で行うのは難しいという問題がある。膨大な演算量でも高速に処理するためには、システムのコストが大きくなり過ぎるという問題もある。また、積分した輝度分布を2値化して判断する方法を用いて斜め挿入の判断も行う場合には、ハフ変換を用いる方法を併用する必要があり、調整等に要するパラメータが増え、ユーザが扱うには煩雑になるという問題がある。
【0011】
また、第2の従来技術(特許文献2)の薄型基板検出方法では、ウェハ2の照明29が反射する部分にノッチやオリフラが位置する場合があり、その状態に応じて基準データを準備する必要があるため、基準データが多数必要となる。また、キャリア1には、ウェハ2を両側のガイドから支持する2点支持タイプもあるが、開口部とは反対側の内側2つのガイドでも支持する4点支持タイプもあり、どのガイドにウェハ2が載るかで、斜め挿入の状態は、多岐に渡る。そのため、それら斜め挿入の状態に応じて基準データを準備する必要があり、基準データが多数必要となる。また、ウェハ2の表面は、低反射率のものから高反射率のものまで様々な種類があり、表面状態に応じて基準データを準備する必要があり、基準データが多数必要となる。このように、多数の基準データを準備する必要があるため、メモリ資源を多く費やしてしまうという問題がある。また、多くの基準データを用いて比較処理を行うので、演算量が膨大となるという問題がある。メモリ容量を増加する、または、膨大な演算量でも高速に処理するためには、システムのコストが大きくなり過ぎるという問題もある。
【0012】
本発明はこのような様々な問題点に鑑みてなされたものであり、(1)幾何補正を必要とせず手間が掛からない、(2)斜め挿入も含めたウェハの格納状態の検出が統一した方法で実現でき、ユーザが扱い易い、(3)ハフ変換や基準データを必要とせず高速に処理でき、メモリ資源も少なくて済み、システムのコストを抑えることができる、薄型基板検出方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記問題を解決するため、請求項1に記載の発明は、撮像手段と、前記撮像手段で取得された画像を処理する画像処理装置とを備えて、薄型基板を水平に格納するスロットが垂直方向に複数並設されたキャリアにおいて前記薄型基板の格納状態を検出する薄型基板検出方法であって、前記キャリア内のスロットに関する画像を前記撮像手段により取得するステップと、前記撮像手段により取得した前記画像の2次元座標上に、複数の前記スロットと長手方向が直交する長方形の処理ウィンドウを水平方向に複数並設するステップと、前記処理ウィンドウ内の画像の輝度の前記垂直方向積分分布を求めるステップと、前記積分分布を正規化するステップと、前記処理ウィンドウに検出対象とする特定の対象スロットの前記薄型基板の位置を判定する正常挿入判定エリアと斜め挿入判定エリアを設定するステップと、前記正常挿入判定エリアと前記斜め挿入判定エリア内で、前記積分分布のピークを検出するステップと、前記正常挿入判定エリア内で前記ピークの個数をカウントし、前記斜め挿入判定エリア内で前記ピークの有無をチェックして前記処理ウィンドウの挿入状態を判定するステップと、前記正常挿入判定エリアと前記斜め挿入判定エリアの全てに前記ピークが存在しない場合には前記対象スロットには前記薄型基板はないと判断して終了するステップと、前記斜め挿入判定エリアに前記ピークが存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断して終了するステップと、前記正常挿入判定エリアに前記ピークが複数存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が2枚以上挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップと、を有して前記キャリア内の前記薄型基板の格納状態を検出するものである。
【0014】
また、請求項2に記載の発明は、前記正常挿入判定エリアに前記ピークが複数存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が2枚以上挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップの後段に、前記正常挿入判定エリアに存在する複数の前記ピーク位置を直線に近似し、前記直線から角度を演算するステップと、前記角度と予め設定した角度閾値とを比較して前記角度が前記角度閾値より大きい場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップと、を有して前記キャリア内の前記薄型基板の格納状態を検出するものである。
【0015】
また、請求項3に記載の発明は、前記正常挿入判定エリアに前記ピークが複数存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が2枚以上挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップの後段に、前記ピークの高さが、前記処理ウィンドウの外側に向かうほど大きくなる場合には前記対象スロットには前記薄型基板が飛び出して挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップを有して前記キャリア内の前記薄型基板の格納状態を検出するものである。
【0016】
また、請求項4に記載の発明は、前記正常挿入判定エリアに前記ピークが複数存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が2枚以上挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップの後段に、前記対象スロットに隣接するスロットに関するピークを検出し、前記積分分布上で、前記対象スロットの中央位置から前記隣接スロットに関するピークまでの距離を計測するステップと、前記距離と予め設定した距離閾値とを比較して前記距離が前記距離閾値より大きい場合には前記隣接スロットには前記薄型基板が飛び出して挿入され、前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップと、を有して前記キャリア内の前記薄型基板の格納状態を検出するものである。
【0017】
また、請求項5に記載の発明は、前記斜め挿入判定エリアに前記ピークが存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断して終了するステップの後段に、前記斜め挿入判定エリアの前記ピークの位置に応じて、前記対象スロットに隣接するスロットがペアの斜め挿入であるかをチェックし、前記隣接スロットがペアの斜め挿入である場合には前記対象スロットと前記隣接スロットには前記薄型基板が斜めに挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断して終了するステップを有して前記キャリア内の前記薄型基板の格納状態を検出するものである。
【0018】
また、請求項6に記載の発明は、前記角度と予め設定した角度閾値とを比較して前記角度が前記角度閾値より大きい場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップは、前記角度が前記角度閾値より大きい場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断し、前記対象スロットに隣接するスロットは挿入状態が不定と判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップとして前記キャリア内の前記薄型基板の格納状態を検出するものである。
【0019】
また、請求項7に記載の発明は、前記正常挿入判定エリアと前記斜め挿入判定エリア内で、前記積分分布のピークを検出するステップは、前記正常挿入判定エリアと前記斜め挿入判定エリア内で、全ての前記ピークの位置と幅を計測してピーク候補とするステップと、前記ピーク幅と、前記薄型基板の前記画像上での幅より小さい予め設定したピーク幅閾値とを比較して前記ピーク幅が前記ピーク幅閾値より小さい場合には前記ピーク候補はピークとしないステップと、前記ピーク幅と、前記薄型基板の前記画像上での幅より大きい予め設定したピーク幅閾値とを比較して前記ピーク幅が前記ピーク幅閾値より大きい場合には前記ピーク候補はピークとしないステップと、前記正常挿入判定エリア内に複数の前記ピークが存在する場合に前記ピーク間の距離を計測し、前記ピーク間距離と予め設定したピーク間距離閾値とを比較して前記ピーク間距離が前記ピーク間距離閾値より小さい場合には1つの前記ピーク候補はピークとしないステップと、を有して前記キャリア内の前記薄型基板の格納状態を検出するものである。
【0020】
また、請求項8に記載の発明は、前記処理ウィンドウ内の画像の輝度の前記垂直方向積分分布を求めるステップの後段に、前記積分分布の最大値を取得するステップを有して前記対象スロットの前記薄型基板の格納状態を検出し、全てのスロットについて検出が終了した後に、前記積分分布の最大値と予め設定した最大値閾値とを比較して前記最大値が前記最大値閾値より小さい場合には前記キャリアの全てのスロットには前記薄型基板はないと判断して終了し、そうでない場合には各スロットで判断した挿入状態で終了するステップを有して前記キャリア内の前記薄型基板の格納状態を検出するものである。
【0021】
また、請求項9に記載の発明は、前記処理ウィンドウ内の画像の輝度の前記垂直方向積分分布を求めるステップの後段に、前記積分分布のスパイク状のノイズやノコギリ状のノイズを除去または低減するステップを有して前記キャリア内の前記薄型基板の格納状態を検出するものである。
【0022】
また、請求項10に記載の発明は、前記処理ウィンドウに前記薄型基板の位置を判定する正常挿入判定エリアと斜め挿入判定エリアを設定するステップの後段に、前記キャリアの最上端または最下端のスロットに対し、前記斜め判定エリアと前記斜め判定エリアの最上端または最下端側の前記積分分布の変化をゼロに処理するステップを有して前記キャリア内の前記薄型基板の格納状態を検出するものである。
【0023】
また、請求項11に記載の発明は、前記処理ウィンドウ内の画像の輝度の前記垂直方向積分分布を求めるステップの後段に、前記積分分布を前記垂直方向に2次微分して2次微分分布を求めるステップと、前記2次微分分布を正規化するステップとを有し、前記正常挿入判定エリアに存在する複数の前記ピーク位置を直線に近似し、前記直線から角度を演算するステップの前段に、前記ピーク位置付近に対応する前記2次微分分布を用いて前記ピーク位置を再演算するステップを有して前記キャリア内の前記薄型基板の格納状態を検出するものである。
【0024】
また、請求項12に記載の発明は、撮像手段と、前記撮像手段で取得された画像を処理する画像処理装置とを備えて、薄型基板を水平に格納するスロットが垂直方向に複数並設されたキャリアにおいて前記薄型基板の格納状態を検出する薄型基板検出方法であって、前記キャリア内のスロットに関する画像を前記撮像手段により取得するステップと、前記撮像手段により取得した前記画像の2次元座標上に、複数の前記スロットと直交する処理ウィンドウを水平方向に複数並設するステップと、前記処理ウィンドウ内の画像の輝度の前記垂直方向積分分布を求めるステップと、前記積分分布を前記垂直方向に2次微分して2次微分分布を求めるステップと、前記処理ウィンドウに検出対象とする特定の対象スロットの前記薄型基板の位置を判定する正常挿入判定エリアと斜め挿入判定エリアを設定するステップと、前記正常挿入判定エリアと前記斜め挿入判定エリア内で、前記2次微分分布が予め設定した閾値と比較して前記閾値より大きい部分を薄型基板部として検出するステップと、前記正常挿入判定エリア内で前記薄型基板部の有無をチェックすると共に前記薄型基板部の幅を計測し、前記斜め挿入判定エリア内で前記薄型基板部の有無をチェックして前記処理ウィンドウの挿入状態を判定するステップと、前記正常挿入判定エリアと前記斜め挿入判定エリアの全てに前記薄型基板部が存在しない場合には前記対象スロットには前記薄型基板はないと判断して終了するステップと、前記斜め挿入判定エリアに前記薄型基板部が存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断して終了するステップと、前記正常挿入判定エリア内で、前記薄型基板部の幅と予め設定した薄型基板部幅閾値とを比較して前記薄型基板部の幅が前記薄型基板部幅閾値より大きい場合には前記対象スロットには前記薄型基板が2枚以上挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記前記薄型基板が1枚正常挿入されていると判断して終了するステップと、を有して前記キャリア内の前記薄型基板の格納状態を検出するものである。
【0025】
また、請求項13に記載の発明は、前記2次微分分布を求めるステップの後段に、前記2次微分分布を正規化するステップを有して前記キャリア内の前記薄型基板の格納状態を検出するものである。
【0026】
【発明の実施の形態】
以下、本発明の方法の具体的実施例について、図に基づいて説明する。尚、従来技術の例と共通する構成要素には同一の符号を付したので、その説明は省略する。
本発明の実施に用いる装置は、基本的には第2の従来技術の装置(図33)と同じである。本発明の実施に用いる装置は、図33の装置と同様に、ウェハ2の端面を見る方向からカメラ4と照明29を配置してウェハ2に対する画像を取得、処理してウェハの格納状態を検出する。カメラ4と照明29は、図33に示したように、ロードポートのドア13上部に装着しても良いし、キャリア1の開口部からウェハ2を取り出し、挿入を行うロボットに装着しても良い。必要なのは、カメラ4と照明29をウェハ2の端面を見る方向に配置することであるが、第1の従来技術のような厳密なキャリブレーションは必要なく、カメラ4と照明29をウェハ2の端面が見える位置に配置しさえすれば良い。
カメラ4と照明29をロードポートのドア13上部に装着する場合、ウェハ2に対する画像が取得できれば良いので、ドア13の下降時、上昇時に関係なく、ウェハ2を検出することができる。
また、照明29は、ウェハ2に対する画像が明瞭に取得できない場合に必要であるが、照明29がなくても画像が明瞭である場合には、必ずしも照明29を必要としない。
【0027】
(1)第1の実施の形態(請求項1記載の内容に相当)
図1は、第1の実施の形態に係る薄型基板検出方法のフローチャートであり、101から109まではこのフローチャートの各ステップである。
図1において、ステップ101では、検出対象とするスロットに関して取得した画像に、複数の処理ウィンドウを設定する。図14は、その処理ウィンドウの設定例である。E01は取得画像で、i番目のスロットのウェハ2(i)に対して取得した画像である。E02は照明反射部で、ウェハ2に対して照射した照明29がウェハ2端面で反射する部分であり、図中斜線で表している。E03は処理ウィンドウで、照明反射部E02付近に、密着させた状態で配置する。図14では、左右それぞれに6つの処理ウィンドウE03を設定している。
ステップ102では、処理ウィンドウE03で囲まれた取得画像E01をウェハ2と直交する方向に積分して積分分布を求める。ステップ103では、その積分分布を正規化する。図15は、積分分布の例である。(a)は、積分の様子を分かり易くするために図14の処理ウィンドウの設定例を90°左に回転して表示したものである。(b)は、処理ウィンドウE03の内、1つの処理ウィンドウ(図15では最も内側で下側の処理ウィンドウE03)について、ウェハ2の垂直方向(V方向)に積分した積分分布である。F01はピークで、積分の結果、ウェハ2の照明反射部E02の輝度がピークとなって現われる。(c)は、その積分分布を0から255までの256段階で正規化したものである。F02は正規化ピークで、0から255までのピーク値を持つ。
ステップ104では、ウェハ2の位置を判定する正常挿入判定エリアと斜め挿入判定エリアを設定する。図16は、判定エリアの設定例である。G01は正常挿入判定エリア、G02は斜め挿入判定エリアで、検出対象とするi番目のスロットに対して設定する、正規化ピークF02の位置を判定するためのエリアである。これら判定エリアは、後述するステップ106において、処理ウィンドウE03の挿入状態を判定するのに利用する。
ステップ105では、正常挿入判定エリアG01と斜め挿入判定エリアG02で囲まれたエリア内で、積分分布(正規化)において、正規化ピークF02を抽出し、ピークの位置と幅を検出する。図16の判定エリアの設定例では、正常挿入判定エリアG01内に、正規化ピーク(i)F02が1つ検出される。
ステップ106では、正常挿入判定エリアG01内で正規化ピークF02の個数をカウントし、斜め挿入判定エリアG02内で正規化ピークF02の有無をチェックして処理ウィンドウE03の挿入状態を判定する。図17は、処理ウィンドウの挿入状態の判定例である。(a)は、正常挿入判定エリアG01に正規化ピーク(i)F02が1つある場合、(b)は、正常挿入判定エリアG01と斜め挿入判定エリアG02に正規化ピーク(i)F02がない場合、(c)は、正常挿入判定エリアG01に正規化ピーク(i)F02が2つある場合、(d)は、斜め挿入判定エリアG02に正規化ピーク(i)F02がある場合を表している。このステップ106では、全ての処理ウィンドウE03について、正常挿入判定エリアG01内で正規化ピークF02の個数をカウントし、斜め挿入判定エリアG02内で正規化ピークF02の有無をチェックする処理を行い、それぞれの処理ウィンドウE03に対して図17に示すような分類を行う。
ステップ107では、ステップ106の全処理ウィンドウE03の挿入状態判定結果を用いて、全ての処理ウィンドウE03の正常挿入判定エリアG01と斜め挿入判定エリアG02に正規化ピークF02が存在しない場合(図17(b)のような状態)には検出対象とするi番目のスロットにはウェハ2はないと判断してそのスロットに対する処理を終了する。そうでない場合には次のステップに進む。
ステップ108では、ステップ106の全処理ウィンドウE03の挿入状態判定結果を用いて、斜め挿入判定エリアG02に正規化ピークF02が存在する処理ウィンドウE03が1つでもある場合(図17(d)のような状態)には検出対象とするi番目のスロットにはウェハ2が斜めに挿入されていると判断してそのスロットに対する処理を終了する。そうでない場合には次のステップに進む。ステップ109では、ステップ106の全処理ウィンドウE03の挿入状態判定結果を用いて、正常挿入判定エリアG01に正規化ピークF02が複数存在する処理ウィンドウE03が1つでもある場合(図17(c)のような状態)には検出対象とするi番目のスロットにはウェハ2が2枚以上挿入されていると判断してそのスロットに対する処理を終了する。そうでない場合には対象スロットにはウェハ2が1枚正常挿入されていると判断してそのスロットに対する処理を終了する。
以上のステップをキャリア1内の全てのスロットに対して行えば、キャリア1内のウェハ2の格納状態を検出することができる。
【0028】
以上説明したように、本発明の第1の実施形態は、検出対象とするスロットに関して取得した画像E01に対して幾何補正等の画像の幾何学的変換を必要としないため、高精度なキャリブレーションを必要とせず、手間が掛からない。また、処理ウィンドウE03内の積分分布のピークを検出してウェハ2の挿入状態を判断するだけなので、ハフ変換のような膨大な演算量を必要とせず、システムのコストを抑えることができる。また、処理ウィンドウE03内の積分分布のピークを検出してウェハ2の挿入状態を判断するという統一した方法でウェハ2が検出できるため、挿入状態に応じて処理を切り替える必要がなく、ユーザが扱い易い。また、ノッチやオリフラが処理ウィンドウE03内に入っても、ステップ101で処理ウィンドウE03を密着させた状態で複数配置しているため、必ずどこかの処理ウィンドウE03でピークが検出でき、ノッチやオリフラへの対応のために特別な処理を必要としない。また、ステップ103で積分分布を正規化してからステップ105でピークの検出を行うので、ピークの検出等を行うためのパラメータが周囲の明るさ変動に強い。また、ウェハ2の挿入状態や表面状態に応じて比較のための基準データを必要としないため、高速に処理でき、メモリ資源も少なくて済み、システムのコストを抑えることができる。
【0029】
(2)第2の実施の形態(請求項2記載の内容に相当)
図2は、第2の実施の形態に係る薄型基板検出方法のフローチャートであり、201、202はこのフローチャートの各ステップである。図1を用いて説明した第1の実施形態との違いは、ステップ201とステップ202が加わっている点である。
ステップ201では、正常挿入判定エリアG01に存在する正規化ピーク(i)F02の位置を直線に近似し、その直線から角度を求める。図18は、ピークの角度演算を説明する図である。この図は、検出対象とするi番目のスロットにウェハ2が斜めに挿入されていて、その取得画像E01に設定した処理ウィンドウE03全てについて正規化した積分分布を表しており、縦軸が処理ウィンドウE03の番号を表している。ところで、発明が解決しようとする課題の項でも述べたように、キャリア1には、ウェハ2をキャリア1内部の両側のガイドから支持する2点支持タイプと、キャリア1の開口部とは反対側の内側2つのガイドでも支持する4点支持タイプとがある。2点支持タイプのキャリア1の場合、ウェハ2が斜めに挿入されている場合には、図17(d)で示したように、斜め挿入判定エリアG02に正規化ピーク(i)F02が現われる場合がほとんどであるが、4点支持タイプの場合は、ウェハ2の載るガイドの位置によっては、図18に示したように、斜めに挿入されていても正常挿入判定エリアG01に正規化ピーク(i)F02が現われる場合がある。この場合は、正常挿入判定エリアG01に現われた正規化ピーク(i)F02から斜め挿入を判断する必要があり、本実施の形態ではステップ201とステップ202を加えて、それを実現する方法を示している。まず、それぞれの処理ウィンドウE03の正常挿入判定エリアG01内で正規化ピーク(i)F02の位置を求める。この位置は、ステップ105で求めるV座標の位置と共に、U座標の位置も求める。U座標は、例えば、処理ウィンドウE03の中央位置とすれば良い。次に、求められた正規化ピーク(i)F02の位置を用いて、これらを直線に近似する。直線への近似は、例えば、広く用いられている1次回帰直線を求める方法を利用すれば良い。そして、求められた直線の傾きからその直線の角度を演算する。図18においては、右上から左下に向かう直線が求められ、その直線の角度が演算される。
ステップ202では、ウェハ2が斜めに挿入されていると判断するための角度に関する予め設定された閾値(角度閾値)を用いて、ステップ201で演算された角度とこの角度閾値とを比較して、ステップ201で演算された角度が角度閾値より大きい場合には検出対象とするi番目のスロットにはウェハ2が斜めに挿入されていると判断してそのスロットに対する処理を終了する。そうでない場合には対象スロットにはウェハ2が1枚正常挿入されていると判断してそのスロットに対する処理を終了する。
【0030】
以上説明したように、本発明の第2の実施形態は、第1の実施形態での効果に合わせて、正常挿入判定エリアG01に正規化ピーク(i)F02が現われる場合でも斜め挿入の判断ができるので、多様な斜め挿入に対応でき、キャリア1の種類を限定することなく、多数のキャリア1に対してウェハ2の格納状態を検出することができる。
【0031】
(3)第3の実施の形態(請求項3記載の内容に相当)
図3は、第3の実施の形態に係る薄型基板検出方法のフローチャートであり、301はこのフローチャートのステップである。図2を用いて説明した第2の実施形態との違いは、ステップ301が加わっている点である。
ステップ301では、正常挿入判定エリアG01に存在する正規化ピーク(i)F02の高さが、処理ウィンドウE03の外側に向かうほど大きくなる場合には検出対象とするi番目のスロットにはウェハ2が飛び出して挿入されていると判断してそのスロットに対する処理を終了する。そうでない場合には対象スロットにはウェハ2が1枚正常挿入されていると判断してそのスロットに対する処理を終了する。図19は、飛び出し挿入の例である。J01は飛び出しウェハで、検出対象とするi番目のスロットにウェハ2が飛び出して挿入されている場合を表している。ウェハ2が飛び出して挿入されている場合、図19に示すように、照明反射部E02は外側に移動する(図14を比較参照)。図20は、本実施の形態に係る飛び出し挿入の判断を説明する図である。この図は、ウェハ2が図19で示した挿入状態の時の、処理ウィンドウE03全てについて正規化した積分分布を表している。図20のように、照明反射部E02が外側に移動するのに伴い、正規化ピーク(i)F02の高さが処理ウィンドウE03の外側に向かうほど大きくなる。図20では、処理ウィンドウ#3→#2→#1、#10→#11→#12の順で正規化ピーク(i)F02の高さが大きくなっている。本実施の形態は、この性質を利用し、正規化ピーク(i)F02の高さが処理ウィンドウE03の外側に向かうほど大きくなっている場合には、検出対象とするスロットにはウェハ2が飛び出して挿入されていると判断する。
【0032】
以上説明したように、本発明の第3の実施形態は、第1と第2の実施形態での効果に合わせて、正常挿入判定エリアG01に存在する正規化ピーク(i)F02の高さによってウェハ2の飛び出し挿入の判断ができるので、ウェハなし、1枚正常挿入、斜め挿入、2枚以上挿入、飛び出し挿入といった全てのウェハ2の格納状態を検出することができる。
【0033】
(4)第4の実施の形態(請求項4記載の内容に相当)
図4は、第4の実施の形態に係る薄型基板検出方法のフローチャートであり、401、402はこのフローチャートの各ステップである。図2を用いて説明した第2の実施形態との違いは、ステップ401とステップ402が加わっている点である。
ステップ401では、検出対象とするi番目のスロットに隣接するスロットに関する正規化ピークF02(i+1とi―1)を検出し、積分分布上で、対象スロットの中央位置から隣接スロットに関する正規化ピークF02(i+1とi―1)までの距離を計測する。ステップ402では、隣接スロットのウェハ2が飛び出して挿入されていると判断するための対象スロットの中央位置から正規化ピークF02(i+1とi―1)までの距離に関する予め設定された閾値(距離閾値)を用いて、ステップ401で演算された距離とこの距離閾値とを比較して、ステップ401で演算された距離が距離閾値より大きい場合には隣接するi+1またはi―1番目のスロットにはウェハ2が飛び出して挿入され、対象スロットにはウェハ2が1枚正常挿入されていると判断してそのスロットに対する処理を終了する。そうでない場合には対象スロットにはウェハ2が1枚正常挿入されていると判断してそのスロットに対する処理を終了する。
図21は、隣接スロットの飛び出し挿入の例である。この図は、隣接スロットであるi+1番目のスロットにウェハ2が飛び出して挿入されている場合を表している。ウェハ2が飛び出して挿入されている場合、図21に示すように、取得画像E01において、飛び出しウェハJ01に関する画像は外側に移動する(図14を比較参照)。図22は、本実施の形態に係る飛び出し挿入の判断を説明する図である。この図は、ウェハ2が図21で示した挿入状態の時の、処理ウィンドウE03全てについて正規化した積分分布を表している。図22のように、飛び出しウェハJ01に関する画像が外側に移動するのに伴い、正規化ピーク(i+1)F02の位置が処理ウィンドウE03の外側に移動する。図20と比較すると、正規化ピーク(i+1)F02の位置が左側に移動している。本実施の形態は、この性質を利用し、正規化ピーク(i+1)F02の位置が処理ウィンドウE03の外側に移動している場合には、対象スロットに隣接するスロットにはウェハ2が飛び出して挿入されていると判断する。M01はスロット中央位置で、取得画像E01において、検出対象とするi番目のスロットの位置である。スロット中央位置M01は、カメラ4の位置とキャリア1内のスロットの位置関係を予めキャリブレーションして求めておけば、容易に知ることができる。M02はピーク位置で、隣接スロットに関する正規化ピークF02の位置である。M03はピーク距離で、スロット中央位置M01とピーク位置M02との距離である。これら距離を、ウェハ2が飛び出して挿入されていると判断するための距離閾値と比較して、i番目のピーク距離(i)M03またはi―1番目のピーク距離(i―1)M03が距離閾値より大きい場合には隣接するi+1またはi―1番目のスロットにはウェハ2が飛び出して挿入されていると判断する。図22では、i番目のピーク距離(i)M03が距離閾値より大きいため、i+1番目のスロットにはウェハ2が飛び出して挿入されていると判断される。
【0034】
以上説明したように、本発明の第4の実施形態は、第1と第2の実施形態での効果に合わせて、スロット中央位置M01と隣接スロットに関する正規化ピークF02の位置M02との距離M03によってウェハ2の飛び出し挿入の判断ができるので、ウェハなし、1枚正常挿入、斜め挿入、2枚以上挿入、飛び出し挿入といった全てのウェハ2の格納状態を検出することができる。
【0035】
(5)第5の実施の形態(請求項5記載の内容に相当)
図5は、第5の実施の形態に係る薄型基板検出方法のフローチャートであり、501はこのフローチャートのステップである。図2を用いて説明した第2の実施形態との違いは、ステップ501が加わっている点である。
ステップ501では、斜め挿入判定エリアG02の正規化ピークF02の位置に応じて、検出対象とするi番目のスロットに隣接するスロットがペアの斜め挿入であるかをチェックし、隣接スロットがペアの斜め挿入である場合には対象スロットと隣接スロットにはウェハ2が斜めに挿入されていると判断してそのスロットに対する処理を終了する。そうでない場合には対象スロットにはウェハ2が斜めに挿入されていると判断してそのスロットに対する処理を終了する。図23は、斜め挿入の例である。N01はスロットで、i+1番目のスロット(i+1)N01にウェハ2が1枚正常に挿入されている。N02は斜めウェハで、i番目のスロット(i)N01とi―1番目のスロット(i―1)N01に渡って斜めに挿入されている。この図のように、斜めウェハN02は、2つのスロットN01に渡って挿入される。すなわち、斜め挿入は、2つのスロットでペアとなって現われる。例えば、図17(d)で示したように、斜め挿入判定エリアG02に正規化ピークF02が存在して斜め挿入と判断される場合は、どちらの斜め挿入判定エリアG02に正規化ピークF02が存在するかによって、その隣接するスロット(この場合、i―1番目のスロット)も斜め挿入と判断される必要がある。何らかの原因で隣接スロットが斜め挿入と判断されない場合を考慮して、本実施の形態は、対象スロットが斜め挿入と判断された場合に、隣接スロットがペアの斜め挿入であるかをチェックし、隣接スロットがペアの斜め挿入である場合には対象スロットと隣接スロットにはウェハ2が斜めに挿入されていると判断する。
【0036】
以上説明したように、本発明の第5の実施形態は、第1から第4までの実施形態での効果に合わせて、対象スロットが斜め挿入と判断された場合に、隣接スロットがペアの斜め挿入であるかをチェックし、隣接スロットがペアの斜め挿入である場合には対象スロットと隣接スロットにはウェハ2が斜めに挿入されていると判断するため、より確実に斜め挿入を判断することができる。
(6)第6の実施の形態(請求項6記載の内容に相当)
図6は、第6の実施の形態に係る薄型基板検出方法のフローチャートであり、601はこのフローチャートのステップである。図2を用いて説明した第2の実施形態との違いは、ステップ202がステップ601に置き換わっている点である。
ステップ601では、ステップ202の処理において、ステップ201で演算された角度が角度閾値より大きい場合には検出対象とするi番目のスロットにはウェハ2が斜めに挿入され、対象スロットに隣接するスロットは挿入状態が不定と判断してそのスロットに対する処理を終了する。そうでない場合には対象スロットにはウェハ2が1枚正常挿入されていると判断してそのスロットに対する処理を終了する。第5の実施の形態でも述べたように、ウェハ2の斜め挿入は、2つのスロットでペアとなって現われる。ところが、第2の実施の形態でも述べたように、キャリア1の構造によっては、斜めに挿入されていても正常挿入判定エリアG01に正規化ピーク(i)F02が現われる場合がある。この場合、隣接スロットのどちら側が斜め挿入のペアであるかを知ることはできない。そのため、本実施の形態では、ウェハ2を取り出すロボット等が誤ってウェハ2を取りに行ってウェハ2を破損すること等を防止するため、対象スロットが斜め挿入と判断された場合には、その隣接スロットの挿入状態を不定と判断する。
【0037】
以上説明したように、本発明の第6の実施形態は、第1から第5までの実施形態での効果に合わせて、対象スロットが斜め挿入と判断された場合に、挿入状態の判断が困難な場合もある隣接スロットを不定と判断するため、ウェハ2の取り出し等を行う場合には、より安全にそれを行うことができる。
【0038】
(7)第7の実施の形態(請求項7記載の内容に相当)
図7は、第7の実施の形態に係る薄型基板検出方法のフローチャートであり、701から704まではこのフローチャートの各ステップである。図1を用いて説明した第1の実施形態におけるステップ105がステップ701から704までで構成されている。
ステップ701は、正常挿入判定エリアG01と斜め挿入判定エリアG02内で、全ての正規化ピークF02の位置と幅を計測してピーク候補とする。図24は、ピーク検出の例である。このステップ701の処理の結果、(a)では1つ、(b)では1つ、(c)では2つの正規化ピークF02が、正常挿入判定エリアG01内で検出される。
ステップ702では、取得画像E01上でのウェハ2の幅より小さい値をピーク幅閾値(小)として予め設定し、検出された正規化ピークF02の幅と、このピーク幅閾値(小)とを比較して、検出された正規化ピークF02の幅がピーク幅閾値(小)より小さい場合には検出された正規化ピークF02はピークとしない。そうでない場合には次のステップ703に進む。図24においては、(a)の正規化ピーク(i)F02がピークではなくなる。
ステップ703では、取得画像E01上でのウェハ2の幅より大きい値をピーク幅閾値(大)として予め設定し、検出された正規化ピークF02の幅と、このピーク幅閾値(大)とを比較して、検出された正規化ピークF02の幅がピーク幅閾値(大)より大きい場合には検出された正規化ピークF02はピークとしない。そうでない場合には次のステップ704に進む。図24においては、(b)の正規化ピーク(i)F02がピークではなくなる。
ステップ704では、まず、正常挿入判定エリアG01内で検出された正規化ピークF02が複数存在する場合に、検出された正規化ピークF02の位置から正規化ピークF02間の距離を計測する。次に、ウェハ2が2枚挿入されている場合の正規化ピークF02間の距離に関する予め設定された閾値(ピーク間距離閾値)を用いて、計測された正規化ピークF02間の距離とこのピーク間距離閾値とを比較して、計測された正規化ピークF02間の距離がピーク間距離閾値より小さい場合には検出された正規化ピークF02の一方はピークとしない。そうでない場合には次のステップ106に進む。図24においては、(c)の正規化ピーク(i)F02の右側のピークがピークではなくなる。
【0039】
以上説明したように、本発明の第7の実施形態は、第1から第6までの実施形態での効果に合わせて、正規化ピークF02の幅と正規化ピークF02間の距離で、正規化ピークF02の候補を絞ることができるので、より正確に正規化ピークF02が検出でき、その結果、ウェハ2の格納状態をより正しく検出することができる。
【0040】
(8)第8の実施の形態(請求項8記載の内容に相当)
図8は、第8の実施の形態に係る薄型基板検出方法のフローチャートであり、801から803まではこのフローチャートの各ステップである。図1を用いて説明した第1の実施形態との違いは、ステップ801からステップ803までが加わっている点である。
ステップ801では、全ての処理ウィンドウE03について、正常挿入判定エリアG01と斜め挿入判定エリアG02内で、積分分布の最大値を取得する。この最大値は、図15(b)に示した積分分布の最大値であって、図15(c)の積分分布(正規化)の最大値ではない。図15(b)の場合、ピーク(i)F01が取得される最大値となる。
ステップ803では、キャリア1内の全てのスロットに対してウェハ2の格納状態の検出が終了しているかどうかをチェックし、終了していなければ次のスロットに対する処理に進み、終了していれば次のステップ802に進む。従って、ステップ801で取得する積分分布の最大値は、全てのスロットに対する最大値となる。
ステップ802では、ウェハ2が1枚も挿入されていないと判断するための積分分布の最大値に関する閾値(最大値閾値)を用いて、ステップ801で取得された積分分布の最大値とを比較して、ステップ801で取得された積分分布の最大値が最大値閾値より小さい場合にはキャリア1の全てのスロットにはウェハ2が挿入されていないと判断して処理を終了する。そうでない場合には各スロットで判断した挿入状態のまま処理を終了する。
【0041】
このように、全てのスロットに対する処理が終了した後、全てのスロットにウェハ2が挿入されていないことを確認する理由を次に述べる。全てのスロットにウェハ2が挿入されていない場合でも、ステップ103によって、積分分布が0から255までの値で正規化される。ところで、全てのスロットにウェハ2が挿入されていない場合でも、外乱光や、照明29がキャリア1の開口部とは反対側の内面で反射する影響等で、積分分布は0にはならない。その状態を正規化するとステップ105において、正規化ピークF02を検出してしまう可能性がある。正規化ピークF02が検出されるとウェハ2が挿入されていると誤判断してしまう可能性がある。本実施の形態は、この誤判断を防止するために、ウェハ2が1枚も挿入されていないと判断するための積分分布の最大値に関する閾値(最大値閾値)と取得された積分分布の最大値を用いて、全てのスロットに対する処理が終了した後、全てのスロットにウェハ2が挿入されていないかを判断する処理を加えている。
【0042】
以上説明したように、本発明の第8の実施形態は、第1から第7までの実施形態での効果に合わせて、全てのスロットに対する処理が終了した後に最大値閾値と取得された積分分布の最大値とを比較して全てのスロットにウェハ2が挿入されていないかを判断するため、より確実にウェハ2が挿入されていない状態を判断することができ、その結果、ウェハ2の格納状態をより正しく検出することができる。
【0043】
(9)第9の実施の形態(請求項9記載の内容に相当)
図9は、第9の実施の形態に係る薄型基板検出方法のフローチャートであり、901はこのフローチャートのステップである。図1を用いて説明した第1の実施形態との違いは、ステップ901が加わっている点である。
ステップ901では、ステップ102で求めた積分分布のスパイク状のノイズやノコギリ状のノイズを除去または低減する。積分分布は、外乱光やウェハ2の端面の形状によって、図15(b)のように滑らかなピーク形状とならない場合がある。図25は、ノイズの例である。(a)はスパイク状ノイズ、(b)はノコギリ状ノイズを表している。このようなノイズがピークF01に載った場合、ステップ105において、正規化ピークF02を誤検出する可能性がある。誤検出すると、ウェハ2の挿入状態を正しく判断することができないため、本実施の形態では、ステップ102の積分の後、積分分布のノイズを除去または低減する。例えば、図25(a)のスパイク状ノイズの場合、積分分布において、注目点とその周辺の高さを比較し、注目点がその周辺よりある値より大きい場合には注目点を引き下げれば良い。また、(b)のノコギリ状ノイズの場合、積分分布において、注目点とその周辺との平均を演算し、その平均を注目点の値とすれば良い。
【0044】
以上説明したように、本発明の第9の実施形態は、第1から第8までの実施形態での効果に合わせて、積分分布のノイズを除去または低減するため、より正確に正規化ピークF02が検出でき、その結果、ウェハ2の格納状態をより正しく検出することができる。
【0045】
(10)第10の実施の形態(請求項10記載の内容に相当)
図10は、第10の実施の形態に係る薄型基板検出方法のフローチャートであり、A01はこのフローチャートのステップである。図1を用いて説明した第1の実施形態との違いは、ステップA01が加わっている点である。
ステップA01では、キャリア1の最上端または最下端のスロットに対し、斜め判定エリアG02と斜め判定エリアG02の最上端または最下端側の積分分布の変化をゼロに処理する。例えば、キャリア1には、スロットが1番目から25番目まであり、1スロット目が最下端、25スロット目が最上端とする。1スロット目の場合について、図16を参照すると、検出対象のスロットを1スロット目とした時、正規化ピーク(i)F02が1スロット目に対応するピークとなるため、その右側、すなわち、正規化ピーク(i−1)F02は存在しない。右側の斜め挿入判定エリアG02、すなわち、スロット1の最下端側の斜め挿入判定エリアG02も、0スロット目と1スロット目との斜め挿入が存在しないため、正規化ピーク(i)F02が現われることはない。ところが、最下端であるスロット1の下にはキャリア1の縁が取得画像E01に現われる場合があり、この場合、ウェハ2に関するものではないが、ピーク状のものが現われる。本実施の形態では、このキャリア1の縁に対応するピークが現われないようにするために、キャリア1の最上端または最下端のスロットに対し、斜め判定エリアG02と斜め判定エリアG02の最上端または最下端側の積分分布の変化をゼロにする。
【0046】
以上説明したように、本発明の第10の実施形態は、第1から第9までの実施形態での効果に合わせて、キャリア1の最上端または最下端のスロットに対し、それより上端側または下端側のピークが現われないようにするため、キャリア1の縁の影響を受けずにより正確に正規化ピークF02が検出でき、その結果、ウェハ2の格納状態をより正しく検出することができる。
【0047】
(11)第11の実施の形態(請求項11記載の内容に相当)
図11は、第11の実施の形態に係る薄型基板検出方法のフローチャートであり、B01からB03まではこのフローチャートの各ステップである。図2を用いて説明した第2の実施形態との違いは、ステップB01からステップB03までが加わっている点である。
ステップB01では、ステップ102で求めた積分分布を、ウェハ2と直交する方向に2次微分して2次微分分布を求める。ステップB02では、その2次微分分布を正規化する。ステップB03では、その2次微分分布を用いて、ピーク位置を再演算する。
図26は、ピーク位置の再演算例である。(a)は、ステップ102で求められる積分分布を表している。この場合、検出対象とするi番目のスロットのピーク(i)F01にスパイク状ノイズが載っている。このスパイク状ノイズを除去または低減せずにピーク位置(i)M02を検出すると、スパイク状ノイズの影響を受け、図26(a)のように、ピーク位置(i)M02が本来のピークの中央位置にならない。ピーク位置(i)M02がずれると、ステップ201において、ピークの角度が大きくなり、ステップ202において、ウェハ2が斜めに挿入されていない場合でも、斜めに挿入されていると判断される可能性がある。本実施の形態では、積分分布の2次微分分布を用いて、このピーク位置を修正する。図26(b)は、(a)の積分分布を2次微分して正規化した分布である。(c)は、その2次微分分布(正規化)に適当な閾値thを用いて、検出対象とするi番目のスロットのピーク位置を再演算する様子を表している。Q01は再演算ピーク位置で、検出対象とするi番目のスロットに対する2次微分分布(正規化)が閾値thを切っている箇所の中央位置を表している。このように、積分分布を用いて検出してずれたピーク位置(i)M02が、2次微分分布を用いて再演算ピーク位置(i)Q01として修正される。
【0048】
以上説明したように、本発明の第11の実施形態は、第1から第10までの実施形態での効果に合わせて、積分分布を2次微分した2次微分分布を用いてピーク位置を修正するので、より正確にピーク位置が求まり、ウェハ2の角度をより正しく演算することができる。その結果、ウェハ2の格納状態をより正しく検出することができる。
【0049】
(12)第12の実施の形態(請求項12記載の内容に相当)
図12は、第12の実施の形態に係る薄型基板検出方法のフローチャートであり、C01からC04まではこのフローチャートの各ステップである。図1を用いて説明した第1の実施形態との違いは、ステップ103がステップB01に、ステップ105がステップC01に、ステップ107がステップC02に、ステップ108がステップC03に、ステップ109がステップC04に、それぞれ置き換わっている点である。
ステップC01では、ウェハ2が存在していると判断するための2次微分分布に関する予め設定された閾値thを用いて、正常挿入判定エリアG01と斜め挿入判定エリアG02内で、ステップB01で演算された2次微分分布とこの閾値thとを比較して、ステップB01で演算された2次微分分布が閾値thより大きい部分をウェハ部として検出する。ステップ106では、正常挿入判定エリアG01内でウェハ部の有無をチェックすると共に、ウェハ部の幅を計測し、斜め挿入判定エリアG02内でウェハ部の有無をチェックして処理ウィンドウE03の挿入状態を判定する。図27は、2次微分を用いた処理ウィンドウの挿入状態の判定例である。R01はウェハ部で、正常挿入判定エリアG01と斜め挿入判定エリアG02内で、2次微分分布が閾値thより大きい部分を表している。ステップC01では、全ての処理ウィンドウE03について、このウェハ部R01を検出する。そして、ステップ106によって、図27(a)正常挿入判定エリアG01にウェハ部R01がある場合で、ウェハ部R01において閾値thを切っている幅がウェハ1枚分の場合、(b)正常挿入判定エリアG01と斜め挿入判定エリアG02にウェハ部R01がない場合、(c)正常挿入判定エリアG01にウェハ部R01がある場合で、ウェハ部R01において閾値thを切っている幅がウェハ2枚以上分の場合、(d)斜め挿入判定エリアG02にウェハ部R01がある場合、に分類される。
ステップC02では、ステップ106の全処理ウィンドウE03の挿入状態判定結果を用いて、全ての処理ウィンドウE03の正常挿入判定エリアG01と斜め挿入判定エリアG02にウェハ部R01が存在しない場合(図27(b)のような状態)には検出対象とするi番目のスロットにはウェハ2はないと判断してそのスロットに対する処理を終了する。そうでない場合には次のステップに進む。
ステップC03では、ステップ106の全処理ウィンドウE03の挿入状態判定結果を用いて、斜め挿入判定エリアG02にウェハ部R01が存在する処理ウィンドウE03が1つでもある場合(図27(d)のような状態)には検出対象とするi番目のスロットにはウェハ2が斜めに挿入されていると判断してそのスロットに対する処理を終了する。そうでない場合には次のステップに進む。
ステップC04では、ステップ106の全処理ウィンドウE03の挿入状態判定結果を用いて、正常挿入判定エリアG01にウェハ部R01の幅が複数枚に相当する処理ウィンドウE03が1つでもある場合(図27(c)のような状態)には検出対象とするi番目のスロットにはウェハ2が2枚以上挿入されていると判断してそのスロットに対する処理を終了する。そうでない場合には対象スロットにはウェハ2が1枚正常挿入されていると判断してそのスロットに対する処理を終了する。
以上のステップをキャリア1内の全てのスロットに対して行えば、キャリア1内のウェハ2の格納状態を検出することができる。
【0050】
以上説明したように、本発明の第12の実施形態は、検出対象とするスロットに関して取得した画像E01に対して幾何補正等の画像の幾何学的変換を必要としないため、高精度なキャリブレーションを必要とせず、手間が掛からない。また、処理ウィンドウE03内の2次微分分布のウェハ部を検出してウェハ2の挿入状態を判断するだけなので、ハフ変換のような膨大な演算量を必要とせず、システムのコストを抑えることができる。また、処理ウィンドウE03内の2次微分分布のウェハ部を検出してウェハ2の挿入状態を判断するという統一した方法でウェハ2が検出できるため、挿入状態に応じて処理を切り替える必要がなく、ユーザが扱い易い。また、ノッチやオリフラが処理ウィンドウE03内に入っても、ステップ101で処理ウィンドウE03を密着させた状態で複数配置しているため、必ずどこかの処理ウィンドウE03でウェハ部が検出でき、ノッチやオリフラへの対応のために特別な処理を必要としない。また、ウェハ2の挿入状態や表面状態に応じて比較のための基準データを必要としないため、高速に処理でき、メモリ資源も少なくて済み、システムのコストを抑えることができる。
【0051】
(13)第13の実施の形態(請求項13記載の内容に相当)
図13は、第13の実施の形態に係る薄型基板検出方法のフローチャートである。図12を用いて説明した第12の実施形態との違いは、ステップB02が加わっている点である。
ステップB02では、ステップB01で求めた2次微分分布を正規化する。この場合、ステップC01では、ウェハ2が存在していると判断するための正規化した2次微分分布に関する予め設定された閾値thを用いて、正常挿入判定エリアG01と斜め挿入判定エリアG02内で、ステップB02で演算された正規化した2次微分分布とこの閾値thとを比較して、ステップB02で演算された正規化した2次微分分布が閾値thより大きい部分をウェハ部として検出する。
【0052】
以上説明したように、本発明の第13の実施形態は、第12の実施形態での効果に合わせて、ステップB02で2次微分分布を正規化してからステップC01でウェハ部の検出を行うので、閾値th等のパラメータが周囲の明るさ変動に強く、その結果、ウェハ2の格納状態をよりロバストに検出することができる。
尚、以上説明した実施の形態では、ステップ101で処理ウィンドウE03を密着させた状態で配置させたが、本発明はこれに限ることなく、ノッチやオリフラがキャリア1の開口部に位置しない、すなわち、カメラ4の視野にノッチやオリフラが入らない状態が前提とできる場合や、処理ウィンドウE03が密着していなくてもノッチやオリフラの部分に対応するピークF01が検出できる場合には、処理ウィンドウE03を密着させずに配置しても良い。また、逆に、よりピークF01の検出性能を向上させるために、重複部分を持つように処理ウィンドウE03を配置しても良い。
また、検出対象であるi番目のスロットに対して画像を取得し、その挿入状態を判定していたが、本発明はこれに限ることなく、1つの画像に対して検出対象のスロットを複数としてそれら挿入状態を判断するようにしても良い。
また、ステップB01で積分分布を2次微分して2次微分分布を求め、その2次微分分布に基づき、ステップB03でピーク位置を再演算したり、ステップC01でウェハ部R01を検出したりしたが、本発明はこれに限ることなく、積分分布からウェハに相当する部分が検出できれば必ずしも2次微分である必要はなく、例えば、1次微分を用いて検出するようにしても良い。
また、例えば、第1の実施の形態では、ステップ101から109までの処理を順次実行していたが、本発明はこれに限ることなく、例えば、ステップ104の判定エリアの設定はステップ101の前段でも行えるように、処理の内容によってはステップの順序が変わっても良い。
【0053】
【発明の効果】
以上述べたように、本発明の請求項1に記載の薄型基板検出方法によれば、検出対象とするスロットに関して取得した画像に対して幾何補正等の画像の幾何学的変換を必要としないため、高精度なキャリブレーションを必要とせず、手間が掛からない。また、処理ウィンドウ内の積分分布のピークを検出して薄型基板の挿入状態を判断するだけなので、ハフ変換のような膨大な演算量を必要とせず、システムのコストを抑えることができる。また、処理ウィンドウ内の積分分布のピークを検出して薄型基板の挿入状態を判断するという統一した方法で薄型基板が検出できるため、挿入状態に応じて処理を切り替える必要がなく、ユーザが扱い易い。また、ノッチやオリフラが処理ウィンドウ内に入っても、処理ウィンドウを密着させた状態で複数配置しているため、必ずどこかの処理ウィンドウでピークが検出でき、ノッチやオリフラへの対応のために特別な処理を必要としない。また、積分分布を正規化してからピークの検出を行うので、ピークの検出等を行うためのパラメータが周囲の明るさ変動に強い。また、薄型基板の挿入状態や表面状態に応じて比較のための基準データを必要としないため、高速に処理でき、メモリ資源も少なくて済み、システムのコストを抑えることができる。
【0054】
また、請求項2に記載の薄型基板検出方法によれば、請求項1に記載の薄型基板検出方法の効果に合わせて、正常挿入判定エリアにピークが現われる場合でも斜め挿入の判断ができるので、多様な斜め挿入に対応でき、キャリアの種類を限定することなく、多数のキャリアに対して薄型基板の格納状態を検出することができる。
【0055】
また、請求項3に記載の薄型基板検出方法によれば、請求項1と2に記載の薄型基板検出方法の効果に合わせて、正常挿入判定エリアに存在するピークの高さによって薄型基板の飛び出し挿入の判断ができるので、薄型基板なし、1枚正常挿入、斜め挿入、2枚以上挿入、飛び出し挿入といった全ての薄型基板の格納状態を検出することができる。
【0056】
また、請求項4に記載の薄型基板検出方法によれば、請求項1と2に記載の薄型基板検出方法の効果に合わせて、スロット中央位置と隣接スロットに関するピークの位置との距離によって薄型基板の飛び出し挿入の判断ができるので、薄型基板なし、1枚正常挿入、斜め挿入、2枚以上挿入、飛び出し挿入といった全ての薄型基板の格納状態を検出することができる。
【0057】
また、請求項5に記載の薄型基板検出方法によれば、請求項1から4までに記載の薄型基板検出方法の効果に合わせて、対象スロットが斜め挿入と判断された場合に、隣接スロットがペアの斜め挿入であるかをチェックし、隣接スロットがペアの斜め挿入である場合には対象スロットと隣接スロットには薄型基板が斜めに挿入されていると判断するため、より確実に斜め挿入を判断することができる。
【0058】
また、請求項6に記載の薄型基板検出方法によれば、請求項1から5までに記載の薄型基板検出方法の効果に合わせて、対象スロットが斜め挿入と判断された場合に、挿入状態の判断が困難な場合もある隣接スロットを不定と判断するため、薄型基板の取り出し等を行う場合にはより安全にそれを行うことができる。
【0059】
また、請求項7に記載の薄型基板検出方法によれば、請求項1から6までに記載の薄型基板検出方法の効果に合わせて、ピークの幅とピーク間の距離で、ピークの候補を絞ることができるので、より正確にピークが検出でき、その結果、薄型基板の格納状態をより正しく検出することができる。
【0060】
また、請求項8に記載の薄型基板検出方法によれば、請求項1から7までに記載の薄型基板検出方法の効果に合わせて、全てのスロットに対する処理が終了した後に最大値閾値と取得された積分分布の最大値とを比較して全てのスロットに薄型基板が挿入されていないかを判断するため、より確実に薄型基板が挿入されていない状態を判断することができ、その結果、薄型基板の格納状態をより正しく検出することができる。
【0061】
また、請求項9に記載の薄型基板検出方法によれば、請求項1から8までに記載の薄型基板検出方法の効果に合わせて、積分分布のノイズを除去または低減するため、より正確にピークが検出でき、その結果、薄型基板の格納状態をより正しく検出することができる。
【0062】
また、請求項10に記載の薄型基板検出方法によれば、請求項1から9までに記載の薄型基板検出方法の効果に合わせて、キャリアの最上端または最下端のスロットに対し、それより上端側または下端側のピークが現われないようにするため、キャリアの縁の影響を受けずにより正確にピークが検出でき、その結果、薄型基板の格納状態をより正しく検出することができる。
【0063】
また、請求項11に記載の薄型基板検出方法によれば、請求項1から10までに記載の薄型基板検出方法の効果に合わせて、積分分布を2次微分した2次微分分布を用いてピーク位置を修正するので、より正確にピーク位置が求まり、薄型基板の角度をより正しく演算することができる。その結果、薄型基板の格納状態をより正しく検出することができる。
【0064】
また、請求項12に記載の薄型基板検出方法によれば、検出対象とするスロットに関して取得した画像に対して幾何補正等の画像の幾何学的変換を必要としないため、高精度なキャリブレーションを必要とせず、手間が掛からない。また、処理ウィンドウ内の2次微分分布の薄型基板部を検出して薄型基板の挿入状態を判断するだけなので、ハフ変換のような膨大な演算量を必要とせず、システムのコストを抑えることができる。また、処理ウィンドウ内の2次微分分布の薄型基板部を検出して薄型基板の挿入状態を判断するという統一した方法で薄型基板が検出できるため、挿入状態に応じて処理を切り替える必要がなく、ユーザが扱い易い。また、ノッチやオリフラが処理ウィンドウ内に入っても、処理ウィンドウを密着させた状態で複数配置しているため、必ずどこかの処理ウィンドウで薄型基板部が検出でき、ノッチやオリフラへの対応のために特別な処理を必要としない。また、薄型基板の挿入状態や表面状態に応じて比較のための基準データを必要としないため、高速に処理でき、メモリ資源も少なくて済み、システムのコストを抑えることができる。
【0065】
また、請求項13に記載の薄型基板検出方法によれば、請求項12に記載の薄型基板検出方法の効果に合わせて、2次微分分布を正規化してから薄型基板部の検出を行うので、閾値等のパラメータが周囲の明るさ変動に強く、その結果、薄型基板の格納状態をよりロバストに検出することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る薄型基板検出方法のフローチャート
【図2】本発明の第2の実施形態に係る薄型基板検出方法のフローチャート
【図3】本発明の第3の実施形態に係る薄型基板検出方法のフローチャート
【図4】本発明の第4の実施形態に係る薄型基板検出方法のフローチャート
【図5】本発明の第5の実施形態に係る薄型基板検出方法のフローチャート
【図6】本発明の第6の実施形態に係る薄型基板検出方法のフローチャート
【図7】本発明の第7の実施形態に係る薄型基板検出方法のフローチャート
【図8】本発明の第8の実施形態に係る薄型基板検出方法のフローチャート
【図9】本発明の第9の実施形態に係る薄型基板検出方法のフローチャート
【図10】本発明の第10の実施形態に係る薄型基板検出方法のフローチャート
【図11】本発明の第11の実施形態に係る薄型基板検出方法のフローチャート
【図12】本発明の第12の実施形態に係る薄型基板検出方法のフローチャート
【図13】本発明の第13の実施形態に係る薄型基板検出方法のフローチャート
【図14】本発明の実施形態に係る処理ウィンドウの設定例を表す図
【図15】本発明の実施形態に係る積分分布の例を表す図
【図16】本発明の実施形態に係る判定エリアの設定例を表す図
【図17】本発明の実施形態に係る処理ウィンドウの挿入状態の判定例を表す図
【図18】本発明の実施形態に係るピークの角度演算を説明する図
【図19】本発明の実施形態に係る飛び出し挿入例を表す図
【図20】本発明の実施形態に係るピーク高さで飛び出し挿入の判断を説明する図
【図21】本発明の実施形態に係る隣接スロットの飛び出し挿入例を表す図
【図22】本発明の実施形態に係るピーク距離で飛び出し挿入の判断を説明する図
【図23】本発明の実施形態に係る斜め挿入例を表す図
【図24】本発明の実施形態に係るピーク検出例を表す図
【図25】本発明の実施形態に係るノイズ例を表す図
【図26】本発明の実施形態に係るピーク位置の再演算例を表す図
【図27】本発明の実施形態に係る2次微分を用いた処理ウィンドウの挿入状態の判定例を表す図
【図28】第1の従来技術に係る薄型基板検出方法の原理を説明する図
【図29】第1の従来技術に係るウェハの有無を判断する際に求められる処理結果例を表す図
【図30】第1の従来技術に係るウェハの飛び出しを判断する際に求められる処理結果例を表す図
【図31】第1の従来技術に係るウェハの複数枚を判断する際に求められる処理結果例を表す図
【図32】第1の従来技術に係るハフ変換を用いた薄型基板検出方法の処理結果例を表す図
【図33】第2の従来技術に係る薄型基板を検出する装置の構成図
【符号の説明】
1 キャリア、2(2−1〜2−n) ウェハ、4 カメラ、12 テーブル、13 ドア、23 画像処理装置、29 照明、72 蓋、E01 取得画像、E02 照明反射部、E03 処理ウィンドウ、F01 ピーク、F02 正規化ピーク、G01 正常挿入判定エリア、G02 斜め挿入判定エリア、J01飛び出しウェハ、M01 スロット中央位置、M02 ピーク位置、M03 ピーク距離、N01 スロット、N02 斜めウェハ、Q01 再演算ピーク位置、R01 ウェハ部、

Claims (13)

  1. 撮像手段と、前記撮像手段で取得された画像を処理する画像処理装置とを備えて、薄型基板を水平に格納するスロットが垂直方向に複数並設されたキャリアにおいて前記薄型基板の格納状態を検出する薄型基板検出方法であって
    前記キャリア内のスロットに関する画像を前記撮像手段により取得するステップと、
    前記撮像手段により取得した前記画像の2次元座標上に、複数の前記スロットと長手方向が直交する長方形の処理ウィンドウを水平方向に複数並設するステップと、
    前記処理ウィンドウ内の画像の輝度の前記垂直方向積分分布を求めるステップと、
    前記積分分布を正規化するステップと、
    前記処理ウィンドウに検出対象とする特定の対象スロットの前記薄型基板の位置を判定する正常挿入判定エリアと斜め挿入判定エリアを設定するステップと、
    前記正常挿入判定エリアと前記斜め挿入判定エリア内で、前記積分分布のピークを検出するステップと、
    前記正常挿入判定エリア内で前記ピークの個数をカウントし、前記斜め挿入判定エリア内で前記ピークの有無をチェックして前記処理ウィンドウの挿入状態を判定するステップと、
    前記正常挿入判定エリアと前記斜め挿入判定エリアの全てに前記ピークが存在しない場合には前記対象スロットには前記薄型基板はないと判断して終了するステップと、
    前記斜め挿入判定エリアに前記ピークが存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断して終了するステップと、
    前記正常挿入判定エリアに前記ピークが複数存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が2枚以上挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップと、を有して前記キャリア内の前記薄型基板の格納状態を検出する
    ことを特徴とする薄型基板検出方法。
  2. 前記正常挿入判定エリアに前記ピークが複数存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が2枚以上挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップの後段に、
    前記正常挿入判定エリアに存在する複数の前記ピーク位置を直線に近似し、前記直線から角度を演算するステップと、
    前記角度と予め設定した角度閾値とを比較して前記角度が前記角度閾値より大きい場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップと、を有して前記キャリア内の前記薄型基板の格納状態を検出する
    ことを特徴とする請求項1記載の薄型基板検出方法。
  3. 前記正常挿入判定エリアに前記ピークが複数存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が2枚以上挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップの後段に、
    前記ピークの高さが、前記処理ウィンドウの外側に向かうほど大きくなる場合には前記対象スロットには前記薄型基板が飛び出して挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップを有して前記キャリア内の前記薄型基板の格納状態を検出する
    ことを特徴とする請求項1または2に記載の薄型基板検出方法。
  4. 前記正常挿入判定エリアに前記ピークが複数存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が2枚以上挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップの後段に、
    前記対象スロットに隣接するスロットに関するピークを検出し、前記積分分布上で、前記対象スロットの中央位置から前記隣接スロットに関するピークまでの距離を計測するステップと、
    前記距離と予め設定した距離閾値とを比較して前記距離が前記距離閾値より大きい場合には前記隣接スロットには前記薄型基板が飛び出して挿入され、前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップと、を有して前記キャリア内の前記薄型基板の格納状態を検出する
    ことを特徴とする請求項1または2に記載の薄型基板検出方法。
  5. 前記斜め挿入判定エリアに前記ピークが存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断して終了するステップの後段に、
    前記斜め挿入判定エリアの前記ピークの位置に応じて、前記対象スロットに隣接するスロットがペアの斜め挿入であるかをチェックし、前記隣接スロットがペアの斜め挿入である場合には前記対象スロットと前記隣接スロットには前記薄型基板が斜めに挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断して終了するステップを有して前記キャリア内の前記薄型基板の格納状態を検出する
    ことを特徴とする請求項1から4までのいずれか1つに記載の薄型基板検出方法。
  6. 前記角度と予め設定した角度閾値とを比較して前記角度が前記角度閾値より大きい場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップは、
    前記角度が前記角度閾値より大きい場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断し、前記対象スロットに隣接するスロットは挿入状態が不定と判断して終了し、そうでない場合には前記対象スロットには前記薄型基板が1枚正常挿入されていると判断して終了するステップとして前記キャリア内の前記薄型基板の格納状態を検出する
    ことを特徴とする請求項2から5までのいずれか1つに記載の薄型基板検出方法。
  7. 前記正常挿入判定エリアと前記斜め挿入判定エリア内で、前記積分分布のピークを検出するステップは、
    前記正常挿入判定エリアと前記斜め挿入判定エリア内で、全ての前記ピークの位置と幅を計測してピーク候補とするステップと、
    前記ピーク幅と、前記薄型基板の前記画像上での幅より小さい予め設定したピーク幅閾値とを比較して前記ピーク幅が前記ピーク幅閾値より小さい場合には前記ピーク候補はピークとしないステップと、
    前記ピーク幅と、前記薄型基板の前記画像上での幅より大きい予め設定したピーク幅閾値とを比較して前記ピーク幅が前記ピーク幅閾値より大きい場合には前記ピーク候補はピークとしないステップと、
    前記正常挿入判定エリア内に複数の前記ピークが存在する場合に前記ピーク間の距離を計測し、前記ピーク間距離と予め設定したピーク間距離閾値とを比較して前記ピーク間距離が前記ピーク間距離閾値より小さい場合には1つの前記ピーク候補はピークとしないステップと、を有して前記キャリア内の前記薄型基板の格納状態を検出する
    ことを特徴とする請求項1から6までのいずれか1つに記載の薄型基板検出方法。
  8. 前記処理ウィンドウ内の画像の輝度の前記垂直方向積分分布を求めるステップの後段に、
    前記積分分布の最大値を取得するステップ
    を有して前記対象スロットの前記薄型基板の格納状態を検出し、全てのスロットについて検出が終了した後に、
    前記積分分布の最大値と予め設定した最大値閾値とを比較して前記最大値が前記最大値閾値より小さい場合には前記キャリアの全てのスロットには前記薄型基板はないと判断して終了し、そうでない場合には各スロットで判断した挿入状態で終了するステップを有して前記キャリア内の前記薄型基板の格納状態を検出する
    ことを特徴とする請求項1から7までのいずれか1つに記載の薄型基板検出方法。
  9. 前記処理ウィンドウ内の画像の輝度の前記垂直方向積分分布を求めるステップの後段に、
    前記積分分布のスパイク状のノイズやノコギリ状のノイズを除去または低減するステップを有して前記キャリア内の前記薄型基板の格納状態を検出する
    ことを特徴とする請求項1から8までのいずれか1つに記載の薄型基板検出方法。
  10. 前記処理ウィンドウに前記薄型基板の位置を判定する正常挿入判定エリアと斜め挿入判定エリアを設定するステップの後段に、
    前記キャリアの最上端または最下端のスロットに対し、前記斜め判定エリアと前記斜め判定エリアの最上端または最下端側の前記積分分布の変化をゼロに処理するステップを有して前記キャリア内の前記薄型基板の格納状態を検出する
    ことを特徴とする請求項1から9までのいずれか1つに記載の薄型基板検出方法。
  11. 前記処理ウィンドウ内の画像の輝度の前記垂直方向積分分布を求めるステップの後段に、
    前記積分分布を前記垂直方向に2次微分して2次微分分布を求めるステップと、
    前記2次微分分布を正規化するステップとを有し、
    前記正常挿入判定エリアに存在する複数の前記ピーク位置を直線に近似し、前記直線から角度を演算するステップの前段に、
    前記ピーク位置付近に対応する前記2次微分分布を用いて前記ピーク位置を再演算するステップ
    を有して前記キャリア内の前記薄型基板の格納状態を検出する
    ことを特徴とする請求項2から10までのいずれか1つに記載の薄型基板検出方法。
  12. 撮像手段と、前記撮像手段で取得された画像を処理する画像処理装置とを備えて、薄型基板を水平に格納するスロットが垂直方向に複数並設されたキャリアにおいて前記薄型基板の格納状態を検出する薄型基板検出方法であって
    前記キャリア内のスロットに関する画像を前記撮像手段により取得するステップと、
    前記撮像手段により取得した前記画像の2次元座標上に、複数の前記スロットと直交する処理ウィンドウを水平方向に複数並設するステップと、
    前記処理ウィンドウ内の画像の輝度の前記垂直方向積分分布を求めるステップと、
    前記積分分布を前記垂直方向に2次微分して2次微分分布を求めるステップと、
    前記処理ウィンドウに検出対象とする特定の対象スロットの前記薄型基板の位置を判定する正常挿入判定エリアと斜め挿入判定エリアを設定するステップと、
    前記正常挿入判定エリアと前記斜め挿入判定エリア内で、前記2次微分分布が予め設定した閾値と比較して前記閾値より大きい部分を薄型基板部として検出するステップと、
    前記正常挿入判定エリア内で前記薄型基板部の有無をチェックすると共に前記薄型基板部の幅を計測し、前記斜め挿入判定エリア内で前記薄型基板部の有無をチェックして前記処理ウィンドウの挿入状態を判定するステップと、
    前記正常挿入判定エリアと前記斜め挿入判定エリアの全てに前記薄型基板部が存在しない場合には前記対象スロットには前記薄型基板はないと判断して終了するステップと、
    前記斜め挿入判定エリアに前記薄型基板部が存在する前記処理ウィンドウが1つでもある場合には前記対象スロットには前記薄型基板が斜めに挿入されていると判断して終了するステップと、
    前記正常挿入判定エリア内で、前記薄型基板部の幅と予め設定した薄型基板部幅閾値とを比較して前記薄型基板部の幅が前記薄型基板部幅閾値より大きい場合には前記対象スロットには前記薄型基板が2枚以上挿入されていると判断して終了し、そうでない場合には前記対象スロットには前記前記薄型基板が1枚正常挿入されていると判断して終了するステップと、を有して前記キャリア内の前記薄型基板の格納状態を検出する
    ことを特徴とする薄型基板検出方法。
  13. 記2次微分分布を求めるステップの後段に、
    前記2次微分分布を正規化するステップを有して前記キャリア内の前記薄型基板の格納状態を検出する
    ことを特徴とする請求項12記載の薄型基板検出方法。
JP2003164660A 2003-06-10 2003-06-10 薄型基板検出方法 Expired - Fee Related JP4196335B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164660A JP4196335B2 (ja) 2003-06-10 2003-06-10 薄型基板検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164660A JP4196335B2 (ja) 2003-06-10 2003-06-10 薄型基板検出方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008210128A Division JP4618458B2 (ja) 2008-08-18 2008-08-18 薄型基板検出装置

Publications (2)

Publication Number Publication Date
JP2005005347A JP2005005347A (ja) 2005-01-06
JP4196335B2 true JP4196335B2 (ja) 2008-12-17

Family

ID=34091372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164660A Expired - Fee Related JP4196335B2 (ja) 2003-06-10 2003-06-10 薄型基板検出方法

Country Status (1)

Country Link
JP (1) JP4196335B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5185756B2 (ja) 2008-10-01 2013-04-17 川崎重工業株式会社 基板検出装置および方法
CN110797277B (zh) * 2018-08-01 2022-05-27 北京北方华创微电子装备有限公司 硅片位置检测方法及装置、半导体加工设备

Also Published As

Publication number Publication date
JP2005005347A (ja) 2005-01-06

Similar Documents

Publication Publication Date Title
US8121400B2 (en) Method of comparing similarity of 3D visual objects
US6167150A (en) Method and apparatus for detecting extended defects in an object
US11842481B2 (en) Defect offset correction
CN113808131B (zh) 一种连接器缺陷识别方法及系统及装置及介质
JP2010258004A (ja) 欠陥検査方法、欠陥検査装置、欠陥検査プログラム、及びそのプログラムを記録した記録媒体
JP5123244B2 (ja) 形状欠損検査装置、形状モデリング装置および形状欠損検査プログラム
US6880758B2 (en) System and method for identifying object information
CN115272199A (zh) 一种pcb载板缺陷检测方法、系统、电子设备及介质
US20090080762A1 (en) Appearance for inspection method
JP4196335B2 (ja) 薄型基板検出方法
CN114332012A (zh) 缺陷检测方法、装置、设备及计算机可读存储介质
KR101397905B1 (ko) 매체이미지 검출장치 및 방법, 그리고 그를 이용한매체취급시스템
JP4618458B2 (ja) 薄型基板検出装置
CN117293048A (zh) 一种晶圆状态检测方法、可存储介质和晶圆传输装置
CN116563298A (zh) 基于高斯拟合的十字线中心亚像素检测方法
CN114166171B (zh) 晶体缺陷的检测方法与检测装置
JP2010091525A (ja) 電子部品のパターンマッチング方法
US20060238751A1 (en) Method of detecting an edge bead removal line on a wafer
CN117495858B (zh) 皮带偏移的检测方法、系统、设备和介质
JP3608923B2 (ja) 欠陥検査装置用蛇行追従装置及び欠陥検査装置
WO2021143700A1 (zh) 生物芯片的数据处理方法、装置、终端及可读介质
CN107730708B (zh) 一种判别纸币真伪方法、设备及存储介质
JP5602467B2 (ja) 中心位置決定方法および中心位置決定装置
US8526709B2 (en) Methods and apparatus for detecting multiple objects
KR101428054B1 (ko) 매체이미지 검출장치 및 방법, 그리고 그를 이용한매체취급시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141010

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees