JP4193885B2 - Multi-chip mounting method - Google Patents

Multi-chip mounting method Download PDF

Info

Publication number
JP4193885B2
JP4193885B2 JP2006203115A JP2006203115A JP4193885B2 JP 4193885 B2 JP4193885 B2 JP 4193885B2 JP 2006203115 A JP2006203115 A JP 2006203115A JP 2006203115 A JP2006203115 A JP 2006203115A JP 4193885 B2 JP4193885 B2 JP 4193885B2
Authority
JP
Japan
Prior art keywords
chip
adhesive
adhesive layer
electrodes
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006203115A
Other languages
Japanese (ja)
Other versions
JP2006287269A (en
Inventor
功 塚越
宏治 小林
和也 松田
直樹 福嶋
遵一 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006203115A priority Critical patent/JP4193885B2/en
Publication of JP2006287269A publication Critical patent/JP2006287269A/en
Application granted granted Critical
Publication of JP4193885B2 publication Critical patent/JP4193885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body

Description

本発明は基板へのマルチチップ実装法に関する。   The present invention relates to a multichip mounting method on a substrate.

半導体チップや電子部品の小型薄型化に伴い、これらに用いる回路や電極は高密度、高精細化している。このような微細電極の接続は、半田による接続が難しいため、最近では接着剤を用いる方法が多用されるようになってきた。この場合、接着剤中に導電粒子を配合し圧着して接着剤の厚み方向に電気的接続を得るもの(例えば特開昭55−104007号公報)と、導電粒子を用いないで接続時に圧着して電極面の微細凹凸の直接接触により電気的接続を得るもの(例えば特開昭60−262430号公報)がある。これらの接着剤を用いた接続方式は、比較的低温で接続が可能であり、接続部はフレキシブルなことから信頼性に優れ、加えてフィルム状もしくはテープ状接着剤を用いた場合、一定厚みの長尺状で供給可能なことから実装ラインの自動化が図れ、あるいは加熱加圧といった簡単な工程でチップと基板の電極の電気的接続に加え両者を接着接合し機械的な固定が同時に得られること等から注目されている。近年、上記方式を発展させて多数のチップ類を、比較的小形の基板に高密度に実装するマルチチップモジュ−ル(MCM)が注目されている。この場合、まず接着剤層を基板に形成した後、セパレータのある場合にはこれを剥離し、次いで基板電極とチップ電極を対向配置して位置合わせし接着接合することが一般的である。接着剤層をチップ側に形成することは、基板に比べて小さなチップ面積に形成する必要性から装置的に複雑となるため検討が進んでいない。MCMに用いるチップ類としては、半導体チップ、能動素子、受動素子、抵抗、コンデンサなどの多種類(以下チップ類と称す)がある。
特開昭55−104007号公報 特開昭60−262430号公報 特公昭61−27902号公報 特公平4−30742号公報 特開昭63−276237号公報 特開平2−199847号公報
With the miniaturization and thinning of semiconductor chips and electronic components, the circuits and electrodes used for these have become denser and higher definition. Since connection of such a fine electrode is difficult by soldering, recently, a method using an adhesive has been frequently used. In this case, the conductive particles are mixed in the adhesive and pressure-bonded to obtain electrical connection in the thickness direction of the adhesive (for example, Japanese Patent Application Laid-Open No. 55-104007). In some cases, electrical connection is obtained by direct contact of fine irregularities on the electrode surface (for example, JP-A-60-262430). The connection method using these adhesives can be connected at a relatively low temperature, and since the connection part is flexible, it is excellent in reliability. In addition, when using a film-like or tape-like adhesive, it has a certain thickness. Since it can be supplied in a long shape, the mounting line can be automated, or a simple process such as heat and pressure can be used to achieve mechanical fixation at the same time by bonding and bonding the chip and substrate electrodes together. Etc. are attracting attention. In recent years, a multi-chip module (MCM) has been attracting attention by developing the above-described method and mounting a large number of chips on a relatively small substrate at high density. In this case, it is common to first form an adhesive layer on the substrate, then peel off the separator, if any, and then place the substrate electrode and the chip electrode facing each other and align and bond them together. The formation of the adhesive layer on the chip side has not been studied because it is complicated in terms of apparatus because it needs to be formed in a smaller chip area than the substrate. As chips used for MCM, there are many types (hereinafter referred to as chips) such as a semiconductor chip, an active element, a passive element, a resistor, and a capacitor.
Japanese Patent Laid-Open No. 55-104007 JP 60-262430 A Japanese Examined Patent Publication No. 61-27902 Japanese Patent Publication No. 4-30742 JP-A 63-276237 Japanese Patent Laid-Open No. 2-199847

MCMに用いるチップ類は多種類であり、それに応じてチップサイズ(面積、高さ)は多くの種類となる。そのため基板への接続の際、接着剤層の基板への形成法や、基板との熱圧着法などで従来にない問題が生じている。すなわち接着剤がフィルム状の場合、接着剤の幅(テープ幅)はチップサイズ毎に異なるものが必要である。しかしながら、MCMは小形基板に高密度に複数のチップ類を実装するため、実装時のスペ−スが少なく多種類のテープ幅の採用は困難である。また、テープ幅が多品種となり材料管理が大変なことや、実装装置もテープ幅毎に駆動、圧着、巻取りなどの各装置が必要なため大掛かりとなり、設置スペ−スが大きくなることや高価となる等の不都合を生じる。そのため、接着剤層を基板の全面に形成した後、各種サイズのチップを実装することが試みられている(特公昭61−27902号公報)が、非接続部の残余接着剤の除去処理が面倒なことに加え、接着剤層を実装部以外に過剰に用いるため、コストアップを招く欠点がある。また、基板の全面に接着剤が形成されているので、接続時の熱が隣接するチップ搭載部に影響するため、例えば熱硬化型接着剤の反応が促進されて隣接部のチップ搭載前の接着剤が使用不能な状態になったり、チップ搭載後も接続温度による接着剤の軟化による隣接チップの接続不良を招きやすい。これはまた、チップ搭載後の不良チップの除去の際にもいえ、熱硬化型接着剤の反応により不良チップは剥がし難く接着剤の除去が困難である。他方、チップと略同一大きさの接着剤層を形成する試みとして、ウェハ状態で接着剤層を形成しフルダイシングする試みが、例えば特公平4−30742号公報に見られるが、この場合もチップの種類毎に異なる多種類のウェハを接着剤付で準備することは、接着剤の保存性に寿命があることや工程管理が複雑である等の欠点を有している。またチップの突起電極(バンプともいう)の頂上部の先端のみに接着剤を形成し接続可能なピッチを向上する試みが特開昭63−276237号公報や特開平2−199847号公報等に見られるが、これらはいずれも突起電極の頂上部のみに接着剤を形成するものであり、基板との接着面積が突起電極の近傍のみであり接着力が弱く接続信頼性も不十分である。この対策として突起電極の頂上部以外に接着剤を形成するには、アンダーフィル材を注入するなどの手段が別途必要なため工程が増加しコスト高となる。さらにチップ高さの異なる場合や基板の両面に実装する場合、従来一般的に行われていた平行設置された金型を圧締するプレス法や、平行設置された加圧ロール法などでは、加熱加圧が均一に行われず、微細電極の接続が不可能である。本発明は上記欠点に鑑みなされたもので、新しいマルチチップ実装法を提供するものである。   There are many types of chips used for MCM, and there are many types of chip sizes (area, height) accordingly. For this reason, unprecedented problems are caused by the method of forming the adhesive layer on the substrate and the method of thermocompression bonding with the substrate when connecting to the substrate. That is, when the adhesive is in the form of a film, the adhesive width (tape width) must be different for each chip size. However, since MCM mounts a plurality of chips at a high density on a small substrate, there is little space for mounting and it is difficult to employ various tape widths. In addition, there are many types of tape widths and material management is difficult, and the mounting equipment requires each device such as driving, crimping, and winding for each tape width, which increases the installation space and increases the cost. This causes inconveniences such as For this reason, it has been attempted to mount chips of various sizes after forming an adhesive layer on the entire surface of the substrate (Japanese Patent Publication No. 61-27902), but the process of removing the remaining adhesive in the non-connection portion is troublesome. In addition, since the adhesive layer is excessively used for parts other than the mounting portion, there is a disadvantage that the cost is increased. In addition, since the adhesive is formed on the entire surface of the substrate, the heat at the time of connection affects the adjacent chip mounting part. For example, the reaction of the thermosetting adhesive is promoted and the adjacent part is mounted before mounting the chip. It becomes easy to cause the connection failure of the adjacent chip due to the adhesive becoming soft due to the connection temperature even after the chip is mounted or the adhesive becomes unusable. This is also true when removing a defective chip after mounting the chip, and it is difficult to remove the adhesive due to the reaction of the thermosetting adhesive, making it difficult to remove the defective chip. On the other hand, as an attempt to form an adhesive layer of approximately the same size as the chip, an attempt to form an adhesive layer in a wafer state and perform full dicing can be found in, for example, Japanese Patent Publication No. 4-30742. Preparing various types of wafers with different adhesives for each type has drawbacks such as a long life in the storage stability of the adhesive and complicated process management. Attempts to improve the pitch by which an adhesive can be formed only at the tip of the top of the protruding electrode (also referred to as a bump) of the chip can be found in Japanese Patent Laid-Open Nos. 63-276237 and 2-199847. However, both of them form an adhesive only on the top of the protruding electrode, the bonding area with the substrate is only in the vicinity of the protruding electrode, the bonding force is weak, and the connection reliability is insufficient. As a countermeasure against this, in order to form an adhesive other than the top of the protruding electrode, additional means such as injecting an underfill material is required, which increases the number of processes and increases the cost. In addition, when the chip height is different or when mounting on both sides of the substrate, the heating method is generally used in the conventional press method that presses the molds installed in parallel and the pressure roll method installed in parallel. Pressurization is not performed uniformly, and connection of fine electrodes is impossible. The present invention has been made in view of the above disadvantages, and provides a new multichip mounting method.

本発明は、[1]下記工程よりなるマルチチップ実装法である。
(1)硬化性材料からなるフィルム状接着剤層を用い、チップの電極形成面の大きさと略同一面積のフィルム状接着剤層を前記チップの電極面に形成してなる複数の接着剤付チップを、前記チップの前記電極形成面に前記フィルム状接着剤層を形成した前記接着剤付チップを前記接着剤層によりセパレータ上に貼着してなる接着剤付チップ連として得る工程、
(2)接続すべき複数の接着剤付チップの電極と基板の電極を対向させて、それぞれ位置合わせする工程、
(3)電極の位置合わせを終了した複数のチップの電極と基板の電極を、接続すべき電極間で同時に加熱圧着し、同一基板に複数のチップの電気的接続を得る工程。
また、本発明は、[2]下記工程よりなるマルチチップ実装法である。
(1)硬化性材料からなるフィルム状接着剤層を用い、チップの電極形成面の大きさと略同一面積のフィルム状接着剤層を前記チップの電極面に形成してなる複数の接着剤付チップを、前記チップの前記電極形成面に前記フィルム状接着剤層を形成した前記接着剤付チップを前記接着剤層によりセパレータ上に貼着してなる接着剤付チップ連として得る工程、
(2)接続すべき複数の接着剤付チップの電極と基板の電極を対向させて、それぞれ位置合わせする工程、
(3)電極の位置合わせを終了した複数のチップの電極と基板の電極を、接着剤の反応率が30%以下となるよう接続すべき電極間で加熱圧着し、電極間の電気的接続を検査する工程、
(4)検査し、不良の場合、チップを剥離し、新規のチップで同様の接続を行う工程、
(5)電気的接続を検査したチップの電極と基板の電極を、接続すべき電極間で硬化剤の活性温度以上で同時に加熱圧着し、同一基板に複数のチップの電気的接続を得る工程。
また、本発明は、[3]チップと基板の加熱圧着を密閉容器内の静水圧下で行う上記[1]または上記[2]に記載のマルチチップ実装法である。
た、本発明は、[]接着剤付チップは、セパレータ上に形成してなる接着剤層をチップの電極面に接触させ、チップの背面より加熱してチップサイズに沿った接着剤層の凝集力低下ラインを形成し、チップと略同一大きさの接着剤層をセパレータより剥離してチップに転着させたものである上記[1]ないし上記[3]のいずれかに記載のマルチチップ実装法である。
また、本発明は、[]接着剤付チップは、セパレータ上に形成してなる接着剤層をチップの電極面に接触させ、チップの背面より加圧しながらチップ外形状に沿った切断ジグで接着剤層の少なくとも厚み方向の一部を切断し、チップと略同一大きさの接着剤層をチップに転着させたものである上記[1]ないし[3]のいずれかに記載のマルチチップ実装法である。
The present invention is [1] a multichip mounting method comprising the following steps.
(1) using a film-like adhesive layer composed of a curable material, a plurality of attached adhesive agent obtained by forming a film-like adhesive layer of the size substantially the same area of the electrode forming surface of the chip on the electrode surface before SL chip A step of obtaining a chip as an adhesive-attached chip formed by adhering the chip with adhesive formed on the electrode-forming surface of the chip on the separator with the adhesive layer ;
(2) A step of aligning the electrodes of the plurality of adhesive-attached chips to be connected to the electrodes of the substrate, respectively,
(3) A step of simultaneously heat-pressing the electrodes of the plurality of chips and the electrodes of the substrate that have completed the alignment of the electrodes between the electrodes to be connected to obtain electrical connection of the plurality of chips to the same substrate.
The present invention is also [2] a multichip mounting method comprising the following steps.
(1) using a film-like adhesive layer composed of a curable material, a plurality of attached adhesive agent obtained by forming a film-like adhesive layer of the size substantially the same area of the electrode forming surface of the chip on the electrode surface before SL chip A step of obtaining a chip as an adhesive-attached chip formed by adhering the chip with adhesive formed on the electrode-forming surface of the chip on the separator with the adhesive layer ;
(2) A step of aligning the electrodes of the plurality of adhesive-attached chips to be connected to the electrodes of the substrate, respectively,
(3) The electrodes of the plurality of chips and the electrodes of the substrate, which have been aligned, are thermocompression bonded between the electrodes to be connected so that the reaction rate of the adhesive is 30% or less, and the electrical connection between the electrodes is established. Inspection process,
(4) Inspecting and, if defective, peeling the chip and making a similar connection with a new chip,
(5) A step of obtaining the electrical connection of a plurality of chips on the same substrate by simultaneously press-bonding the electrode of the chip inspected for electrical connection and the electrode of the substrate between the electrodes to be connected at or above the activation temperature of the curing agent.
Further, the present invention is [3] the multichip mounting method according to [1] or [2] above, wherein the thermocompression bonding between the chip and the substrate is performed under hydrostatic pressure in a sealed container.
Also, the present invention is [4] chip with adhesive, the adhesive layer obtained by forming on the separator is brought into contact with the electrode surface of the chip, the adhesive layer along the chip size by heating from the back of the chip A cohesive force lowering line is formed, and an adhesive layer having approximately the same size as the chip is peeled off from the separator and transferred to the chip. [1] to [3] This is a chip mounting method.
In addition, the present invention provides a [ 5 ] chip with an adhesive by using a cutting jig along the outer shape of the chip while bringing the adhesive layer formed on the separator into contact with the electrode surface of the chip and applying pressure from the back surface of the chip. The multichip according to any one of the above [1] to [3], wherein at least part of the adhesive layer in the thickness direction is cut and an adhesive layer having approximately the same size as the chip is transferred to the chip. Implementation method.

本発明によれば、サイズの異なるチップの電極面に正確に接着剤を形成することが出来るとともに、サイズの異なる複数のチップを一度に実装することができるので、効率よくMCMの製造が可能になった。   According to the present invention, an adhesive can be accurately formed on the electrode surfaces of chips having different sizes, and a plurality of chips having different sizes can be mounted at a time, so that MCM can be efficiently manufactured. became.

以下本発明を実施例を示した図面を参照しながら説明する。図1は、本発明の一実施例を説明する断面模式図である。図1(a)は熱圧着装置の一部であり、例えば吸着等でチップ1を固定可能な加熱ヘッド2と、定盤3の間に、接着剤層4とセパレータ5からなる接着テープ6が存在する。ここに接着剤層4はチップ1の電極形成面と相対するように配置する。また接着テープ6は定盤3に吸着等で密着され、あるいは定盤3の前後のロール等(図示してない)で張力をかけた状態で走行可能としてもよい。また接着剤層4はセパレータ5から剥離可能であり、セパレータ5の密着や張力による固定で一層容易となる。加熱ヘッド2と定盤3の間を加圧することで半導体チップ1の電極形成面に、これより大きな接着剤層4を接触させる。接着剤層4の大きさは、MCMに用いる複数のチップの中の最大チップのサイズを選択することが他のチップにも適用可能であり、また取り扱い易いことからも好ましい。このときチップの縦×横の小さい方を選択すると、テープ幅を小さくでき装置のスペ−スを小さくできるので好ましい。接着剤層4の幅(一般的にはテープ幅)は、図2(a)のようにチップサイズとほぼ同じ大きさや、図2(b)のようにチップサイズより若干大きめでもよいが不経済である。また、図2(c)のように2列以上に取り出すことも可能であり、これらは取り扱い性や量産性を考慮して選択する。図1(a)において、加熱ヘッド2は所定温度に加熱されているので、チップ1の電極形成面の背面より直接加熱され、チップサイズに沿った接着剤層が優先的に加熱される。この時チップ1の周辺接着剤は熱伝播が少なく、熱伝導性も低い接着剤のみなのでほとんど加熱されずにフィルム状を維持するが、チップ1に密着した接着剤層4は加熱により低粘度化しあるいは粘着性の増加によりチップ1に転着一体化しフィルム強度が向上する。したがってチップ1のサイズに沿った接着剤層4の凝集力低下ラインが形成される。この時ヘッド2の加熱温度は、接着剤層4が軟化流動し(好ましくは1000ポイズ以下、より好ましくは100〜10ポイズが目安)、かつ接着剤の硬化反応が開始しないか低位の状態(反応率20%以下が目安)とすることが好ましく、使用する接着剤系によって適宜選定する。ヘッド2の加熱温度は、後述する潜在性硬化剤の活性温度以下で行うことが、接着剤付チップの保存性が向上するのでさらに好ましい。   The present invention will be described below with reference to the drawings showing embodiments. FIG. 1 is a schematic sectional view for explaining one embodiment of the present invention. FIG. 1A is a part of a thermocompression bonding apparatus. For example, an adhesive tape 6 composed of an adhesive layer 4 and a separator 5 is interposed between a heating head 2 capable of fixing the chip 1 by adsorption or the like and a surface plate 3. Exists. Here, the adhesive layer 4 is disposed so as to face the electrode forming surface of the chip 1. The adhesive tape 6 may be brought into close contact with the surface plate 3 by suction or the like, or may be able to run in a state where tension is applied by rolls (not shown) before and after the surface plate 3. Further, the adhesive layer 4 can be peeled off from the separator 5, and it becomes easier by fixing the separator 5 by adhesion or tension. By pressing between the heating head 2 and the surface plate 3, the adhesive layer 4 larger than this is brought into contact with the electrode forming surface of the semiconductor chip 1. The size of the adhesive layer 4 is preferable because selection of the maximum chip size among a plurality of chips used in the MCM can be applied to other chips and is easy to handle. At this time, it is preferable to select the smaller of the vertical and horizontal sides of the chip because the tape width can be reduced and the space of the apparatus can be reduced. The width of the adhesive layer 4 (generally the tape width) may be almost the same as the chip size as shown in FIG. 2A, or slightly larger than the chip size as shown in FIG. It is. Further, it is possible to take out two or more rows as shown in FIG. 2C, and these are selected in consideration of handling property and mass productivity. In FIG. 1A, since the heating head 2 is heated to a predetermined temperature, it is heated directly from the back surface of the electrode forming surface of the chip 1 and the adhesive layer along the chip size is preferentially heated. At this time, the adhesive around the chip 1 has little heat propagation and low thermal conductivity, so the film is kept almost unheated. However, the adhesive layer 4 adhered to the chip 1 is reduced in viscosity by heating. Alternatively, the film strength is improved by transferring and integrating with the chip 1 due to the increase in adhesiveness. Therefore, a cohesive force decreasing line of the adhesive layer 4 along the size of the chip 1 is formed. At this time, the heating temperature of the head 2 is such that the adhesive layer 4 softens and flows (preferably 1000 poise or less, more preferably 100 to 10 poise), and the adhesive curing reaction does not start or is in a low state (reaction) The rate is preferably 20% or less, and is appropriately selected depending on the adhesive system used. It is more preferable that the heating temperature of the head 2 is not higher than the activation temperature of the latent curing agent described later, since the storage stability of the chip with adhesive is improved.

図1(b)は、加熱ヘッド2を定盤3から離した図であるが、チップ1のサイズに沿った接着剤層の凝集力低下ラインによりチップ1と略同一大きさの接着剤層4をチップ1に転着形成できる。定盤3上の接着剤層4は、チップ1に転着した接着剤層4が抜けた形で存在するが、残存する接着剤層4やセパレータ5によりフィルム形状を保っており、除去もしくは走行移動する事で新しい接着面を定盤3上に載置可能である。図1の場合、接着剤層4をセパレータ5から剥離した接着剤付チップが得られるので、そのまま基板に接続して連続的なMCM化が可能である。保存時には、接着剤面にセパレータを再度形成してもよい。図1において、あらかじめテープ上に各種チップを仮接続などにより載置しておくと、接着剤付チップとしてテープからチップを剥離する際にも有効に適用可能である。この場合、各種チップを順序だてて接着剤付チップとして連続的に供給できるので、生産性が高く有効である。   FIG. 1B is a view in which the heating head 2 is separated from the surface plate 3, but the adhesive layer 4 having approximately the same size as that of the chip 1 due to the cohesive force reduction line of the adhesive layer along the size of the chip 1. Can be formed on the chip 1 by transfer. The adhesive layer 4 on the surface plate 3 exists in a form in which the adhesive layer 4 transferred to the chip 1 is removed, but the film shape is maintained by the remaining adhesive layer 4 and the separator 5 and is removed or run. A new adhesive surface can be placed on the surface plate 3 by moving. In the case of FIG. 1, since a chip with an adhesive is obtained by peeling the adhesive layer 4 from the separator 5, it can be connected to the substrate as it is and can be made into a continuous MCM. At the time of storage, a separator may be formed again on the adhesive surface. In FIG. 1, if various chips are placed on the tape in advance by temporary connection or the like, the chip can be effectively applied as a chip with an adhesive when the chip is peeled off from the tape. In this case, since various chips can be sequentially supplied and continuously supplied as chips with an adhesive, the productivity is high and effective.

図3は本発明の他の、接着剤付チップを得る一実施例を説明する断面模式図である。図3は圧着装置の一部を示し、チップ1を吸着等で固定した加圧ヘッド8と定盤3の間を、接着剤層4とセパレータ5からなる接着テープ6が存在する。ここに接着テープ6は、定盤3に吸着等で密着され、あるいは定盤3の前後のロール等(図示してない)で張力をかけた状態で走行可能としてもよい。加圧ヘッド8には切断ジグ7が配設されている。切断ジグ7の刃は、チップ1のサイズに沿って周囲に形成するが、テープ幅とチップサイズが略同等な場合には2辺であってもよい。切断ジグ7により接着剤層4の少なくとも厚み方向の一部もしくは全層を切断し、チップ1と略同一大きさの接着剤層4をチップ1に付着形成する。この時加圧ヘッド8は、加熱しない状態でもよく、この場合室温作業が可能なことから熱による接着剤のトラブル防止ができる。また所定温度に加熱されていると図1の熱の場合との相乗効果により、作業条件幅の拡大が可能となることや、接着剤層4の粘着性の増加が得られるのでさらに好ましい。切断ジグ7は金属やセラミックス等の刃物や、熱、紫外線、レ−ザ等のエネルギ−線を用いることが可能である。切断ジグ7が刃物であり押し圧切断する場合の高さすなわちチップ1の接続面からの距離は、接着剤層4もしくはセパレータ5への切り込み深さを考慮して決定するが、接着剤層4を全層切断することが接着剤層4から接着剤付チップを分離しやすい事から好ましい。この場合、切断ジグ7を加圧ヘッド8に収納可能とし、上下動可能の機構とすることで、連続生産性が向上する。図1や3において、図4のように定盤3とセパレータ5の間にゴム等のクッション層11を載置することで、さらにチップサイズの外周エッヂに沿った大きさの接着剤付チップの入手が容易となりさらに好ましい。   FIG. 3 is a schematic cross-sectional view illustrating another embodiment of the present invention for obtaining a chip with an adhesive. FIG. 3 shows a part of the crimping apparatus, and an adhesive tape 6 composed of an adhesive layer 4 and a separator 5 exists between the pressure head 8 and the surface plate 3 on which the chip 1 is fixed by suction or the like. Here, the adhesive tape 6 may be brought into close contact with the surface plate 3 by suction or the like, or may be able to run in a state where tension is applied by rolls before and after the surface plate 3 (not shown). A cutting jig 7 is disposed on the pressure head 8. The blades of the cutting jig 7 are formed around the size of the chip 1, but may be two sides if the tape width and the chip size are substantially equal. A part or all of the adhesive layer 4 in the thickness direction is cut by the cutting jig 7, and the adhesive layer 4 having approximately the same size as the chip 1 is attached to the chip 1. At this time, the pressure head 8 may be in a state where it is not heated. In this case, since the room temperature operation is possible, trouble of the adhesive due to heat can be prevented. Further, heating to a predetermined temperature is more preferable because the working condition width can be expanded and the adhesiveness of the adhesive layer 4 can be increased due to a synergistic effect with the case of the heat in FIG. The cutting jig 7 can use a cutting tool such as metal or ceramics, or an energy beam such as heat, ultraviolet light, or laser. The height when the cutting jig 7 is a blade and is cut by pressing, that is, the distance from the connection surface of the chip 1 is determined in consideration of the depth of cut into the adhesive layer 4 or the separator 5, but the adhesive layer 4 Is preferable because the chip with adhesive is easily separated from the adhesive layer 4. In this case, continuous productivity is improved by making the cutting jig 7 storable in the pressure head 8 and making it a mechanism that can move up and down. 1 and 3, by placing a cushion layer 11 of rubber or the like between the surface plate 3 and the separator 5 as shown in FIG. 4, the chip with adhesive having a size along the outer edge of the chip size is further provided. It is more preferable because it is easily available.

以上により得られた接着剤付チップについて、図5〜6を用いて説明する。いずれもチップと略同一面積のフィルム状接着剤が、電極部(図示してない)を覆ってチップの電極面の全面に存在している。図5の(a)は、接着剤付チップの基本構成であり、半導体チップ1と接着剤層4が同一の大きさである。(b)〜(c)は半導体チップ1に比べ若干の大小がある場合で、基板との接続後の最適接着剤量の調節のために有効である。大小の範囲としては、チップサイズ±30%程度とすることが接着剤付チップの形状安定性から好ましく、同一の大きさとすることがより好ましい。本発明ではこれら(a)〜(c)を含めて、半導体チップと略同一大きさと表現する。(d)は接着剤層4にセパレータ5が形成されている場合であり、保存時に接着剤面に塵埃などの付着防止の点から好ましい。図6の(a)〜(b)は突起電極12のあるチップの場合であり、(c)は突起電極のないチップの場合である。また(a)(b)は接着剤に導電粒子14を含有する場合であり、(c)は導電粒子を含有ない場合である。図6のこれら突起電極や導電粒子の有無は交互に組み合わせ可能である。図7(a)は、接着剤付チップの応用構成であり、チップと略同一大きさのフィルム状接着剤がチップの電極形成面の全面を覆って存在してなる接着剤付チップの複数個が独立して、セパレータ上に形成された接着剤付チップ連であり、連続したテープ状として巻き重ねることもできる。また、図7(b)のように、接着剤層4はチップサイズに沿った形で独立してセパレ−タ5上に形成することもできる。これらの場合、各種チップを例えば基板への搭載順に順序だててセパレータ上に形成しておくことで、接着剤付チップが連続的に供給できるので、生産性が高く有効である。以上よりなる接着剤付チップは、シングルチップ実装にも適用可能であるが、これを用いたマルチチップ実装法を以下に示す。まず、接続すべき接着剤付チップの電極と基板の電極を、顕微鏡や画像記憶装置を用いて位置合わせする。このとき位置合わせマークの併用も有効である。次いで、接続すべき電極間で加熱加圧し、同一基板に対し複数のチップの導電接続を得る。加熱加圧の条件としては、多数個同時に圧着すると、生産性の向上に有効である。加熱加圧の方法として通常のプレスによる他に、オートクレーブ等を用いた静水圧による方法も、特にチップの厚みや大きさが異なる場合の均一加熱加圧法として有効である。本発明でいう静水圧とは、物体の外部表面に垂直に一定の圧力が作用する状態をいう。ここで一般的にチップ面積が2〜20mm角であるのに対し接続部の厚みは1mm以下、多くは0.1mm以下と、圧倒的にチップ面積が大きく電極接続方向の圧力が得られる。加熱加圧時に、接続すべき電極間で導通検査を行うことも可能である。接着剤は、未硬化あるいは硬化反応の不十分な状態で導通検査可能なのでリペア作業が容易である。このとき接着剤の反応率は30%程度以下で検査を行うことが溶剤に対するリペア作業と両立しやすく好ましい。また接着剤の反応率が10%未満の場合は電極の固定が不十分なので加圧を併用することが好ましい。以上で図8に示すような、複数の各種形状やサイズのチップ類1を接着剤層4を用いて、比較的小形の基板9に高密度に実装するマルチチップモジュール(MCM)が得られる。本発明が適用できる基板9としては、ポリイミドやポリエステル等のプラスチックフィルム、ガラス繊維/エポキシ等の複合体、シリコン等の半導体、ガラスやセラミックス等の無機質基板等を例示できる。   The chip | tip with an adhesive agent obtained by the above is demonstrated using FIGS. In any case, a film adhesive having substantially the same area as the chip is present on the entire surface of the electrode surface of the chip so as to cover an electrode portion (not shown). (A) of FIG. 5 is a basic structure of the chip | tip with an adhesive agent, and the semiconductor chip 1 and the adhesive bond layer 4 are the same magnitude | sizes. (B) to (c) are slightly larger than the semiconductor chip 1 and are effective for adjusting the optimum adhesive amount after connection to the substrate. The size range is preferably about chip size ± 30% from the shape stability of the chip with adhesive, and more preferably the same size. In the present invention, these (a) to (c) are included and expressed as substantially the same size as the semiconductor chip. (D) is a case where the separator 5 is formed in the adhesive layer 4, and is preferable from the viewpoint of preventing adhesion of dust or the like to the adhesive surface during storage. 6A to 6B show the case of a chip having a protruding electrode 12, and FIG. 6C shows the case of a chip without a protruding electrode. Moreover, (a) and (b) are the cases where the adhesive contains the conductive particles 14, and (c) is the case where the conductive particles are not included. The presence or absence of these protruding electrodes and conductive particles in FIG. 6 can be combined alternately. FIG. 7A shows an application configuration of a chip with an adhesive, and a plurality of chips with an adhesive, in which a film-like adhesive having approximately the same size as the chip covers the entire surface of the chip on which electrodes are formed. Is independently a chip series with an adhesive formed on a separator, and can be wound as a continuous tape. Further, as shown in FIG. 7B, the adhesive layer 4 can be formed on the separator 5 independently along the chip size. In these cases, by forming various chips on the separator in the order of mounting on the substrate, for example, the chips with adhesive can be continuously supplied, so that productivity is high and effective. The above chip with adhesive can be applied to single chip mounting. A multichip mounting method using the chip will be described below. First, the electrode of the chip with adhesive to be connected and the electrode of the substrate are aligned using a microscope or an image storage device. At this time, the use of the alignment mark is also effective. Next, heat and pressure are applied between the electrodes to be connected to obtain a conductive connection of a plurality of chips to the same substrate. As a condition for heating and pressurizing, it is effective to improve productivity if a plurality of pieces are pressed at the same time. In addition to using a normal press as a heating and pressing method, a method using hydrostatic pressure using an autoclave or the like is also effective as a uniform heating and pressing method particularly when the thickness and size of the chips are different. The hydrostatic pressure as used in the field of the present invention refers to a state in which a constant pressure acts on the external surface of an object perpendicularly. Here, although the chip area is generally 2 to 20 mm square, the thickness of the connection portion is 1 mm or less, and most is 0.1 mm or less, so that the chip area is overwhelmingly large and pressure in the electrode connection direction can be obtained. It is also possible to conduct a continuity test between the electrodes to be connected during heating and pressing. Since the adhesive can be inspected for continuity in an uncured state or in an insufficient curing reaction, the repair work is easy. At this time, it is preferable that the reaction rate of the adhesive is about 30% or less because it is easy to achieve a repair work for the solvent. Further, when the reaction rate of the adhesive is less than 10%, it is preferable to use pressurization in combination because the electrode is not sufficiently fixed. As described above, a multi-chip module (MCM) is obtained in which a plurality of chips 1 having various shapes and sizes are mounted on a relatively small substrate 9 with high density using the adhesive layer 4 as shown in FIG. Examples of the substrate 9 to which the present invention can be applied include plastic films such as polyimide and polyester, composites such as glass fiber / epoxy, semiconductors such as silicon, inorganic substrates such as glass and ceramics, and the like.

本発明に用いる接着剤層4は、熱可塑性材料や、熱や光により硬化する材料が広く適用できる。これらは接続後の耐熱性や耐湿性に優れることから、硬化性材料の適用が好ましい。なかでも潜在性硬化剤を含有したエポキシ系接着剤や過酸化物などのラジカル系硬化剤を含有したアクリル系接着剤は、短時間硬化が可能で接続作業性がよく、分子構造上接着性に優れるので特に好ましい。潜在性硬化剤は、熱や圧力による反応開始の活性点が比較的明瞭であり、熱や圧力工程を伴う本発明に好適である。潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、アミンイミド、ポリアミンの塩、オニウム塩、ジシアンジアミドなど、及びこれらの変性物があり、これらは単独または2種以上の混合体として使用出来る。これらはアニオン又はカチオン重合型などのいわゆるイオン重合性の触媒型硬化剤であり、速硬化性を得やすく、また、化学当量的な考慮が少なくてよいことから好ましい。これらの中では、イミダゾール系のものが非金属系であり電食が発生しにくく、また、反応性や接続信頼性の点からとくに好ましい。硬化剤としてはその他に、ポリアミン類、ポリメルカプタン、ポリフェノール、酸無水物等の適用や前記触媒型硬化剤との併用も可能である。また硬化剤を核としその表面を高分子物質や、無機物で被覆したマイクロカプセル型硬化剤は、長期保存性と速硬化性という矛盾した特性の両立が可能である。本発明に用いられる接着剤の硬化剤の活性温度は、40〜200℃が好ましい。40℃未満であると室温との温度差が少なく保存に低温が必要であり、200℃を越すと接続時に他の部材に熱影響を与えるためであり、このような理由から50〜150℃がより好ましい。本発明でいう活性温度は、DSC(示差走査熱量計)を用いて、エポキシ樹脂と硬化剤の配合物を試料として、室温から10℃/分で昇温させた時の発熱ピーク温度で示す。活性温度は、低温側であると反応性に勝るが保存性が低下する傾向にあるので、これらを考慮して決定する。本発明において、硬化剤の活性温度以下の熱処理により接着剤付チップの保存性が向上し、活性温度以上で良好なマルチチップの接続が得られる。従って硬化剤の活性温度以下で、凝集力低下ラインが形成されるように、溶融粘度を調節することが好ましい。   As the adhesive layer 4 used in the present invention, thermoplastic materials and materials that are cured by heat or light can be widely applied. Since these are excellent in heat resistance and moisture resistance after connection, application of a curable material is preferable. Among them, epoxy adhesives that contain latent curing agents and acrylic adhesives that contain radical curing agents such as peroxides can be cured in a short time, have good connection workability, and are adhesive in terms of molecular structure. It is particularly preferable because it is excellent. The latent curing agent has a relatively clear active point of reaction initiation due to heat and pressure, and is suitable for the present invention involving a heat and pressure process. As latent curing agents, there are imidazole series, hydrazide series, boron trifluoride-amine complex, amine imide, polyamine salt, onium salt, dicyandiamide, etc., and modified products thereof. These may be used alone or in combination of two or more. Can be used as a body. These are so-called ion polymerizable catalyst-type curing agents such as anion or cation polymerization type, and are preferable because they are easy to obtain fast curability and require less chemical equivalent consideration. Among these, imidazole-based compounds are non-metallic, are less likely to cause electrolytic corrosion, and are particularly preferable in terms of reactivity and connection reliability. In addition, polyamines, polymercaptans, polyphenols, acid anhydrides, and the like can be used as the curing agent, and the catalyst-type curing agent can be used in combination. In addition, a microcapsule type curing agent having a curing agent as a core and a surface coated with a polymer substance or an inorganic substance can achieve both contradictory properties of long-term storage and rapid curing. As for the active temperature of the hardening | curing agent of the adhesive agent used for this invention, 40-200 degreeC is preferable. If the temperature is lower than 40 ° C., the temperature difference from the room temperature is small and a low temperature is required for storage. If the temperature exceeds 200 ° C., other members are thermally affected at the time of connection. More preferred. The activation temperature in the present invention is indicated by an exothermic peak temperature when the temperature is raised from room temperature to 10 ° C./minute using a DSC (differential scanning calorimeter) as a sample of a mixture of an epoxy resin and a curing agent. The active temperature is determined in consideration of these because the low temperature side tends to have better reactivity but lower storage stability. In the present invention, the preservability of the chip with adhesive is improved by a heat treatment below the activation temperature of the curing agent, and good multichip connection is obtained above the activation temperature. Therefore, it is preferable to adjust the melt viscosity so that a cohesive force lowering line is formed below the curing agent activation temperature.

これら接着剤層4には、導電粒子や少量の絶縁粒子を添加することが、接着剤付チップの製造時の加熱加圧時に厚み保持材として作用するので好ましい。この場合、導電粒子や絶縁粒子の割合は、0.1〜30体積%程度であり、異方導電性とするには0.5〜15体積%である。接着剤層4は、絶縁層と導電層を分離形成した複数層の構成品も適用可能である。この場合、分解能が向上するため高密度な電極接続が可能となる。導電粒子としては、Au、Ag、Pt、Co、Ni、Cu、W、Sb、Sn、はんだ等の金属粒子やカーボン、黒鉛等があり、またこれら導電粒子を核材とするか、あるいは非導電性のガラス、セラミックス、プラスチック等の高分子等からなる核材に前記したような材質からなる導電層を被覆形成したものでよい。さらに導電材料を絶縁層で被覆してなる絶縁被覆粒子や、導電粒子とガラス、セラミックス、プラスチック等の絶縁粒子の併用等も分解能が向上するので適用可能である。導電粒子の粒径は、微小な電極上に1個以上、好ましくはなるべく多くの粒子数を確保するには、小粒径粒子が好適であり15μm以下、より好ましくは7〜1μmである。1μm未満では電極表面と接触し難い。また、導電材料は、均一粒子径であると電極間からの流出が少ないので好ましい。これら導電粒子の中では、プラスチック等の高分子核材に導電層を形成したものや、はんだ等の熱溶融金属が、加熱加圧もしくは加圧により変形性を有し、接続に回路との接触面積が増加し、信頼性が向上するので好ましい。特に高分子類を核とした場合、はんだのように融点を示さないので軟化の状態を接続温度で広く制御でき、電極の厚みや平坦性のばらつきに対応し易いので特に好ましい。また、例えばNiやW等の硬質金属粒子や、表面に多数の突起を有する粒子の場合、導電粒子が電極や配線パターンに食込むので、電極表面に酸化膜や汚染層の存在する場合にも低い接続抵抗が得られ、信頼性が向上するので好ましい。   It is preferable to add conductive particles and a small amount of insulating particles to these adhesive layers 4 because they act as a thickness maintaining material during heating and pressurization during the manufacture of the chip with adhesive. In this case, the ratio of conductive particles or insulating particles is about 0.1 to 30% by volume, and 0.5 to 15% by volume for anisotropic conductivity. As the adhesive layer 4, a multi-layer component in which an insulating layer and a conductive layer are separately formed can be applied. In this case, since the resolution is improved, high-density electrode connection is possible. Examples of the conductive particles include metal particles such as Au, Ag, Pt, Co, Ni, Cu, W, Sb, Sn, and solder, carbon, graphite, etc., and these conductive particles are used as a core material or non-conductive. A core material made of a polymer such as glass, ceramics, plastic, etc., coated with a conductive layer made of the above-described material may be used. Furthermore, insulating coating particles formed by coating a conductive material with an insulating layer, and combined use of conductive particles and insulating particles such as glass, ceramics, and plastics can be applied because the resolution is improved. The particle diameter of the conductive particles is preferably not less than 15 μm, more preferably 7 to 1 μm, in order to secure one or more, preferably as many particles as possible, on a minute electrode. If it is less than 1 μm, it is difficult to contact the electrode surface. In addition, it is preferable that the conductive material has a uniform particle size because there is little outflow from between the electrodes. Among these conductive particles, those in which a conductive layer is formed on a polymer core material such as plastic, and hot-melt metal such as solder are deformable by heating or pressurization, and contact with a circuit for connection This is preferable because the area is increased and the reliability is improved. In particular, when a polymer is used as a nucleus, it does not show a melting point like solder, so that the softening state can be widely controlled by the connection temperature, and it is easy to cope with variations in electrode thickness and flatness, which is particularly preferable. Also, for example, in the case of hard metal particles such as Ni and W, or particles having a large number of protrusions on the surface, the conductive particles will bite into the electrode or wiring pattern, so even when an oxide film or a contamination layer exists on the electrode surface This is preferable because a low connection resistance is obtained and reliability is improved.

本発明のマルチチップ実装法によれば、異なる大きさの必要サイズの接着剤付チップを基板に実装できるので小面積基板に多数のチップの実装が容易である。本発明によれば、各チップ毎に必要量の接着剤層が形成されたチップを用いることにより、チップサイズ毎に異なる接着テープを用いる場合に比べ、テープ幅は少ない種類ですみ、実装装置の簡略化が可能である。また、基板の全面に接着剤層を形成した場合に比べ、隣接するチップや接着剤への熱や圧力の影響がなく、不要な接着剤を使用しないので経済的である。本発明の好ましい実施態様によれば、接着剤に潜在性硬化剤を含有してなるので硬化剤の活性温度以下の熱処理により接着剤付チップが得られるので接着剤の保存性が向上し、活性温度以上でマルチチップの信頼性に優れた接続が得られる。本発明の静水圧によるマルチチップ実装法によれば、密閉容器内の圧力は一定であるので、多数枚のMCMを同時に処理可能なため量産効果が高い。また気体や液体での媒体加熱であるため高価な金型が不要であり、媒体の種類により、熱、湿気、嫌気性などの各種接着剤の適用が可能である。また接着剤の硬化に長時間が必要な場合も、一度の操作で多数作製可能である。本発明のマルチチップ実装法によれば、本格的に接着剤の硬化を行う前に導通検査を行うことが出来るので不良接続部を発見した時、接着剤は硬化反応の不十分な状態であり、チップの剥離や、その後のアセトン等の溶剤を用いた清浄化が極めて簡単であり、リペア作業が容易である。また、接着剤付チップをセパレータ上に形成した接着剤付チップ連は、基板への搭載順に形成可能であり、生産性の向上に有効である。接着剤付チップの製造法によれば、接着剤層がチップの加熱によりチップ近辺に凝集力低下ラインの形成が容易であり、また接着剤層をセパレータより剥離可能としたことにより、比較的容易にチップサイズの接着剤付チップが得られる。またこの温度を硬化剤の活性温度以下に設定することで、接着剤の保存性に影響を与えることなく安定して使用可能である。接着剤付チップの製造法によれば、極めて簡単なチップ形状に沿った切断ジグで接着剤層の少なくとも厚み方向の一部を切断することで比較的容易にチップサイズの接着剤付チップが得られる。   According to the multichip mounting method of the present invention, chips with adhesives having different sizes can be mounted on the substrate, so that it is easy to mount a large number of chips on a small area substrate. According to the present invention, by using a chip in which a necessary amount of adhesive layer is formed for each chip, the tape width is smaller than when using a different adhesive tape for each chip size. Simplification is possible. Further, compared to the case where an adhesive layer is formed on the entire surface of the substrate, there is no influence of heat and pressure on adjacent chips and adhesives, and it is economical because unnecessary adhesives are not used. According to a preferred embodiment of the present invention, since a latent curing agent is contained in the adhesive, a chip with an adhesive can be obtained by a heat treatment not higher than the activation temperature of the curing agent, so that the storage stability of the adhesive is improved and the activity is improved. A connection with excellent reliability of the multichip can be obtained above the temperature. According to the multi-chip mounting method using hydrostatic pressure of the present invention, the pressure in the sealed container is constant, so that a large number of MCMs can be processed at the same time, so that mass production is highly effective. Further, since the medium is heated with a gas or liquid, an expensive metal mold is not required, and various adhesives such as heat, moisture and anaerobic can be applied depending on the type of medium. In addition, when a long time is required for curing the adhesive, a large number can be produced by one operation. According to the multi-chip mounting method of the present invention, a continuity test can be performed before the adhesive is fully cured, so that when the defective connection portion is found, the adhesive is in an insufficient curing reaction. The chip peeling and the subsequent cleaning with a solvent such as acetone are very simple and the repair work is easy. Moreover, the chip | tip series with an adhesive agent which formed the chip | tip with an adhesive agent on the separator can be formed in order of the mounting to a board | substrate, and is effective for the improvement of productivity. According to the manufacturing method of the chip with adhesive, the adhesive layer can be easily formed with a cohesive force lowering line near the chip by heating the chip, and the adhesive layer can be peeled off from the separator. A chip-sized chip with an adhesive is obtained. Further, by setting this temperature below the activation temperature of the curing agent, it can be used stably without affecting the storage stability of the adhesive. According to the method of manufacturing a chip with adhesive, a chip with adhesive of a chip size can be obtained relatively easily by cutting at least a part of the adhesive layer in the thickness direction with a cutting jig along a very simple chip shape. It is done.

以下実施例でさらに詳細に説明するが、本発明はこれに限定されない。
(実施例1)
(1)接着剤層の作製
フェノキシ樹脂(高分子量エポキシ樹脂)とマイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂(エポキシ当量185)の比率を30/70とし、酢酸エチルの30%溶液を得た。この溶液に、粒径3±0.2μmのポリスチレン系粒子にNi/Auの厚さ0.2/0.02μmの金属被覆を形成した導電性粒子を2体積%添加し混合分散した。この分散液をセパレータ(シリコーン処理ポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、100℃で、20分乾燥し、厚み20μmの接着フィルムを得た。この接着フィルムのDSCによる活性温度は120℃であり、硬化剤を除去したモデル配合の粘度をデジタル粘度計HV−8(株式会社レスカ製)により測定したところ、100℃における粘度は800ポイズであった。この接着フィルムをセパレータと共に切断し2mm幅のテープ状物を得た。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(Example 1)
(1) Preparation of adhesive layer The ratio of liquid epoxy resin (epoxy equivalent 185) containing phenoxy resin (high molecular weight epoxy resin) and microcapsule type latent curing agent is 30/70, and a 30% solution of ethyl acetate is used. Obtained. To this solution, 2% by volume of conductive particles in which a Ni / Au 0.2 / 0.02 μm thick metal coating was formed on polystyrene particles having a particle size of 3 ± 0.2 μm were added and mixed and dispersed. This dispersion was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 100 ° C. for 20 minutes to obtain an adhesive film having a thickness of 20 μm. The activation temperature by DSC of this adhesive film was 120 ° C., and the viscosity of the model blend from which the curing agent was removed was measured with a digital viscometer HV-8 (manufactured by Reska Co., Ltd.). The viscosity at 100 ° C. was 800 poise. It was. This adhesive film was cut together with a separator to obtain a tape-like product having a width of 2 mm.

(2)接着剤層付きチップの作製
チップ実装装置AC−SC450B(日立化成工業(株)製COB接続装置)に(1)で得たテープ状物を接着面を上にして装着し、テープ状物を定盤の前後のロールで張力をかけ、定盤に密着状態で走行可能とした。評価用ICチップ(シリコン基板、2×10mm、厚さ0.5mm、長辺側2辺にバンプと呼ばれる50μmφ、高さ20μmの金電極が300個形成)を吸着により加熱ヘッドに固定した。上記構成で加熱ヘッドを110℃に設定し、テープ状物の接着剤面に5kg/cmで3秒間熱圧着後に、加熱ヘッドを上昇させて圧力を解放し、加熱ヘッドを定盤から離した。この時のICチップ先端のテープ状物の接着剤の実際の温度は最高102℃であった。以上により、チップサイズにほぼ等しい接着剤層をセパレータから剥離した接着剤付チップを得た。同様にして、ICチップサイズが5×5mm(テープ幅5.5mm)を2個、10mmφ(テープ幅10.5mm)1個の計4個の接着剤付チップを得た。これらのチップのバンプピッチは異なるが、バンプ高さやシリコン基板の厚みは同じである。
(2) Manufacture of chip with adhesive layer The tape-like material obtained in (1) is mounted on the chip mounting device AC-SC450B (COB connection device manufactured by Hitachi Chemical Co., Ltd.) with the adhesive surface facing up. Tension was applied to the object with the rolls before and after the surface plate, and it was possible to run in close contact with the surface plate. An IC chip for evaluation (silicon substrate, 2 × 10 mm, thickness 0.5 mm, 300 gold electrodes of 50 μmφ and 20 μm height called bumps are formed on the two long sides) was fixed to the heating head by suction. With the above configuration, the heating head was set to 110 ° C., and after thermocompression bonding to the adhesive surface of the tape-like material at 5 kg / cm 2 for 3 seconds, the heating head was raised to release the pressure, and the heating head was separated from the surface plate. . At this time, the actual temperature of the adhesive at the tip of the IC chip was 102 ° C. at the maximum. As described above, a chip with an adhesive was obtained by peeling off the adhesive layer substantially equal to the chip size from the separator. In the same manner, a total of four chips with an adhesive having an IC chip size of 5 × 5 mm (tape width 5.5 mm) and two 10 mmφ (tape width 10.5 mm) were obtained. Although the bump pitches of these chips are different, the bump height and the silicon substrate thickness are the same.

(3)接続
15mm×25mmで厚み0.8mmのガラスエポキシ基板(FR−4グレード)上に、高さ18μmの銅の回路を有し、回路端部が上記(2)のICチップのバンプピッチに対応した接続電極を有するガラスエポキシ基板に前記接着剤付チップを配置し、CCDカメラによる電極の位置合わせ後に、150℃、20kgf/mm、15秒で全体を一度に接続した。チップ高さがほぼ等しく、またチップと加熱ヘッド間に、厚み100μmのポリテトラフルオロエチレンシ−トを介在させて緩衝材としたので、4個の接着剤付チップを一度に接続したMCMを得た。
(4)評価
各チップの電極と基板電極は良好に接続が可能であった。接着剤はチップ近傍のみに存在しているので、基板表面に不要接着剤はほとんどなかった。
(3) Connection 15 mm × 25 mm and 0.8 mm thick glass epoxy board (FR-4 grade) on a 18 μm high copper circuit, and the circuit edge is the bump pitch of the IC chip of (2) above. The chip with adhesive was placed on a glass epoxy substrate having connection electrodes corresponding to the above, and the whole was connected at once at 150 ° C., 20 kgf / mm 2 for 15 seconds after alignment of the electrodes by the CCD camera. The chip height is almost equal, and a 100μm thick polytetrafluoroethylene sheet is used as a cushioning material between the chip and the heating head, so an MCM in which four chips with adhesive are connected at once is obtained. It was.
(4) Evaluation The electrode of each chip and the substrate electrode could be connected well. Since the adhesive exists only in the vicinity of the chip, there was almost no unnecessary adhesive on the substrate surface.

(実施例2)
実施例1と同様であるが、接着剤付チップの作製方法を変えた。すなわち、加圧ヘッドに切断ジグを有する方法であり、テープ幅を10mmとした。2×10mmチップの場合について説明すると、切断ジグはニクロム線よりなるヒータ線とし4辺に設けた。加圧ヘッドは加熱しないで室温とした。切断ジグをヒータ線としたのでセパレータへの切り込み深さを全層とすることが可能であり、接着剤面にセパレータ付きのチップが得られた。他のチップも、同様に接着剤を形成できた。10mmφチップの場合、切断ジグ内径を11mmφのヒータ線とした。この場合も、各チップの電極と基板電極は良好に接続が可能であった。接着剤はチップ近傍のみに存在しているので、基板表面に不要接着剤はほとんどなかった。
(Example 2)
Although it is the same as that of Example 1, the preparation methods of the chip | tip with an adhesive agent were changed. That is, this is a method having a cutting jig in the pressure head, and the tape width is 10 mm. In the case of a 2 × 10 mm chip, the cutting jig was a heater wire made of nichrome wire and provided on four sides. The pressure head was brought to room temperature without heating. Since the cutting jig was a heater wire, the depth of cut into the separator could be all layers, and a chip with a separator on the adhesive surface was obtained. Other chips could form adhesives as well. In the case of a 10 mmφ chip, a heater wire having a cutting jig inner diameter of 11 mmφ was used. Also in this case, the electrode of each chip and the substrate electrode could be connected well. Since the adhesive exists only in the vicinity of the chip, there was almost no unnecessary adhesive on the substrate surface.

(実施例3)
実施例2と同様であるが、接着剤層付きチップの作製方法において、加熱ヘッドを70℃に設定した。また、切断ジグはカミソリ刃とした。この場合も、接着剤層付きチップが容易に得られた、切断ジグと加熱手段を併用することで、チップへの接着剤の密着が容易であった。実施例1に比べ加熱温度の低下が可能であった。
(Example 3)
Although it is the same as that of Example 2, in the manufacturing method of the chip | tip with an adhesive bond layer, the heating head was set to 70 degreeC. The cutting jig was a razor blade. Also in this case, the chip | tip with an adhesive layer was obtained easily, and adhesion | attachment of the adhesive agent to a chip | tip was easy by using together a cutting jig and a heating means. Compared with Example 1, it was possible to lower the heating temperature.

(実施例4)
実施例1と同様であるが、接着剤層付きチップの作製方法を変えた。すなわち、あらかじめテープ(幅10.5mm)上に各種チップを仮接続(100℃、5kg/cm、3秒間熱圧着)して形成し、図7(a)のように各種チップを順序だてて連続的に供給できるようにした後で、実施例1と同様にして、チップサイズにほぼ等しい接着剤層をセパレータから剥離した接着剤付チップを得た。この場合、セパレータからの剥離が容易であり、実装順にチップが得られるので、極めて生産性が高かった。各チップの電極と基板電極は良好に接続が可能であった。
Example 4
Although it is the same as that of Example 1, the manufacturing method of the chip | tip with an adhesive bond layer was changed. That is, various chips are preliminarily connected (100 ° C., 5 kg / cm 2 , thermocompression bonding for 3 seconds) on a tape (width 10.5 mm) in advance, and the various chips are arranged in order as shown in FIG. Then, in the same manner as in Example 1, an adhesive-attached chip was obtained in which an adhesive layer substantially equal to the chip size was peeled from the separator. In this case, the separation from the separator was easy, and the chips were obtained in the order of mounting, so the productivity was extremely high. The electrode of each chip and the substrate electrode could be connected well.

(実施例5)
実施例4で得た接着剤付チップを、連続状のセパレータに隣接チップの間隔を1mmとして再度仮接続して図7(b)のような接着剤層付きチップ連をえた。実装順にセパレータからチップが取り出せるので極めて生産性が高かった。各チップの電極と基板電極は良好に接続が可能であった。また接着剤層付きチップ連は、外径55mmのリール芯に巻取可能であり、コンパクトに収納可能なため、作業後の冷蔵保管も容易であった。各チップの電極と基板電極は良好に接続が可能であった。
(Example 5)
The chip with adhesive obtained in Example 4 was temporarily connected again to the continuous separator with the interval between adjacent chips set to 1 mm to obtain a chip series with an adhesive layer as shown in FIG. Productivity was extremely high because the chips could be removed from the separator in the order of mounting. The electrode of each chip and the substrate electrode could be connected well. Further, the chip series with an adhesive layer can be wound around a reel core having an outer diameter of 55 mm and can be stored compactly, so that refrigerated storage after work is easy. The electrode of each chip and the substrate electrode could be connected well.

(実施例6)
実施例1と同様であるが、接着剤の種類を変えた。すなわち、導電粒子を未添加とした。この場合も各チップの電極と基板電極は良好に接続が可能であった。チップのバンプとガラスエポキシ基板の接続電極が直接接触し、接着剤で固定されているためと見られる。
(Example 6)
Same as Example 1, but the type of adhesive was changed. That is, no conductive particles were added. Also in this case, the electrode of each chip and the substrate electrode could be connected well. This is because the bumps of the chip and the connection electrodes of the glass epoxy substrate are in direct contact and fixed with an adhesive.

(実施例7)
実施例1と同様であるが、接着剤付チップを得た後で電極間の電気的接続を検査する中間検査工程を設けた。まず、実施例6において150℃、20kgf/mmで2秒後に加圧しながら各接続点の接続抵抗をマルチメータで測定した。同様に、150℃、20kgf/mm、4秒の条件で接続後に接続装置から取外した。加熱加圧により接着剤の硬化がはじまっているので、各ICチップは基板側に仮固定されており無圧下で同様に検査したところ、両例ともに1個のICチップが異常であった。そこで、異常チップを機械的に剥離して新規チップで前記同様の接続を行ったところ、いずれも良好であった。両例とも接着剤は硬化反応が不十分な状態なので、チップの剥離や、その後の溶剤を用いた清浄化も極めて簡単であり、リペア作業が容易であった。接着剤の反応率をDSCによる発熱量で調べたところ、前者で7%、後者で20%であった。以上の通電検査工程およびリペア工程の後で、更に150℃、20kgf/mm、15秒で接続したところ、両例ともに良好な接続特性を示した。接着剤の硬化後であると、チップの剥離やその後の溶剤による清浄化がきわめて困難であるが、本実施例のように狭い基板上に多数のチップが存在する場合もリペア作業が容易であった。
(Example 7)
Although it is the same as that of Example 1, after obtaining the chip | tip with an adhesive agent, the intermediate | middle test process which test | inspects the electrical connection between electrodes was provided. First, in Example 6, the connection resistance at each connection point was measured with a multimeter while pressurizing after 2 seconds at 150 ° C. and 20 kgf / mm 2 . Similarly, it removed from the connection apparatus after the connection under the conditions of 150 ° C., 20 kgf / mm 2 and 4 seconds. Since the adhesive has been cured by heat and pressure, each IC chip is temporarily fixed to the substrate side and tested in the same manner under no pressure. In both cases, one IC chip was abnormal. Therefore, when the abnormal chip was mechanically peeled off and the same connection as described above was performed with a new chip, both were satisfactory. In both cases, since the adhesive was in a state where the curing reaction was insufficient, chip peeling and subsequent cleaning using a solvent were extremely simple, and repair work was easy. When the reaction rate of the adhesive was examined by the calorific value by DSC, it was 7% in the former and 20% in the latter. After the above energization inspection process and repair process, connection was further performed at 150 ° C., 20 kgf / mm 2 and 15 seconds. Both examples showed good connection characteristics. After the adhesive is cured, it is extremely difficult to remove the chip and to clean it with a solvent. However, the repair work is easy even when a large number of chips exist on a narrow substrate as in this embodiment. It was.

(比較例)
実施例1と同様であるが、セパレータ付接着フィルムをチップサイズに合わせて裁断し電極形成面に貼り付けた。チップが小さいため正確に貼り付けるのに時間がかかり、1枚のMCMを作製するのに20分以上かかり、実施例1の場合の1分以内に比べ非効率であった。
(Comparative example)
Although it is the same as that of Example 1, the adhesive film with a separator was cut | judged according to chip size and affixed on the electrode formation surface. Since the chip is small, it takes a long time to attach it accurately, and it takes 20 minutes or more to produce one MCM, which is inefficient compared with the case of Example 1 within 1 minute.

(実施例8)
実施例1と同様であるが、接続時の加熱加圧の手段として静水圧による方法とした。ガラスエポキシ基板に接着剤付チップを配置し、CCDカメラによる電極の位置あわせ後のチップ仮付け基板を、圧力釜にいれて120℃、20kg/cm、30分間の空気圧処理後に室温に冷却しとりだした。本実施例では、各チップの高さに関係なく均等な圧力がかかるので、実施例1で用いたような緩衝材を用いる必要がない。また圧力釜の容量に応じて多数のMCMを同時に大量に処理することが可能である。
(Example 8)
Although it is the same as that of Example 1, it was set as the method by a hydrostatic pressure as a means of the heat pressurization at the time of a connection. A chip with adhesive is placed on a glass epoxy board, and the chip temporary board after positioning of the electrode by the CCD camera is placed in a pressure cooker and cooled to room temperature after 120 minutes of air pressure treatment at 120 ° C and 20 kg / cm 2 . I took it out. In the present embodiment, since a uniform pressure is applied regardless of the height of each chip, it is not necessary to use the cushioning material used in the first embodiment. In addition, a large number of MCMs can be processed simultaneously in accordance with the capacity of the pressure cooker.

(実施例9)
実施例1と同様であるが、セパレータをポリテトラフルオロエチレン(厚さ80μm)にかえた。実施例1と同様な評価を行ったところ、チップ端部での接着剤のエッジがチップサイズにより近い形で鋭利に転着可能であった。セパレータが実施例1に比べて柔軟性を有しているため、チップのエッジに沿った接着剤の切断が可能になったためと考えられる。ここで、両者の弾性率は、ポリエチレンテレフタレートフィルムの200kgf/mmに対して、ポリテトラフルオロエチレン40kgf/mmである。
Example 9
Similar to Example 1, but the separator was changed to polytetrafluoroethylene (thickness 80 μm). When the same evaluation as in Example 1 was performed, the edge of the adhesive at the end of the chip could be transferred sharply with a shape closer to the chip size. This is probably because the separator is more flexible than that of Example 1 so that the adhesive can be cut along the edge of the chip. Here, both elastic moduli are polytetrafluoroethylene 40kgf / mm < 2 > with respect to 200kgf / mm < 2 > of a polyethylene terephthalate film.

(実施例10)
実施例1と同様であるが、セパレータと定盤との間に厚みが0.5mmのシリコーンゴムを載置して接着剤付チップを作製した。この場合には実施例1に比べてチップ端部での接着剤のエッジがチップサイズにより近いサイズで鋭利に転着可能であった。シリコーンゴムがクッション材的に作用したためと見られる。セパレータの下に柔らかなゴム層が存在する場合にも、電極面に形成される接着剤の厚みはバンプの高さや導電粒子により制御されるので、バンプ上に4μm程度、バンプ以外は当初の接着剤厚みである20μm程度に形成されていた。
(Example 10)
Although it is the same as that of Example 1, the chip | tip with an adhesive agent was produced by mounting the silicone rubber whose thickness is 0.5 mm between a separator and a surface plate. In this case, compared with Example 1, the edge of the adhesive at the end of the chip could be transferred sharply with a size closer to the chip size. This is probably because silicone rubber acts as a cushioning material. Even when a soft rubber layer is present under the separator, the thickness of the adhesive formed on the electrode surface is controlled by the height of the bumps and conductive particles, so about 4 μm on the bumps. It was formed to have a thickness of about 20 μm.

(a)、(b)は本発明の実施例の工程を説明する断面模式図。(A), (b) is a cross-sectional schematic diagram explaining the process of the Example of this invention. (a)〜(c)は本発明の接着剤の幅とチップの配列例を示す平面図。(A)-(c) is a top view which shows the width | variety of the adhesive agent of this invention, and the example of an arrangement | sequence of a chip | tip. 本発明の他の実施例を説明する断面模式図。The cross-sectional schematic diagram explaining the other Example of this invention. 本発明の他の実施例を説明する断面模式図。The cross-sectional schematic diagram explaining the other Example of this invention. 本発明における接着剤付チップの構成を示す断面模式図。The cross-sectional schematic diagram which shows the structure of the chip | tip with an adhesive agent in this invention. 本発明における接着剤付チップの構成を示す断面模式図。The cross-sectional schematic diagram which shows the structure of the chip | tip with an adhesive agent in this invention. (a)、(b)は本発明における接着剤付チップ連の構成を示す断面模式図。(A), (b) is a cross-sectional schematic diagram which shows the structure of the chip | tip series with an adhesive agent in this invention. 本発明の接着剤付チップを実装したMCMの斜視図。The perspective view of MCM which mounted the chip | tip with an adhesive agent of this invention.

符号の説明Explanation of symbols

1 チップ部品
2 加熱ヘッド
3 定盤
4 接着剤層
5 セパレータ
6 接着テープ
7 切断ジグ
8 加圧ヘッド
9 基板
10 絶縁層
11 クッション層
12 突起電極
13 配線層
14 導電粒子




DESCRIPTION OF SYMBOLS 1 Chip component 2 Heating head 3 Surface plate 4 Adhesive layer 5 Separator 6 Adhesive tape 7 Cutting jig 8 Pressure head 9 Substrate 10 Insulating layer 11 Cushion layer 12 Projection electrode 13 Wiring layer 14 Conductive particle




Claims (5)

下記工程よりなるマルチチップ実装法
(1)硬化性材料からなるフィルム状接着剤層を用い、チップの電極形成面の大きさと略同一面積のフィルム状接着剤層を前記チップの電極面に形成してなる複数の接着剤付チップを、前記チップの前記電極形成面に前記フィルム状接着剤層を形成した前記接着剤付チップを前記接着剤層によりセパレータ上に貼着してなる接着剤付チップ連として得る工程、
(2)接続すべき複数の接着剤付チップの電極と基板の電極を対向させて、それぞれ位置合わせする工程、
(3)電極の位置合わせを終了した複数のチップの電極と基板の電極を、接続すべき電極間で同時に加熱圧着し、同一基板に複数のチップの電気的接続を得る工程。
Using the multi-chip mounting method (1) comprising a cured material film adhesive layer consisting of the following steps, forming a film-like adhesive layer of the size substantially the same area of the electrode forming surface of the chip on the electrode surface before SL chip A plurality of chips with adhesive formed by attaching the chip with adhesive formed with the film-like adhesive layer on the electrode forming surface of the chip onto the separator with the adhesive layer. Obtaining as a chip chain ,
(2) A step of aligning the electrodes of the plurality of adhesive-attached chips to be connected to the electrodes of the substrate, respectively,
(3) A step of simultaneously heat-pressing the electrodes of the plurality of chips and the electrodes of the substrate that have completed the alignment of the electrodes between the electrodes to be connected to obtain electrical connection of the plurality of chips to the same substrate.
下記工程よりなるマルチチップ実装法
(1)硬化性材料からなるフィルム状接着剤層を用い、チップの電極形成面の大きさと略同一面積のフィルム状接着剤層を前記チップの電極面に形成してなる複数の接着剤付チップを、前記チップの前記電極形成面に前記フィルム状接着剤層を形成した前記接着剤付チップを前記接着剤層によりセパレータ上に貼着してなる接着剤付チップ連として得る工程、
(2)接続すべき複数の接着剤付チップの電極と基板の電極を対向させて、それぞれ位置合わせする工程、
(3)電極の位置合わせを終了した複数のチップの電極と基板の電極を、接着剤の反応率が30%以下となるよう接続すべき電極間で加熱圧着し、電極間の電気的接続を検査する工程、
(4)検査し、不良の場合、チップを剥離し、新規のチップで同様の接続を行う工程、
(5)電気的接続を検査したチップの電極と基板の電極を、接続すべき電極間で硬化剤の活性温度以上で同時に加熱圧着し、同一基板に複数のチップの電気的接続を得る工程。
Using the multi-chip mounting method (1) comprising a cured material film adhesive layer consisting of the following steps, forming a film-like adhesive layer of the size substantially the same area of the electrode forming surface of the chip on the electrode surface before SL chip A plurality of chips with adhesive formed by attaching the chip with adhesive formed with the film-like adhesive layer on the electrode forming surface of the chip onto the separator with the adhesive layer. Obtaining as a chip chain ,
(2) A step of aligning the electrodes of the plurality of adhesive-attached chips to be connected to the electrodes of the substrate, respectively,
(3) The electrodes of the plurality of chips and the electrodes of the substrate, which have been aligned, are thermocompression bonded between the electrodes to be connected so that the reaction rate of the adhesive is 30% or less, and the electrical connection between the electrodes is established. Inspection process,
(4) Inspecting and, if defective, peeling the chip and making a similar connection with a new chip,
(5) A step of obtaining the electrical connection of a plurality of chips on the same substrate by simultaneously press-bonding the electrode of the chip inspected for electrical connection and the electrode of the substrate between the electrodes to be connected at or above the activation temperature of the curing agent.
チップと基板の加熱圧着を密閉容器内の静水圧下で行う請求項1または請求項2に記載のマルチチップ実装法。   The multichip mounting method according to claim 1 or 2, wherein the thermocompression bonding of the chip and the substrate is performed under hydrostatic pressure in a sealed container. 接着剤付チップは、セパレータ上に形成してなる接着剤層をチップの電極面に接触させ、チップの背面より加熱してチップサイズに沿った接着剤層の凝集力低下ラインを形成し、チップと略同一大きさの接着剤層をセパレータより剥離してチップに転着させたものである請求項1ないし請求項3のいずれかに記載のマルチチップ実装法。   The chip with adhesive is made by bringing the adhesive layer formed on the separator into contact with the electrode surface of the chip and heating from the back surface of the chip to form a cohesive force reduction line of the adhesive layer along the chip size. The multichip mounting method according to any one of claims 1 to 3, wherein an adhesive layer having substantially the same size as the above is peeled off from the separator and transferred to a chip. 接着剤付チップは、セパレータ上に形成してなる接着剤層をチップの電極面に接触させ、チップの背面より加圧しながらチップ外形状に沿った切断ジグで接着剤層の少なくとも厚み方向の一部を切断し、チップと略同一大きさの接着剤層をチップに転着させたものである請求項1ないし請求項3のいずれかに記載のマルチチップ実装法。
A chip with an adhesive is formed by bringing an adhesive layer formed on a separator into contact with the electrode surface of the chip, and pressing at least one thickness direction of the adhesive layer with a cutting jig along the outer shape of the chip while applying pressure from the back surface of the chip. The multichip mounting method according to any one of claims 1 to 3, wherein the portion is cut and an adhesive layer having approximately the same size as the chip is transferred to the chip.
JP2006203115A 1996-08-06 2006-07-26 Multi-chip mounting method Expired - Lifetime JP4193885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006203115A JP4193885B2 (en) 1996-08-06 2006-07-26 Multi-chip mounting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20687496 1996-08-06
JP2006203115A JP4193885B2 (en) 1996-08-06 2006-07-26 Multi-chip mounting method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19568797A Division JP3928753B2 (en) 1996-08-06 1997-07-22 Multi-chip mounting method and manufacturing method of chip with adhesive

Publications (2)

Publication Number Publication Date
JP2006287269A JP2006287269A (en) 2006-10-19
JP4193885B2 true JP4193885B2 (en) 2008-12-10

Family

ID=37408751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006203115A Expired - Lifetime JP4193885B2 (en) 1996-08-06 2006-07-26 Multi-chip mounting method

Country Status (1)

Country Link
JP (1) JP4193885B2 (en)

Also Published As

Publication number Publication date
JP2006287269A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP3928753B2 (en) Multi-chip mounting method and manufacturing method of chip with adhesive
US6084775A (en) Heatsink and package structures with fusible release layer
KR100820530B1 (en) Release Film and Adhesive Film Using the Release Film
JP5192194B2 (en) Adhesive film
JP3801666B2 (en) Electrode connection method and connection member used therefor
JPH1084014A (en) Manufacture of semiconductor device
JP2001144140A (en) Method of manufacturing semiconductor device
JP4574631B2 (en) Multi-chip mounting method
JP4032317B2 (en) Chip mounting method
JP3959654B2 (en) Multi-chip mounting method
JP2005064239A (en) Manufacturing method of semiconductor device
JP2006352166A (en) Multi-chip mounting method
JP4197026B2 (en) Multi-chip mounting method
JP2004140366A (en) Method for connecting electrode
JP4223581B2 (en) Multi-chip mounting method
KR102325868B1 (en) Underfill material, underfill film, and method for manufacturing a semiconductor device using the same
JP4193885B2 (en) Multi-chip mounting method
JP4045471B2 (en) Electronic component mounting method
JP4780023B2 (en) Multi-chip module mounting method
JP4337941B2 (en) Multi-chip mounting method
JP2003179101A (en) Bonding unit, method of manufacturing semiconductor device, and bonding method
JP2004031975A (en) Connecting equipment
KR100251673B1 (en) Connection sheet for interconnecting electrodes facing each other, and electrode connection structure and method using the connection sheet
JP4563362B2 (en) Chip mounting method
JP2007243223A (en) Electronic component mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4