JP2004031975A - Connecting equipment - Google Patents

Connecting equipment Download PDF

Info

Publication number
JP2004031975A
JP2004031975A JP2003199806A JP2003199806A JP2004031975A JP 2004031975 A JP2004031975 A JP 2004031975A JP 2003199806 A JP2003199806 A JP 2003199806A JP 2003199806 A JP2003199806 A JP 2003199806A JP 2004031975 A JP2004031975 A JP 2004031975A
Authority
JP
Japan
Prior art keywords
adhesive
chip
substrate
connection
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003199806A
Other languages
Japanese (ja)
Inventor
Isao Tsukagoshi
塚越 功
Koji Kobayashi
小林 宏治
Kazuya Matsuda
松田 和也
Naoki Fukushima
福嶋 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003199806A priority Critical patent/JP2004031975A/en
Publication of JP2004031975A publication Critical patent/JP2004031975A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connecting equipment for mounting chip elements on a substrate, that is useful when the height of the chips are different or the chips are mounted on both sides of a substrate. <P>SOLUTION: The connecting equipment comprises a closed container; an inlet and outlet for getting in and out a sample that is provided for the closed container, and air intake and exhaust openings; an air intake and exhaust equipment connected to the air intake and exhaust opening that can change the kind of gases, and a heater for heating the closed container. The connecting equipment can heat an adhesive formed on the connecting objects in the closed container under a hydrostatic pressure. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はチップ部品を基板へ実装するのに用いる接続装置に関する。
【0002】
【従来の技術】
半導体チップや電子部品の小型薄型化に伴い、これらに用いる回路や電極は高密度、高精細化している。このような微細電極の接続は、最近接着剤を用いる方法が多用されるようになってきた。この場合、接着剤中に導電粒子を配合し加圧により接着剤の厚み方向に電気的接続を得るもの(例えば特開昭55−104007号公報)と、導電粒子を用いないで接続時の加圧により電極面の微細凹凸の直接接触により電気的接続を得るもの(例えば特開昭60−262430号公報)がある。接着剤を用いた接続方式は、比較的低温での接続が可能であり、接続部はフレキシブルなことから信頼性に優れ、加えてフィルム状もしくはテ−プ状接着剤を用いた場合、一定厚みの長尺状で供給されることから実装ラインの自動化が図れる等から注目されている。近年、上記方式を発展させて複数以上のチップ類を、比較的小形の基板に高密度に実装するマルチチップモジュ−ル(MCM)が注目されている。この場合、まず接着剤層を基板全面に形成した後、セパレ−タのある場合にはこれを剥離し、次いで基板電極とチップ電極を位置合わせし接着接合することが一般的である。MCMに用いるチップ類は、半導体チップ、能動素子、受動素子、抵抗、コンデンサなどの多種類(以下チップ類)がある。
【0003】
【特許文献1】
特開昭55−104007号公報
【特許文献2】
特開昭60−262430号公報
【0004】
【発明が解決しようとする課題】
MCMに用いるチップ類は多種類であり、それに応じてチップサイズ(面積、高さ)は多くの種類となる。そのため基板への接着剤を用いた接続の際に、基板との熱圧着法などで従来にない問題点が生じている。例えばチップ高さの異なる場合や基板の両面に実装する場合、従来一般的に行われていた平行設置された金型を油圧や空気圧により圧締するプレス法や、平行設置されたゴムや金属の加圧ロ−ルにより圧締するいわゆるロ−ル法などでは、図3に示すようにチップ高さが異なると、加熱加圧が均一に行われない欠点がある。すなわちこれらのプレス法やロ−ル法では金型やロ−ル間で加圧し、例えば平行設置された定盤8と加圧型9の間で加圧するために、チップ高さの異なる場合(2、2a、2bや2’、2a’、2b’)やチップを基板の両面に実装(2と、2’など)すると、加圧状態が一定とならないため、電極間の接続が不十分となり接続信頼性が得られない。特に基板の両面(3と3’面)に実装する場合には、表裏でチップ位置が対称状態に設置される場合が少ないことから、圧力むらのない均一加圧が要求される微細電極の接合に適当な加圧する手段もない状態である。本発明は上記欠点に鑑みなされたもので、チップ高さの異なる場合や基板の両面に実装する場合に有効なチップ部品を基板へ実装するのに用いる接続装置を提供する。
【0005】
【課題を解決するための手段】
本発明は、チップ部品を基板へ実装するのに用いる接続装置であって、密閉容器、密閉容器に具備された吸排気口並びに試料の出し入れ口、吸排気口に接続された気体の種類を変更可能な吸排気装置、及び密閉容器を加熱する加熱手段を有し、密閉容器内の被接続物に形成された接着剤を静水圧下で加熱可能なことを特徴とする。接着剤は、熱可塑性材料または硬化性材料であると好ましく、また、導電粒子が含まれる接着剤であると好ましい。
基板上にチップを実装する接続装置は、基板上の電極形成面とチップ電極間に接着剤を介在させ、基板の電極とこれに相対峙するチップの電極を位置合わせした状態で、静水圧下で加熱する。また、本発明の接続装置は、基板上にチップを実装する場合、基板上の電極形成面とチップ電極間に接着剤を介在させ、基板の電極とこれに相対峙するチップの電極を位置合わせした状態で導通検査を行った後、静水圧下で加熱することもできる。
【0006】
【発明の実施の形態】
本発明を図面を参照しながら以下説明する。図1は、基板1上の電極5の形成面と、複数個のチップ2、2a、2bの電極4間に、接着剤3を介在させ、相対峙するチップの電極を位置合わせした状態を示す断面模式図である。基板1上の電極5の形成面は、片面(図1)でも、図3のような両面でも良い。基板1上の電極B5もしくはチップ2上の電極A4は、いずれも配線回路をそのまま接続端子としても、あるいはさらに突起状の電極を形成しても良い。電極4および/または5が突起状であると、相対峙する電極間で加圧が集中的に得られるため電気的な接続が容易なので好ましい。接着剤3は、フィルム状でも、液状やペ−スト状でもよい。接続すべき接着剤付きチップの電極と基板の電極を位置合わせする方法は、接続すべき基板1の電極B5とチップ2の電極A4とを、顕微鏡や、画像認識装置を用いて位置合わせする。このとき位置合わせマ−クの使用や併用も有効である。位置合わせ後の基板1とチップ2の保持は、接着剤3の有する粘着性や、凝集力を用いて仮接続することで可能である。またクリップや粘着テ−プ等の補助手段も単独もしくは併用して適用できる。仮接続は加熱加圧がある程度であれば不均一でも良いので、従来から用いられている熱圧着装置を用いることが可能である。この時また、接続すべき電極間で導通検査を行うことも可能である。接着剤は、未硬化あるいは硬化反応の不十分な状態で導通検査が可能なので、接着剤のリペア作業(接続不良部を剥離し清浄化したのち再接続する作業)が容易である。同様にしてチップ周囲の、余剰接着剤を除去する工程を付加することも可能である。この方法によれば、導通検査を終了した良好な接続品を次に述べる本発明の接続装置である密閉容器内で加熱加圧することで接着剤の硬化反応を進めるので、不良品再生が少なく工程のロス時間が短い。
【0007】
図2は、電極の位置合わせを終了したチップの電極と基板の電極を、本発明の接続装置である静水圧に耐えることが可能な密閉容器6の内部に入れて加熱加圧し、同一基板に複数個のチップの電気的接続を得る。密閉容器5としては、圧力鍋、プレッシャクッカ、オ−トクレ−ブ等がある。密閉容器6には吸排気孔7を設けることにより、加圧減圧の操作が簡単であり、圧力制御も可能となる。また、図示してないが試料の出し入れ口を設ける。本発明でいう静水圧とは、物体の外部表面に垂直に一定の圧力が作用する状態を示す(図2のPの矢印で例示)。
ここで図2を用いて接続構造体の表面積について考察すると、一般的にチップ面積Sが2〜20mm□であるのに対して、接続部の厚みtは0.1mm以下多くは30μm以下と、圧倒的にSがtより大きいことから、接続部の厚み方向であるチップ面積Sにかかる圧力が大きく、電極の接続方向の圧力が容易に得られる。
【0008】
以上で図1や3のような、複数以上の各種形状やサイズのチップ類2(a〜c)の電極4を接着剤3を用いて、比較的小形の基板1の電極5に高密度に実装するマルチチップモジュ−ル(MCM)が得られる。基板1としては、ポリイミドやポリエステル等のプラスチックフィルム、ガラス繊維/エポキシ等の複合体、シリコン等の半導体、ガラスやセラミックス等の無機質等を例示できる。
【0009】
本発明で用いる接着剤3は、熱可塑性材料や、熱や光により硬化性を示す材料(硬化性材料)が広く適用できる。これらは接続後の耐熱性や耐湿性に優れることから、硬化性材料の適用が好ましい。なかでも潜在性硬化剤を含有したエポキシ系接着剤は、短時間硬化が可能で接続作業性が良く、分子構造上接着性に優れるので特に好ましい。潜在性硬化剤は、熱およびまたは圧力による反応開始の活性点が比較的明瞭であり、熱や圧力工程を伴う本発明の接続装置に好適である。
潜在性硬化剤としては、イミダゾ−ル系、ヒドラジド系、三フッ化ホウ素−アミン錯体、アミンイミド、ポリアミンの塩、オニウム塩、ジシアンジアミドなど、及びこれらの変性物があり,これらは単独または2種以上の混合体として使用出来る。これらはアニオン又はカチオン重合型などのいわゆるイオン重合性の触媒型硬化剤であり、速硬化性を得やすくまた化学当量的な考慮が少なくてよいことから好ましい。これの中では、イミダゾ−ル系のものが非金属系であり電食しにくくまた反応性や接続信頼性の点からとくに好ましい。硬化剤としてはその他に、ポリアミン類、ポリメルカプタン、ポリフェノール、酸無水物等の適用や前記触媒型硬化剤との併用も可能である。また硬化剤を核としその表面を高分子物質や、無機物で被覆したマイクロカプセル型硬化剤は、長期保存性と速硬化性という矛盾した特性の両立ができるので好ましい。硬化剤の活性温度は、40〜200℃が好ましい。40℃未満であると室温との温度差が少なく保存に低温が必要であり、200℃を越すと接続の他の部材に熱影響を与えるためであり、このような理由から50〜150℃がより好ましい。活性温度は、DSC(示差走査熱量計)を用いて、エポキシ樹脂と硬化剤の配合物を試料として、室温から10℃/分で昇温させた時の発熱ピ−ク温度を示す。活性温度は低温側であると反応性に勝るが保存性が低下する傾向にあるので、これらを考慮して決定する。硬化剤の活性温度以下の熱処理により仮接続することで接着剤付き基板の保存性が向上し、活性温度以上で信頼性に優れたチップの接続が得られる。
【0010】
これら接着剤3には、導電粒子や絶縁粒子を添加することが、接着剤付きチップの製造時の加熱加圧時に厚み保持材として作用するので好ましい。この場合、導電粒子や絶縁粒子の割合は、0.1〜30体積%程度であり、異方導電性とするには0.5〜15体積%である。接着剤層3は、絶縁層と導電層を分離形成した複数層の構成品も適用可能である。この場合、分解能が向上するため高ピッチな電極接続が可能となる。導電粒子としては、Au、Ag、Pt、Ni、Cu、W、Sb、Sn、はんだ等の金属粒子やカーボン、黒鉛等があり、またこれら導電粒子を核材とするか、あるいは非導電性のガラス、セラミックス、プラスチック等の高分子等からなる核材に前記したような材質からなる導電層を被覆形成したもので良い。さらに導電材料を絶縁層で被覆してなる絶縁被覆粒子や、導電粒子とガラス、セラミックス、プラスチック等の絶縁粒子の併用等も分解能が向上するので適用可能である。これら導電粒子の中では、プラスチック等の高分子核材に導電層を形成したものや、はんだ等の熱溶融金属が、加熱加圧もしくは加圧により変形性を有し、接続に回路との接触面積が増加し、信頼性が向上するので好ましい。特に高分子類を核とした場合、はんだのように融点を示さないので軟化の状態を接続温度で広く制御でき、電極の厚みや平坦性のばらつきに対応し易いので特に好ましい。また、例えばNiやW等の硬質金属粒子や、表面に多数の突起を有する粒子の場合、導電粒子が電極や配線パターンに突き刺さるので、酸化膜や汚染層の存在する場合にも低い接続抵抗が得られ、信頼性が向上するので好ましい。以上の説明では、フィルム状接着剤を用いた場合について述べたが、液状もしくはペ−スト状についても、同様に適用可能である。またチップ高さの異なる場合について述べたが、チップ高さが同等の場合も適用可能である。
【0011】
本発明の接続装置によれば、密閉容器内の圧力は場所が変わっても一定であるので、多数枚のMCMを一度に処理できるので量産効果が高い。また気体での加圧であるため高価な金型が不要であり、気体の種類を変更することで熱、湿気、嫌気性などの各種接着剤に適用可能である。密閉容器は、例えば加熱ガスの導入や容器を加熱炉中に保持することで加熱加圧操作を一度に行うことが可能であり、比較的接着剤の硬化に長時間のかかる場合も一度の操作で多数枚の基板について作製可能である。本発明の接続装置によれば、密閉容器内で本格的に硬化を行う前に導通検査を行うことができるので不良接続部を発見したとき、接着剤は硬化反応の不十分な状態なので、チップの剥離や、その後の溶剤を用いた清浄化も極めて簡単であり、リペア作業(接続不良部を剥離し清浄化したのち再接続する作業)が容易である。接着剤の硬化後であると、チップの剥離や、その後の溶剤による清浄化が極めて困難であるが、本実施例によれば、狭い基板状にチップが存在する場合も、リペア作業が容易である。本発明の好ましい実施態様によれば、接着剤に用いる潜在性硬化剤の活性温度以下の熱処理によりチップを基板に形成できるので仮接続後の接着剤の保存性が向上する。また、活性温度以上で密閉容器内で加熱加圧した場合、接着剤の硬化時間が短くなるなど自由に設定でき、接続後の容器からの取り出しも冷却して接着剤の凝集力が十分に高い状態で行えるので、チップの信頼性に優れた接続が得られる。
【0012】
【実施例】
以下、実施例でさらに詳細に説明するが、本発明はこれに限定されない。
実施例1
(1)接着剤の作製
フェノキシ樹脂(PKHA、ユニオンカーバイド社製高分子量エポキシ樹脂)とマイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂(ノバキュアHP−3942HP、旭化成製、エポキシ当量185)の比率を30/70とし、酢酸エチルの30重量%溶液を得た。この溶液に、粒径3±0.2μmのポリスチレン系粒子にNi/Auの厚さ0.2/0.02μmの金属被覆を形成した導電性粒子を2体積%添加し混合分散した。5mm×11mmで厚み0.8mmのガラスエポキシ基板(FR−4グレ−ド)上に、高さ18μmの銅の回路を有し、回路端部が後記するICチップのバンプピッチに対応した接続電極を有するガラスエポキシ基板の接続領域に、前記分散液をスクリ−ン印刷で塗布し、100℃で20分乾燥し、電極上の厚みが20μmの接着剤層を得た。この接着層のDSCによる活性温度は120℃である。
【0013】
(2)電極の位置合わせと接続
前記の接着剤付き基板に、ICチップ3個(高さ0.3、0.55、1.0mm)を配置し、CCDカメラによる電極の位置合わせを行った。接着剤は室温でも若干の粘着性がある状態であり、室温で接着面に押しつけることで基板に簡単に保持でき、チップの仮付け基板を得た。チップの仮付け基板を、プレッシャ−クッカ試験機の圧力釜に入れて、120℃、20kgf/cm、10分間空気圧で処理後に室温に冷却して取出した。
(3)評価
各チップの電極と基板電極は良好に接続が可能であった。接着剤はチップ近傍のみに存在しているので、基板表面に不要接着剤はほとんどなかった。本実施例では、高さの異なるICチップ3個を基板面に接続できた。
【0014】
実施例2
実施例1と同様であるが、チップの仮付け基板を得た後で電極間の電気的接続を検査する中間検査工程を設けた。まず、70℃、10kgf/mmで、スプリング装置で加圧しながら各接続点の接続抵抗をマルチメータで測定検査したところ、1個のICチップが異常であった。そこで異常チップを剥離して新規チップで前記同様の接続を行ったところ良好であった。本実施例では接着剤の硬化反応が不十分な状態なので、チップの剥離や、その後のアセトンを用いた清浄化も極めて簡単であり、リペア作業が容易であった。また、チップの周囲の余剰接着剤も同様にアセトンで簡単に除去可能であった。以上の通電検査工程およびリペア工程の後で、実施例1と同様圧力釜に入れて処理した。ところ、良好な接続特性を示した。接着剤の硬化後であると、チップの剥離や、その後の溶剤による清浄化が極めて困難であるが、本実施例によれば、狭い基板状に多数のチップが存在する場合も、リペア作業が極めて容易であった。
【0015】
実施例3
実施例1と同様であるが、図3に例示のような両面基板とした。各チップの電極と基板電極は良好に接続が可能であった。なお、本実施例では圧力釜の処理の際、チップの仮付け基板の下側になる面は、耐熱性の粘着テ−プでチップを接着剤面に押しつけて補強し、基板からチップ剥離のないようにした。
【0016】
実施例4
実施例1と同様であるが、接着剤の種類を変えた。すなわち、導電粒子を未添加とした。この場合も各チップの電極と基板電極は良好に接続が可能であった。バンプとガラスエポキシ基板の回路端部が直接接触し、接着剤で固定されているためと見られる。
【0017】
【発明の効果】
以上詳述したように本発明によれば、基板上の電極形成面とチップ電極間に接着剤を介在させ、基板の電極とこれに相対峙するチップの電極間に接着剤を介在させ、電極を位置合わせした状態で静水圧下で加熱加圧するので、チップ高さの異なる場合や基板の両面に実装する場合に有効なチップを実装することができる。
【図面の簡単な説明】
【図1】基板上の電極とチップ電極間に、接着剤を介在させ位置合わせした状態を説明する断面模式図である。
【図2】本発明の一実施例を説明する、接続装置を説明する断面模式図である。
【図3】従来の接続法を説明する断面模式図である。
【符号の説明】
1 基板              2 チップ
3 接着剤             4 電極A
5 電極B             6 密閉容器
7 吸排気孔            8 定盤
9 加圧型
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a connection device used for mounting a chip component on a substrate.
[0002]
[Prior art]
As semiconductor chips and electronic components have become smaller and thinner, circuits and electrodes used for them have become higher in density and definition. For connection of such fine electrodes, a method using an adhesive has recently been frequently used. In this case, conductive particles are mixed in the adhesive to obtain an electrical connection in the thickness direction of the adhesive by pressing (for example, JP-A-55-104007). There is a method in which electrical connection is obtained by direct contact of fine irregularities on the electrode surface by pressure (for example, JP-A-60-262430). The connection method using an adhesive allows connection at a relatively low temperature, and the connection part is flexible, so it has excellent reliability. In addition, when a film or tape adhesive is used, a certain thickness is used. It is attracting attention because it is possible to automate the mounting line because it is supplied in a long shape. In recent years, a multi-chip module (MCM) that develops the above method and mounts a plurality of chips on a relatively small substrate at a high density has attracted attention. In this case, it is common practice to first form an adhesive layer on the entire surface of the substrate, peel off the separator, if any, and then align and bond the substrate electrode and the chip electrode. There are many types of chips (hereinafter referred to as chips) such as a semiconductor chip, an active element, a passive element, a resistor, and a capacitor used for the MCM.
[0003]
[Patent Document 1]
JP-A-55-104007 [Patent Document 2]
Japanese Patent Application Laid-Open No. Sho 60-262430
[Problems to be solved by the invention]
There are many types of chips used for the MCM, and accordingly, chip sizes (areas and heights) are various. For this reason, when connecting to a substrate using an adhesive, there is a problem that has not been encountered in a conventional method such as a thermocompression bonding method with the substrate. For example, when the chip height is different or when mounting on both sides of the board, the conventional method of pressing parallel mounted molds with hydraulic or pneumatic pressure, or the parallel mounting of rubber or metal In a so-called roll method in which pressure is applied by a press roll, if the chip height is different as shown in FIG. That is, in these press methods and roll methods, pressure is applied between dies and rolls, for example, pressure is applied between the platen 8 and the press die 9 installed in parallel. , 2a, 2b or 2 ', 2a', 2b ') or when a chip is mounted on both sides of the substrate (2, 2', etc.), the pressurized state is not constant, and the connection between the electrodes becomes insufficient due to insufficient connection. Reliability cannot be obtained. In particular, when mounting on both surfaces (3 and 3 'surfaces) of the substrate, there are few cases where the chip positions are installed symmetrically on the front and back, so that the bonding of fine electrodes that requires uniform pressure without pressure unevenness is required. There is no suitable means for applying pressure. The present invention has been made in view of the above-described drawbacks, and provides a connection device used for mounting a chip component effective on a substrate when the chip height is different or when mounting on both surfaces of the substrate.
[0005]
[Means for Solving the Problems]
The present invention relates to a connection device used to mount a chip component on a substrate, and changes the type of gas connected to a closed container, a suction / exhaust port provided in the closed container, a sample inlet / outlet, and a suction / exhaust port. It has a possible suction / exhaust device and a heating means for heating the closed container, and is characterized in that the adhesive formed on the object to be connected in the closed container can be heated under hydrostatic pressure. The adhesive is preferably a thermoplastic material or a curable material, and is preferably an adhesive containing conductive particles.
A connection device that mounts a chip on a substrate is a device under the hydrostatic pressure with an adhesive interposed between the electrode forming surface on the substrate and the chip electrode, with the substrate electrode and the chip electrode facing the electrode aligned. Heat with. Further, when mounting the chip on the substrate, the connection device of the present invention positions the electrode of the substrate and the electrode of the chip facing the electrode with an adhesive between the electrode forming surface on the substrate and the chip electrode. After conducting the continuity test in the state of being performed, heating can be performed under hydrostatic pressure.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described below with reference to the drawings. FIG. 1 shows a state in which an adhesive 3 is interposed between the surface of the substrate 1 on which the electrodes 5 are formed and the electrodes 4 of the plurality of chips 2, 2a, 2b, and the electrodes of the opposing chips are aligned. It is a cross section schematic diagram. The surface on which the electrode 5 is formed on the substrate 1 may be one side (FIG. 1) or both sides as shown in FIG. Either the electrode B5 on the substrate 1 or the electrode A4 on the chip 2 may use a wiring circuit as a connection terminal as it is, or may further form a protruding electrode. It is preferable that the electrodes 4 and / or 5 have a protruding shape, since pressure can be intensively obtained between the opposing electrodes, so that electrical connection is easy. The adhesive 3 may be in the form of a film, liquid, or paste. In the method of aligning the electrode of the chip with the adhesive to be connected and the electrode of the substrate, the electrode B5 of the substrate 1 to be connected and the electrode A4 of the chip 2 are aligned using a microscope or an image recognition device. At this time, the use and use of a positioning mark are also effective. The holding of the substrate 1 and the chip 2 after the alignment can be performed by temporary connection using the adhesiveness of the adhesive 3 or cohesive force. Auxiliary means such as clips and adhesive tapes can be used alone or in combination. The temporary connection may be non-uniform as long as the heating and pressurizing is to some extent, and therefore, a conventionally used thermocompression bonding apparatus can be used. At this time, it is also possible to conduct a continuity test between the electrodes to be connected. Since the continuity test can be performed on the adhesive in an uncured or insufficiently cured state, the adhesive can be easily repaired (operation of peeling off a defective connection portion, cleaning it, and then reconnecting it). Similarly, it is also possible to add a step of removing excess adhesive around the chip. According to this method, the curing reaction of the adhesive proceeds by heating and pressurizing the good connected product after the continuity test in the closed container which is the connecting device of the present invention described below, so that the defective product is regenerated little by little. Loss time is short.
[0007]
FIG. 2 shows that the electrode of the chip and the electrode of the substrate for which electrode alignment has been completed are placed in a sealed container 6 capable of withstanding hydrostatic pressure, which is the connection device of the present invention, and heated and pressurized, and are placed on the same substrate. Obtain electrical connections for a plurality of chips. Examples of the closed container 5 include a pressure cooker, a pressure cooker, and an autoclave. By providing the air intake / exhaust hole 7 in the closed container 6, the operation of pressurizing and depressurizing is simple, and the pressure can be controlled. Although not shown, a sample inlet / outlet is provided. The hydrostatic pressure in the present invention indicates a state in which a constant pressure acts on the external surface of the object perpendicularly (exemplified by an arrow P in FIG. 2).
Here, considering the surface area of the connection structure with reference to FIG. 2, the chip area S is generally 2 to 20 mm □, whereas the thickness t of the connection portion is 0.1 mm or less, and often 30 μm or less. Since S is overwhelmingly larger than t, the pressure applied to the chip area S in the thickness direction of the connection portion is large, and the pressure in the electrode connection direction can be easily obtained.
[0008]
As described above, as shown in FIGS. 1 and 3, the electrodes 4 of the chips 2 (a to c) having a plurality of various shapes and sizes are densely attached to the electrodes 5 of the relatively small substrate 1 using the adhesive 3. A multi-chip module (MCM) to be mounted is obtained. Examples of the substrate 1 include plastic films such as polyimide and polyester, composites such as glass fiber / epoxy, semiconductors such as silicon, and inorganic materials such as glass and ceramics.
[0009]
As the adhesive 3 used in the present invention, a thermoplastic material or a material that is curable by heat or light (curable material) can be widely applied. Since these are excellent in heat resistance and moisture resistance after connection, it is preferable to use a curable material. Among them, an epoxy adhesive containing a latent curing agent is particularly preferable because it can be cured in a short time, has good connection workability, and has excellent adhesiveness in terms of molecular structure. The latent curing agent has a relatively clear active point at which the reaction is initiated by heat and / or pressure, and is suitable for the connection device of the present invention involving a heat or pressure step.
Examples of the latent curing agent include imidazole-based, hydrazide-based, boron trifluoride-amine complex, amine imide, polyamine salt, onium salt, dicyandiamide, and the like, and modified products thereof. Can be used as a mixture. These are so-called ion-polymerizable catalyst-type curing agents such as anion- or cationic-polymerization types, and are preferable because they can easily obtain fast curability and require little consideration of chemical equivalents. Among them, imidazole-based ones are non-metallic ones, are less likely to cause electrolytic corrosion, and are particularly preferable in terms of reactivity and connection reliability. In addition, as the curing agent, polyamines, polymercaptans, polyphenols, acid anhydrides, and the like can be applied, or the curing agent can be used in combination with the catalyst-type curing agent. Further, a microcapsule-type curing agent whose core is a curing agent and whose surface is coated with a polymer substance or an inorganic substance is preferable because contradictory characteristics such as long-term storage property and rapid curing property can be achieved at the same time. The activation temperature of the curing agent is preferably from 40 to 200C. If the temperature is lower than 40 ° C., the temperature difference from room temperature is small and a low temperature is required for storage. If the temperature is higher than 200 ° C., heat is exerted on other members of the connection. More preferred. The activation temperature indicates a peak temperature of heat generated when the mixture of an epoxy resin and a curing agent is heated at a rate of 10 ° C./min from room temperature using a DSC (differential scanning calorimeter) as a sample. When the activation temperature is on the low temperature side, the reactivity is superior, but the storage stability tends to decrease. Temporary connection by heat treatment at or below the activation temperature of the curing agent improves the preservability of the substrate with the adhesive, and provides a highly reliable chip connection at or above the activation temperature.
[0010]
It is preferable to add conductive particles or insulating particles to these adhesives 3 because they act as a thickness maintaining material during heating and pressurization during the production of a chip with an adhesive. In this case, the ratio of the conductive particles and the insulating particles is about 0.1 to 30% by volume, and 0.5 to 15% by volume to make the conductive particles anisotropically conductive. As the adhesive layer 3, a multi-layer component in which an insulating layer and a conductive layer are separately formed is also applicable. In this case, high resolution electrode connection is possible because the resolution is improved. Examples of the conductive particles include metal particles such as Au, Ag, Pt, Ni, Cu, W, Sb, Sn, and solder, carbon, and graphite. A core material made of a polymer such as glass, ceramics or plastic may be coated with a conductive layer made of the above-mentioned material. Further, insulating coated particles obtained by coating a conductive material with an insulating layer, and a combination of conductive particles and insulating particles of glass, ceramics, plastics, and the like are also applicable because resolution is improved. Among these conductive particles, those formed by forming a conductive layer on a polymer nucleus material such as plastic or a hot-melt metal such as solder are deformable by heating and pressing or pressurizing. This is preferable because the area is increased and the reliability is improved. In particular, when a polymer is used as a core, it is particularly preferable because it does not exhibit a melting point unlike solder, so that the softened state can be controlled widely at the connection temperature and it is easy to cope with variations in electrode thickness and flatness. In the case of hard metal particles such as Ni and W, or particles having a large number of protrusions on the surface, for example, conductive particles penetrate electrodes and wiring patterns. Therefore, even when an oxide film or a contamination layer is present, a low connection resistance is obtained. It is preferable because it improves the reliability. In the above description, the case where the film adhesive is used has been described, but the present invention can be similarly applied to a liquid or paste form. Further, the case where the chip heights are different has been described, but the case where the chip heights are the same is also applicable.
[0011]
ADVANTAGE OF THE INVENTION According to the connection apparatus of this invention, since the pressure in a closed container is constant even if it changes places, since many MCMs can be processed at once, the mass production effect is high. In addition, since it is pressurized with gas, an expensive mold is unnecessary, and by changing the type of gas, it can be applied to various adhesives such as heat, moisture, and anaerobic. The closed container can perform the heating and pressurizing operation at once by, for example, introducing a heating gas or holding the container in a heating furnace. For many substrates. According to the connection device of the present invention, a continuity test can be performed before full-scale curing in a closed container, so that when a defective connection portion is found, the adhesive is in a state where the curing reaction is insufficient, so the chip Peeling and subsequent cleaning using a solvent are also extremely simple, and repair work (work for peeling off defective connection parts, cleaning them, and then reconnecting them) is easy. After the curing of the adhesive, it is extremely difficult to peel off the chip and clean it with a solvent, but according to this embodiment, even when the chip exists on a narrow substrate, the repair work is easy. is there. According to a preferred embodiment of the present invention, a chip can be formed on a substrate by a heat treatment at or below the activation temperature of the latent curing agent used for the adhesive, so that the preservability of the adhesive after the temporary connection is improved. In addition, when heating and pressing in a closed container at the activation temperature or higher, the adhesive can be set freely, such as shortening the curing time of the adhesive, and the cohesive force of the adhesive is sufficiently high by taking out from the container after connection and cooling. Since the connection can be performed in a state, a connection excellent in chip reliability can be obtained.
[0012]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
Example 1
(1) Preparation of Adhesive Ratio of phenoxy resin (PKHA, high molecular weight epoxy resin manufactured by Union Carbide) and liquid epoxy resin containing a microcapsule-type latent curing agent (Novacure HP-3942HP, manufactured by Asahi Kasei; epoxy equivalent: 185) Was set to 30/70 to obtain a 30% by weight solution of ethyl acetate. To this solution, 2% by volume of conductive particles formed by forming a metal coating of Ni / Au with a thickness of 0.2 / 0.02 μm on polystyrene particles having a particle size of 3 ± 0.2 μm were added and mixed and dispersed. A connection electrode that has a copper circuit with a height of 18 μm on a glass epoxy substrate (FR-4 grade) with a thickness of 5 mm x 11 mm and a thickness of 0.8 mm, and a circuit end corresponding to a bump pitch of an IC chip described later. The dispersion was applied by screen printing to a connection region of a glass epoxy substrate having the above, and dried at 100 ° C. for 20 minutes to obtain an adhesive layer having a thickness of 20 μm on the electrode. The activation temperature of this adhesive layer by DSC is 120 ° C.
[0013]
(2) Positioning and connection of electrodes Three IC chips (height: 0.3, 0.55, 1.0 mm) were arranged on the substrate with the adhesive, and the positions of the electrodes were aligned by a CCD camera. . The adhesive was in a slightly tacky state even at room temperature, and could be easily held on the substrate by pressing it against the bonding surface at room temperature to obtain a temporary mounting substrate for the chip. The chip-attached substrate was put into a pressure cooker of a pressure-cooker tester, treated at 120 ° C., 20 kgf / cm 2 for 10 minutes with air pressure, and cooled to room temperature and taken out.
(3) Evaluation The electrodes of each chip and the substrate electrodes could be connected well. Since the adhesive was present only near the chip, there was almost no unnecessary adhesive on the substrate surface. In this example, three IC chips having different heights could be connected to the substrate surface.
[0014]
Example 2
Same as Example 1, except that an intermediate inspection step for inspecting the electrical connection between the electrodes after obtaining the temporary mounting substrate of the chip was provided. First, when the connection resistance at each connection point was measured and inspected with a multimeter at 70 ° C. and 10 kgf / mm 2 while applying pressure with a spring device, one IC chip was abnormal. Then, the abnormal chip was peeled off, and the same connection as described above was performed with a new chip. In this example, since the curing reaction of the adhesive was inadequate, peeling of the chip and subsequent cleaning using acetone were extremely simple, and the repair work was easy. Also, the excess adhesive around the chip could be easily removed with acetone. After the above-mentioned energization inspection step and repair step, they were placed in a pressure cooker and processed as in Example 1. However, good connection characteristics were shown. After the adhesive has been cured, it is extremely difficult to separate the chip and clean it with a solvent.However, according to the present embodiment, even when a large number of chips are present on a narrow substrate, the repair work is difficult. It was very easy.
[0015]
Example 3
Same as Example 1 except that a double-sided board as illustrated in FIG. 3 was used. The electrodes of each chip and the substrate electrodes could be connected well. In the present embodiment, the lower surface of the chip is temporarily reinforced by pressing the chip against the adhesive surface with a heat-resistant adhesive tape when the pressure cooker is processed. I did not.
[0016]
Example 4
Same as Example 1 except that the type of adhesive was changed. That is, the conductive particles were not added. Also in this case, the electrode of each chip and the substrate electrode could be connected well. This is probably because the bump and the circuit end of the glass epoxy substrate are in direct contact and are fixed with an adhesive.
[0017]
【The invention's effect】
As described in detail above, according to the present invention, an adhesive is interposed between an electrode forming surface on a substrate and a chip electrode, and an adhesive is interposed between an electrode of the substrate and an electrode of a chip facing the electrode. Since heating and pressurization are performed under hydrostatic pressure in a state where is aligned, an effective chip can be mounted when the chip height is different or when mounting is performed on both surfaces of the substrate.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating a state in which an adhesive is interposed between an electrode on a substrate and a chip electrode to perform alignment.
FIG. 2 is a schematic cross-sectional view illustrating a connection device for explaining an embodiment of the present invention.
FIG. 3 is a schematic sectional view illustrating a conventional connection method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Chip 3 Adhesive 4 Electrode A
5 Electrode B 6 Sealed container 7 Inlet / outlet 8 Surface plate 9 Pressurized type

Claims (3)

密閉容器、密閉容器に具備された吸排気口並びに試料の出し入れ口、吸排気口に接続された気体の種類を変更可能な吸排気装置、及び密閉容器を加熱する加熱手段を有し、密閉容器内の被接続物に形成された接着剤を静水圧下で加熱可能な接続装置。A closed container having a closed container, a suction / exhaust port provided in the closed container, a sample inlet / outlet, a suction / exhaust device capable of changing the type of gas connected to the suction / exhaust port, and a heating means for heating the closed container; A connection device capable of heating an adhesive formed on an object to be connected in the device under hydrostatic pressure. 接着剤が熱可塑性材料または硬化性材料である請求項1に記載の接続装置。The connection device according to claim 1, wherein the adhesive is a thermoplastic material or a curable material. 導電粒子が含まれる接着剤である請求項1または請求項2に記載の接続装置。The connection device according to claim 1, wherein the connection device is an adhesive containing conductive particles.
JP2003199806A 2003-07-22 2003-07-22 Connecting equipment Pending JP2004031975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199806A JP2004031975A (en) 2003-07-22 2003-07-22 Connecting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199806A JP2004031975A (en) 2003-07-22 2003-07-22 Connecting equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20687696A Division JP4032317B2 (en) 1996-08-06 1996-08-06 Chip mounting method

Publications (1)

Publication Number Publication Date
JP2004031975A true JP2004031975A (en) 2004-01-29

Family

ID=31185494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199806A Pending JP2004031975A (en) 2003-07-22 2003-07-22 Connecting equipment

Country Status (1)

Country Link
JP (1) JP2004031975A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098608A (en) * 2006-09-15 2008-04-24 Lintec Corp Method for producing semiconductor device
JP2009027054A (en) * 2007-07-23 2009-02-05 Lintec Corp Manufacturing method for semiconductor device
JP2009135309A (en) * 2007-11-30 2009-06-18 Lintec Corp Method of manufacturing semiconductor device
JP2010263200A (en) * 2009-04-09 2010-11-18 Furukawa Electric Co Ltd:The Method of manufacturing semiconductor device and pressure container used for the method
KR101299773B1 (en) * 2006-09-15 2013-08-23 린텍 가부시키가이샤 Process for producing semiconductor device
JP2016129200A (en) * 2015-01-09 2016-07-14 東京エレクトロン株式会社 Bonding device, bonding system, bonding method, program and computer storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098608A (en) * 2006-09-15 2008-04-24 Lintec Corp Method for producing semiconductor device
KR101299773B1 (en) * 2006-09-15 2013-08-23 린텍 가부시키가이샤 Process for producing semiconductor device
US8545663B2 (en) 2006-09-15 2013-10-01 Lintec Corporation Process for manufacturing semiconductor devices
JP2009027054A (en) * 2007-07-23 2009-02-05 Lintec Corp Manufacturing method for semiconductor device
JP2009135309A (en) * 2007-11-30 2009-06-18 Lintec Corp Method of manufacturing semiconductor device
JP2010263200A (en) * 2009-04-09 2010-11-18 Furukawa Electric Co Ltd:The Method of manufacturing semiconductor device and pressure container used for the method
JP2016129200A (en) * 2015-01-09 2016-07-14 東京エレクトロン株式会社 Bonding device, bonding system, bonding method, program and computer storage medium

Similar Documents

Publication Publication Date Title
JP4887700B2 (en) Anisotropic conductive film and electronic / electrical equipment
JP2009283962A (en) Method of manufacturing chip with adhesive
JP3801666B2 (en) Electrode connection method and connection member used therefor
JPH09312176A (en) Connecting member, and structure and method for connecting electrodes using this connecting member
JP2010123418A (en) Connection film, junction, and method for manufacturing the same
JP3656768B2 (en) Connection member, electrode connection structure using the connection member, and connection method
JP4032317B2 (en) Chip mounting method
WO2007023781A1 (en) Circuit connection structure, method for manufacturing same, and semiconductor substrate for circuit connection structure
JP3959654B2 (en) Multi-chip mounting method
JP2010242053A (en) Ambient-curable anisotropic conductive adhesive
JP2006352166A (en) Multi-chip mounting method
JP2004031975A (en) Connecting equipment
JP3856233B2 (en) Electrode connection method
JP4780023B2 (en) Multi-chip module mounting method
JP4574631B2 (en) Multi-chip mounting method
JP4661914B2 (en) Electrode connection method
JP4223581B2 (en) Multi-chip mounting method
JP4563362B2 (en) Chip mounting method
JP4197026B2 (en) Multi-chip mounting method
JP2006339163A (en) Connection method of electrode
JP2004335663A (en) Method for manufacturing different direction electric conduction film
KR100251675B1 (en) Connection sheet for interconnecting electrodes facing each other, and electrode connection structure and method using the connection sheet
JPH1050927A (en) Multi-chip mounting method
JPH09153516A (en) Semiconductor device and ic chip inspecting method
JP4254849B2 (en) Multi-chip mounting method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060727

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060922

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070209