JP4190201B2 - 医用イメージング・デバイスの冷却を調節するための方法及びシステム - Google Patents

医用イメージング・デバイスの冷却を調節するための方法及びシステム Download PDF

Info

Publication number
JP4190201B2
JP4190201B2 JP2002108648A JP2002108648A JP4190201B2 JP 4190201 B2 JP4190201 B2 JP 4190201B2 JP 2002108648 A JP2002108648 A JP 2002108648A JP 2002108648 A JP2002108648 A JP 2002108648A JP 4190201 B2 JP4190201 B2 JP 4190201B2
Authority
JP
Japan
Prior art keywords
coolant
temperature
vacuum chamber
humidity
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002108648A
Other languages
English (en)
Other versions
JP2002320600A (ja
Inventor
ピエール・リチャード・エメリク
カール・ラグナー・ヘドランド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Publication of JP2002320600A publication Critical patent/JP2002320600A/ja
Application granted granted Critical
Publication of JP4190201B2 publication Critical patent/JP4190201B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3856Means for cooling the gradient coils or thermal shielding of the gradient coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、全般的には磁気共鳴イメージング(MRI)装置に関し、さらに詳細には、MRI装置に対して改良型の冷却法を提供し、これにより画質を向上させると共により長時間のスキャン時間が可能となるようにより高速なイメージングに対してより大きな電力の印加を可能としているシステム及び方法に関する。
【0002】
【発明の背景】
人体組織などの物質を均一な磁場(偏向用磁場B0)にかけると、組織中のスピンの個々の磁気モーメントはこの偏向用磁場と整列しようとして、この周りをラーモアの特性周波数で無秩序に歳差運動することになる。この物質(または組織)に、xy平面内にありラーモア周波数に近い周波数をもつ磁場(励起磁場B1)がかけられると、正味の整列モーメント(すなわち、「縦方向磁化」)Mzは、xy平面内に来るように回転させられ(すなわち、「傾けられ(tipped)」)、正味の横方向磁気モーメントMtが生成される。励起信号B1を停止させた後、励起したスピンにより信号が放出され、さらにこの信号を受信し処理して画像を形成することができる。
【0003】
これらの信号を用いて画像を作成する際には、磁場傾斜(Gx、Gy及びGz)が利用される。典型的には、画像化しようとする領域は、使用する具体的な位置特定方法に従ってこれらの傾斜を変更させている一連の計測サイクルによりスキャンを受ける。結果として得られる受信したNMR信号の組は、ディジタル化され処理され、よく知られている多くの再構成技法のうちの1つを用いて画像が再構成される。
【0004】
患者スキャンの間に、磁場傾斜を発生させる傾斜コイルは大量の熱を放散しており、その熱の量は典型的には概ね数十キロワットとなる。この熱の大部分は、x、y及びz軸の傾斜コイルを付勢させた際にこれらのコイルを形成している銅製の電気導体の抵抗性加熱により発生している。発生する熱の量は傾斜コイルに供給される電力に正比例する。電力の消費が大きいと、傾斜コイルに対する温度が上昇するだけではなく、発生した熱が傾斜コイル・アセンブリ内や共鳴モジュール内に分散され、また別の2つの重要領域の温度に影響を及ぼすことになる。この2つの領域は、傾斜アセンブリの境界に位置しており、患者ボア表面、並びにマグネットを収容しているクライオスタットに隣接する常温ボア表面を含む。これら3つの領域の各々は、それぞれ特有の最大温度限界を有している。共鳴モジュールでは、ガラス転移温度など物体の温度限界がある。すなわち、コイルに対する銅や繊維強化材の裏当てにより120℃を超える温度に耐えることができるが、これらの層を結合させるためのエポキシはこれと比べて、典型的には、最高動作温度が概ね70〜100℃とかなり低い。患者ボア表面上では、規制限度により患者ボア表面上のピーク温度を41℃とする必要がある。さらに常温ボア表面では、最高温度を概ね40℃までに制限し、常温ボア表面を通ったクライオスタット内への過剰な熱移動を防止している。さらに、20℃を超える温度変化があると、温度によって磁気特性の変動を示すという磁場シム材料の温度依存性のため磁場均一性に変動を生じることがある。
【0005】
典型的には、共鳴モジュール内の傾斜コイルが発生させた熱は、共鳴モジュール内で熱導体から所与の距離位置に埋め込まれた液体を満たした冷却管により傾斜アセンブリから除去される。水、エチレン、またはプロピレン・グリコール混合物などの液体冷却剤は、ある一定の温度及び流量で共鳴モジュール内に入り、冷却管を通ってポンピングされるのに伴って傾斜コイルから熱を吸収し、さらに、この熱を遠隔の熱交換器/水冷却装置まで搬送している。次いで熱は、熱交換器/冷却装置を経由して大気中に放出される。共鳴モジュール内に挿入する際の冷却剤温度をそれぞれ低下させると、この3つの重要領域(共鳴モジュール内部、患者ボア表面、及び常温ボア表面)の各々のピーク温度も低下する。
【0006】
しかし、現在の方式では、共鳴モジュールに供給する冷却剤の最低温度は周辺空気の露点温度により制限されている。すなわち、一般に空気中の水蒸気の共鳴モジュール内での(特に、傾斜コイル上での)結露を防ぐ必要があるため、冷却剤の温度は周辺空気の露点温度以上に維持する必要がある。傾斜コイルには高電圧及び高電流が加えられるため、こうした結露を生じさせない大気が必要となる。MR室に対する現在の環境仕様は、21℃で75%の相対湿度を要求しており、この相対湿度では16℃が露点温度となる。したがって、これらの条件下では最低冷却剤温度を16℃以上にする必要がある。
【0007】
したがって、共鳴モジュールに供給できる最大電力は外部の露点温度により制限される。共鳴モジュールが受け取ることができる電力を増大させるには、最低冷却剤温度を低下させる必要がある。しかし、前述したように、相対湿度が21℃で75%であるMR室に関しては、環境仕様によりその最低冷却剤温度が16℃以上に制約されている。このため、こうした現在の方式では共鳴モジュールにより要求されることが多い高出力の患者スキャンシーケンスに対応することができない。
【0008】
これら周知のシステムでは、最低許容冷却剤温度は大気の状態や周囲露点温度により決められる。これらのシステムでは、MRシステムを備えている部屋の温度及び相対湿度に関する与えられた仕様に基づいて、その冷却剤温度を最悪のケースの露点温度以上に設定している。
【0009】
さらに、これらのシステムでは過熱を防止する必要がある。共鳴モジュールや患者表面の温度が上昇した場合、イメージング・スキャンを中断すか、あるいは低電力のシーケンスに制限する必要があり、こうなるとMRシステムの効率や有効性が低下することになる。さらに、イメージング・セッションは共鳴モジュールや患者表面が十分に冷やされるまで新たに開始させることができないため、時間のロスが起こる。
【0010】
【発明が解決しようとする課題】
したがって、周辺空気の露点温度により決められる上述の最低冷却剤温度制限と無関係にイメージング・スキャン中により多くの熱を消失させるように方法及びシステムを設計することが望ましい。
【0011】
【課題を解決するための手段】
本発明は、内部及び外部の温度を最大動作限界以下に保持しながら、イメージング・デバイスの傾斜コイル及びRFコイルを包含している真空チャンバ内の冷却剤温度を低下させて熱を除去し、これにより介入処置のためにより長時間のスキャン時間を可能にすると共に画質を向上させたより高速なイメージングのためにより大きな電力の印加を可能にすることによって上述の欠点を克服しているシステム及び方法を提供する。
【0012】
MRI共鳴デバイスに関する熱消失を改良した冷却システムを提供する。この冷却システムは、真空エンクロージャと、相対湿度、温度及び圧力センサの組と、共鳴モジュールに埋め込んだ冷却管内の冷却剤の温度を動的に調整する制御システムと、を含んでいる。共鳴モジュールから熱を吸収し、この熱を水冷却装置など遠隔の熱交換器まで輸送する際に、冷却用流体の温度は上昇する。共鳴モジュールを包含している真空エンクロージャからは空気及び水蒸気を除去しているため、真空エンクロージャ内の結露は防止される。その結果、冷却剤温度は熱を除去して傾斜コイル温度を許容レベル内に維持するように必要に応じて調整することができる。
【0013】
その上、適正な動作及び信頼度をさらに向上させるために、真空エンクロージャ内に圧力センサと相対湿度センサを配置し、空気及び/または冷却剤の漏れをモニタリングしている。傾斜コイルの外部表面上での水蒸気の凝結を防止するため、患者及び常温ボアの表面と真空エンクロージャ内には温度センサを取り付けている。この制御システムは、冷却剤の最低実用温度を提供するように構成しており、同時に患者及び常温ボアの表面上での結露を防止している。さらに、相対湿度センサと圧力センサを用いることにより異常な動作状態に応答して警報を発すると共に傾斜コイルのドライバを抑止することができる。
【0014】
本発明の一態様では、電気コイルを冷却するためのシステムを提供する。本システムは、その中を通過させる冷却剤を介して少なくとも1つの電気コイルから熱を伝達させるためのコイル状の冷却管アセンブリと、この冷却管アセンブリから冷却剤を受け取るための熱交換器と、を含んでいる。熱交換器は、冷却管アセンブリから受け取った冷却剤の熱を除去するように構成している。さらに、この冷却管アセンブリをその内部に含んでいるエンクロージャを設けている。このエンクロージャは、周囲大気の露点以下の内部露点を有するように設計している。制御システムは電気コイルの動作状態を示すフィードバックを受け取り、これに応答して、冷却剤温度を動的に調整するための制御信号を冷却装置に提供している。
【0015】
本発明の別の態様では、MRIデバイス用の冷却システムは、MRデバイスの一組の傾斜コイルと熱的接触すると共に、その内部に冷却剤を通過させているような一組の冷却剤管を含んでいる。該一組の冷却剤管には冷却剤で運ばれる熱を除去するように構成した熱交換器を接続している。冷却剤管の組は真空チャンバにより囲繞している。MRデバイスの温度を検知するように熱的接触の状態にした少なくとも1つの温度センサを設けており、また真空チャンバ内には湿度を検知するように湿度センサを配置している。本システムは、温度センサから温度指示信号を受け取り、これに応答して冷却剤温度を制御するように接続した制御装置を含んでいる。
【0016】
本発明のさらに別の態様では、複数の傾斜コイルを有する磁気共鳴イメージング(MRI)システムを含んでいるMRI装置を提供する。これらの傾斜コイルは、偏向用磁場を印加するようにマグネットのボアの周りに配置されるように構成している。MRIシステムはさらに、RF信号をRFコイル・アセンブリに送信してMR画像を収集するようにパルスモジュールにより制御を受けているRF送受信装置システム及びRFスイッチを含んでいる。本MRI装置はさらに、これら複数の傾斜コイルからの熱を消失させるための冷却システムを含んでいる。この冷却システムは、傾斜コイル温度を検知するように配置した温度センサと、MRシステムの傾斜コイルと熱的接触させると共にその内部に冷却剤を通過させているような一組の冷却剤管と、を含んでいる。この冷却剤管には熱交換器を接続させ、真空チャンバにより冷却剤管を囲繞させて冷却剤から熱を除去している。この真空チャンバには真空ポンプを設けてチャンバ内の真空を保持している。本MRI装置はさらに、真空チャンバ内の圧力を検知するように構成した少なくとも1つの圧力センサを含んでいる。圧力センサから信号を受け取って制御信号を真空ポンプに送信するように制御機構を接続している。この制御機構はさらに、温度センサから信号を受け取り、これに応答して冷却剤温度を制御するように接続している。この方式では、本システムは、冷却剤温度を変化させることにより安定した傾斜コイル温度を維持することができる。
【0017】
本発明のさらに別の態様では、MRIデバイスの冷却方法を提供する。本方法は、一組の傾斜コイルの周りにシール付きエンクロージャを作成するステップと、このシール付きエンクロージャから湿気を除去するステップと、を含む。本方法はさらに、シール付きエンクロージャ内の一続きの冷却管内及び熱交換器内を通過させて冷却剤を再循環させるステップを含む。次に、MR動作の間で傾斜コイル温度の指示値をモニタリングし、傾斜コイル温度の指示値に応じて冷却剤の温度を調整している。
【0018】
本発明のその他の様々な特徴、目的及び利点は、以下の詳細な説明及び図面より明らかとなろう。
【0019】
【発明の実施の形態】
図1を参照すると、本発明を組み込んでいる好ましい磁気共鳴イメージング(MRI)システム10の主要コンポーネントを表している。本システムの動作は、キーボードその他の入力デバイス13、制御パネル14及びディスプレイ16を含むオペレータ・コンソール12から制御を受けている。コンソール12は、オペレータが画像の作成及びスクリーン16上への画像表示を制御できるようにする独立のコンピュータ・システム20と、リンク18を介して連絡している。コンピュータ・システム20は、バックプレーン20aを介して互いに連絡している多くのモジュールを含んでいる。これらのモジュールには、画像プロセッサ・モジュール22、CPUモジュール24、並びに当技術分野でフレーム・バッファとして知られている画像データ・アレイを記憶するためのメモリ・モジュール26が含まれている。コンピュータ・システム20は、画像データ及びプログラムを記憶するためにディスク記憶装置28及びテープ駆動装置30とリンクしており、さらに高速シリアル・リンク34を介して独立のシステム制御部32と連絡している。入力デバイス13は、マウス、ジョイスティック、キーボード、トラックボール、タッチ作動スクリーン、光学読取り棒、音声制御器、あるいは同様な任意入力デバイスや同等の入力デバイスを含むことができ、また入力デバイス13は、対話式の幾何学的指定をするために使用することができる。
【0020】
システム制御部32は、バックプレーン32aにより互いに接続させたモジュールの組を含んでいる。これらのモジュールには、CPUモジュール36や、シリアル・リンク40を介してオペレータ・コンソール12に接続させたパルス発生器モジュール38が含まれる。システム制御部32は、実行すべきスキャンシーケンスを指示するオペレータからのコマンドをリンク40を介して受け取っている。パルス発生器モジュール38は、各システム・コンポーネントを動作させて所望のスキャンシーケンスを実行させ、発生したRFパルスのタイミング、強度及び形状、並びにデータ収集ウィンドウのタイミング及び長さを指示しているデータを発生させている。パルス発生器モジュール38は、スキャン中に発生させる傾斜パルスのタイミング及び形状を指示するために、一組の傾斜増幅器42と接続させている。パルス発生器モジュール38はさらに、患者に接続した多数の異なるセンサからの信号(例えば、患者に装着した電極からのECG信号)を受け取っている生理学的収集制御器44から患者データを受け取ることができる。また最終的には、パルス発生器モジュール38はスキャン室インタフェース回路46と接続させており、スキャン室インタフェース回路46はさらに、患者及びマグネット系の状態に関連する様々なセンサからの信号を受け取っている。このスキャン室インタフェース回路46を介して、患者位置決めシステム48はスキャンのために患者を所望の位置に移動させるコマンドを受け取っている。
【0021】
パルス発生器モジュール38が発生させる傾斜波形は、Gx増幅器、Gy増幅器及びGz増幅器を有する傾斜増幅器システム42に加えられる。各傾斜増幅器は、収集した信号の空間的エンコーディングに使用する磁場傾斜を生成させるように全体として指定されている傾斜コイル・アセンブリ内の対応する物理的傾斜コイル50を励起させている。傾斜磁場コイル・アセンブリ50は、偏向用マグネット54及び全身用RFコイル56を含んでいるマグネット・アセンブリ52の一部を形成している。システム制御部32内の送受信器モジュール58は、RF増幅器60により増幅を受け送信/受信スイッチ62によりRFコイル56に結合するようなパルスを発生させている。患者内の励起された原子核が放出して得た信号は、同じRFコイル56により検知し、送信/受信スイッチ62を介して前置増幅器64に結合させることができる。増幅されたMR信号は、送受信器58の受信器部分で復調され、フィルタ処理され、さらにディジタル化される。送信/受信スイッチ62は、パルス発生器モジュール38からの信号により制御し、送信モードではRF増幅器60をコイル56と電気的に接続させ、受信モードでは前置増幅器64をコイル56と電気的に接続させる。送信/受信スイッチ62によりさらに、送信モードと受信モードのいずれに関しても同じ単独のRFコイル(例えば、表面コイル)を使用することが可能となる。
【0022】
RFコイル56により取り込まれたMR信号は送受信器モジュール58によりディジタル化され、システム制御部32内のメモリ・モジュール66に転送される。未処理のk空間データのアレイをメモリ・モジュール66に収集し終わると、一回のスキャンが完了となる。この未処理のk空間データは、各画像を再構成させるように別々のk空間データ・アレイの形に配列し直している。さらに、これらの各々は、データをフーリエ変換して画像データのアレイにするように動作するアレイ・プロセッサ68に入力される。この画像データはシリアル・リンク34を介してコンピュータ・システム20に送られ、コンピュータ・システム20において画像データはディスク記憶装置28内などのメモリ内に記憶される。この画像データは、オペレータ・コンソール12から受け取ったコマンドに応じて、テープ駆動装置30上などの長期用メモリにアーカイブしたり、画像プロセッサ22によりさらに処理してオペレータ・コンソール12に伝達したりディスプレイ16上に表示させたりすることができる。
【0023】
本発明は、内部及び外部の温度を最大動作限界以下に保持しながらイメージング・デバイスの傾斜コイル・ハウジング、または共鳴モジュール、からの熱除去を改善させ、これにより介入処置のためにより長時間のスキャン時間を可能にすると共に画質を向上させたより高速なイメージングのためにより大きな電力の印加を可能にするためのシステム及び方法を提供する。
【0024】
図2を参照すると、磁気共鳴イメージング(MRI)システム10の傾斜コイルが発生させた熱を減少させるように構成した冷却システム70を提供している。傾斜コイルの過熱や損傷のおそれを回避するためにはMRIデバイス10内で発生した熱を消失させることが最も重要である。MRIデバイス10は、主マグネット(図示せず)を収容している極低温タンク71と、イメージング・セッションを受けるように患者などの被検体を配置するためのイメージング・ボリューム空間72と、を含んでいる。イメージング・ボリュームは、傾斜コイル及びRFコイルを収容するように構成した真空ポンピングしたエンクロージャ(または共鳴モジュール)74により規定される。前述したように、傾斜コイルは、対応する傾斜増幅器により励起して磁場傾斜を発生させ、これを用いて、周知の方式での画像再構成に使用するためRFコイルにより収集された信号を空間エンコーディングしている。
【0025】
真空チャンバ74内にさらに同封しているものとしては、水、エチレンまたはプロピレン・グリコール混合物などの液体冷却剤を循環させて、傾斜コイルの励起により発生した熱を低下させるように構成した多数の冷却管76がある。磁場傾斜が生成されると、傾斜コイルは、その銅成分の抵抗の影響のために、かなりの熱(典型的には、概ね数十キロワットの熱)を発生させる。MRIシステム10の適正な動作を保証するためには、この熱を消失させる必要がある。熱消失を手助けするため、共鳴モジュール74内に埋め込んだ冷却管76を通して冷却剤を循環させる(これについては、直ぐ後で検討することにする)。
【0026】
前述したように、共鳴モジュール74は真空状態に保持している。共鳴モジュール74の真空での封入は、共鳴モジュール内に堆積する空気及び水蒸気をすべて消去するように動作する。よく知られているように、周辺環境の温度と比べてより低い温度を有する液体を循環させることにより、得られた環境で結露が形成されることがある。すなわち、真空でないチャンバ内で傾斜コイルから熱を消失させるように管76を通して冷却剤を循環させても、冷却剤温度がチャンバ内の露点以下である場合に傾斜コイルの表面上に結露が形成される可能性がある。傾斜コイルの表面上に結露が形成されることは許容できないため、既存の冷却システムでは冷却剤の温度が露点を超えるように保持させている。
【0027】
封入した真空チャンバ74内を真空状態に保持することによりMR装置の傾斜コイル上での結露の可能性が解消される。本発明は、各真空チャンバ74と流体連絡した真空ポンプ78を提供している。この真空ポンプは、概ね10-1〜10-2torrの真空状態を保持させることにより、真空チャンバ74内の空気及び/または湿気をすべて頻繁に除去させるように構成している。真空ポンプ78は、真空ポンプ78の動作を制御するように構成したコンピュータまたは制御装置80などの制御システムにより制御を受けている。すなわち、コンピュータ/制御装置80は真空ポンプに対してエンクロージャ74内の圧力を低下または上昇させるように信号を送ることができる。さらに図2を参照すると、前述したように、チャンバ74内が一定した真空状態でないと周囲露点以下の冷却剤の循環に応答して傾斜コイルの表面上に結露が形成されることがある。冷却剤は流入ポート82及び84を通じて共鳴モジュールまたはチャンバ74に入る。冷却剤は、外部の流体ライン88及び90を介して流入ポート82、84と流体連絡している冷却剤ポンプ86により共鳴モジュール74に供給される。所望の冷却剤温度の維持に役立てるために、冷却剤ライン88及び90は、真空ポンピングした共鳴モジュール74に入る際の冷却剤温度の変動を制限し真空でない領域での結露を回避するように十分に断熱させる必要である。図2では冷却剤に対して2つの流入ポートと流出ポートを表しているが、別の実施形態では、冷却管76がイメージング・ボリューム72の周りで環状になっているためにポートが1つだけの場合や、より安定した流通循環を得るように2個を超えるポートを設けることもある。
【0028】
冷却剤ポンプ86は、システムの要件に応じた温度で(本発明では、周囲の露点温度と無関係な冷却剤温度で)冷却剤を循環させている。真空エンクロージャ74内の湿気をすべて除去することにより、冷却剤をポート82及び84を通じて所望の任意の温度で流入させることができる。すなわち、冷却剤温度と周囲温度の間の関係に起因する結露の影響は、真空ポンプ78及び適正な制御機構80による真空エンクロージャ74からの湿気の排出により無効となる。
【0029】
共鳴モジュール74に入る冷却剤は、冷却管76を通って移動し、冷却剤の移動の間にコイルから熱が吸収される。傾斜コイルから搬出した熱をその内部に担っている冷却剤は、流出ポート92及び94を通じて真空の共鳴モジュール74を出る。この流出ポート92及び94は温められた冷却剤を帰還ライン98、100を介して冷却装置/熱交換器96まで搬送している。冷却装置96は、冷却剤内に吸収された熱を熱交換器及びコンプレッサ(図示せず)を使用して周知の技法で消失させ、かつ冷却剤温度をコンピュータ/制御機構80により指令される所望の温度まで低下させるように構成している。
【0030】
冷却装置96の動作は、液体冷却剤の温度が所望の値となるようにコンピュータ/制御機構80により制御を受けている。本発明に従った冷却剤温度の調節により、患者表面や共鳴モジュールその他の温度(例えば、共鳴モジュールに隣接する常温ボアの表面温度など)を指定した限度内に維持させるような冷却剤温度の動的調整が可能となる。すなわち、熱消失要件を上げる場合には、必要に応じて冷却剤の温度を露点温度以下まで低下させることができる。さらに、熱や電力の消失の要件を下げた場合には、冷却剤の温度の上昇を許容し、これにより冷却装置96により加えられるエネルギー量を減少させることができる。この結果、システムが低温状態になるようにするためのMRI装置10のダウンタイムが回避され、またさらに、傾斜コイルに大電力の入力を要するような用途やイメージング・シーケンスでMRI装置10を実施することができる。冷却剤温度を調節するための方法については、具体的に図3を参照しながら説明することにする。
【0031】
さらに図2を参照すると、真空エンクロージャ74とMR装置10の様々な表面の温度、圧力及び相対湿度をモニタリングするために多数の作動センサを設けている。温度センサ102は、共鳴モジュール74、患者表面75及び常温ボア表面77の温度を計測するように配置させている。さらに、共鳴モジュール74内の真空圧力及び結露を計測するために、共鳴モジュール74内に圧力センサ及び相対湿度センサ104、106を配置している。検知した相対湿度及び圧力はコンピュータ/制御機構80に送られ、コンピュータ/制御機構80はさらに共鳴モジュール74の圧力を上昇または低下させるような制御信号を真空ポンプ78に送っている。温度センサ102は共鳴モジュール74、患者ボア表面75及び常温ボア表面77からの温度データを送信している。コンピュータ80は受け取った温度信号に応答して、冷却装置96に制御信号を送信している。ボア表面及び共鳴モジュール74の温度が上昇すると、コンピュータ/制御機構80は共鳴モジュール74に流れる液体冷却剤の温度を調整するように冷却装置96に命令を送る。別法として温度調整と関連して、傾斜コイルからの熱消失の必要性が変化するのに伴って、コンピュータ/制御機構80はさらにMRデバイス10の温度を所望の温度まで上昇または低下させるように冷却剤ポンプ86の流量を調整している。さらに、温度、圧力及び相対湿度のセンサ102、104、106はさらに、異常状態を検出した場合は傾斜コイル・ドライバを抑止するようにコンピュータ/制御機構80にトリガを与えるように実施することができる。
【0032】
図3を参照すると、傾斜コイル・アセンブリの励起により発生した熱を消失させるため冷却剤温度を動的に調節するようなアルゴリズム110を提供している。アルゴリズム110はブロック112において、共鳴モジュール内での圧力(114)及び湿度(116)の読み取りで開始され、圧力センサまたは湿度センサのいずれかが共鳴モジュール内で圧力のロスまたはある湿度レベルを指示した場合(118、120)には、傾斜コイルへの電力を制限しシステムをシャットダウンしてオペレータに警告を送信し(122)、この時点でシステムは制御の開始(112)までループバックし圧力及び湿度のモニタリングを継続する。湿度も圧力ロスも存在しない場合(118、124)には、患者表面上(128)、共鳴モジュール内(130)、及び常温ボア表面上(132)の温度センサからの温度信号を読み取ること含む冷却剤温度に対するアクティブ制御を可能にする(126)。すべての温度が設定限界内にある場合(134、136)には、処置は不要であり(138)、制御アルゴリズムは開始(112)までループバックし、上に記載したようにして継続される。しかし、その温度が設定限界の範囲にない場合には(134、140)、その冷却剤温度を、患者表面、共鳴モジュール内、及び常温ボア表面上で検知した温度の指示に応じて調整する(142)。別法として、この動作に関連して、冷却剤の流量を調整することもできる(142)。冷却剤及び/または流量の調整(142)の後、システムはアルゴリズムの開始(112)までループバックし、上述の命令シーケンスを連続して繰り返す。
【0033】
冷却剤流入温度及び/または流量を新たに決定した後、冷却装置または熱交換器96(図2)により冷却剤温度を調整する、及び/または冷却剤ポンプ86(図2)により冷却剤流量を調整する。最高及び最低温度が指定した範囲内に保持されるように冷却剤温度及び/または流量を調整しているが、本発明の制御処理では、温度を連続してモニタリングし、指定した要件内に温度幅を保持するように冷却剤温度及び/または流量に対してさらに調整を行うように構成させている。冷却剤の流入量及び冷却剤温度は、スキャンが完了した後でデフォルト値にリセットさせることができる。
【0034】
本発明は、その内部を通過する冷却剤を介して少なくとも1つの電気コイルから熱を伝達するための冷却管アセンブリを含むような電気コイルを冷却するためのシステムを含む。さらに、この冷却管アセンブリから冷却剤を受け取り冷却剤から熱を除去するために熱交換器を設けている。本システムはさらに、その内部に冷却用アセンブリを有しており、かつ周囲大気の露点と比べてより低い内部露点を有するようなエンクロージャを含む。制御システムにより電気コイルの動作状態を示すフィードバックを受け取り、これに応答して、冷却剤温度を動的に調整させるような信号を熱交換器に提供している。
【0035】
本発明の別の実施形態では、MRIデバイス用の冷却システムは、MRIデバイスの一組の傾斜コイルと熱的接触させると共にその内部に冷却剤を通過させている一組の冷却剤管を含む。この冷却剤管の組には熱交換器を接続し、冷却剤並びに冷却剤管の組を囲繞している真空チャンバから熱を除去している。本システムはさらに、MRデバイスの温度を検知するように熱的接触させた少なくとも1つの温度センサと、真空チャンバ内の湿度を検知するように配置した湿度センサとを含む。温度センサから温度指示信号を受け取り、これに応答して冷却剤温度を制御させるために制御装置を接続している。
【0036】
本発明のさらに別の実施形態では、偏向用磁場を印加するようにマグネットのボアの周りに配置した複数の傾斜コイルを有する磁気共鳴イメージング・システムを含んでいるMRI装置を提供する。この磁気共鳴イメージング・システムはさらに、RF信号をRFコイル・アセンブリに送信してMR画像を収集するようにパルスモジュールにより制御を受けているRF送受信装置システム及びRFスイッチを含んでいる。本MRI装置はさらに、傾斜コイル温度指示を検知するように配置した温度センサを有する冷却システムと、MRIシステムの傾斜コイルと熱的接触させると共にその内部に冷却剤を通過させている一組の冷却剤管と、冷却剤から熱を除去するように冷却剤管と接続した熱交換器と、を含む。真空チャンバにより冷却剤管を囲繞させ、真空チャンバには真空ポンプを接続させている。少なくとも1つの圧力センサを設け、真空チャンバ内の圧力を検知するように接続している。本MRI装置さらに、圧力センサからの信号を受け取り、真空チャンバ内の真空を制御し保持させる信号を真空ポンプに送るように接続した制御機構を含む。この制御機構はさらに、温度センサからの信号を受け取りこれに応答して冷却剤温度を制御し、これにより共鳴モジュールの内部及び周囲を安定した温度に保持するように接続されている。
【0037】
本発明の別の実施形態では、MRIを冷却する方法は、一組の傾斜コイルの周りにシール付きエンクロージャを作成するステップを含む。本方法はさらに、このシール付きエンクロージャから湿気を除去するステップと、シール付きエンクロージャ内の一続きの冷却管を通り、さらに熱交換器を通るように冷却剤を再循環させるステップと、を含む。次に、MRI動作の間は傾斜コイル温度の表示値をモニタリングしている。さらに、本方法は、傾斜コイル温度の表示値に応答して冷却剤の温度を調整するステップを含む。
【0038】
本発明は、既存のMRスキャナに対する後付けに特に適応可能であり、これに従ったMRデバイスに適応可能な冷却剤制御システム・キットを含んでいる。この冷却剤制御システム・キットは、共鳴モジュール内の湿度を検知するように配置した湿度センサと、MRデバイスの一部分の温度を検知するように熱的接触させた少なくとも1つの温度センサと、を含んでいる。このキットはさらに、温度センサからの温度指示信号を受け取り、これに応答して冷却剤温度を制御するように接続した制御装置を含む。
【0039】
本発明を好ましい実施形態について記載してきたが、明示的に記述した以外に、本特許請求の範囲の域内で等価、代替及び修正が可能であることを理解されたい。
【図面の簡単な説明】
【図1】本発明と共に使用されるMRIイメージング・システム装置のブロック概要図である。
【図2】図1に示すMRIイメージング・システムで使用される冷却システムの概要図である。
【図3】本発明と共に使用される熱制御技法の各ステップを表した流れ図である。
【符号の説明】
10 MRIシステム
12 オペレータ・コンソール
13 入力デバイス
14 制御パネル
16 スクリーン、ディスプレイ
18 リンク
20 コンピュータ・システム
20a バックプレーン
22 画像プロセッサ・モジュール
24 CPUモジュール
26 メモリ・モジュール
28 ディスク記憶装置
30 テープ駆動装置
32 システム制御部
32a バックプレーン
34 高速シリアル・リンク
36 CPUモジュール
38 パルス発生器モジュール
40 シリアル・リンク
42 傾斜増幅器
44 生理学的収集制御器
46 スキャン室インタフェース回路
48 患者位置決めシステム
50 傾斜コイル、傾斜磁場コイル・アセンブリ
52 マグネット・アセンブリ
54 偏向用マグネット
56 RFコイル
58 送受信器モジュール
60 RF増幅器
62 送信/受信スイッチ
64 前置増幅器
66 メモリ・モジュール
68 アレイ・プロセッサ
70 冷却システム
71 極低温タンク
72 イメージング・ボリューム
74 エンクロージャ、共鳴モジュール、真空チャンバ
75 患者ボア表面
76 冷却管
77 常温ボア表面
78 真空ポンプ
80 コンピュータ、制御装置
82 流入ポート
84 流入ポート
86 冷却剤ポンプ
88 冷却剤ライン
90 冷却剤ライン
92 流出ポート
94 流出ポート
96 冷却装置/熱交換器
98 帰還ライン
100 帰還ライン
102 温度センサ
104 圧力センサ
106 相対湿度センサ
110 冷却剤温度調節アルゴリズム

Claims (13)

  1. MRIデバイス用の冷却システム(70)であって、
    MRデバイス(10)の一組の傾斜コイル(50)と熱的接触すると共に、その内部に冷却剤を通過させている一組の冷却剤管(76)と、
    冷却剤から熱を除去するために前記一組の冷却剤管(76)と接続させた熱交換器(96)と、
    前記一組の冷却剤管(76)を囲繞している真空チャンバ(74)と、
    前記真空チャンバ(74)と熱的接触させた少なくとも1つの温度センサ(102)と、
    前記一組の冷却剤管(76)を通過する冷却剤の流量を調整する冷却剤流量制御弁(86)と、
    温度センサ(102)からの温度指示信号を受け取り、前記冷却剤流量制御弁(86)を調整し、前記冷却システム(70)への冷却剤流量を調整して、冷却剤温度を制御す制御装置(80)と、
    を備えるMRIデバイス用の冷却システム(70)。
  2. さらに、前記真空チャンバ(74)内の湿度を検知するように配置した湿度センサ(106)を備えると共に、前記制御装置(80)は、湿度指示信号を受け取り、かつ真空チャンバ(74)の湿度が露点レベルを超えた場合にMRIデバイス(10)への電力を制限するように接続されている、請求項に記載の冷却システム(70)。
  3. 前記真空チャンバ(74)と接続した真空ポンプ(78)と、真空チャンバ(74)内の圧力を検知するように接続した少なくとも1つの圧力センサ(104)と、をさらに備えると共に、前記制御装置(80)は、圧力センサ(104)から圧力指示信号を受け取り、これに応答して、真空チャンバ(74)内の真空が維持されるように真空ポンプ(78)を制御するように接続されている、請求項に記載の冷却システム(70)。
  4. MRIデバイス(10)の患者ボア表面(75)と熱的接触させた第1の温度センサ(102)、前記真空チャンバ(74)と熱的接触させた第2の温度センサ(102)、及び外側ボア表面(77)と熱的接触させた第3の温度センサ(102)を有すると共に、該温度センサ(102)の各々は、温度指示信号を制御装置(80)に送信して制御装置(80)により各センサ(102)に関する温度を維持するように接続されている、請求項に記載の冷却システム(70)。
  5. さらに、傾斜コイル温度の上昇に応答して冷却剤温度を低下させるためのフィードバック・ループを備え、
    前記フィードバック・ループ及び前記温度制御装置により、傾斜コイル(50)への電力が変動しても傾斜コイル温度を一定に保持させている、請求項に記載の冷却システム(70)。
  6. 偏向用磁場を印加するためにマグネット(52)のボアの周りに配置した複数の傾斜コイル(50)、並びにRF信号をRFコイル・アセンブリ(56)に送信しMR画像を収集させるようにパルスモジュール(38)により制御を受けているRF送受信装置システム(58)及びRFスイッチ、を有する磁気共鳴イメージング(MRI)システム(10)と、冷却システム(70)であって
    Rシステム(10)の傾斜コイル(50)と熱的接触すると共に、その内部に冷却剤を通過させている一組の冷却剤管(76)と、
    冷却剤から熱を除去するように冷却剤管(76)と接続させた熱交換器(96)と、
    冷却剤管(76)を囲繞している真空チャンバ(74)と、
    前記真空チャンバ(74)と熱的接触させた温度センサ(102)と、
    真空チャンバ(74)と接続した真空ポンプ(78)と、
    真空チャンバ(74)内の圧力を検知するように接続した少なくとも1つの圧力センサ(104)と、
    圧力センサ(104)から信号を受け取って真空ポンプ(78)に信号を送信し真空チャンバ(74)内の真空を制御かつ維持するように接続されると共に、温度センサ(102)から信号を受け取りこれに応じて冷却剤温度を制御し、これにより真空チャンバ(74)の内部及び周囲で安定した傾斜コイル温度を維持するように接続されている制御機構(80)と、を有している冷却システム(70)と、を備えるMRI装置。
  7. さらに、熱交換器(96)を前記一組の冷却剤管(76)と接続させている、断熱材をその上に有する一組の冷却剤供給/帰還ライン(88、90、98、100)と、真空チャンバ(74)の湿度を検知するように配置されると共に、真空チャンバ(74)の湿度が露点を超えた場合に傾斜コイル(50)への電力を制限するようにプログラムした制御機構(80)と接続されている湿度センサ(106)と、を備える請求項に記載のMRI装置。
  8. さらに、MRIシステム(10)の患者ボア表面(75)と熱的接触させた第1の温度センサ(102)、真空チャンバ(74)と熱的接触させた第2の温度センサ(102)、並びに外側ボア表面(77)と熱的接触させた第3の温度センサ(102)を備える請求項に記載のMRI装置。
  9. さらに、制御機構(80)から制御信号を受け取り冷却剤システム(70)への冷却剤流量制御を調整するように接続されている冷却剤流量制御弁(86)を備える請求項に記載のMRI装置。
  10. 一組の傾斜コイル(50)の周りに真空チャンバ(74)を作成するステップと、
    前記真空チャンバ(74)から湿気を除去するステップと、
    前記真空チャンバ(74)内の一続きの冷却管(76)、並びに熱交換器(96)を通して冷却剤を再循環させるステップと、
    MR動作の間に前記真空チャンバ(74)の温度の指示値をモニタリングするステップ(128、130、132)と、
    傾斜コイル温度の前記指示値に応答して冷却剤の温度を調整するステップ(142)と、
    前記真空チャンバ(74)内の圧力の指示値をモニタリングするステップと、
    前記真空チャンバ(74)内の圧力の前記指示値に応答して前記真空チャンバ(74)内の圧力を調整するステップと、
    を含むMRIの冷却方法。
  11. さらに、傾斜コイル温度フィードバックの指示をリアルタイムで提供するステップと、必要に応じて冷却剤温度を周囲露点以下まで低下させ傾斜コイルに対するより高い電力レベルを可能にするステップ(134、140、142)と、
    前記真空チャンバ(74)内の湿度レベルをモニタリングするステップ(116)と、必要とする冷却剤レベルでは前記真空チャンバ(74)内に結露が生成されてしまうような場合には、モニタリングした湿度レベルに基づいて傾斜コイル(50)への電力を制限するステップ(122)と、を含み、
    湿気を除去する前記ステップが前記真空チャンバ(74)内に真空を生成することにより実行されている、請求項10に記載の方法。
  12. MRデバイス(10)に適応可能な冷却剤制御システム・キットであって、真空チャンバ(74)内の湿度を検知するように配置した湿度センサ(106)と、前記真空チャンバ(74)の一部分の温度を検知するように熱的接触させた少なくとも1つの温度センサ(102)と、温度センサ(102)から温度指示信号を受け取り、これに応答して冷却剤温度を制御するように接続した制御装置(80)と、を備える冷却剤制御システム・キット。
  13. 前記少なくとも1つの温度センサ(102)は、MRIデバイス(10)の患者ボア表面(75)と熱的接触させた第1の温度センサ(102)、真空チャンバ(74)と熱的接触させた第2の温度センサ(102)、並びに外側ボア表面(77)と熱的接触させた第3の温度センサ(102)を含んでおり、該温度センサ(102)の各々は、温度指示信号を制御装置(80)に送信して制御装置(80)により各センサに関する温度を所与の範囲に維持するように接続されており、
    前記真空チャンバ(74)の湿度を検知するように前記湿度センサ(106)を配置させ ていると共に、前記制御装置(80)は、湿度指示信号を受け取り、かつ真空チャンバの湿度が露点レベルを超えた場合にMRIデバイス(10)への電力を制限するように接続されている、請求項12に記載の冷却剤制御システム・キット。
JP2002108648A 2001-04-12 2002-04-11 医用イメージング・デバイスの冷却を調節するための方法及びシステム Expired - Fee Related JP4190201B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/681467 2001-04-12
US09/681,467 US6909283B2 (en) 2001-04-12 2001-04-12 Method and system to regulate cooling of a medical imaging device

Publications (2)

Publication Number Publication Date
JP2002320600A JP2002320600A (ja) 2002-11-05
JP4190201B2 true JP4190201B2 (ja) 2008-12-03

Family

ID=24735403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108648A Expired - Fee Related JP4190201B2 (ja) 2001-04-12 2002-04-11 医用イメージング・デバイスの冷却を調節するための方法及びシステム

Country Status (3)

Country Link
US (2) US6909283B2 (ja)
JP (1) JP4190201B2 (ja)
DE (1) DE10215994A1 (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706856B2 (en) * 2002-09-27 2010-04-27 General Electric Company System and method for predictive thermal output control of a medical device
US7209778B2 (en) * 2002-09-27 2007-04-24 General Electric Company Embedded thermal control system for high field MR scanners
US6769487B2 (en) * 2002-12-11 2004-08-03 Schlumberger Technology Corporation Apparatus and method for actively cooling instrumentation in a high temperature environment
US7015692B2 (en) * 2003-08-07 2006-03-21 Ge Electric Company Apparatus for active cooling of an MRI patient bore in cylindrical MRI systems
US7304477B2 (en) * 2003-11-24 2007-12-04 Koninklijke Philips Electronics N.V. MRI apparatus with means for noise reduction
CN100528076C (zh) * 2003-12-08 2009-08-19 西门子公司 通过顺磁性水溶材料来降低冷却剂的弛豫时间的应用
US7305845B2 (en) * 2004-03-05 2007-12-11 General Electric Company System and method for de-icing recondensor for liquid cooled zero-boil-off MR magnet
US7135863B2 (en) * 2004-09-30 2006-11-14 General Electric Company Thermal management system and method for MRI gradient coil
GB2419417B (en) * 2004-10-20 2007-05-16 Gen Electric Gradient bore cooling and RF shield
GB2432112A (en) * 2005-11-11 2007-05-16 Siemens Magnet Technology Ltd Hydraulically operated patient table
US7297907B2 (en) * 2005-12-08 2007-11-20 Uri Rapoport Means and method of maintaining a constant temperature in the magnetic assembly of a magnetic resonance device
US7190170B1 (en) * 2006-03-24 2007-03-13 General Electric Company Particle doped magnetic coil
CN101090021B (zh) * 2006-06-12 2011-08-24 西门子(中国)有限公司 永磁磁共振系统的磁场元件的温度控制方法
US7368913B2 (en) * 2006-06-30 2008-05-06 General Electric Company Apparatus and method of providing forced airflow to a surface of a gradient coil
US7378847B2 (en) * 2006-08-16 2008-05-27 Varian, Inc. Efficiently cryo-pumped NMR cryogenic probe
US7489132B2 (en) * 2006-12-15 2009-02-10 General Electric Company Enhanced heat transfer in MRI gradient coils with phase-change materials
US7301343B1 (en) * 2006-12-18 2007-11-27 General Electric Co. System, method and apparatus for controlling the temperature of a MRI magnet warm bore
US7489131B2 (en) * 2007-04-23 2009-02-10 General Electric Co. System and apparatus for direct cooling of gradient coils
CN101299060B (zh) * 2007-04-30 2011-04-06 西门子(中国)有限公司 一种磁共振成像系统的通风方法及通风系统
US7511501B2 (en) * 2007-05-11 2009-03-31 General Electric Company Systems and apparatus for monitoring internal temperature of a gradient coil
US7962019B2 (en) * 2007-11-09 2011-06-14 General Electric Company System, method and apparatus for controlling drift of a main magnetic field in an MRI system
US7812604B2 (en) * 2007-11-14 2010-10-12 General Electric Company Thermal management system for cooling a heat generating component of a magnetic resonance imaging apparatus
US7868617B2 (en) * 2007-11-15 2011-01-11 General Electric Co. Cooling system and apparatus for controlling drift of a main magnetic field in an MRI system
JP5472896B2 (ja) * 2007-11-22 2014-04-16 株式会社東芝 磁気共鳴装置
US8188741B2 (en) * 2008-03-13 2012-05-29 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and chiller
JP5554031B2 (ja) * 2008-10-03 2014-07-23 株式会社東芝 磁気共鳴イメージング装置および傾斜磁場コイル冷却制御方法
JP5582756B2 (ja) * 2008-11-28 2014-09-03 株式会社東芝 高周波コイルユニットおよび磁気共鳴診断装置
CN202942110U (zh) * 2009-08-30 2013-05-22 阿斯派克磁体有限公司 磁共振设备
US9732605B2 (en) * 2009-12-23 2017-08-15 Halliburton Energy Services, Inc. Downhole well tool and cooler therefor
JP5558863B2 (ja) * 2010-02-22 2014-07-23 株式会社東芝 Mri装置
US9170310B2 (en) * 2011-05-10 2015-10-27 Time Medical Holdings Company Limited Cryogenically cooled whole-body RF coil array and MRI system having same
US8573834B2 (en) 2011-05-14 2013-11-05 Honeywell Asca Inc. Connectionless cooling system
DE102011084203B4 (de) 2011-10-10 2014-07-17 Siemens Aktiengesellschaft Verfahren zum Betrieb wenigstens einer Pumpeneinrichtung
US9416720B2 (en) 2011-12-01 2016-08-16 Paccar Inc Systems and methods for controlling a variable speed water pump
JP5940378B2 (ja) * 2012-06-01 2016-06-29 株式会社東芝 Mri装置ユニット用冷却装置及びmri装置
DE102013208631B3 (de) * 2013-05-10 2014-09-04 Siemens Aktiengesellschaft Magnetresonanzvorrichtung mit einem Kühlsystem zu einer Kühlung einer supraleitenden Hauptmagnetspule sowie ein Verfahren zur Kühlung der supraleitenden Hauptmagnetspule
JP6154204B2 (ja) * 2013-06-11 2017-06-28 東芝メディカルシステムズ株式会社 磁気共鳴イメージング装置
WO2015035205A1 (en) * 2013-09-05 2015-03-12 Massachusetts Institute Of Technology Nmr sensor for rapid, non-invasive determination of hydration state or vascular volume of a subject
CN104676994A (zh) * 2013-11-29 2015-06-03 西门子(深圳)磁共振有限公司 磁共振成像系统的冷却设备和方法
DE102014219741B4 (de) * 2014-09-30 2019-06-27 Siemens Healthcare Gmbh Magnetresonanzvorrichtung mit einer Kühlungsvorrichtung
WO2017080845A1 (en) 2015-11-09 2017-05-18 Koninklijke Philips N.V. Magnetic resonance examination system with fluid cooling arrangement
WO2017100521A1 (en) * 2015-12-10 2017-06-15 Laird Technologies, Inc. Heat exchangers
DE102016201908A1 (de) * 2016-02-09 2017-08-10 Siemens Healthcare Gmbh Verfahren zum Betreiben einer Temperierungsvorrichtung für eine medizinische Untersuchungseinrichtung, Temperierungsvorrichtung, medizinische Untersuchungseinrichtung und Computerprogramm
JP7014548B2 (ja) * 2017-08-28 2022-02-01 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置
WO2019143801A1 (en) * 2018-01-18 2019-07-25 New York University System and method for blood glucose monitoring using magnetic resonance spectroscopy
US11703393B2 (en) * 2018-06-01 2023-07-18 Southwest Medical Resources, Inc. System and method for monitoring cooling system
US10761162B2 (en) 2018-09-18 2020-09-01 General Electric Company Gradient coil cooling systems
CN112130105B (zh) * 2020-09-11 2022-03-22 中南大学湘雅医院 一种用于核磁共振检测的磁体温控装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8303534A (nl) 1983-10-14 1985-05-01 Philips Nv Kernspinresonantie apparaat.
US5424643A (en) 1989-06-16 1995-06-13 Picker International, Inc. Magnetic resonance gradient sheet coils
US5296810A (en) 1992-03-27 1994-03-22 Picker International, Inc. MRI self-shielded gradient coils
US5406204A (en) 1992-03-27 1995-04-11 Picker International, Inc. Integrated MRI gradient coil and RF screen
US5489848A (en) 1992-09-08 1996-02-06 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus
US5485754A (en) * 1994-04-21 1996-01-23 Intek, Inc. Apparatus and method for measuring the air flow component and water vapor component of air/water vapor streams flowing under vacuum
US5793210A (en) 1996-08-13 1998-08-11 General Electric Company Low noise MRI scanner
JP3619623B2 (ja) * 1996-10-17 2005-02-09 株式会社東芝 磁気共鳴イメージング装置および磁気共鳴イメージングの遮音方法
US6101827A (en) * 1999-11-08 2000-08-15 Burson; Benard Temperature comparison circuit and refrigeration expansion valve
DE19962182C2 (de) * 1999-12-22 2001-10-31 Siemens Ag Magnetresonanzgerät mit einem einkreisigen Kühlkreislauf
US6516282B2 (en) * 2001-04-19 2003-02-04 Ge Medical Systems Global Technology Company Predictive thermal control used with a vacuum enclosed coil assembly of a magnetic resonance imaging device
JP3891807B2 (ja) * 2001-09-14 2007-03-14 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超電導マグネットの故障予測装置およびその方法、並びに磁気共鳴撮影システム
US7015692B2 (en) * 2003-08-07 2006-03-21 Ge Electric Company Apparatus for active cooling of an MRI patient bore in cylindrical MRI systems

Also Published As

Publication number Publication date
US20020148604A1 (en) 2002-10-17
DE10215994A1 (de) 2002-10-17
US6992483B1 (en) 2006-01-31
US6909283B2 (en) 2005-06-21
JP2002320600A (ja) 2002-11-05

Similar Documents

Publication Publication Date Title
JP4190201B2 (ja) 医用イメージング・デバイスの冷却を調節するための方法及びシステム
US6516282B2 (en) Predictive thermal control used with a vacuum enclosed coil assembly of a magnetic resonance imaging device
JP5265899B2 (ja) 超伝導マグネット向けの高温超伝導電流リード
US7868617B2 (en) Cooling system and apparatus for controlling drift of a main magnetic field in an MRI system
EP1219971A2 (en) MR scanner including liquid cooled RF coil and method for cooling an RF coil
CN102054554B (zh) 超导磁体的制冷系统和制冷方法
US7570058B1 (en) System and method for treatment of liquid coolant in an MRI system
JP4745687B2 (ja) 液冷式ゼロボイルオフ型mr磁石用の再凝縮器を除氷するためのシステム及び方法
JP5815557B2 (ja) 無冷媒型磁石のための管状の熱スイッチ
US7489132B2 (en) Enhanced heat transfer in MRI gradient coils with phase-change materials
US7962019B2 (en) System, method and apparatus for controlling drift of a main magnetic field in an MRI system
GB2474949A (en) Cryogenic system and method for superconducting magnets
US8027139B2 (en) System and method for superconducting magnet ramp-down
JP6998302B2 (ja) 流体冷却装置を有する磁気共鳴検査システム
JP5156292B2 (ja) 超伝導マグネット冷却システム向けのサーマルスイッチ
US8487621B2 (en) Radio frequency (RF) coil for MRI having high thermal conductivity
US8694065B2 (en) Cryogenic cooling system with wicking structure
JP4393116B2 (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees