JP4189893B2 - Antibacterial mixed yarn - Google Patents

Antibacterial mixed yarn Download PDF

Info

Publication number
JP4189893B2
JP4189893B2 JP05567899A JP5567899A JP4189893B2 JP 4189893 B2 JP4189893 B2 JP 4189893B2 JP 05567899 A JP05567899 A JP 05567899A JP 5567899 A JP5567899 A JP 5567899A JP 4189893 B2 JP4189893 B2 JP 4189893B2
Authority
JP
Japan
Prior art keywords
polylactic acid
acid
fibers
fiber
mixed yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05567899A
Other languages
Japanese (ja)
Other versions
JP2000248465A (en
Inventor
文夫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP05567899A priority Critical patent/JP4189893B2/en
Publication of JP2000248465A publication Critical patent/JP2000248465A/en
Application granted granted Critical
Publication of JP4189893B2 publication Critical patent/JP4189893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/449Yarns or threads with antibacterial properties

Description

【0001】
【発明の属する技術分野】
本発明は、抗菌性能を有する混合糸に関するものである。
【0002】
【従来の技術】
素材に抗菌性を付与する方法は従来より今日にいたり行われており、例えば、繊維素材あるいは繊維布帛やシート等を抗菌性物質によって表面処理を行う方法がある。しかし、この方法では抗菌性能を付与できるものの、抗菌性能の耐久性に劣るという問題がある。これを解決する方法として、ナイロンやポリエステルのような繊維素材の製造工程中に活性のある抗菌物質を混合練り込む方法がある。しかし、この方法では一定の抗菌性能を示すもののコスト高になる。また、一般に、抗菌剤自体が一定の毒性を有するものが多く、安全上問題があった。
【0003】
【発明が解決しようとする課題】
本発明らは、上記問題点に鑑み、コストが高くなく、かつ安全性のある抗菌剤について、検討した。従来より、乳酸が食品の日持ちを向上させる食品保存剤として用いられており、乳酸が静菌・防カビ作用を有することが知られている。しかし、乳酸の脱水縮合重合体であるポリ乳酸系重合体からなる繊維やフィルムには、抗菌性が認められるという明確な報告はなく、ましてやポリ乳酸のポリマー組成物との関係について抗菌性を論じた報告はない。本発明者らは、繊維への成形加工工程で、乳酸が有する潜在的な静菌・防カビ作用を発現させるべく、ポリ乳酸系重合体と抗菌性との関係について種々検討した結果、ポリ乳酸系重合体の構成成分においてある特定の組成範囲のものに、顕著な抗菌活性が認められることを見出し、本発明に到達した。
【0004】
【課題を解決するための手段】
本発明は、ポリ乳酸系繊維と公定水分率が5%以上の繊維とからなる混合糸であり、前記ポリ乳酸系繊維を構成するポリ乳酸系重合体中に、乳酸、ラクチドおよびオリゴ乳酸を0.01〜1.0重量%含有しており、該混合糸には親水性の界面活性剤が付与され、静菌活性値が2.2以上であることを特徴とする抗菌性混合糸を要旨とするものである。
【0005】
【発明の実施の形態】
本発明に用いるポリ乳酸系繊維を構成するポリ乳酸系重合体は、熱可塑性脂肪族ポリエステルであって、ポリ(α−ヒドロキシ酸)を主たる繰り返し単位とする重合体が挙げられる。具体的には、ポリ(D−乳酸)、ポリ(L−乳酸)、D−乳酸とL−乳酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、DL−乳酸とヒドロキシカルボン酸等が挙げられ、これらの重合体のうち、融点が80℃以上である重合体が好ましい。ここで、乳酸とヒドロキシカルボン酸との共重合体である場合におけるヒドロキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸、ヒドロキシカプリル酸などが挙げられる。
【0006】
このようなポリ乳酸系重合体は、数平均分子量が約20,000以上、好ましくは40,000以上のものが製糸性及び得られる糸条特性の点で好ましい。数平均分子量の上限については、溶融紡糸が行えるものであればよく、150,000程度であればよい。
【0007】
ポリ乳酸系重合体には、必要に応じて他の添加剤、例えば艶消し剤や顔料、結晶核剤等の各種添加剤を本発明の効果を損なわない範囲内で添加しても良い。
【0008】
ポリ乳酸系繊維の繊維横断面形状は、通常の丸断面の他、楕円形、菱形、三角形、四角形、多角形、T形、井形等の異形断面のもの等いずれのものを用いることができ、適宜選択すればよい。また、中空部を有する中空断面形状であってもよい。
【0009】
ポリ乳酸系繊維は、一種のポリ乳酸系重合体単独からなる単相形態のものであっても、2種以上のポリ乳酸系重合体からなる複合形態のものであってもよい。複合形態としては、並列型複合形態、多層型複合形態、芯鞘型複合形態、分割型複合形態、分割型多葉複合形態等が挙げられ、用途等に応じて適宜選択すればよい。
【0010】
本発明の混合糸を構成するポリ乳酸系繊維において、繊維表面積が大きい方が細菌との接触面積が増えるため、より静菌作用を発揮でき、また、不織布を自然界において分解する生分解性能を要する用途に用いる場合にも繊維の表面積が大きいものが分解性に優れるので、中空断面、異形断面、分割型複合断面等の断面形状のものを用いることが好ましい。
【0011】
ポリ乳酸系繊維の結晶化度は、10〜40%の範囲にあることが好ましい。繊維の結晶化度を上記範囲とすることによって、繊維の熱収縮を低く抑え、実用的な機械的強度を有するものとなる。上記範囲の結晶化度は、熱処理を行うことや延伸を行うことにより、また、ポリ乳酸系重合体に対して、例えば、タルク、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、酸化チタンなど結晶核剤を添加することにより達成される。結晶核剤を添加すると繊維の結晶化を促進させ、得られる混合糸の機械的強度や耐熱性を向上させることができ、しかも製造時の溶融紡出・冷却工程での紡出糸条間の融着(ブロッキング)を防止しうる点で好ましい。このような結晶核剤の添加量は、0.1〜3.0重量%の範囲、より好ましくは0.2〜2.0重量%の範囲であることが望ましい。
【0012】
ポリ乳酸系繊維の単糸繊度は、適宜選択すればよいが、0.5デニール以上であることが好ましい。単糸繊度が0.5デニール未満であると、生産量が低下する傾向にあり、また生産量を向上させるために紡糸口金の数を増加させた場合に、紡糸工程が不安定になる。また、単糸繊度の上限についても特に限定されない。一般的な冷却風で繊維を固化させる方法による製造面からは、50デニール程度が好ましい。50デニールを超えると、溶融紡糸された糸条の冷却不足により引き取りが困難になる傾向にあり、また、糸条の冷却を促進させるために紡糸口金の孔数を減らした場合に生産量が低下する。
【0013】
本発明の混合糸は、公定水分率5%以上の吸水性を有する繊維を含有するものであり、公定水分率が5%以上の繊維としては、天然繊維である木綿、麻、羊毛、絹などを用いることができる。また、再生繊維として、パルプより得られるビスコースレーヨン、銅アンモニアレーヨン、溶剤紡糸されたレーヨンであるリヨセルなどを用いることもできる。さらに、合成繊維であっても、ポリエーテルエステルアミドを含有したものや、ポリアルキレンオキシド変性物等を含有したものも用いることができる。また、公定水分率5%以上の繊維として、前述したものを2種類以上から構成したものであってもよい。
【0014】
公定水分率が5%以上の繊維は、吸水性に優れるため、後述するポリ乳酸系繊維の静菌・抗菌性能の発現に寄与する。また、本発明の混合糸に公定水分率が5%以上の繊維が混合していることによって、混合糸に十分な吸水性、保水性を付与することができる。このような混合糸からなる布帛は、たとえば、吸汗性に優れた衣類や、水分の拭き取り性に優れたワイパーなどの用途に好適に用いられる。
【0015】
公定水分率5%以上の繊維である天然繊維や再生繊維は、ポリ乳酸系短繊維と同様に自然界で微生物により分解される性質を有するため、生分解性が要求される用途に好適に用いることができる。
【0016】
本発明を構成するポリ乳酸系繊維および公定水分率5%以上の繊維の形態は、短繊維であっても長繊維であってもよく、適宜目的に応じて選択する。
【0017】
本発明の混合糸は、ポリ乳酸系繊維と公定水分率5%以上の繊維とからなるものであり、両繊維を、公知の混繊法または混紡法により、混繊糸または混紡糸としたものである。
【0018】
本発明の混合糸のポリ乳酸系繊維と公定水分率が5%以上の繊維との混合割合(重量比)は、70/30〜30/70であることが好ましい。ポリ乳酸系繊維の割合が30重量%未満であると、本発明が目的とする抗菌効果が得られない傾向となり、70重量%を超えると、水性に劣る傾向となる。
【0019】
本発明の混合糸は、親水性の界面活性剤が付与されており、親水性の界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性系界面活性剤等が挙げられ、これらを単独または混合して用いる。界面活性剤は、所定濃度(例えば、1〜1.5重量%程度)に調整した水溶液または水分散液の形態で、混合糸に噴霧するとよい。また、構成繊維同士を混合する前(繊維製造工程等において)に、ポリ乳酸系繊維および/または公定水分率5%以上の繊維に噴霧してもよい。また、これらの繊維が短繊維である場合、混綿工程で混綿ウエブに噴霧すると、界面活性剤が付与された繊維は、カード機等の開繊装置で開繊する際に、絡みつきが減少されるので好ましい。
【0020】
混合糸に付与されてなる親水性の界面活性剤は、100ppm以上であること好ましい。100ppm未満であると、混合糸の抗菌効果が十分に発揮されにくい傾向となる。
【0021】
ポリ乳酸系重合体は疎水性であるため、ポリ乳酸系重合体からなる繊維もまた疎水性である。このような疎水性のポリ乳酸系繊維は、素材自身が抗菌性を持っていても、すなわち、後述するポリ乳酸系繊維を構成するポリ乳酸系重合体中に、乳酸、ラクチドおよびその他のオリゴ乳酸を含有していても、菌の繁殖を積極的に抑える抗菌効果は発揮されない。親水性界面活性剤が付与されることにより、ポリ乳酸系繊維表面が親水性となるので、菌との接触が可能となり、菌の繁殖を抑えることができると推定される。さらに、本発明の混合糸は、公定水分率5%以上の繊維とポリ乳酸系繊維とが混合している状態であり、繊維同士が隣接しているため、ポリ乳酸系繊維は、公定水分率5%以上の繊維が含有する水分とも接触した状態であるので、菌とも接触しやすくなり、その繁殖を抑えることができると推定される。
【0022】
このような抗菌効果は、ポリ乳酸系繊維を構成しているポリ乳酸系重合体中に、乳酸、ラクチドおよびオリゴ乳酸を含有しているために発揮されると推察される。ポリ乳酸系繊維を構成するポリ乳酸系重合体中には、乳酸、ラクチドおよびオリゴ乳酸を0.01〜1.0重量%含有している。乳酸、ラクチドおよびその他のオリゴ乳酸の含量が0.01重量%未満であると抗菌性能の効果が薄れ、一方、1.0重量%を超えると常温下でも空気中の湿気等の水分により加水分解が進行するため、長期保存安定性に欠ける傾向となる。
【0023】
本発明においては、ポリ乳酸系繊維を構成するポリ乳酸系重合体中に含有する乳酸、ラクチドおよびオリゴ乳酸の量を上記範囲とするためには、重合過程において反応条件を調節すること、あるいは、重合終了後、溶融状態で減圧することにより過剰のラクチド、オリゴ乳酸等を除くことにより達成される。
【0024】
本発明の混合糸は、統一試験法(繊維製品衛生加工協議会認定の抗菌効果試験方法)による静菌活性値が2.2以上である。静菌活性値とは、一定の菌数の検定菌を標準試料および対象試料に植菌し、一定時間培養後の標準試料の生菌数をB(cells/ml)、一定時間培養後の対象試料の生菌数をC(cells/ml)とした場合のlogB−logCで表される。静菌活性値が2.2未満であると、菌の繁殖を抑えることができるとはいえない。
【0025】
【実施例】
以下、実施例により本発明を具体的に説明する。なお、本発明はこれらの実施例のみに限定されるものではない。実施例において、各物性値は次のようにして求めた。また、抗菌性の評価すなわち静菌活性値については前述の方法により求めた。
(1)融点(℃):パーキンエルマ社製の示差走査熱量計DSC−7型を使用し、昇温速度を20℃/分として測定して得た融解吸熱曲線の極値を与える温度を融点(℃)とした。
【0026】
(2)メルトフローレート(以下、MFRという。)(g/10分):ASTMD 1238に記載の方法に準じて210℃、荷重2160gにおける溶融吐出量を測定した。
【0027】
(3)抗菌性能:抗菌性能は統一試験法(繊維製品衛生加工協議会認定の抗菌効果試験方法)により、静菌活性値を測定し、抗菌性能を評価した。前記評価にあたっては、使用菌株として、Staphylococcus aureus ATCC 6538P(黄色葡萄状球菌)を用いた。
すなわち、バイアル瓶に入れた滅菌済試料0.4gに生菌数を1±0.3×105に調整した菌液0.2mlを出来るだけ均一に接種し、37℃で18時間培養する。ツイン80 0.2%を添加した生理食塩水20mlを加え攪拌し菌を洗い出す。10倍希釈系列を作成しニュートリエント寒天培地と混釈し37℃で24時間以上培養しコロニー数を数え、生菌数を求めた。
【0028】
静菌活性値の計算としては、標準試料および試験試料について、上記試験をそれぞれ行い、下式から静菌活性値を求めた。なお、標準試料としては、ナイロン標準白布を用いた。
静菌活性値=logB−logC
B:標準試料の18時間培養後、回収した菌数
C:試験試料の18時間培養後、回収した菌数
【0029】
実施例1
ポリ乳酸系繊維を作成するために、光学純度が98.8%で、融点170℃、MFR25g/10分のポリL−乳酸樹脂を溶融し、紡糸温度220℃、単孔吐出量0.31g/分の条件下で紡糸口金より溶融紡糸した。次に、紡出糸条を冷却装置にて冷却し、紡糸油剤を付与した後、引き取り速度800m/分で巻き取った。次いで、得られた未延伸糸を、延伸トウ繊度が30万デニールとなるよう合糸してトウとなし、周速の異なる公知の延伸機を用いて延伸温度120℃、延伸倍率を2.51倍として延伸を行った後、クリンパーにて捲縮を付与し、分子量600のポリエチレングリコールモノオレートを20重量%含有した仕上げ油剤0.3重量%を付与した、その後、このトウを乾燥し、引き続き、51mmの長さに切断して、1.5デニールのポリ乳酸系短繊維を得た。得られたポリ乳酸系短繊維の単繊維強度は3.9g/d、120℃×15分の雰囲気下における乾熱収縮率は4.2%であった。
【0030】
公定水分率5%以上の繊維として、平均繊度1.5デニール、平均繊維長24mmの木綿の晒し綿を用意した。
【0031】
そして、上述のポリ乳酸系短繊維50重量%、木綿繊維50重量%となるように計量混綿し、混打綿機に通した後、引き続きフラットカード機に通し、ウエブを集束してスライバーを得た。このスライバーを3本ダブリングして第1練条機に通し、さらにこの得たスライバーを8本ダブリングして仕上げ練条機に通した後、この得たスライバーを2本ダブリングして粗紡機に通した。この得られたスライバーをリング精紡機にて精紡して、撚り数19回/インチ、40番手の紡績糸を得た。この紡績糸の強度は2.8g/d、伸度は33%であった。
【0032】
実施例2
ポリ乳酸系繊維と木綿繊維との混綿比率を30/70(重量%)とした以外は、実施例1と同様にして本発明の混合糸を得た。
【0033】
実施例3
ポリ乳酸系繊維と木綿繊維との混綿比率を70/30(重量%)とした以外は、実施例1と同様にして本発明の混合糸を得た。
【0034】
実施例1〜3で得られた混合糸を用い、針数260本の筒編機(小池製作所製)で製編した。得られた筒編地の抗菌性能の評価を行い、その結果を表1に示した。
【0035】
【表1】

Figure 0004189893
【0036】
表1から明らかなように実施例1〜3の混合糸からなるいずれの布帛も静菌・抗菌性能があることが確認できた。
【0037】
【発明の効果】
本発明によれば、ポリ乳酸系繊維と公定水分率が5%以上の繊維とからなる混合糸に親水性界面活性剤が付与されたものであって、親水性界面活性剤を付与したことによってポリ乳酸系繊維の表面が親水性となることで、菌と接触が可能となり、菌の繁殖を抑制するという静菌・抗菌効果を発揮することができたものと考えられる。また、本発明の混合糸には、公定水分率が5%以上の繊維が含まれているので、空気中の水分を含有しやすく、このような繊維とポリ乳酸系繊維とが接触していることで、ポリ乳酸系繊維は、さらに菌と接触しやすくなる。したがって、公定水分率が5%以上の繊維は、ポリ乳酸系繊維が静菌・抗菌効果を発現することに寄与し、また、混合糸自体に良好な吸湿・吸水性を付与させるものである。
【0038】
また、本発明の抗菌性混合糸は、ポリ乳酸系重合体が抗菌性を発揮するものであるため、人体に対しても安全性が極めて高い。
【0039】
本発明の混合糸を用いて編織物、組物、紐等の繊維製品とすることによって、食品等の各種包装材、壁紙、各種フィルター、流し等の水切り袋、テーブルクロス、足拭きマット、ふきん等の日用品・生活関連資材、農園芸資材、医療・衛生材、衣料品等の様々な分野において、静菌・抗菌性能を発揮することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mixed yarn having antibacterial performance.
[0002]
[Prior art]
A method of imparting antibacterial properties to a material has been performed today. For example, there is a method in which a fiber material or a fiber cloth or sheet is surface-treated with an antibacterial substance. However, although this method can provide antibacterial performance, there is a problem that the durability of the antibacterial performance is inferior. As a method for solving this, there is a method in which an active antibacterial substance is mixed and kneaded during the manufacturing process of a fiber material such as nylon or polyester. However, this method shows a certain antibacterial performance but increases the cost. Also, in general, many antibacterial agents themselves have a certain toxicity, which causes safety problems.
[0003]
[Problems to be solved by the invention]
In view of the above problems, the present inventors have examined antibacterial agents that are inexpensive and safe. Conventionally, lactic acid has been used as a food preservative for improving the shelf life of food, and it is known that lactic acid has bacteriostatic and fungicidal action. However, there is no clear report that antibacterial properties are observed in fibers and films made of polylactic acid polymers, which are dehydration condensation polymers of lactic acid. Furthermore, antibacterial properties are discussed in relation to the polymer composition of polylactic acid. There are no reports. As a result of various studies on the relationship between the polylactic acid-based polymer and antibacterial properties, the present inventors have investigated the effects of polylactic acid in order to develop the latent bacteriostatic / antifungal action of lactic acid in the fiber forming process. It has been found that remarkable antibacterial activity is observed in a specific composition range among the constituent components of the polymer, and the present invention has been achieved.
[0004]
[Means for Solving the Problems]
The present invention is a mixed yarn composed of polylactic acid fibers and fibers having an official moisture content of 5% or more. In the polylactic acid polymer constituting the polylactic acid fibers, lactic acid, lactide and oligolactic acid are reduced to 0. An antibacterial mixed yarn characterized by containing 0.01 to 1.0% by weight , a hydrophilic surfactant added to the mixed yarn, and a bacteriostatic activity value of 2.2 or more. It is what.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The polylactic acid-based polymer constituting the polylactic acid-based fiber used in the present invention is a thermoplastic aliphatic polyester, and includes a polymer having poly (α-hydroxy acid) as a main repeating unit. Specifically, poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid, a copolymer of D-lactic acid and hydroxycarboxylic acid, L-lactic acid and hydroxy Examples thereof include copolymers with carboxylic acids, DL-lactic acid and hydroxycarboxylic acids, and among these polymers, polymers having a melting point of 80 ° C. or higher are preferred. Here, examples of the hydroxycarboxylic acid in the case of a copolymer of lactic acid and hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxyheptanoic acid, and hydroxycaprylic acid.
[0006]
Such a polylactic acid-based polymer has a number average molecular weight of about 20,000 or more, preferably 40,000 or more from the viewpoints of yarn production and obtained yarn characteristics. The upper limit of the number average molecular weight is not particularly limited as long as it can be melt-spun, and may be about 150,000.
[0007]
If necessary, other additives such as matting agents, pigments, crystal nucleating agents and the like may be added to the polylactic acid-based polymer within a range not impairing the effects of the present invention.
[0008]
The fiber cross-sectional shape of the polylactic acid-based fiber can be any of a round shape, an elliptical shape, a rhombus shape, a triangular shape, a quadrangular shape, a polygonal shape, a T shape shape, a well-shaped cross-section shape, etc. What is necessary is just to select suitably. Moreover, the hollow cross-sectional shape which has a hollow part may be sufficient.
[0009]
The polylactic acid fiber may be in a single-phase form made of a single type of polylactic acid polymer alone or in a composite form made up of two or more kinds of polylactic acid polymers. Examples of the composite form include a parallel composite form, a multilayer composite form, a core-sheath composite form, a split composite form, a split multileaf composite form, and the like.
[0010]
In the polylactic acid-based fiber constituting the mixed yarn of the present invention, the larger the fiber surface area, the greater the contact area with bacteria, so that it can exhibit more bacteriostatic action and requires biodegradability to decompose the nonwoven fabric in nature. Even when used for applications, a fiber having a large surface area is excellent in decomposability, and therefore it is preferable to use a fiber having a cross-sectional shape such as a hollow cross-section, an irregular cross-section, or a split composite cross-section.
[0011]
The crystallinity of the polylactic acid fiber is preferably in the range of 10 to 40%. By setting the crystallinity of the fiber within the above range, the thermal shrinkage of the fiber is suppressed to a low level and has a practical mechanical strength. The crystallinity in the above range is obtained by performing heat treatment or stretching, and for example, a nucleating agent such as talc, boron nitride, calcium carbonate, magnesium carbonate, titanium oxide is added to the polylactic acid polymer. This is achieved by adding. Addition of a crystal nucleating agent promotes fiber crystallization, improves the mechanical strength and heat resistance of the resulting mixed yarn, and further, between the spun yarns in the melt spinning / cooling process during production. This is preferable in that fusion (blocking) can be prevented. The amount of the crystal nucleating agent added is desirably in the range of 0.1 to 3.0% by weight, more preferably in the range of 0.2 to 2.0% by weight.
[0012]
The single yarn fineness of the polylactic acid fiber may be appropriately selected, but is preferably 0.5 denier or more. When the single yarn fineness is less than 0.5 denier, the production amount tends to decrease, and when the number of spinnerets is increased to improve the production amount, the spinning process becomes unstable. Further, the upper limit of the single yarn fineness is not particularly limited. From the viewpoint of production by a method of solidifying fibers with a general cooling air, about 50 denier is preferable. If it exceeds 50 deniers, take-up tends to be difficult due to insufficient cooling of the melt-spun yarn, and the production volume decreases when the number of holes in the spinneret is reduced to promote cooling of the yarn. To do.
[0013]
The mixed yarn of the present invention contains fibers having a water absorption of 5% or more of the official moisture content, and examples of fibers having an official moisture content of 5% or more include cotton, hemp, wool, silk, etc., which are natural fibers. Can be used. Further, as recycled fiber, viscose rayon, copper ammonia rayon obtained from pulp, lyocell which is solvent-spun rayon, and the like can also be used. Furthermore, even if it is a synthetic fiber, the thing containing polyetheresteramide and the thing containing the polyalkylene oxide modified material etc. can be used. Moreover, what was comprised from 2 or more types of what was mentioned above as a fiber of 5% or more of official moisture rates may be sufficient.
[0014]
Fibers with an official moisture content of 5% or more are excellent in water absorption, and thus contribute to the development of the bacteriostatic and antibacterial performance of polylactic acid fibers described later. In addition, when the mixed yarn of the present invention is mixed with fibers having an official moisture content of 5% or more, sufficient water absorption and water retention can be imparted to the mixed yarn. A fabric made of such a mixed yarn is suitably used for, for example, clothes such as clothes with excellent sweat absorption and wipers with excellent moisture wiping properties.
[0015]
Natural fibers and regenerated fibers that are fibers with an official moisture content of 5% or more have the property of being decomposed by microorganisms in the same way as polylactic acid-based short fibers, and therefore should be used suitably for applications that require biodegradability. Can do.
[0016]
The form of the polylactic acid fiber constituting the present invention and the fiber having an official moisture content of 5% or more may be a short fiber or a long fiber, and is appropriately selected according to the purpose.
[0017]
The mixed yarn of the present invention comprises a polylactic acid fiber and a fiber having an official moisture content of 5% or more, and both fibers are mixed or spun by a known blending method or blending method. It is.
[0018]
The mixing ratio (weight ratio) of the polylactic acid fiber and the fiber having an official moisture content of 5% or more in the mixed yarn of the present invention is preferably 70/30 to 30/70. When the ratio of the polylactic acid fibers is less than 30 wt%, the present invention tends to not be obtained antibacterial effect of interest, if it exceeds 70 wt%, tends to be inferior in water absorbent.
[0019]
The mixed yarn of the present invention is provided with a hydrophilic surfactant, and examples of the hydrophilic surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant. Surfactant etc. are mentioned, These are used individually or in mixture. The surfactant may be sprayed on the mixed yarn in the form of an aqueous solution or an aqueous dispersion adjusted to a predetermined concentration (for example, about 1 to 1.5% by weight). Further, before the constituent fibers are mixed (in the fiber production process or the like), they may be sprayed onto polylactic acid fibers and / or fibers having an official moisture content of 5% or more. In addition, when these fibers are short fibers, when sprayed onto a blended cotton web in the blending step, the fibers to which the surfactant is applied are reduced in entanglement when opened by a fiber-opening device such as a card machine. Therefore, it is preferable.
[0020]
The hydrophilic surfactant applied to the mixed yarn is preferably 100 ppm or more. If it is less than 100 ppm, the antibacterial effect of the mixed yarn tends not to be sufficiently exhibited.
[0021]
Since the polylactic acid polymer is hydrophobic, the fiber made of the polylactic acid polymer is also hydrophobic. Such a hydrophobic polylactic acid fiber has antibacterial properties, that is, lactic acid, lactide, and other oligolactic acid are contained in the polylactic acid polymer constituting the polylactic acid fiber described later. Even if it contains, the antibacterial effect which suppresses the proliferation of bacteria actively is not exhibited. By applying the hydrophilic surfactant, the surface of the polylactic acid fiber becomes hydrophilic, so that it can be brought into contact with bacteria and the growth of the bacteria can be suppressed. Furthermore, the mixed yarn of the present invention is in a state where fibers having an official moisture content of 5% or more and polylactic acid fibers are mixed, and the fibers are adjacent to each other. Since it is in contact with moisture contained in 5% or more of the fibers, it is presumed that it can easily come into contact with bacteria, and its propagation can be suppressed.
[0022]
Such antimicrobial effect, the polylactic acid polymer constituting the polylactic acid-based fibers, is presumed to lactic, it is exhibited for containing lactide and oligo lactic acid. The polylactic acid based polymer constituting the polylactic acid fiber, lactic acid, that have a lactide and oligo lactic acid 0.01 to 1.0 wt%. When the content of lactic acid, lactide and other oligolactic acid is less than 0.01% by weight, the effect of antibacterial performance is reduced. On the other hand, when it exceeds 1.0% by weight, hydrolysis is caused by moisture such as moisture in the air even at room temperature. Therefore, the long-term storage stability tends to be lacking.
[0023]
In the present invention, the lactic acid contained in the polylactic acid polymer which constitutes the polylactic acid-based fibers, the amount of lactide and oligo lactic acid to the above range, adjusting the reaction conditions in the polymerization process Alternatively, it is achieved by removing excess lactide, oligolactic acid and the like by reducing the pressure in the molten state after the polymerization is completed.
[0024]
The mixed yarn of the present invention has a bacteriostatic activity value of 2.2 or more according to the unified test method (antibacterial effect test method approved by the Textile Products Sanitation Processing Council). The bacteriostatic activity value refers to inoculating a standard sample and a target sample with a fixed number of bacteria, and B (cells / ml) of the standard sample after culturing for a certain period of time. It is represented by logB-logC where the viable cell count of the sample is C (cells / ml). If the bacteriostatic activity value is less than 2.2, it cannot be said that the growth of bacteria can be suppressed.
[0025]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. In addition, this invention is not limited only to these Examples. In the examples, each physical property value was determined as follows. Further, the antibacterial evaluation, that is, the bacteriostatic activity value was obtained by the above-described method.
(1) Melting point (° C.): The melting point is the temperature that gives the extreme value of the melting endotherm curve obtained by using a differential scanning calorimeter DSC-7 manufactured by Perkin Elma and measuring the temperature rising rate at 20 ° C./min. (° C).
[0026]
(2) Melt flow rate (hereinafter referred to as MFR) (g / 10 min): The melt discharge rate at 210 ° C. and a load of 2160 g was measured according to the method described in ASTM D 1238.
[0027]
(3) Antibacterial performance: The antibacterial performance was evaluated by measuring the bacteriostatic activity value by the unified test method (antibacterial effect test method certified by the Textile Products Sanitation Processing Council) and evaluating the antibacterial performance. In the evaluation, Staphylococcus aureus ATCC 6538P (Staphylococcus aureus) was used as a strain to be used.
That is, 0.2 g of a bacterial solution adjusted to 1 ± 0.3 × 10 5 is inoculated as uniformly as possible to 0.4 g of a sterilized sample placed in a vial, and cultured at 37 ° C. for 18 hours. 20 ml of physiological saline supplemented with 0.2% of Twin 80 is added and stirred to wash out the bacteria. A 10-fold dilution series was prepared, mixed with a nutrient agar medium, cultured at 37 ° C. for 24 hours or more, the number of colonies was counted, and the number of viable bacteria was determined.
[0028]
For the calculation of the bacteriostatic activity value, the above-mentioned test was performed for each of the standard sample and the test sample, and the bacteriostatic activity value was obtained from the following formula. As a standard sample, a nylon standard white cloth was used.
Bacteriostatic activity value = log B-log C
B: Number of bacteria recovered after 18 hours of culture of standard sample C: Number of bacteria recovered after 18 hours of culture of test sample
Example 1
In order to prepare a polylactic acid fiber, a poly L-lactic acid resin having an optical purity of 98.8%, a melting point of 170 ° C., and an MFR of 25 g / 10 minutes was melted, a spinning temperature of 220 ° C., and a single hole discharge amount of 0.31 g / The melt was spun from the spinneret under the conditions of minutes. Next, the spun yarn was cooled with a cooling device, applied with a spinning oil agent, and then wound up at a take-up speed of 800 m / min. Next, the obtained undrawn yarn was combined to make a tow having a drawn tow fineness of 300,000 denier, and a draw temperature of 120 ° C. and a draw ratio of 2.51 were obtained using known drawing machines having different peripheral speeds. After stretching as a double, crimping was performed with a crimper to give 0.3% by weight of a finishing oil containing 20% by weight of polyethylene glycol monooleate having a molecular weight of 600, and then the tow was dried and subsequently And cut to a length of 51 mm to obtain 1.5-denier polylactic acid-based short fibers. The obtained polylactic acid-based short fibers had a single fiber strength of 3.9 g / d and a dry heat shrinkage of 4.2% in an atmosphere at 120 ° C. for 15 minutes.
[0030]
As a fiber having an official moisture content of 5% or more, a cotton bleached cotton having an average fineness of 1.5 denier and an average fiber length of 24 mm was prepared.
[0031]
Then, weigh and blend so that the above-mentioned polylactic acid-based short fiber is 50% by weight and cotton fiber is 50% by weight, and after passing through the blended cotton machine, it is continuously passed through the flat card machine and the web is focused to obtain a sliver. It was. Double three of these slivers and pass them through the first drawing machine, then double these eight obtained slivers and pass through the finishing drawing machine, then double these two obtained slivers and pass them through the roving machine. did. The obtained sliver was spun by a ring spinning machine to obtain a 40th spun yarn with 19 twists / inch. The spun yarn had a strength of 2.8 g / d and an elongation of 33%.
[0032]
Example 2
A mixed yarn of the present invention was obtained in the same manner as in Example 1 except that the blend ratio of polylactic acid fiber and cotton fiber was 30/70 (% by weight).
[0033]
Example 3
A mixed yarn of the present invention was obtained in the same manner as in Example 1 except that the blend ratio of the polylactic acid fiber and the cotton fiber was 70/30 (% by weight).
[0034]
The mixed yarns obtained in Examples 1 to 3 were used for knitting with a cylindrical knitting machine (manufactured by Koike Seisakusho) with 260 needles. The antibacterial performance of the obtained tubular knitted fabric was evaluated, and the results are shown in Table 1.
[0035]
[Table 1]
Figure 0004189893
[0036]
As apparent from Table 1, it was confirmed that any of the fabrics composed of the mixed yarns of Examples 1 to 3 had bacteriostatic / antibacterial performance.
[0037]
【The invention's effect】
According to the present invention, a hydrophilic surfactant is added to a mixed yarn composed of polylactic acid fibers and fibers having an official moisture content of 5% or more, and the hydrophilic surfactant is added. It is thought that the bacteriostatic / antibacterial effect of suppressing the growth of bacteria was able to be exhibited by making the surface of the polylactic acid fiber hydrophilic, allowing contact with bacteria. Moreover, since the blended yarn of the present invention contains fibers with an official moisture content of 5% or more, it easily contains moisture in the air, and such fibers are in contact with the polylactic acid fibers. As a result, the polylactic acid fiber is more likely to come into contact with bacteria. Therefore, a fiber having an official moisture content of 5% or more contributes to the polylactic acid fiber exhibiting a bacteriostatic / antibacterial effect, and imparts good moisture absorption and water absorption to the mixed yarn itself.
[0038]
Moreover, since the polylactic acid polymer exhibits antibacterial properties, the antibacterial mixed yarn of the present invention is extremely safe for the human body.
[0039]
By using the mixed yarn of the present invention to produce textile products such as knitted fabrics, braids and strings, various packaging materials such as food, wallpaper, various filters, draining bags for sinks, tablecloths, foot-wiping mats, wipes, etc. It can exert bacteriostatic and antibacterial performance in various fields such as daily necessities / life-related materials, agricultural / horticultural materials, medical / hygiene materials, clothing, etc.

Claims (4)

ポリ乳酸系繊維と公定水分率が5%以上の繊維とからなる混合糸であり、前記ポリ乳酸系繊維を構成するポリ乳酸系重合体中に、乳酸、ラクチドおよびオリゴ乳酸を0.01〜1.0重量%含有しており、該混合糸には親水性の界面活性剤が付与され、静菌活性値が2.2以上であることを特徴とする抗菌性混合糸。A mixed yarn composed of polylactic acid fibers and fibers having an official moisture content of 5% or more. In the polylactic acid polymer constituting the polylactic acid fibers, 0.01 to 1 lactic acid, lactide and oligolactic acid are mixed. An antibacterial mixed yarn characterized by containing 0.0 wt% , a hydrophilic surfactant added to the mixed yarn, and a bacteriostatic activity value of 2.2 or more. 混合糸に親水性の界面活性剤が100ppm以上付与されていることを特徴とする請求項1記載の抗菌性混合糸。The antibacterial mixed yarn according to claim 1, wherein 100 ppm or more of a hydrophilic surfactant is added to the mixed yarn. ポリ乳酸系繊維が、ポリ(D-乳酸)、ポリ(L-乳酸)、D-乳酸とL-乳酸との共重合体、D-乳酸とヒドロキシカルボン酸との共重合体、L-乳酸とヒドロキシカルボン酸との共重合体、DL−乳酸とヒドロキシカルボン酸から選ばれるいずれかの重合体、あるいはこれらのブレンド体であることを特徴とする請求項1または2に記載の抗菌性混合糸。Polylactic acid fibers are poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid, a copolymer of D-lactic acid and hydroxycarboxylic acid, and L-lactic acid. The antibacterial mixed yarn according to claim 1 or 2, which is a copolymer with hydroxycarboxylic acid, a polymer selected from DL-lactic acid and hydroxycarboxylic acid, or a blend thereof. 公定水分率が5%以上の短繊維を30〜70重量%含有していることを特徴とする請求項1から3のいずれかに記載の抗菌性混合糸。The antibacterial mixed yarn according to any one of claims 1 to 3, comprising 30 to 70% by weight of short fibers having an official moisture content of 5% or more.
JP05567899A 1999-03-03 1999-03-03 Antibacterial mixed yarn Expired - Lifetime JP4189893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05567899A JP4189893B2 (en) 1999-03-03 1999-03-03 Antibacterial mixed yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05567899A JP4189893B2 (en) 1999-03-03 1999-03-03 Antibacterial mixed yarn

Publications (2)

Publication Number Publication Date
JP2000248465A JP2000248465A (en) 2000-09-12
JP4189893B2 true JP4189893B2 (en) 2008-12-03

Family

ID=13005561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05567899A Expired - Lifetime JP4189893B2 (en) 1999-03-03 1999-03-03 Antibacterial mixed yarn

Country Status (1)

Country Link
JP (1) JP4189893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220235496A1 (en) * 2019-11-26 2022-07-28 Murata Manufacturing Co., Ltd. Thread

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138342A (en) * 2000-10-26 2002-05-14 Toray Ind Inc Polylactate fiber structure
JP2002173844A (en) * 2000-12-07 2002-06-21 Unitika Textiles Ltd Double-layer structural spun yarn having biodegradability
JP4517713B2 (en) * 2003-05-19 2010-08-04 東レ株式会社 Textile material
JP4723346B2 (en) * 2005-10-26 2011-07-13 東洋紡績株式会社 Adhesive interlining fabric, method for producing the same, and adhesive interlining
CN114747576A (en) * 2021-01-11 2022-07-15 香港理工大学 Antibacterial material based on polylactic acid oligomer and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220235496A1 (en) * 2019-11-26 2022-07-28 Murata Manufacturing Co., Ltd. Thread

Also Published As

Publication number Publication date
JP2000248465A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
JP4498001B2 (en) Polyester composite fiber
JP3474482B2 (en) Biodegradable composite fiber and method for producing the same
KR20050058484A (en) Polylactic acid fiber, yarn package, and textile product
JP4099282B2 (en) Antibacterial molded product
CN107385539A (en) Applications of the PHA as new type natural anti-biotic material in textile preparation
JPH09132869A (en) Antimicrobial fiber and fiber product using the fiber
JP2006225785A (en) Blended yarn and antimicrobial woven or knitted fabric using the same
JP4189893B2 (en) Antibacterial mixed yarn
JP2011179143A (en) Ultrafine polylactic acid fiber
JP2000248442A (en) Antimicrobial interknitted fabric
JP3392554B2 (en) Antibacterial fibrous material
US20050225002A1 (en) Cellulose fiber
CN107385628A (en) Application of the PHB materials as new type natural antiseptic in textile preparation
JP4125837B2 (en) Antibacterial nonwoven fabric
JP5783046B2 (en) Synthetic fiber and method for producing the same
JP2003171807A (en) Biodegradable antibacterial socks
JPH10310935A (en) Antimicrobial fiber
JPH0533265A (en) Antibacterial and antifungal deodorant staple fiber having hydrophilic nature
JP2002371463A (en) Polylactic acid fiber and cloth consisting of the same
US20200071854A1 (en) Multicomponent filaments and articles thereof
JPH09310292A (en) Biodegradable wet nonwoven fabric and its production
JP2004360091A (en) Antimicrobial polyester yarn and method for producing the same
He et al. The spinning, structure, and properties of cellulose/chitin blend filaments through HWM method
JPH09310293A (en) Biodegradable wet nonwoven fabric and its production
JP7325088B2 (en) split type composite fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

EXPY Cancellation because of completion of term