JP4099282B2 - Antibacterial molded product - Google Patents

Antibacterial molded product Download PDF

Info

Publication number
JP4099282B2
JP4099282B2 JP04507299A JP4507299A JP4099282B2 JP 4099282 B2 JP4099282 B2 JP 4099282B2 JP 04507299 A JP04507299 A JP 04507299A JP 4507299 A JP4507299 A JP 4507299A JP 4099282 B2 JP4099282 B2 JP 4099282B2
Authority
JP
Japan
Prior art keywords
acid
molded article
polylactic acid
lactic acid
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04507299A
Other languages
Japanese (ja)
Other versions
JP2000239969A (en
Inventor
文夫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP04507299A priority Critical patent/JP4099282B2/en
Publication of JP2000239969A publication Critical patent/JP2000239969A/en
Application granted granted Critical
Publication of JP4099282B2 publication Critical patent/JP4099282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、抗菌性能を有する成形品に関するものである。
【0002】
【従来の技術】
素材に抗菌性を付与する方法は従来より今日にいたり行われており、例えば、繊維素材あるいは繊維布帛やシート等を抗菌性物質によって表面処理を行う方法がある。しかし、この方法では抗菌性能を付与できるものの、抗菌性能の耐久性に劣るという問題がある。これを解決する方法として、ナイロンやポリエステルのような繊維素材の製造工程中に活性のある抗菌物質を混合練り込むことによって製造する方法がある。しかし、この方法では一定の抗菌性能を示すもののコスト高になる。また、一般に、抗菌剤自体が一定の毒性を有するものが多く、安全上問題があった。
【0003】
【発明が解決しようとする課題】
本発明らは、上記問題点に鑑み、コストが高くなく、かつ安全性のある抗菌剤について、検討した。従来より、乳酸が食品の日持ちを向上させる食品保存剤として用いられおり、乳酸が静菌・防カビ作用を有することが知られている。しかし、乳酸の脱水縮合重合体であるポリ乳酸系重合体からなる繊維やフィルムには、抗菌性が認められるという明確な報告はなく、ましてやポリ乳酸のポリマー組成物との関係について抗菌性を論じた報告はない。本発明者らは、繊維やフィルムへの成形加工工程で、乳酸が有する潜在的な静菌・防カビ作用を発現させるべく、ポリ乳酸系重合体と抗菌性との関係について種々検討した結果、ポリ乳酸系重合体の構成成分においてある特定の組成範囲のものに、顕著な抗菌活性が認められることを見出し、本発明に到達した。
【0004】
【課題を解決するための手段】
すなわち、本発明は、ポリ乳酸を主成分とするポリ乳酸系重合体からなる成形品であり、前記ポリ乳酸系重合体中に、乳酸、ラクチドおよびオリゴ乳酸を0.01〜1.0重量%含有しており、成形品には親水性界面活性剤が付与され、静菌活性値が2.2以上であることを特徴とする抗菌性成形品を要旨とするものである。
【0005】
【発明の実施の形態】
本発明において、ポリ乳酸系重合体は、熱可塑性脂肪族ポリエステルであって、ポリ(α−ヒドロキシ酸)を主たる繰り返し単位とする重合体が挙げられる。具体的には、ポリ(D−乳酸)、ポリ(L−乳酸)、D−乳酸とL−乳酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、DL−乳酸とヒドロキシカルボン酸との共重合体等が挙げられ、これらの重合体のうち、融点が80℃以上である重合体が好ましい。ここで、乳酸とヒドロキシカルボン酸との共重合体におけるヒドロキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸、ヒドロキシカプリル酸などが挙げられる。
【0006】
ポリ乳酸系重合体は、数平均分子量が約20,000以上、好ましくは40,000以上のものが製糸性及び得られる成形品特性の点で好ましい。数平均分子量の上限については、成形品が繊維である場合は、溶融紡糸が行えるものであればよく、150,000程度であればよい。150,000を超えると、溶融粘度が高すぎて、溶融紡糸が困難となる。成形品がフィルムである場合は、溶融成形が行えるものであればよい。
【0007】
ポリ乳酸系重合体には、必要に応じて他の添加剤、例えば艶消し剤や顔料、結晶核剤等の各種添加剤を本発明の効果を損なわない範囲内で添加しても良い。
【0008】
本発明は、ポリ乳酸を主成分とするポリ乳酸系重合体からなる成形品であり、成形品には親水性の界面活性剤が付与されている。
成形品としては、例えば、ポリ乳酸系重合体を溶融紡糸により得る繊維(モノフィラメント、マルチフィラメント)、得られた繊維をカットしたステープルファイバー、ステープルファイバーを紡績した紡績糸、モノフィラメントやマルチフィラメントおよび紡績糸を編織した布帛、また、カード法、メルトブローン法、スパンボンド法等の乾式法や湿式法等により得られる不織ウエブを接着法や機械的交絡法により不織布化した不織布、さらには、ポリ乳酸系重合体を溶融押出により得るフィルム等が挙げられる。
【0009】
また、本発明のポリ乳酸系成形品において、ポリ乳酸系重合体からなるもの以外の他の重合体からなるものが混合されていてもよく、ポリ乳酸系重合体からなるものが30重量%以上含有していれば本発明が目的とする静菌・抗菌性能を発揮することができる。
【0010】
混合状態としては、例えば、ポリ乳酸系重合体からなる繊維と他の重合体からなる繊維との複合マルチフィラメントや複合モノフィラメント、ポリ乳酸系重合体からなる繊維と他の重合体からなる繊維との混繊糸、ポリ乳酸系重合体からなる繊維または紡績糸と他の重合体からなる繊維または紡績糸との交編織した布帛、ポリ乳酸系重合体からなる繊維と他の重合体からなる繊維との混合紡糸または混綿により得られる不織ウエブを接着法や機械的交絡法等により不織布化した不織布等が挙げられる。他の重合体とは、公知の芳香族ポリエステル系重合体、脂肪族ポリエステル系重合体、ポリアミド系重合体、ポリオレフィン重合体等が挙げられる。
【0011】
ポリ乳酸系重合体からなる成形品には、親水性の界面活性剤が付与されている。
親水性の界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性系界面活性剤等が挙げられ、これらを単独または混合して用いる。成形品に界面活性剤を付与する方法としては、所定濃度(例えば、1〜1.5重量%程度)に調整した水溶液または水分散液の形態で成形品に噴霧するとよい。
【0012】
ポリ乳酸系重合体は疎水性であるため、ポリ乳酸系重合体からなる成形品もまた疎水性である。このような疎水性のポリ乳酸系成形品は、素材自身が抗菌性を持っていても、すなわち、後述するポリ乳酸系成形品を構成するポリ乳酸系重合体中に、乳酸、ラクチドおよびその他のオリゴ乳酸を含有していても、菌の繁殖を積極的に抑える抗菌効果は発揮されない。本発明の親水性界面活性剤が付与されて初めてポリ乳酸系成形品は、成形品表面が親水性となるので、菌との接触が可能となり、菌の繁殖を抑えることができると推定される。
【0013】
このような抗菌効果は、ポリ乳酸系成形品を構成しているポリ乳酸系重合体中に、乳酸、ラクチドおよびオリゴ乳酸を含有しているために発揮されると推察される。本発明の成形品を構成するポリ乳酸系重合体中には、乳酸、ラクチドおよびオリゴ乳酸を0.01〜1.0重量%含有している乳酸、ラクチドおよびオリゴ乳酸の含量が0.01重量%未満であると抗菌性能の効果が薄れ、一方、1.0重量%を超えると常温下でも空気中の湿気等の水分により加水分解が進行するため、長期保存安定性に欠ける傾向となる。
【0014】
本発明においては、ポリ乳酸系成形品を構成するポリ乳酸系重合体中に含有する乳酸、ラクチドおよびオリゴ乳酸の量を上記範囲とするためには、重合過程において反応条件を調節すること、あるいは、重合終了後、溶融状態で減圧することにより過剰のラクチド、オリゴ乳酸等を除くことにより達成される。
【0015】
本発明のポリ乳酸系成形品に付与される親水性の界面活性剤の量は、200ppm以上であることが好ましい。付与量が200ppm未満であると、本発明が目的とする抗菌性能が発揮されない。
【0016】
本発明のポリ乳酸系成形品は、統一試験法(繊維製品衛生加工協議会認定の抗菌効果試験方法)による静菌活性値が2.2以上である。静菌活性値とは、一定の菌数の検定菌を標準試料および対象試料に植菌し、一定時間培養後の標準試料の生菌数をB(cells/ml)、一定時間培養後の対象試料の生菌数をC(cells/ml)とし、logB−logCで表される値をいう。静菌活性値が2.2未満であると、菌の繁殖を抑えることができるとはいえない。
【0017】
【実施例】
以下、実施例により本発明を具体的に説明する。なお、本発明はこれらの実施例のみに限定されるものではない。実施例において、各物性値は次のようにして求めた。
(1)融点(℃):パーキンエルマ社製の示差走査熱量計DSC−7型を使用し、昇温速度を20℃/分として測定して得た融解吸熱曲線の極値を与える温度を融点(℃)とした。
【0018】
(2)メルトフローレート(以下、MFRという。)(g/10分):ASTMD 1238に記載の方法に準じて210℃、荷重2160gにおける溶融吐出量を測定した。
【0019】
(3)ポリ乳酸の固有粘度:フェノールと四塩化エタンの等重量混合溶液を溶媒とし、試料濃度0.5g/dl、温度20℃で測定した。
【0020】
(4)抗菌性能:抗菌性能は統一試験法(繊維製品衛生加工協議会認定の抗菌効果試験方法)により、静菌活性値を測定し、抗菌性能を評価した。前記評価にあたっては、使用菌株として、Staphylococcus aureus ATCC 6538P(黄色葡萄状球菌)を用いた。
すなわち、バイアル瓶に入れた滅菌済試料0.4gに生菌数を1±0.3×105に調整した菌液0.2mlを出来るだけ均一に接種し、37℃で18時間培養する。ツイン80 0.2%を添加した生理食塩水20mlを加え攪拌し菌を洗い出す。10倍希釈系列を作成しニュートリエント寒天培地と混釈し37℃で24時間以上培養しコロニー数を数え、生菌数を求めた。
静菌活性値の計算としては、標準試料および試験試料について、上記試験をそれぞれ行い、下式から静菌活性値を求めた。なお、標準試料としては、ナイロン標準白布を用いた。試験試料については、未洗と10洗後(洗濯洗剤:JAFET標準洗剤(40g/30L)について測定した。
静菌活性値=logB−logC
B:標準試料の18時間培養後、回収した菌数
C:試験試料の18時間培養後、回収した菌数
【0021】
実施例1
ポリ乳酸系短繊維を作成するために、光学純度が98.8%で融点170℃、MFR25g/10分のポリL−乳酸樹脂を溶融し、紡糸温度220℃、単孔吐出量0.41g/分の条件下で、紡糸口金より溶融紡糸した。次に、紡出糸条を冷却装置にて冷却し、紡糸油剤を付与した後、引き取り速度800m/分で巻き取った。次いで、得られた未延伸糸を延伸トウ繊度が30万デニールとなるよう合糸してトウとなし、周速の異なる公知の延伸機を用いて、延伸温度120℃、延伸倍率を2.6倍として延伸を行った後、クリンパーにて捲縮を付与し、分子量600のポリエチレングリコールモノオレートを20重量%含有した仕上げ油剤を0.3重量%付与した。その後、トウを乾燥させ、引き続き51mmの長さに切断して、2デニールのポリ乳酸系短繊維を得た。
【0022】
得られたポリ乳酸系短繊維をパラレルカード機に通してウエブとし、引き続いて、温度125℃、線圧30kg/cm、圧接面積比6.8%のエンボスロールからなるエンボス装置に通して、目付50g/m2の短繊維不織布を得た。
【0023】
実施例2
実施例1で得られたポリ乳酸系短繊維とポリエチレンテレフタレートからなる短繊維(2デニール×51mm)とを70/30(重量比)の割合で混綿し、パラレルカード機に通した後、実施例1と同様の条件でエンボス装置に通して、目付50g/m2の短繊維不織布を得た。
【0024】
実施例3
実施例1で得られたポリ乳酸系短繊維とポリエチレンテレフタレートからなる短繊維(2デニール×51mm)とを30/70(重量比)の割合で混綿し、パラレルカード機に通した後、実施例1と同様の条件でエンボス装置に通して、目付50g/m2の短繊維不織布を得た。
【0025】
実施例4
光学純度が99.0%で、MFR20g/10分、融点172℃のポリL−乳酸樹脂を溶融し、紡糸温度220℃、単孔吐出量0.88g/分の条件下で孔数36個有する紡糸口金より溶融紡糸した。次に、紡糸糸条を冷却装置にて冷却し、分子量600のポリエチレングリコールモノオレートを20重量%願湯した紡糸油剤を付与し、延伸温度120℃、延伸倍率1.53、速度4000m/分で巻き取って、75デニール/36フィラメントのマルチフィラメント(スピンドロー糸)を得た。なお、この繊維の油剤付着量は、0.6重量%であった。
次いで、得られたマルチフィラメントを用いて、針数270本の筒編機(小池製作所製)で製編した。
【0026】
得られた実施例1〜4の布帛を対象試料として、抗菌性能の評価を行い、その結果を表1に示した。
【0027】
【表1】

Figure 0004099282
【0028】
表1から明らかなように、実施例1〜4の布帛はいずれも優れた静菌性能があるものであった。
【0029】
比較例1
市販のポリエチレンテレフタレートからなるマルチフィラメント(75デニール/36フィラメント)を脱脂した後、実施例1で用いた親水性界面活性剤を含有してなる油剤を0.6重量%付着させた。
次いで、得られた長繊維を用い、針数270本の筒編機(小池製作所製)で製編した。
得られた比較例1の布帛を対象試料として、抗菌性能の評価を行ったところ、静菌活性値は、未洗、10洗とも0.2以下であり、静菌・抗菌性能を有するものではなかった。
【0030】
【発明の効果】
本発明によれば、ポリ乳酸系成形品に親水性界面活性剤が付与されたものであって、親水性界面活性剤を付与したことによってポリ乳酸系成形品の表面が親水性となることで、菌と接触が可能となり、菌の繁殖を抑制するという静菌・抗菌効果を発揮することができたものと考えられる。
【0031】
また、本発明の成形品は、ポリ乳酸系重合体からなるため、安全性が極めて高く、また、重合体を溶融させて、様々な形状に成形加工が可能であるので、食品保存剤、各種包装材、壁紙、各種フィルター、流し等の水切り袋、テーブルクロス、足拭きマット、ふきん、スポンジ等の日用品・生活関連資材、農園芸資材、医療・衛生材、衣料品等の様々な分野において、静菌・抗菌性能を発揮することができるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molded article having antibacterial performance.
[0002]
[Prior art]
A method of imparting antibacterial properties to a material has been performed today. For example, there is a method in which a fiber material or a fiber cloth or sheet is surface-treated with an antibacterial substance. However, although this method can provide antibacterial performance, there is a problem that the durability of the antibacterial performance is inferior. As a method for solving this, there is a method of manufacturing by mixing and kneading an active antibacterial substance during the manufacturing process of a fiber material such as nylon or polyester. However, this method shows a certain antibacterial performance but increases the cost. Also, in general, many antibacterial agents themselves have a certain toxicity, which causes safety problems.
[0003]
[Problems to be solved by the invention]
In view of the above problems, the present inventors have examined antibacterial agents that are inexpensive and safe. Conventionally, lactic acid has been used as a food preservative for improving the shelf life of food, and it is known that lactic acid has a bacteriostatic and fungicidal action. However, there is no clear report that antibacterial properties are observed in fibers and films made of polylactic acid polymers, which are dehydration condensation polymers of lactic acid. Furthermore, antibacterial properties are discussed in relation to the polymer composition of polylactic acid. There are no reports. As a result of various studies on the relationship between the polylactic acid-based polymer and the antibacterial properties, the present inventors have expressed the potential bacteriostatic / antifungal action of lactic acid in the molding process of fibers and films. It has been found that remarkable antibacterial activity is observed in a specific composition range among the components of the polylactic acid polymer, and the present invention has been achieved.
[0004]
[Means for Solving the Problems]
That is, the present invention is a molded article made of a polylactic acid-based polymer containing polylactic acid as a main component, and 0.01 to 1.0% by weight of lactic acid, lactide and oligolactic acid in the polylactic acid-based polymer. The gist is an antibacterial molded product characterized in that the molded product is provided with a hydrophilic surfactant and has a bacteriostatic activity value of 2.2 or more.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the polylactic acid polymer is a thermoplastic aliphatic polyester, and includes a polymer having poly (α-hydroxy acid) as a main repeating unit. Specifically, poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid, a copolymer of D-lactic acid and hydroxycarboxylic acid, L-lactic acid and hydroxy Examples thereof include a copolymer with carboxylic acid, a copolymer of DL-lactic acid and hydroxycarboxylic acid, and among these polymers, a polymer having a melting point of 80 ° C. or higher is preferable. Here, examples of the hydroxycarboxylic acid in the copolymer of lactic acid and hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxyheptanoic acid, and hydroxycaprylic acid.
[0006]
A polylactic acid-based polymer having a number average molecular weight of about 20,000 or more, preferably 40,000 or more is preferable from the viewpoints of yarn production and molded product characteristics. Regarding the upper limit of the number average molecular weight, when the molded product is a fiber, it may be anything that can be melt-spun, and may be about 150,000. If it exceeds 150,000, the melt viscosity is too high and melt spinning becomes difficult. When the molded product is a film, any material that can be melt-molded may be used.
[0007]
If necessary, other additives such as matting agents, pigments, crystal nucleating agents and the like may be added to the polylactic acid-based polymer within a range not impairing the effects of the present invention.
[0008]
The present invention is a molded article made of a polylactic acid-based polymer containing polylactic acid as a main component, and a hydrophilic surfactant is imparted to the molded article.
Examples of molded articles include fibers obtained by melt spinning polylactic acid polymers (monofilaments, multifilaments), staple fibers obtained by cutting the obtained fibers, spun yarns obtained by spinning staple fibers, monofilaments, multifilaments, and spun yarns. Woven fabrics, non-woven fabrics made from non-woven webs obtained by dry or wet methods such as the card method, meltblown method, spunbond method, etc. by bonding methods or mechanical entanglement methods, and polylactic acid Examples thereof include a film obtained by melt extrusion of a polymer.
[0009]
In addition, in the polylactic acid-based molded article of the present invention, those made of other polymers than those made of polylactic acid-based polymers may be mixed, and those made of polylactic acid-based polymers are 30% by weight or more. If it is contained, the bacteriostatic / antibacterial performance intended by the present invention can be exhibited.
[0010]
As the mixed state, for example, a composite multifilament or a composite monofilament of a fiber made of a polylactic acid polymer and a fiber made of another polymer, a fiber made of a polylactic acid polymer, and a fiber made of another polymer Mixed yarn, polylactic acid polymer fiber or spun yarn and other polymer fiber or spun yarn woven fabric, polylactic acid polymer fiber and other polymer fiber Nonwoven fabric obtained by forming a nonwoven web obtained by blend spinning or blending into a nonwoven fabric by an adhesion method, a mechanical entanglement method, or the like. Examples of other polymers include known aromatic polyester polymers, aliphatic polyester polymers, polyamide polymers, polyolefin polymers, and the like.
[0011]
A hydrophilic surfactant is added to a molded article made of a polylactic acid polymer.
Examples of hydrophilic surfactants include anionic surfactants, cationic surfactants, nonionic surfactants, and amphoteric surfactants, which are used alone or in combination. As a method for imparting a surfactant to the molded article, it is preferable to spray the molded article in the form of an aqueous solution or an aqueous dispersion adjusted to a predetermined concentration (for example, about 1 to 1.5% by weight).
[0012]
Since the polylactic acid polymer is hydrophobic, a molded product made of the polylactic acid polymer is also hydrophobic. Such a hydrophobic polylactic acid-based molded article has antibacterial properties, that is, in the polylactic acid-based polymer constituting the polylactic acid-based molded article described later, lactic acid, lactide and other Even if oligolactic acid is contained, the antibacterial effect that actively suppresses the growth of bacteria is not exhibited. It is presumed that the polylactic acid-based molded product can be brought into contact with bacteria and suppress the growth of bacteria since the surface of the molded product becomes hydrophilic only after the hydrophilic surfactant of the present invention is applied. .
[0013]
Such antimicrobial effect, the polylactic acid polymer constituting the polylactic acid molded article is presumed to lactic, it is exhibited for containing lactide and oligo lactic acid. A polylactic acid polymer which constitutes the molded article of the present invention, lactic acid, and lactide and oligo lactic acid 0.01 to 1.0 wt%. Hydro lactic acid, the content of lactide and oligo lactic acid faded effect of antibacterial is less than 0.01 wt%, whereas, by water moisture, such as in the air even at room temperature when more than 1.0 wt% Since decomposition proceeds, the long-term storage stability tends to be lacking.
[0014]
In the present invention, the lactic acid contained in the polylactic acid polymer which constitutes the polylactic acid molded article, the amount of lactide and oligo lactic acid to the above range, controlling the reaction conditions in the polymerization process Alternatively, it is achieved by removing excess lactide, oligolactic acid, and the like by reducing the pressure in the molten state after completion of the polymerization.
[0015]
The amount of the hydrophilic surfactant imparted to the polylactic acid-based molded article of the present invention is preferably 200 ppm or more. When the applied amount is less than 200 ppm, the antibacterial performance intended by the present invention is not exhibited.
[0016]
The polylactic acid-based molded article of the present invention has a bacteriostatic activity value of 2.2 or more according to the unified test method (antibacterial effect test method approved by the Textile Products Sanitation Processing Council). The bacteriostatic activity value refers to inoculating a standard sample and a target sample with a fixed number of bacteria, and B (cells / ml) of the standard sample after culturing for a certain period of time. Let the viable count of the sample be C (cells / ml), which is a value represented by logB-logC. If the bacteriostatic activity value is less than 2.2, it cannot be said that the growth of bacteria can be suppressed.
[0017]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. In addition, this invention is not limited only to these Examples. In the examples, each physical property value was determined as follows.
(1) Melting point (° C.): The melting point is the temperature that gives the extreme value of the melting endotherm curve obtained by using a differential scanning calorimeter DSC-7 manufactured by Perkin Elma and measuring the temperature rising rate at 20 ° C./min. (° C).
[0018]
(2) Melt flow rate (hereinafter referred to as MFR) (g / 10 min): The melt discharge rate at 210 ° C. and a load of 2160 g was measured according to the method described in ASTM D 1238.
[0019]
(3) Intrinsic viscosity of polylactic acid: Measured at a sample concentration of 0.5 g / dl and a temperature of 20 ° C. using an equal weight mixed solution of phenol and ethane tetrachloride as a solvent.
[0020]
(4) Antibacterial performance: The antibacterial performance was evaluated by measuring the bacteriostatic activity value according to the unified test method (antibacterial effect test method certified by the Textile Products Sanitation Processing Council). In the evaluation, Staphylococcus aureus ATCC 6538P (Staphylococcus aureus) was used as a strain to be used.
That is, 0.2 g of a bacterial solution adjusted to 1 ± 0.3 × 10 5 is inoculated as uniformly as possible to 0.4 g of a sterilized sample placed in a vial, and cultured at 37 ° C. for 18 hours. 20 ml of physiological saline supplemented with 0.2% of Twin 80 is added and stirred to wash out the bacteria. A 10-fold dilution series was prepared, mixed with a nutrient agar medium, cultured at 37 ° C. for 24 hours or more, the number of colonies was counted, and the number of viable bacteria was determined.
For the calculation of the bacteriostatic activity value, the above-mentioned test was performed for each of the standard sample and the test sample, and the bacteriostatic activity value was obtained from the following formula. As a standard sample, a nylon standard white cloth was used. About the test sample, it measured about unwashed and after 10 washing (laundry detergent: JAFET standard detergent (40g / 30L)).
Bacteriostatic activity value = log B-log C
B: Number of bacteria recovered after culturing the standard sample for 18 hours C: Number of bacteria recovered after culturing the test sample for 18 hours
Example 1
In order to prepare polylactic acid-based short fibers, a poly L-lactic acid resin having an optical purity of 98.8%, a melting point of 170 ° C., and an MFR of 25 g / 10 minutes was melted, a spinning temperature of 220 ° C., and a single-hole discharge rate of 0.41 g / The melt was spun from the spinneret under the conditions of minutes. Next, the spun yarn was cooled with a cooling device, applied with a spinning oil agent, and then wound up at a take-up speed of 800 m / min. Next, the obtained undrawn yarn was combined to make a tow fineness of 300,000 denier and formed into a tow, and using a known drawing machine having different peripheral speeds, a drawing temperature of 120 ° C. and a draw ratio of 2.6 were used. After stretching as a double, crimping was performed with a crimper, and 0.3% by weight of a finishing oil containing 20% by weight of polyethylene glycol monooleate having a molecular weight of 600 was applied. Thereafter, the tow was dried and subsequently cut to a length of 51 mm to obtain 2-denier polylactic acid-based short fibers.
[0022]
The obtained polylactic acid-based short fibers are passed through a parallel card machine to form a web, and subsequently passed through an embossing apparatus comprising an embossing roll having a temperature of 125 ° C., a linear pressure of 30 kg / cm, and a pressure contact area ratio of 6.8%. A short fiber nonwoven fabric of 50 g / m 2 was obtained.
[0023]
Example 2
After blending the polylactic acid-based short fibers obtained in Example 1 and the short fibers made of polyethylene terephthalate (2 denier × 51 mm) at a ratio of 70/30 (weight ratio), and passing through a parallel card machine, Example 1 was passed through an embossing apparatus under the same conditions as in Example 1 to obtain a short fiber nonwoven fabric having a basis weight of 50 g / m 2 .
[0024]
Example 3
After blending the polylactic acid-based short fiber obtained in Example 1 and the short fiber (2 denier × 51 mm) made of polyethylene terephthalate at a ratio of 30/70 (weight ratio) and passing through a parallel card machine, Example 1 was passed through an embossing apparatus under the same conditions as in Example 1 to obtain a short fiber nonwoven fabric having a basis weight of 50 g / m 2 .
[0025]
Example 4
Poly L-lactic acid resin having an optical purity of 99.0%, MFR of 20 g / 10 min, and a melting point of 172 ° C. is melted and has 36 holes under a spinning temperature of 220 ° C. and a single hole discharge rate of 0.88 g / min. The melt spinning was performed from the spinneret. Next, the spinning yarn is cooled by a cooling device, and a spinning oil agent containing 20% by weight of polyethylene glycol monooleate having a molecular weight of 600 is applied, and the drawing temperature is 120 ° C., the draw ratio is 1.53, and the speed is 4000 m / min. The multi-filament (spin draw yarn) of 75 denier / 36 filament was obtained by winding. In addition, the oil agent adhesion amount of this fiber was 0.6 weight%.
Next, the obtained multifilament was used for knitting with a cylindrical knitting machine (manufactured by Koike Seisakusho) with 270 needles.
[0026]
Antibacterial performance was evaluated using the obtained fabrics of Examples 1 to 4 as target samples, and the results are shown in Table 1.
[0027]
[Table 1]
Figure 0004099282
[0028]
As is clear from Table 1, all of the fabrics of Examples 1 to 4 had excellent bacteriostatic performance.
[0029]
Comparative Example 1
After degreasing a commercially available multifilament (75 denier / 36 filament) made of polyethylene terephthalate, 0.6% by weight of an oil containing the hydrophilic surfactant used in Example 1 was adhered.
Next, the obtained long fibers were used for knitting with a cylindrical knitting machine (manufactured by Koike Seisakusho) with 270 needles.
When the antibacterial performance was evaluated using the obtained fabric of Comparative Example 1 as a target sample, the bacteriostatic activity value was 0.2 or less for both unwashed and washed, and the bacteriostatic / antibacterial performance was not obtained. There wasn't.
[0030]
【The invention's effect】
According to the present invention, a polylactic acid-based molded article is provided with a hydrophilic surfactant , and by adding a hydrophilic surfactant , the surface of the polylactic acid-based molded article becomes hydrophilic. It is thought that it was possible to bring about bacteriostatic and antibacterial effects that it was possible to contact bacteria and suppress the growth of bacteria.
[0031]
In addition, since the molded product of the present invention is made of a polylactic acid polymer, it is extremely safe and can be molded into various shapes by melting the polymer. In various fields such as packaging materials, wallpaper, various filters, draining bags such as sinks, table cloths, foot-wiping mats, towels, sponges and other daily necessities / life-related materials, agricultural and horticultural materials, medical / hygiene materials, clothing, etc. It can exhibit bacteriostatic and antibacterial performance.

Claims (6)

ポリ乳酸を主成分とするポリ乳酸系重合体からなる成形品であり、前記ポリ乳酸系重合体中に、乳酸、ラクチドおよびオリゴ乳酸を0.01〜1.0重量%含有しており、成形品には親水性界面活性剤が付与され、静菌活性値が2.2以上であることを特徴とする抗菌性成形品。A molded article made of a polylactic acid-based polymer containing polylactic acid as a main component, wherein the polylactic acid-based polymer contains 0.01 to 1.0% by weight of lactic acid, lactide and oligolactic acid. An antibacterial molded article characterized in that a hydrophilic surfactant is imparted to the product and the bacteriostatic activity value is 2.2 or more. 親水性界面活性剤が200ppm以上付与されていることを特徴とする請求項1記載の抗菌性成形品。  2. The antibacterial molded article according to claim 1, wherein a hydrophilic surfactant is applied at 200 ppm or more. ポリ乳酸系重合体が、ポリ(D-乳酸)、ポリ(L-乳酸)、D-乳酸とL-乳酸との共重合体、D-乳酸とヒドロキシカルボン酸との共重合体、L-乳酸とヒドロキシカルボン酸との共重合体、DL−乳酸とヒドロキシカルボン酸との共重合体とから選ばれるいずれかの重合体、あるいはこれらのブレンド体であることを特徴とする請求項1または2に記載の抗菌性成形品。  Polylactic acid polymer is poly (D-lactic acid), poly (L-lactic acid), copolymer of D-lactic acid and L-lactic acid, copolymer of D-lactic acid and hydroxycarboxylic acid, L-lactic acid 3. The polymer according to claim 1, which is a polymer selected from the group consisting of a copolymer of styrene and hydroxycarboxylic acid, a copolymer of DL-lactic acid and hydroxycarboxylic acid, or a blend thereof. Antibacterial molded article as described. 成形品が、ポリ乳酸系重合体を溶融紡糸して得た繊維であることを特徴とする請求項1から3のいずれかに記載の抗菌性成形品。  The antibacterial molded article according to any one of claims 1 to 3, wherein the molded article is a fiber obtained by melt spinning a polylactic acid-based polymer. 成形品が、ポリ乳酸系重合体を溶融紡糸して得た繊維からなる不織布であることを特徴とする請求項1から3のいずれかに記載の抗菌性成形品。  The antibacterial molded article according to any one of claims 1 to 3, wherein the molded article is a non-woven fabric made of fibers obtained by melt spinning a polylactic acid polymer. 成形品が、ポリ乳酸系重合体を溶融紡糸して得た繊維を編織してなる織編物であることを特徴とする請求項1から3のいずれかに記載の抗菌性成形品。  The antibacterial molded article according to any one of claims 1 to 3, wherein the molded article is a woven or knitted fabric obtained by knitting a fiber obtained by melt spinning a polylactic acid-based polymer.
JP04507299A 1999-02-23 1999-02-23 Antibacterial molded product Expired - Fee Related JP4099282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04507299A JP4099282B2 (en) 1999-02-23 1999-02-23 Antibacterial molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04507299A JP4099282B2 (en) 1999-02-23 1999-02-23 Antibacterial molded product

Publications (2)

Publication Number Publication Date
JP2000239969A JP2000239969A (en) 2000-09-05
JP4099282B2 true JP4099282B2 (en) 2008-06-11

Family

ID=12709150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04507299A Expired - Fee Related JP4099282B2 (en) 1999-02-23 1999-02-23 Antibacterial molded product

Country Status (1)

Country Link
JP (1) JP4099282B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994078B2 (en) 2002-12-23 2011-08-09 Kimberly-Clark Worldwide, Inc. High strength nonwoven web from a biodegradable aliphatic polyester
CN105087360B (en) * 2015-09-06 2017-06-06 山东省医疗器械产品质量检验中心 A kind of external wound model and its application method
WO2017212523A1 (en) * 2016-06-06 2017-12-14 株式会社村田製作所 Antibacterial piezoelectric thread, antibacterial fabric, clothing, medical member, bioactive piezoelectric, and piezoelectric thread for substance adsorption
CN106183264B (en) * 2016-06-28 2017-12-05 河南省龙都生物科技有限公司 A kind of matte is embossed PLA melt-spun wallpaper production technology
JP6399271B1 (en) 2016-11-01 2018-10-03 株式会社村田製作所 Antibacterial nonwoven material, antibacterial nonwoven fabric, and antibacterial cushioning material
WO2018211817A1 (en) * 2017-05-19 2018-11-22 株式会社村田製作所 Antimicrobial fiber, seat, and seat cover
JP6784334B2 (en) * 2017-07-28 2020-11-11 株式会社村田製作所 Antibacterial yarn and antibacterial textile products
WO2020111049A1 (en) * 2018-11-26 2020-06-04 株式会社村田製作所 Antibacterial twisted yarn, and antibacterial yarn and antibacterial fabric provided with antibacterial twisted yarn
JP7376328B2 (en) 2018-11-26 2023-11-08 帝人フロンティア株式会社 Antibacterial yarns and antibacterial fabrics comprising antibacterial yarns
CN109575544A (en) * 2018-12-19 2019-04-05 周娟 A kind of preparation and its application method of medical antibacterial poly-lactic acid material
CN109757788B (en) * 2019-01-28 2023-10-03 开放工场(深圳)科技有限公司 Nontoxic sponge brassiere
CN112175368A (en) * 2020-10-10 2021-01-05 福建省支点三维科技有限公司 Antibacterial PLA3D printing composite material
CN114747576A (en) * 2021-01-11 2022-07-15 香港理工大学 Antibacterial material based on polylactic acid oligomer and preparation method and application thereof

Also Published As

Publication number Publication date
JP2000239969A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
JP4099282B2 (en) Antibacterial molded product
US7629000B2 (en) Method for making antimicrobial polyester-containing articles with improved wash durability and articles made thereby
US7081139B2 (en) Antimicrobial polyester-containing articles and process for their preparation
EP2133451B1 (en) Antibacterial nanofiber
US11767423B2 (en) Antimicrobial fibers
US20100318012A1 (en) Bacteriostatic textile based on polyamide 11
JPH09132869A (en) Antimicrobial fiber and fiber product using the fiber
JP2011179143A (en) Ultrafine polylactic acid fiber
JP2004530055A (en) Bioactive fiber products
JP4189893B2 (en) Antibacterial mixed yarn
JP2000248442A (en) Antimicrobial interknitted fabric
KR102148226B1 (en) Antibacterial and antifungal compositions and uses thereof
JP3392554B2 (en) Antibacterial fibrous material
JP4125837B2 (en) Antibacterial nonwoven fabric
CN107385628A (en) Application of the PHB materials as new type natural antiseptic in textile preparation
JPH10310935A (en) Antimicrobial fiber
KR20040111593A (en) Antimicrobial Polyester-Containing Articles and Process for Their Preparation
JP2004510891A (en) Biodegradable copolyester nonwoven
RU2324776C2 (en) Cellulose fibre
JP2003171807A (en) Biodegradable antibacterial socks
US20200071854A1 (en) Multicomponent filaments and articles thereof
JP2002371463A (en) Polylactic acid fiber and cloth consisting of the same
JP2001123371A (en) Biodegradable spun-bond nonwoven fabric
JP4164713B2 (en) Heat-resistant polyester binder fiber with antibacterial properties
JP2004360091A (en) Antimicrobial polyester yarn and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees