JP4183885B2 - トンネル系風環境予測シミュレータ - Google Patents

トンネル系風環境予測シミュレータ Download PDF

Info

Publication number
JP4183885B2
JP4183885B2 JP2000130424A JP2000130424A JP4183885B2 JP 4183885 B2 JP4183885 B2 JP 4183885B2 JP 2000130424 A JP2000130424 A JP 2000130424A JP 2000130424 A JP2000130424 A JP 2000130424A JP 4183885 B2 JP4183885 B2 JP 4183885B2
Authority
JP
Japan
Prior art keywords
coefficient
pressure loss
branch
new
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000130424A
Other languages
English (en)
Other versions
JP2001311400A (ja
Inventor
宣治 森井
実 原川
健一 小沼
信幸 三浦
晴男 草薙
至 森久
正継 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2000130424A priority Critical patent/JP4183885B2/ja
Publication of JP2001311400A publication Critical patent/JP2001311400A/ja
Application granted granted Critical
Publication of JP4183885B2 publication Critical patent/JP4183885B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、管路網としてモデル化される対象のうち、とくに地下鉄道、長大大深度トンネル、地下街等における風、圧力、炭酸ガス濃度等の環境を予測し、地下構造および送排風機などの設備容量設定に要する情報を提供するトンネル系風環境予測シミュレータに関する。
【0002】
【従来の技術】
地下鉄道、高速鉄道用の長大大深度トンネルにおいては、列車がひきおこす風の乗降客や構内構造物へ及ぼす影響が問題となる。この影響を予測するためのトンネル系環境予測シミュレータの従来技術としては、例えば特開平9―311617号公報に記載されたものがあり、トンネル系を管路網としてモデル化し、気流計算をもとにして、温熱環境、炭酸ガス濃度をシミュレーションしている。
【0003】
管路網の流れをシミュレートするにあたり、重要な量として圧力損失係数がある。圧力損失係数は分岐、合流の2つの場合について諸研究機関により実測が行われ、配管接合角度、流量比、配管断面積比をパラメータとして整理され、各種便覧、ハンドブック、例えば技術資料「管路、ダクトの流体抵抗」日本機械学会1981等に公表されている。そして多くの流路網シミュレータにおける圧力損失係数の用いられ方は、以下の3通りのものがある。その第一は、一定値として代表値を用いる方法、第二は、実測値を内蔵し(データベース化)逐次参照する方法、第三は、近似式を用いる方法である。第三の方法は例えば「分岐合流における流れの静特性」、研究成果報告書 、日本機械学会1968に記載されている。
【0004】
【発明が解決しようとする課題】
トンネル内の列車風はその向き、流量が列車運行スケジュールに従い時間変化する。そのためシミュレータの基本物理モデルである運動量保存式中の圧力損失係数の評価がシミュレーション結果に重大な影響を及ぼす。特開平9―311617号公報のシミュレータでは、圧力損失係数を上記第一の方法のように一定値として代表値を用いるが、トンネル内のように流れの方向および流量が時々刻々変化する非定常的な場合には極めて粗い近似であり、また値の選択の基準がない。第二の方法、即ち実測値をデータベース化してそれを状況に応じて検索して利用すれば精度は向上するが、圧力損失係数は前述のように分岐・合流点の配管接合角度、流量比、及び配管断面積比をパラメータとしたとき、これらパラメータにより変化する。従ってこれらのパラメータごとに圧力損失係数の実測値を対応させたデータベースになるが、パラメータの組み合わせ数は膨大なものが必要で、データベースのデータ量が膨大となり、その検索にも手間がかかる問題がある。また、第三の方法、即ち近似式を用いる方法では、上記パラメータの範囲に制限があり、従って適用範囲が制限されてしまう。
【0005】
本発明の目的は、特に大きなデータベースを用いなくても、流量が時間的に変化するトンネル内の風速、圧力、換気量等を精度良くシミュレートできるトンネル系風環境シミュレータを得ることである。
【0006】
【課題を解決するための手段】
本発明は、トンネル系の風環境をノードとブランチから成る管路網でモデル化してトンネル系風環境における各部の風速を含む環境状態量を予測するトンネル系風環境予測シミュレータにおいて、
ブランチの分岐点及び合流点に接続された各ブランチの風速が満たす運動方程式の圧力損失項を算出するための圧力損失項処理手段と、この手段で用いるパラメータを記憶するためのパラメータ記憶手段と、この手段に必要とするパラメータを予め求めて格納するためのパラメータ算出設定手段とを設けると共に、
前記パラメータ算出手段は、ブランチ間の接続角、管路断面積比、及び流量比に依存する分岐または合流圧力損失係数を含む前記圧力損失項の各々を前記流量比には依存しない新係数を導入して新圧力損失項に変換したとき、その新係数を前記分岐または合流圧力損失係数の実測値から前記接続角及び管路断面積をパラメータとして求める新係数算出手段と、前記新係数をブランチが持つ2つの接続角を変数として二重フーリエ展開したときの前記管路断面積比にのみ依存するフーリエ係数を、前記新係数算出手段により算出した新係数とフーリエ展開により得たフーリエ係数とが一致するように定めて前記パラメータ記憶手段へ格納するためのフーリエ係数算出手段とから構成され、
前記圧力損失項処理手段は、前記パラメータ記憶手段に記憶されたフーリエ係数をそのときの管路断面積比に応じて読み出す読み出し手段と、この手段により読み出されたフーリエ係数と接続角を用いて前記新係数を算出する新係数算出手段と、この手段により算出された新係数を用いて前記新係数を導入して生成された新圧力損失項により分岐または合流圧力損失項を算出する圧力項算出手段から構成されて成ることを特徴とするトンネル系風環境予測シミュレータを開示する。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。図1は、本発明になるトンネル系風環境シミュレータの構成例を示すブロック図である。
トンネル系風環境シミュレータ10は、シミュレーション操作選択部11、シミュレーション条件設定部12、シミュレーション実行部13、シミュレーション結果表示部14、構造データ記憶部15、計算結果記憶部16、圧力損失項処理用内部パラメータ設定部19、データ記憶部保守処理部18、及び構造データ印刷表示処理部17から構成されており、データを入力する入力装置1と、デイスプレイ、プリンタなどの出力装置2と、ハードデイスク、光磁気デイスクなどの記憶装置3とが接続されている。
【0008】
シミュレーション操作選択部11は、シミュレーション条件設定部12とシミュレーション実行部13とシミュレーション結果表示部14をコントロールする。シミュレーション条件設定部12は、各ブランチの種別、接続関係、ブランチの径、接続角度など構造を定義する構造モデル設定部121、列車発着時刻、発車時刻からの経過時間と列車速度の対応データを設定する列車ダイヤ、走行カーブ設定部122、送排風機性能曲線設定部123、送排風機風量条件設定部124からなる。このシミュレーション条件設定部12は、入力ガイダンス、入力誤りの検出、未入力範囲のデイスプレイ出力などの図示しないデータ入力支援の機能を備え、簡略化と入力誤りの削減を図っており、また構造データ記憶部15の中にある既存の構造データ追加、修正削除して新規データを作成する図示しないデータ編集機能を備えている。
【0009】
構造モデル設定部121では、シミュレーション対象をモデル化し、そのモデルを表すデータを定義する。
図2は、地下鉄駅構造モデルの例で、トンネル系をトンネルの区分、通路、階段、送排風機を管路でモデル化したブランチとそれらの接続点あるいは外気開放点であるノードとで表現する。そして図2の○印は外気開放ノード、●印は接続ノード、これらをむすぶ線がホーム(H)、トンネル(T)、通路(PS)、階段(S)、出入り口(E)、排風機(EF)、ダクト(D)、換気塔(LT)の各種ブランチを示している。図2では調査対象駅が中央にあり、両端に隣接する地上駅があり、その間のトンネルから排風機ダクトと換気塔が分岐している。中央の駅のホーム(H)、トンネル(T)の気流流路は通路(PS)、階段(S)を介して地上につながっている。このようなモデルを定義するために、オペレータは画面上に表示された格子上にノードを配置し、これをドラックすることによりブランチおよび終点ノードを定義し、また同時に各ブランチ、ノードを入力順に仮付番して接続関係を定義する。各ブランチ、ノードの属性(ブランチの長さ、直径等)は画面上でそれらを指定すると必要な入力項目を表形式で表示する。属性未入力のブランチ、ノードは入力済のものと色別表示する。これによりデータ入力の漏れを防止する。またブランチ内流れの正方向、負方向は所定のルールおよび接続関係をたどることによって定義する。ここでいうルールとは例えばトンネル、ホームにおいては下り方向をプラスとする、階段、通路ではトンネル、ホームから地上に向かってプラスとする等である。これにより風速値の正負の符号で風向きが即座に判断できる。先に仮付番したブランチ、ノードはブランチ方向決めの後、再び番号付けする。近接するブランチ、ノードには近接する番号がつけられる。
【0010】
送排風機性能曲線設定部123は、送排風機の圧力損失―風量曲線を設定する。データ記憶部保守処理部18では、常用記憶装置にあるデータの中の不要データの削除、データファイル名の付け替え、大容量記憶装置への待避などをオペレータの指示により行う。ここで記憶装置3は、作業時に常用するハードデイスクと、大容量記憶装置としての光磁気デイスクから成っているとする。
【0011】
シミュレーション実行部13は、静的処理部としての初期定常状態処理部131と、動的処理部としての列車位置、速度、加速度を計算する列車走行状態処理部132、風速状態処理部133、圧力状態処理部134、換気状態処理部135、風速状態処理部133の従属部である圧力損失項処理部137、およびここで参照される内部パラメータ記憶部136から構成されている。
シミュレーション結果表示部14では、計算結果記憶部16から当該ケースの計算結果を読み取り、各々風速状態表示部141と圧力状態表示部142において最大風速、圧力分布図、指定時刻の風速、圧力分布図、および指定場所の風速、圧力時間変化グラフ(列車ダイヤをあわせて表示)等を選択により画面およびプリンタに出力する。風速状態表示部141の風速分布図は風速値がモデル図上に示されるが、ブランチ方向を前述のルールにしたがって定めているので風向も即座にわかる。最大風速、圧力の分布図により規制値を越える風速の発生の有無、またその場所が特定でき、列車ダイヤを合わせて表示した風速、圧力の時間グラフによりどのような状況において異常風速、風圧が発生したかが把握できる。これらは駅構造および列車の走行パターンの検討に有用である。換気状態表示部143では、列車走行または送排風機による機械換気によってシミュレーション開始時刻以後、系に流入した新鮮外気の濃度変化を表示する。これにより例えば列車走行による換気効果がみてとれ、送排風機の負荷低減策検討に有用である。
【0012】
図3はシミュレーション実行部13の処理フローである。まず、初期定常状態処理部131により、トンネル系に列車が存在しない条件のもとで、送風機が所定の風量となるように系全体の初期定常時の風量および圧力分布を求める(ステップ301)。この後の動的処理部では、時間ステップごとの繰り返し処理に移り、まずシミュレーションの時間ステップを1つ進め(ステップ302)、列車走行状態処理部132で列車ダイヤ、走行カーブ設定部122で入力したデータを参照して、各トンネル、ホームブランチにおいて上下列車の存在判定、位置、走行速度、加速度を計算する(ステップ303)。
【0013】
次に分岐合流点での圧力損失項の計算を行う(ステップ304)。この圧力損失項の求め方が本発明の特徴とする部分で、その詳細は後述するが、概略的には3ブランチが接続するノードについて接続する管路の風量および風向によりこのノードが分岐点であるか合流点であるかを判定し、その判定結果に応じた圧力損失項を圧力損失項処理部137で計算する。この圧力損失項計算に用いる内部パラメータは、圧力損失項処理用内部パラメータ設定部19で事前に計算され、内部パラメータ記憶部136に内蔵しているものを用いる。
【0014】
次に、風速状態処理部133では、圧力損失項を含む気流の運動方程式の積分により、各ブランチの風量を計算する(ステップ305)。列車が存在するトンネル、ホームブランチでの気流運動方程式は、例えば「ながれ」第12巻第4号(平成5年12月30日、日本流体学会)の理論を適用する。圧力状態処理部134では、連続条件(質量保存則)と運動方程式により各ノードでの圧力に関する連立一次方程式を組み立て、これを解く(ステップ306)。
【0015】
換気状態処理部135では、初期時刻において系内にあった空気の濃度を追跡する換気計算を、当該時点での風量を用い、次の移流方程式に基づき行う(ステップ307)。
【数1】
Figure 0004183885
ここでCは初期時刻において地下駅系を占めていた空気の濃度、Qは風量を示し、右辺第一項は領域Ω(体積も同一の記号で表わす)への流入流量、右辺第二項は領域Ωからの流出流量を示す。なお領域Ωとは近接する複数個のブランチをまとめたものである。境界条件は外気においてC=0(%)、初期条件はC=100(%)である。100−C(%)は初期時刻以後に領域Ωに流入した新鮮外気の割合を示す。
【0016】
以上により1時点の計算が終了し、次の時点の計算に移り、最終時間ステップまで以上の処理を繰り返す(ステップ308)。最終時間ステップの計算終了後にその結果を計算結果記憶部16に格納する。なお、以上の図3の処理で、ステップ304以外は全て従来技術と同様であり、それらの詳細説明は省略する。
【0017】
以下では、本発明の特徴とする図1の圧力損失項処理用内部パラメータ設定部19の処理内容を詳しく述べる。まず、運動方程式中の圧力損失項を新しく係数(分岐、合流損失係数と仮称する)を導入してその関数形を決定し、その中の未知パラメータを圧力損失係数の実験値から決定する処理を行う。図4は、分岐及び合流点における分岐圧力損失係数ζ12、ζ13を、合流圧力損失係数ζ21、ζ31の説明図で、図中の矢印は気流の方向を、B1、B2、B3はブランチを、N1、N2、N3、Nnはノードである。これら分岐圧力損失係数ζ12、ζ13及び合流圧力損失係数ζ21、ζ31は、以下に示すベルヌイの式である(数2)〜(数5)によって定義される。
【数2】
Figure 0004183885
【数3】
Figure 0004183885
【数4】
Figure 0004183885
【数5】
Figure 0004183885
ここで、Dは管路径、Lは管路長、ρは密度、λは壁面摩擦抵抗係数、Vはブランチ内の平均風速をそれぞれ示し、添字は図4のブランチ番号に対応した量であることを示している。
【0018】
次に、1つのブランチに対する運動方程式(運動量保存式)は、圧力損失係数が通常当該ブランチの風速の二乗の項に乗ずる係数となっており、次のようにかける。
【数6】
Figure 0004183885
前記のように、圧力損失係数ζはブランチ間の接続角度、管路断面積比、流量比の関数であるが、内部パラメータ設定部19では、流量比に関する依存性を分離するため新係数を導入し、さらにその新係数の接続角度と管路断面積比に関する依存性を分離する。このことを分岐の場合を例にとって説明すると、(数6)の係数ζを含む圧力損失項を、下流側ブランチB2、B3に対して、これと共通の分岐点に接続されている他の管路の風速の二乗項と新たに導入する係数ζd21、ζd22、ζd23、ζd31、ζd32、ζd33で下記の式のように展開する。但しブランチB1に対してはζ=0である。
【数7】
Figure 0004183885
【数8】
Figure 0004183885
【数9】
Figure 0004183885
新たに導入した係数ζd21、ζd22、ζd23とζ12、およびζd31、ζd32、ζd33とζ13とを結びつける関係式は、(数7)〜(数9)の運動方程式で左辺を0とした定常状態の式と(数2)〜(数5)のベルヌイ式から圧力項P1、P2、P3、Pnを消去することにより得られ、分岐圧力損失係数ζ12、ζ13はそれぞれ流量比の二次式で表される。この二次式を係数二次式と呼ぶことにすると、この係数二次式の係数は、ブランチの断面積比と新しく、ζd21、ζd22、ζd23、ζd31、ζd32、ζd33の関数で表され、流量比には依存しない。
【0019】
内部パラメータ設定部19では、まず上記新しく導入した係数ζdjk(j=2、3、k=1〜3)を係数ζ12、ζ13の実測値から決定する。分岐圧力損失係数ζ12、ζ13の値は、前述のように多くの実測値が得られているので、ブランチの接続角及び断面積比をパラメータとし、係数ζ12、ζ13を流量比の関数と見なし、その関数を流量比の二次式で近似して近似二次式を求める。そしてその近似二次式の係数と、前記係数二次式とを比較し、それらの係数を等置することにより新しく導入した係数ζdjkをブランチの断面積比及び接続角ごとに求める。
【0020】
以上のようにして、分岐圧力損失係数として新しく導入した係数ζdjkを用い、(数7)〜(数9)の運動方程式を解くことにすれば、係数ζdjkはブランチの接続角と断面積比にのみ依存し、流量には依存しないので、データベースとして圧力損失係数を用意する場合に、圧力損失係数ζ12、ζ13そのものを用意する場合よりも大幅にデータ量を減らすことができる。しかしそれでもまだ2つのパラメータ、即ち接続角と断面積比があるので、これらへの依存性をさらに分離するのが望ましい。
【0021】
この係数ζdjkの断面積比と接続角に関する依存性を分離するために、これらの係数をそれぞれ接続角についてフーリエ係数に展開する。今、ブランチB1とB2のなす角度と断面積比をθ2とm2、ブランチB1とB3のなす角度と断面積比をθ3とm3とすると、上記フーリエ係数は二重フーリエ展開により求められる。
【数10】
Figure 0004183885
ここで添字μ1、ν1、μ2、ν2はそれぞれ0、1、2…の値をとる加算Σのパラメータである。実際にはこれらのパラメータの値を0〜Mの範囲にとって近似することになる。そこで内部パラメータ設定部19では、先にζ12、ζ13の実測値から求められた各係数ζdjkと(数10)の値(パラメータμ1、ν1、μ2、ν2の各値を0〜M以内にとって加算した値)との差の絶対値が最小となるようにフーリエ係数fα(m2、m3)を定める。但しfαは(数10)のfsjkμ1ν1,s=1〜4を略記したものである。このフーリエ係数fα(m2、m3)は勿論、断面積比m2、m3と加算パラメータαのみに依存し、接続角θ2、θ3には依存しない。そしてこのフーリエ係数を、図1の内部パラメータ記憶部136に予め求めて格納しておく。
【0022】
以上は分岐の場合について述べたが、合流の場合は下流に位置するブランチB1に対してζc11、ζc12、ζc13を導入し分岐の場合と同様の処理を適用すればよい。そしてシミュレーション実行時には、このパラメータfα(m2、m3)を読み出し、(数10)によって係数ζdjkを算出し、これを用いて(数7)〜(数9)及びこれに対応する合流の時の運動方程式を図3のステップ305で解くようにする。このようにすると、損失係数を求めるのに必要とするデータベースには、先述のフーリエ係数fα(m2、m3)のみを予め内部パラメータ設定部19により求めて格納しておけばよい。そして損失係数ζ12等が依存するパラメータである流量比、ブランチ角度、断面積比の内、断面積比のみにフーリエ係数が依存するので、データベースに用意するデータ数を大幅に減らすことができる。
【表1】
Figure 0004183885
【0023】
例えば、前記した技術資料「管路、ダクトの流体抵抗」に記載された80本弱の曲線を処理して(表1)に示した39個の係数を算出した。但し表1では、同一覧に記載された2つの係数、例えばζd21,ζd31は同じ値である。これら39の係数を用いて戻し計算をすると、実測値との誤差は ±10%未満であった。そこで、断面積比m2,m3と接続角度θ2,θ3を指定した流量比ー損失係数曲線を二次曲線で近似するものとすると、1曲線を得るのに3点、6個のデータを必要とする。従って、39個の係数からは7曲線が得られる。従って、データ圧縮効果は、直接損失係数を数値化する場合に比べて少なくとも10%未満となる。さらに、既存の損失係数曲線を数値化した場合には、(m2,m3,θ2,θ3)の組み合わせがない場合は内挿、外挿等の処理を必要とするが、本法では不要であり、この点でも有利である。
【0024】
【発明の効果】
本発明によれば、データ量の少ないデータベースを用意するだけで実測値に適合した圧力損失係数が得られ、トンネル系風環境のシミュレーションを精度よく、容易に行える効果がある。
【図面の簡単な説明】
【図1】本発明になるトンネル系風環境シミュレータの構成例を示すブロック図である。
【図2】地下鉄駅モデルの一例である。
【図3】シミュレーション実行部の動作フローである。
【図4】分岐合流と分岐合流圧力損失係数の説明図である。
【符号の説明】
10 トンネル系風環境シミュレータ
11 シミュレーション操作選択部
12 シミュレーション条件設定部
13 シミュレーション実行部
14 シミュレーション結果表示部
19 圧力損失項処理用内部パラメータ設定部
133 風速状態処理部
136 内部パラメータ記憶部
137 圧力損失項処理部

Claims (1)

  1. トンネル系の風環境をノードとブランチから成る管路網でモデル化してトンネル系風環境における各部の風速を含む環境状態量を予測するトンネル系風環境予測シミュレータにおいて、
    ブランチの分岐点及び合流点に接続された各ブランチの風速が満たす運動方程式の圧力損失項を算出するための圧力損失項処理手段と、この手段で用いるパラメータを記憶するためのパラメータ記憶手段と、この手段に必要とするパラメータを予め求めて格納するためのパラメータ算出設定手段とを設けると共に、
    前記パラメータ算出手段は、ブランチ間の接続角、管路断面積比、及び流量比に依存する分岐または合流圧力損失係数を含む前記圧力損失項の各々を前記流量比には依存しない新係数を導入して新圧力損失項に変換したとき、その新係数を前記分岐または合流圧力損失係数の実測値から前記接続角及び管路断面積をパラメータとして求める新係数算出手段と、前記新係数をブランチが持つ2つの接続角を変数として二重フーリエ展開したときの前記管路断面積比にのみ依存するフーリエ係数を、前記新係数算出手段により算出した新係数とフーリエ展開により得たフーリエ係数とが一致するように定めて前記パラメータ記憶手段へ格納するためのフーリエ係数算出手段とから構成され、
    前記圧力損失項処理手段は、前記パラメータ記憶手段に記憶されたフーリエ係数をそのときの管路断面積比に応じて読み出す読み出し手段と、この手段により読み出されたフーリエ係数と接続角を用いて前記新係数を算出する新係数算出手段と、この手段により算出された新係数を用いて前記新係数を導入して生成された新圧力損失項により分岐または合流圧力損失項を算出する圧力項算出手段から構成されて成ることを特徴とするトンネル系風環境予測シミュレータ。
JP2000130424A 2000-04-28 2000-04-28 トンネル系風環境予測シミュレータ Expired - Fee Related JP4183885B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000130424A JP4183885B2 (ja) 2000-04-28 2000-04-28 トンネル系風環境予測シミュレータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000130424A JP4183885B2 (ja) 2000-04-28 2000-04-28 トンネル系風環境予測シミュレータ

Publications (2)

Publication Number Publication Date
JP2001311400A JP2001311400A (ja) 2001-11-09
JP4183885B2 true JP4183885B2 (ja) 2008-11-19

Family

ID=18639536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000130424A Expired - Fee Related JP4183885B2 (ja) 2000-04-28 2000-04-28 トンネル系風環境予測シミュレータ

Country Status (1)

Country Link
JP (1) JP4183885B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536619B2 (ja) * 2005-08-03 2010-09-01 財団法人鉄道総合技術研究所 高速列車走行に伴う駅部の圧力変動予測システム
CN108166980B (zh) * 2017-12-25 2019-04-26 北京交通大学 一种隧道地层损失模拟装置
CN109139083B (zh) * 2018-09-12 2019-12-10 中国矿业大学 盾构施工隧道通风稀释涌入瓦斯气体的模拟实验系统
CN109002674A (zh) * 2018-10-09 2018-12-14 浙江省水利水电勘测设计院 一种隧洞群施工进度仿真方法及系统
CN111237004A (zh) * 2020-01-17 2020-06-05 山东科技大学 综掘工作面风流-瓦斯-粉尘多相耦合时空演化仿真实验装置
CN117055459B (zh) * 2023-09-11 2024-03-19 辽宁艾特斯智能交通技术有限公司 一种基于plc的隧道区域设备控制系统

Also Published As

Publication number Publication date
JP2001311400A (ja) 2001-11-09

Similar Documents

Publication Publication Date Title
Camelli et al. Modeling subway air flow using CFD
Choi et al. Effects of nose shape and tunnel cross-sectional area on aerodynamic drag of train traveling in tunnels
Gano et al. Hybrid variable fidelity optimization by using a kriging-based scaling function
Liu et al. An alternative algorithm of tunnel piston effect by replacing three-dimensional model with two-dimensional model
JP2765630B2 (ja) 地下空間における空気調和・換気シミュレータ
KR100988709B1 (ko) 교통흐름 시뮬레이션 시스템
JP6353812B2 (ja) トンネル内車両の屋根上流れ解析方法
JP4183885B2 (ja) トンネル系風環境予測シミュレータ
Mok et al. Numerical study on high speed train and tunnel hood interaction
KR101831906B1 (ko) 모델링을 활용한 건축물의 풍압 해석 시스템 및 방법
Mayer et al. 3D subsonic diffuser design and analysis
Ansuini et al. Hybrid modeling for energy saving in subway stations
Turgut et al. Factors influencing computational predictability of aerodynamic losses in a turbine nozzle guide vane flow
Smith et al. Response of continuous periodically supported guideway beams to traveling vehicle loads
Szauter et al. Examinations of complex traffic dynamic systems and new analysis, modeling and simulation of electrical vehicular systems
Chwalowski et al. CFD model of the transonic dynamics tunnel with applications
Galindo et al. Modeling the vacuum circuit of a pneumatic valve system
JP4164556B2 (ja) 道路トンネル換気制御の動的シミュレーション装置およびそのプログラム
Fu et al. Automatic generation of path networks for evacuation using building information modeling
CN116029003A (zh) 一种基于流体拓扑优化的二元进气道设计方法
Ahmed et al. Estimation of exhaust gas aerodynamic force on the variable geometry turbocharger actuator: 1D flow model approach
Nayani et al. Numerical simulation of a complete low-speed wind tunnel circuit
JP6869197B2 (ja) トンネル内車両の屋根上流れ解析方法
Liu et al. Integrating optimal vehicle routing and control with load-dependent vehicle dynamics using a confidence bounds for trees-based approach
Dawes The extension of a solution-adaptive 3D Navier-Stokes solver towards geometries of arbitrary complexity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees