JP4182089B2 - Zoom lens and optical apparatus having the same - Google Patents

Zoom lens and optical apparatus having the same Download PDF

Info

Publication number
JP4182089B2
JP4182089B2 JP2005217473A JP2005217473A JP4182089B2 JP 4182089 B2 JP4182089 B2 JP 4182089B2 JP 2005217473 A JP2005217473 A JP 2005217473A JP 2005217473 A JP2005217473 A JP 2005217473A JP 4182089 B2 JP4182089 B2 JP 4182089B2
Authority
JP
Japan
Prior art keywords
lens
lens group
diffractive optical
zoom lens
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005217473A
Other languages
Japanese (ja)
Other versions
JP2006011469A (en
Inventor
博之 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005217473A priority Critical patent/JP4182089B2/en
Publication of JP2006011469A publication Critical patent/JP2006011469A/en
Application granted granted Critical
Publication of JP4182089B2 publication Critical patent/JP4182089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Description

本発明はズームレンズ及びそれを有する光学機器に関し、高変倍比、大口径比を持ちかつ良好な光学性能を維持しつつレンズ系全体の小型化を図った特にビデオカメラ、電子スチルカメラ、銀塩写真用カメラに好適なものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens and an optical apparatus having the zoom lens, and particularly to a video camera, an electronic still camera, and a silver lens that have a high zoom ratio, a large aperture ratio, and reduce the size of the entire lens system while maintaining good optical performance. This is suitable for a salt photo camera.

最近、ホームビデオカメラ等の小型軽量化に伴い、撮像用のズームレンズの小型化にも目覚しい進歩が見られ、特にレンズ全長の短縮化や前玉径の小型化、構成の簡略化に力が注がれている。   Recently, with the reduction in size and weight of home video cameras and the like, remarkable progress has been made in reducing the size of zoom lenses for imaging, particularly in reducing the overall lens length, reducing the front lens diameter, and simplifying the configuration. It has been poured.

これらの目的を達成する一つの手段として、物体側の第1レンズ群以外のレンズ群を移動させてフォーカス(焦点合わせ)を行う、所謂リアフォーカス式のズームレンズが知られている。   As one means for achieving these objects, a so-called rear focus type zoom lens is known in which focusing is performed by moving a lens group other than the first lens group on the object side.

一般にリアフォーカス式のズームレンズは第1レンズ群を移動させてフォーカスを行うズームレンズに比べて第1レンズ群の有効径が小さくなり、レンズ系全体の小型化が容易になり、また近接撮影、特に極至近撮影が容易となり、さらに小型軽量のレンズ群を移動させているので、レンズ群の駆動力が小さくて済み迅速な焦点合わせが出来る等の特徴がある。   In general, a rear focus type zoom lens has a smaller effective diameter of the first lens group than a zoom lens that moves the first lens group to perform focusing, thereby facilitating downsizing of the entire lens system, and close-up photography. In particular, close-up photography is facilitated, and the small and lightweight lens group is moved, so that the driving force of the lens group is small and rapid focusing is possible.

このようなリアフォーカス式のズームレンズとして、物体側より順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群の4つのレンズ群を有し、第2レンズ群を移動させて変倍を行い、第4レンズ群を移動させて変倍に伴なう像面変動の補正とフォーカスを行っているものが知られている(特許文献1、2)。   As such a rear focus type zoom lens, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive refractive power. The fourth lens group has four lens groups, and the second lens group is moved to perform zooming, and the fourth lens group is moved to correct and focus the image plane variation accompanying zooming. Are known (Patent Documents 1 and 2).

また物体側より順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群の5つのレンズ群を有し、第2レンズ群を移動させて変倍を行い、第4レンズ群を移動させて変倍に伴なう像面変動の補正とフォーカスを行っているものが知られている(特許文献3)。   Further, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refractive power. The fifth lens group has five lens groups, and the second lens group is moved to perform zooming, and the fourth lens group is moved to correct and focus the image plane variation accompanying zooming. Is known (Patent Document 3).

これらのズームレンズにおいては特に望遠側では軸上色収差や倍率色収差が大きくなり、特にデジタルスチルカメラのような高画素で高画質が要求されるものに利用しようとすると目立って来て問題となる。   In these zoom lenses, axial chromatic aberration and lateral chromatic aberration are particularly large on the telephoto side, and it becomes particularly noticeable when it is used for a high pixel and high image quality such as a digital still camera.

この問題に対して、物体側より順に、正、負、正、正の屈折力の4群構成のズームレンズにおいて、第1レンズ群に異常分散硝材のレンズを用いることで対応しているものが知られている(特許文献4)。   In order to deal with this problem, in order from the object side, in a zoom lens having a four-group configuration of positive, negative, positive, and positive refractive power, a lens made of an anomalous dispersion glass material is used for the first lens group. Known (Patent Document 4).

一方、色収差の発生を抑制する方法として近年、回折光学素子を撮像光学系に応用する提案がなされているものが知られている(特許文献5〜10)。   On the other hand, as a method for suppressing the occurrence of chromatic aberration, a proposal has recently been made to apply a diffractive optical element to an imaging optical system (Patent Documents 5 to 10).

特許文献5,6では、単レンズに回折光学素子を応用することで色収差の低減を図っている。   In Patent Documents 5 and 6, chromatic aberration is reduced by applying a diffractive optical element to a single lens.

また特許文献7では、ズームレンズの第2レンズ群または第3レンズ群に回折光学素子を用いることを提案し、従来例に対してレンズ枚数の削減やレンズ系の小型化を達成している。   Patent Document 7 proposes to use a diffractive optical element for the second lens group or the third lens group of the zoom lens, and achieves a reduction in the number of lenses and a reduction in the size of the lens system compared to the conventional example.

また特許文献8、9では、第1レンズ群に回折光学面を設けることで第1レンズ群のレンズ枚数の削減を達成している。   In Patent Documents 8 and 9, a reduction in the number of lenses in the first lens group is achieved by providing a diffractive optical surface in the first lens group.

更に特許文献10では、2枚のレンズの接合レンズ面(貼合せ面)に回折光学面を設けて色収差低減を図っている。   Further, in Patent Document 10, a diffractive optical surface is provided on the cemented lens surface (bonding surface) of two lenses to reduce chromatic aberration.

また回折光学素子を撮影系に使用する場合は可視範囲全域に渡って十分な回折効率を得る必要がある。一般に単層の回折格子では設計波長以外の波長では回折効率が落ちて設計次数以外の不要回折光が色フレアーの要因となる。これを考慮して、回折光学素子を構成する各回折格子の3種の異なる材料と2種の異なる格子厚を最適に選ぶことで可視範囲全域で高い回折効率を得ているものが知られている(特許文献11)。
特開昭62−24213号公報 特開昭63−247316号公報 特開平8−5913号公報 特開2000−267005号公報 特開平4−213421号公報 特開平6−324262号公報 米国特許第5,268,790号 特開平11−52238号公報 特開平11−52244号公報 特開平11−305126号公報 特開平9−127322号公報
In addition, when a diffractive optical element is used in an imaging system, it is necessary to obtain sufficient diffraction efficiency over the entire visible range. In general, in a single-layer diffraction grating, diffraction efficiency decreases at wavelengths other than the design wavelength, and unnecessary diffracted light other than the design order causes color flare. In view of this, it is known that high diffraction efficiency is obtained over the entire visible range by optimally selecting three different materials and two different grating thicknesses for each diffraction grating constituting the diffractive optical element. (Patent Document 11).
JP-A-62-24213 JP-A-63-247316 JP-A-8-5913 JP 2000-267005 A JP-A-4-213421 JP-A-6-324262 US Pat. No. 5,268,790 Japanese Patent Laid-Open No. 11-52238 JP-A-11-52244 Japanese Patent Laid-Open No. 11-305126 JP-A-9-127322

一般にズーム比が10倍程度の高変倍比のズームレンズにおいて、第1レンズ群に回折光学面を導入して色収差を補正しようとした場合、回折光学面に入射する光線角度が画角や焦点距離の変化によって大きく変化するので回折効率が変化して不要回折光が多くなってくる。特許文献8,9の例では、像側に凸状のレンズ面に回折光学面を設けているので軸上光線と周辺光線で回折光学面に入る角度の差が大きくて回折効率が十分に得られない。   In general, in a zoom lens having a high zoom ratio with a zoom ratio of about 10 times, when an attempt is made to correct chromatic aberration by introducing a diffractive optical surface into the first lens group, the angle of light incident on the diffractive optical surface depends on the angle of view and the focus. Since it changes greatly with the change in distance, the diffraction efficiency changes and the amount of unnecessary diffracted light increases. In the examples of Patent Documents 8 and 9, since the diffractive optical surface is provided on the lens surface convex on the image side, the difference in angle between the axial light beam and the peripheral light beam entering the diffractive optical surface is large, and sufficient diffraction efficiency is obtained. I can't.

また可視範囲全域で高い回折効率を得るためには、回折光学素子を複数の回折格子で構成する必要があり前後にレンズを有する貼合せレンズ面に回折光学面を設定する必要がある。特許文献10では回折格子を貼合せレンズ面に設けてはいるが、回折格子への入射条件が考慮されていない。   In order to obtain high diffraction efficiency over the entire visible range, the diffractive optical element needs to be composed of a plurality of diffraction gratings, and it is necessary to set a diffractive optical surface on a bonded lens surface having lenses before and after. In Patent Document 10, the diffraction grating is provided on the bonded lens surface, but the incident condition on the diffraction grating is not considered.

本発明は、これらの従来技術を鑑み、全変倍範囲において高い光学性能を持った新規な構成のズームレンズ及びそれを有する光学機器を提供することを目的とする。   In view of these conventional techniques, an object of the present invention is to provide a zoom lens having a novel configuration having high optical performance in the entire zoom range and an optical apparatus having the zoom lens.

請求項1の発明のズームレンズは、物体側より順に、ズーミングのために移動しない正の屈折力の第1レンズ群、ズーミングに際して光軸方向に移動する負の屈折力の第2レンズ群、ズーミングのために移動しない第3レンズ群、ズーミングに際して光軸方向に移動する正の屈折力の第4レンズ群の4つのレンズ群のみをレンズ群として有するズームレンズにおいて、該第1レンズ群は物体側に凸状の貼合せ面を有し、該貼合せ面に回折格子により構成される回折光学部が設けられており、該貼合せ面の曲率半径をRD、該第1レンズ群の焦点距離をf1とするとき、
0.5 < RD/f1 < 1.2
なる条件を満足することを特徴としている。
The zoom lens according to the first aspect of the present invention includes, in order from the object side, a first lens group having a positive refractive power that does not move for zooming, a second lens group having a negative refractive power that moves in the optical axis direction during zooming, and zooming. In the zoom lens having only the four lens groups, that is, the third lens group that does not move for zooming and the fourth lens group having a positive refractive power that moves in the optical axis direction during zooming, the first lens group is located on the object side. And a diffractive optical part composed of a diffraction grating is provided on the bonding surface, the radius of curvature of the bonding surface is RD, and the focal length of the first lens group is When f1
0.5 <RD / f1 <1.2
It is characterized by satisfying the following conditions.

請求項2の発明は、請求項1の発明において、前記回折光学部は互いに分散の異なる材料より成る複数の回折格子の積層構造により構成されていることを特徴としている。   A second aspect of the invention is characterized in that, in the first aspect of the invention, the diffractive optical part is constituted by a laminated structure of a plurality of diffraction gratings made of materials having different dispersions.

請求項3の発明は、請求項1又は2の発明において、前記貼合せ面は、物体側より順に負レンズと正レンズから成る貼合せレンズの貼合せ面であることを特徴としている。   A third aspect of the invention is characterized in that, in the first or second aspect of the invention, the bonding surface is a bonding surface of a bonding lens including a negative lens and a positive lens in order from the object side.

請求項4の発明のズームレンズは、物体側より順に、正の屈折力の第1レンズ群、ズーミングに際して光軸方向に移動する負の屈折力の第2レンズ群、ズーミングのために移動しない第3レンズ群と、ズーミングに際して光軸方向に移動する正の屈折力の第4レンズ群の4つのレンズ群のみをレンズ群として有するズームレンズにおいて、
該第1レンズ群は、物体側から順に、物体側に凸面を向けた負メニスカスレンズと正レンズから成る貼合せレンズを有し、該貼合せレンズの貼合せ面に回折格子により構成される回折光学部が設けられており、該貼合せ面の曲率半径をRD、該第1レンズ群の焦点距離をf1とするとき、
0.5 < RD/f1 < 1.2
なる条件を満足することを特徴としている。
A zoom lens according to a fourth aspect of the invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power that moves in the optical axis direction during zooming, and a first lens group that does not move for zooming. In a zoom lens having only three lens groups, and four lens groups of a fourth lens group having a positive refractive power that moves in the optical axis direction during zooming,
The first lens group includes, in order from the object side, a cemented lens composed of a negative meniscus lens having a convex surface facing the object side and a positive lens, and a diffraction grating composed of a diffraction grating on the cemented surface of the cemented lens. When an optical part is provided, the radius of curvature of the bonding surface is RD, and the focal length of the first lens group is f1,
0.5 <RD / f1 <1.2
It is characterized by satisfying the following conditions.

請求項5の発明は、請求項1から4のいずれか1項の発明において、d線の波長をλd、光軸からの距離をhとして、前記回折光学部によって波面に与えられる位相が、
φ(h)=(2π/λd)・(C2・h2+C4・h4+・・C2・i・h2・i
で表わされ、全系の望遠端での焦点距離をft、望遠端でのFナンバーをFnoTとするとき、
−0.01 < C2・(ft/FnoT)< 0
なる条件を満足することを特徴としている。
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the phase given to the wavefront by the diffractive optical part is λd and the distance from the optical axis is h.
φ (h) = (2π / λd) · (C 2 · h 2 + C 4 · h 4 + ·· C 2 · i · h 2 · i )
When the focal length at the telephoto end of the entire system is ft and the F number at the telephoto end is FnoT,
−0.01 <C 2 · (ft / FnoT) <0
It is characterized by satisfying the following conditions.

請求項6の発明は、請求項1から5のいずれか1項の発明において、前記回折光学部は、3度から10度の入射角で入射する光線に対して回折効率が最も高くなることを特徴としている。   According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the diffractive optical unit has the highest diffraction efficiency with respect to a light beam incident at an incident angle of 3 degrees to 10 degrees. It is a feature.

請求項7の発明は、請求項1から6のいずれか1項の発明において、前記回折光学部は1以上の回折格子で構成され、このうち1つの回折格子は中心部から周辺部に行くに従って格子高さが変化する領域を有していることを特徴としている。   The invention of claim 7 is the invention of any one of claims 1 to 6, wherein the diffractive optical part is composed of one or more diffraction gratings, and one of the diffraction gratings goes from the central part to the peripheral part. It is characterized by having a region where the lattice height changes.

請求項8の発明は、請求項1から7のいずれか1項の発明において、前記第1レンズ群の焦点距離をf1、全系の広角端と望遠端での焦点距離を各々fw,fTとするとき、   The invention of claim 8 is the invention of any one of claims 1 to 7, wherein the focal length of the first lens group is f1, and the focal lengths at the wide-angle end and the telephoto end of the entire system are fw and fT, respectively. and when,

なる条件を満足することを特徴としている。 It is characterized by satisfying the following conditions.

請求項9の発明は、請求項1から8のいずれか1項の発明において、前記第3レンズ群は、像を安定化するために光軸と垂直な方向の成分を持つように移動可能であり、望遠端でかつ無限遠物体に対する第3レンズ群の倍率をβ3、第3レンズ群より像側の光学系の倍率をβrとするとき、
0.5<|(1−β3)・βr|<3
なる条件を満足することを特徴としている。
The invention of claim 9 is the invention of any one of claims 1 to 8, wherein the third lens group is movable so as to have a component in a direction perpendicular to the optical axis in order to stabilize the image. Yes, when the magnification of the third lens group for the object at the telephoto end and at infinity is β3, and the magnification of the optical system on the image side from the third lens group is βr,
0.5 <| (1-β3) · βr | <3
It is characterized by satisfying the following conditions.

請求項10の発明は、請求項1から9のいずれか1項の発明において、光電変換素子上に像を形成することを特徴としている。   The invention of claim 10 is characterized in that in the invention of any one of claims 1 to 9, an image is formed on the photoelectric conversion element.

請求項11の発明のカメラは、請求項1から10のいずれか1項に記載のズームレンズと、該ズームレンズによって形成された像を受光する光電変換素子とを有することを特徴としている。   A camera according to an eleventh aspect of the invention includes the zoom lens according to any one of the first to tenth aspects and a photoelectric conversion element that receives an image formed by the zoom lens.

本発明によれば、全変倍範囲において高い光学性能を持ったズームレンズ及びそれを有する光学機器を達成することができる。   According to the present invention, it is possible to achieve a zoom lens having high optical performance in the entire zoom range and an optical apparatus having the same.

具体的には、図1は実施形態1に相当する数値実施例1のズームレンズの要部断面図、図2、図3、図4は数値実施例1のズームレンズの広角端、中間、望遠端の各ズーム位置における収差図である。図5は参考例1に相当する参考数値実施例1のズームレンズの要部断面図、図6、図7、図8は参考数値実施例1のズームレンズの広角端、中間、望遠端の各ズーム位置における収差図である。図9は参考例2に相当する参考数値実施例2のズームレンズの要部断面図、図10、図11、図12は参考数値実施例2のズームレンズの広角端、中間、望遠端の各ズーム位置における収差図である。図13は実施形態2に相当する本発明のズームレンズを用いた光学機器の概略図である。
(実施形態1)
図1に示したレンズ断面図において、L1はズーミングのためには移動しない(固定の)正の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2はズーミングに際して光軸方向に移動する負の屈折力の第2レンズ群、L3はズーミングのためには移動しない(固定の)正の屈折力の第3レンズ群、L4はズーミング及びフォーカスの際に光軸方向に移動する正の屈折力の第4レンズ群である。
Specifically, FIG. 1 is a cross-sectional view of a main part of a zoom lens of Numerical Example 1 corresponding to Embodiment 1, and FIGS. 2, 3, and 4 are wide-angle end, intermediate, and telephoto of the zoom lens of Numerical Example 1. It is an aberration diagram in each zoom position of the end. FIG. 5 is a cross-sectional view of the main part of the zoom lens of Reference Numerical Example 1 corresponding to Reference Example 1, and FIGS. 6, 7, and 8 are the wide-angle end, intermediate, and telephoto ends of the zoom lens of Reference Numerical Example 1, respectively. It is an aberration diagram in the zoom position. 9 is a cross-sectional view of the main part of the zoom lens of Reference Numerical Example 2 corresponding to Reference Example 2. FIGS. 10, 11, and 12 are diagrams of the zoom lens of Reference Numerical Example 2 at the wide-angle end, the middle, and the telephoto end, respectively. It is an aberration diagram in the zoom position. FIG. 13 is a schematic view of an optical apparatus using the zoom lens according to the present invention corresponding to the second embodiment.
(Embodiment 1)
In the lens cross-sectional view shown in FIG. 1, L1 is a first lens unit having a positive refractive power (optical power = reciprocal of focal length) that does not move for zooming, and L2 is in the optical axis direction during zooming. The second lens unit having a negative refractive power that moves to L, and the third lens unit having a positive refractive power that does not move for zooming (L3), and L4 moves in the optical axis direction during zooming and focusing. This is a fourth lens unit having a positive refractive power.

SPは開口絞りであり、第3レンズ群L3の前方に配置されている。Gは色分解プリズムやフェイスプレートやフィルター等に対応するガラスブロックである。IPは像面であり、CCDやCMOS等の固体撮像素子(光電変換素子)が配置される。FPはフレアーカット絞りである。   SP is an aperture stop, which is disposed in front of the third lens unit L3. G is a glass block corresponding to a color separation prism, a face plate, a filter, or the like. IP is an image plane, on which a solid-state imaging device (photoelectric conversion device) such as a CCD or CMOS is disposed. FP is a flare cut stop.

広角端から望遠端へのズーミングに際しては、図1中の矢印に示すように第2レンズ群L2を像側に移動させて主たる変倍を行うと共に、第4レンズ群L4を物体側に凸状の軌跡で移動させて変倍に伴う像面位置の変動を補正している。   During zooming from the wide-angle end to the telephoto end, as shown by the arrow in FIG. 1, the second lens unit L2 is moved to the image side to perform main magnification, and the fourth lens unit L4 is convex toward the object side. The movement of the image plane is corrected by correcting the fluctuation of the image plane position due to zooming.

また図1に示す第4レンズ群L4の実線の曲線4aと点線の曲線4bは、各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端へのズーミングに伴う像面変動を補正するための移動軌跡を示している。このように第4レンズ群L4を物体側に凸状の軌跡を有するように移動させることにより、第3レンズ群L3と第4レンズ群L4の間の空間の有効利用を図りレンズ全長の短縮化を効果的に達成している。   Further, the solid line curve 4a and the dotted line curve 4b of the fourth lens unit L4 shown in FIG. 1 indicate image plane fluctuations accompanying zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at close distance, respectively. The movement locus | trajectory for correct | amending is shown. In this way, by moving the fourth lens unit L4 so as to have a convex locus on the object side, the space between the third lens unit L3 and the fourth lens unit L4 is effectively used, and the total lens length is shortened. Has been achieved effectively.

実施形態1において、例えば望遠端において無限遠物体から近距離物体へのフォーカスは、同図の直線4cに示すように第4レンズ群L4を前方へ繰り出すことによって行っている。   In the first embodiment, for example, focusing from an infinitely distant object to a close object at the telephoto end is performed by extending the fourth lens unit L4 forward as indicated by a straight line 4c in FIG.

尚、広角端、望遠端とは変倍用レンズ群である第2レンズ群L2が機構上光軸方向に移動可能な範囲の両端に位置した時のズーム位置をいう。これは、後述するその他のズームレンズの実施形態においても同様である。   The wide-angle end and the telephoto end refer to zoom positions when the second lens unit L2, which is a variable power lens unit, is positioned at both ends of a range in which the mechanism can move in the optical axis direction. The same applies to other zoom lens embodiments described later.

実施形態1において、第1レンズ群L1と第3レンズ群L3とをズーミング及びフォーカスの際に固定としているが、必要に応じて移動させても良い。また第3レンズ群L3を光軸と垂直な方向の成分を持つように移動させることで、手ブレ等に起因した撮影像のブレを安定化(防振)させることも可能である。   In the first embodiment, the first lens unit L1 and the third lens unit L3 are fixed during zooming and focusing, but may be moved as necessary. In addition, by moving the third lens unit L3 so as to have a component in a direction perpendicular to the optical axis, it is possible to stabilize (anti-vibration) the blur of a captured image caused by camera shake or the like.

そして実施形態1では、第1レンズ群L1を、物体側から順に、物体側に凸面を向けた負メニスカスレンズG1と正レンズG2からなる貼合せレンズ、像側に比べ物体側に強い屈折力の凸面を向けた正メニスカスレンズG3で構成している。そしてレンズG1とレンズG2の貼合せ面に、光軸に対して回転対称な回折格子で構成される回折光学部を設け、貼合せレンズを回折光学素子としている。この回折光学部を設けた貼合せ面の曲率を適切に設定することで、各画角に基づく光線の回折光学部(回折光学面)への入射光線の角度が±15度の範囲内となるようにして変倍全域及び全画角に渡り高い回折効率を維持している。   In the first embodiment, the first lens unit L1 is made up of, in order from the object side, a cemented lens including a negative meniscus lens G1 and a positive lens G2 having a convex surface facing the object side, and a convex surface having a strong refractive power on the object side compared to the image side. And a positive meniscus lens G3 facing the lens. A diffractive optical part composed of a diffraction grating rotationally symmetric with respect to the optical axis is provided on the bonding surface of the lenses G1 and G2, and the bonded lens is used as a diffractive optical element. By appropriately setting the curvature of the bonding surface provided with this diffractive optical part, the angle of the incident light beam to the diffractive optical part (diffractive optical surface) of the light beam based on each angle of view is within a range of ± 15 degrees. In this way, high diffraction efficiency is maintained over the entire zoom range and the entire angle of view.

ここで、実施形態1で用いた回折光学素子の構成について説明する。   Here, the configuration of the diffractive optical element used in Embodiment 1 will be described.

図14は回折光学素子1の回折光学部の一部拡大断面図であり、基板(透明基板)2上に1つの層よりなる回折格子3を設けている。図15は、この回折光学素子1の回折効率の特性を示す図である。図15において横軸は波長を表し、縦軸は回折効率を表している。なお、回折効率は全透過光束に対する回折光の光量の割合であり、格子境界面での反射光などは説明が複雑になるのでここでは考慮していない。   FIG. 14 is a partially enlarged sectional view of a diffractive optical part of the diffractive optical element 1, and a diffraction grating 3 composed of one layer is provided on a substrate (transparent substrate) 2. FIG. 15 is a diagram showing the characteristics of the diffraction efficiency of the diffractive optical element 1. In FIG. 15, the horizontal axis represents the wavelength, and the vertical axis represents the diffraction efficiency. Note that the diffraction efficiency is the ratio of the amount of diffracted light to the total transmitted light beam, and the reflected light at the lattice boundary is not considered here because the explanation is complicated.

回折格子3の光学材料は、紫外線硬化樹脂(屈折率nd=1.513、アッベ数νd=51.0)を用い、格子厚d1を1.03μmと設定し、波長530nm、+1次の回折光の回折効率が最も高くなるようにしている。すなわち設計次数が+1次で、設計波長が波長530nmである。図15中において+1次の回折光の回折効率は実線で示している。 The optical material of the diffraction grating 3 is an ultraviolet curable resin (refractive index n d = 1.513, Abbe number ν d = 51.0), the grating thickness d 1 is set to 1.03 μm, the wavelength is 530 nm, and the + 1st order. The diffraction efficiency of the diffracted light is maximized. That is, the design order is + 1st order and the design wavelength is 530 nm. In FIG. 15, the diffraction efficiency of the + 1st order diffracted light is indicated by a solid line.

さらに、図15では設計次数近傍の回折次数(+1次±1次である0次と+2次)の回折効率も併記している。図から分かるように、設計次数での回折効率は設計波長近傍で最も高くなり、それ以外の波長では徐々に低くなる。   Further, FIG. 15 also shows diffraction efficiency of diffraction orders in the vicinity of the design order (0th order and + 2nd order which are + 1st order ± 1st order). As can be seen from the figure, the diffraction efficiency at the design order is highest near the design wavelength, and gradually decreases at other wavelengths.

この設計次数での回折効率の低下分が他の次数の回折光となり、フレアの要因となる。また、回折光学素子を光学系中の複数箇所に使用した場合には、設計波長以外の波長での回折効率の低下は透過率の低下にもつながることになる。   The decrease in diffraction efficiency at this design order becomes diffracted light of other orders, which causes flare. Further, when the diffractive optical element is used at a plurality of locations in the optical system, a decrease in diffraction efficiency at a wavelength other than the design wavelength leads to a decrease in transmittance.

次に、異なる材料よりなる複数の回折格子を積層した積層型の回折光学素子について説明する。図16は積層型の回折光学素子の一部拡大断面図であり、図17は図16に示す回折光学素子の+1次の回折光の回折効率の波長依存性を表す図である。図16の回折光学素子では、基板102上に紫外線硬化樹脂(屈折率nd=1.499、アッベ数νd=54)からなる第1の回折格子104を形成し、その上に第2の回折格子105(屈折率nd=1.598、アッベ数νd=28)を形成している。この材料の組み合わせにおいて、第1の回折格子104の格子厚d1はd1=13.8μm、第2の回折格子105の格子厚d2はd2=10.5μmとしている。   Next, a laminated diffractive optical element in which a plurality of diffraction gratings made of different materials are laminated will be described. FIG. 16 is a partially enlarged cross-sectional view of a laminated diffractive optical element, and FIG. 17 is a diagram showing the wavelength dependence of the diffraction efficiency of + 1st order diffracted light of the diffractive optical element shown in FIG. In the diffractive optical element shown in FIG. 16, a first diffraction grating 104 made of an ultraviolet curable resin (refractive index nd = 1.499, Abbe number νd = 54) is formed on a substrate 102, and a second diffraction grating is formed thereon. 105 (refractive index nd = 1.598, Abbe number νd = 28). In this combination of materials, the grating thickness d1 of the first diffraction grating 104 is d1 = 13.8 μm, and the grating thickness d2 of the second diffraction grating 105 is d2 = 10.5 μm.

図17からも分かるように、積層構造の回折格子を備えた回折光学素子にすることで、設計次数の回折光において使用波長全域(ここでは可視域)で95%以上という高い回折効率を得ている。   As can be seen from FIG. 17, by using a diffractive optical element provided with a diffraction grating having a laminated structure, a high diffraction efficiency of 95% or more is obtained in the entire range of wavelengths used (in this case, the visible region) in the diffracted light of the designed order. Yes.

なお、前述の積層構造の回折光学素子としては、回折格子を構成する材料を紫外線硬化樹脂に限定するものではなく、他のプラスチック材等も使用できるし、基材によっては第1の層を直接基材に形成しても良い。また各格子厚が必ずしも異なる必要はなく、材料の組み合わせによっては2つの層104と105の格子厚を等しくしても良い。この場合は表面に格子形状が形成されないことになるので、防塵性に優れ、回折光学素子の組立作業性を向上させることができる。更には2つの回折格子104と105を必ずしも密着させる必要はなく、空気層を隔てて2つの回折格子の層を配置しても良い。   The diffractive optical element having the above-described laminated structure is not limited to the material that constitutes the diffraction grating, but other plastic materials may be used. Depending on the substrate, the first layer may be directly You may form in a base material. Further, the lattice thicknesses are not necessarily different, and the lattice thicknesses of the two layers 104 and 105 may be equal depending on the combination of materials. In this case, since the lattice shape is not formed on the surface, it is excellent in dust resistance and can improve the assembling workability of the diffractive optical element. Furthermore, the two diffraction gratings 104 and 105 are not necessarily in close contact with each other, and two diffraction grating layers may be arranged with an air layer therebetween.

実施形態1の場合、図14や図16の基板2,102を貼合せレンズを構成する少なくとも一方のレンズとし、そのレンズ面上に回折格子を設けている。例えば、図14に示すごとく回折格子が単層のときは一方のレンズ面に回折格子を設ければよく、回折格子が2層以上の多層のときは両方のレンズ面に回折格子を設けて位置合わせをしながら周辺部(有効径外)で接着すればよい。   In the case of the first embodiment, the substrates 2 and 102 in FIGS. 14 and 16 are used as at least one lens constituting the bonded lens, and a diffraction grating is provided on the lens surface. For example, as shown in FIG. 14, when the diffraction grating is a single layer, a diffraction grating may be provided on one lens surface. When the diffraction grating is a multilayer of two or more layers, the diffraction grating is provided on both lens surfaces. What is necessary is just to adhere | attach in a peripheral part (outside an effective diameter), aligning.

本実施形態において、回折光学部が設けられている貼合せ面は球面であるが、回折格子が設けられるベース面を非球面にすれば、更に望遠端での球面収差やコマ収差の補正が良好に行うこともできる。   In this embodiment, the bonding surface on which the diffractive optical unit is provided is a spherical surface. However, if the base surface on which the diffraction grating is provided is an aspherical surface, spherical aberration and coma at the telephoto end can be further corrected. Can also be done.

これらの回折光学部の構成については後述する参考例1,2においても同様である。   The configuration of these diffractive optical units is the same in Reference Examples 1 and 2 described later.

なお、上述のように回折光学部は少なくとも1層の位相型回折格子によって構成されているので、実際には所定の厚みを持つことになるが、幾何光学的には無視できる程度の厚みなので、厚みを無視する場合には回折光学面(回折面)と呼ぶこともある。
(参考例1)
図5に示したレンズ断面図において、L1はズーミングのためには移動しない(固定の)正の屈折力の第1レンズ群、L2はズーミングに際して光軸方向に移動する負の屈折力の第2レンズ群、L3はズーミングのためには移動しない(固定の)正の屈折力の第3レンズ群、L4はズーミング及びフォーカスの際に光軸方向に移動する負の屈折力の第4レンズ群、L5はズーミングのためには移動しない(固定の)正の屈折力の第5レンズ群である。
As described above, since the diffractive optical part is composed of at least one phase type diffraction grating, the diffractive optical part actually has a predetermined thickness, but the thickness is negligible in terms of geometrical optics. When the thickness is ignored, it may be called a diffractive optical surface (diffractive surface).
(Reference Example 1)
In the lens cross-sectional view shown in FIG. 5, L1 is a first lens unit having a positive refractive power that does not move for zooming (fixed), and L2 is a second lens having a negative refractive power that moves in the optical axis direction during zooming. A third lens group having a positive refractive power that does not move for zooming, and a fourth lens group having a negative refractive power that moves in the optical axis direction during zooming and focusing; L5 is a fifth lens unit having a positive refractive power that does not move for zooming (fixed).

SPは開口絞り、Gはフェースプレート、フィルター等に対応するガラスブロック、IPは像面である。   SP is an aperture stop, G is a face plate, a glass block corresponding to a filter, etc., and IP is an image plane.

広角端から望遠端へのズーミングに際しては、図5中の矢印に示すように第2レンズ群L2を像側に移動させて主たる変倍を行うと共に、第4レンズ群L4を像側に凸状の軌跡で移動させて変倍に伴う像面位置の変動を補正している。   During zooming from the wide-angle end to the telephoto end, as shown by the arrow in FIG. 5, the second lens unit L2 is moved to the image side to perform main magnification, and the fourth lens unit L4 is convex toward the image side. The movement of the image plane is corrected by correcting the fluctuation of the image plane position due to zooming.

また図5に示す第4レンズ群L4の実線の曲線4aと点線の曲線4bは、各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端へのズーミングに伴う像面変動を補正するための移動軌跡を示している。このように第4レンズ群L4を像側に凸状の軌跡を有するように移動させることにより、第4レンズ群L4と第5レンズ群L5の間の空間の有効利用を図りレンズ全長の短縮化を効果的に達成している。   Further, the solid line curve 4a and the dotted line curve 4b of the fourth lens unit L4 shown in FIG. 5 indicate image plane fluctuations accompanying zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at close distance, respectively. The movement locus | trajectory for correct | amending is shown. Thus, by moving the fourth lens unit L4 so as to have a convex locus on the image side, the space between the fourth lens unit L4 and the fifth lens unit L5 is effectively used, and the total lens length is shortened. Has been achieved effectively.

参考例1において、例えば望遠端において無限遠物体から近距離物体へのフォーカスは、同図の直線4cに示すように第4レンズ群L4を後方へ繰り込むことにより行っている。   In Reference Example 1, for example, focusing from an infinitely distant object to a close object at the telephoto end is performed by retracting the fourth lens unit L4 rearward as indicated by a straight line 4c in FIG.

尚、参考例1では、第1レンズ群、第3レンズ群、そして第5レンズ群をズーミング及びフォーカスの際に固定としているが、必要に応じて移動させても良い。また第3レンズ群L3を光軸と垂直な方向の成分を持つように移動させることで、手ブレ等に起因した撮影像のブレを安定化させることも可能である。   In Reference Example 1, the first lens group, the third lens group, and the fifth lens group are fixed during zooming and focusing, but may be moved as necessary. In addition, by moving the third lens unit L3 so as to have a component in a direction perpendicular to the optical axis, it is possible to stabilize the blur of the captured image caused by camera shake or the like.

参考例1では、このようなレンズ構成を採用することで、広角側での第2レンズ群L2の移動に対する焦点距離の変化を実施形態1に示したような正、負、正、正の屈折力の4つのレンズ群より成る4群ズームレンズに比べて大きくすることができ、かつ前玉有効径をより小さくすることができる。   In Reference Example 1, by adopting such a lens configuration, the change in focal length with respect to the movement of the second lens unit L2 on the wide angle side is positive, negative, positive, and positive refraction as shown in the first embodiment. Compared to a four-group zoom lens composed of four lens groups of power, the front lens effective diameter can be made smaller.

参考例1では、第1レンズ群L1を、物体側から順に、物体側に凸面を向けた負メニスカスレンズG1と正レンズG2からなる貼合せレンズ、像側に比べて物体側に強い屈折力の凸面を有する正メニスカスレンズG3で構成しており、レンズG1とレンズG2の貼合せ面に光軸に対して回転対称な回折格子で構成される回折光学部を設けている。そして、この回折光学部を設けた貼合せ面の曲率を適切に設定することで、各画角に基づく光線の回折光学部への入射光線の角度が±15度の範囲内となるようにして変倍全域及び全画角に渡り高い回折効率を維持している。
(参考例2)
図9に示したレンズ断面図において、L1はズーミングのためには移動しない(固定の)正の屈折力の第1レンズ群、L2はズーミングに際して光軸方向に移動する負の屈折力の第2レンズ群、L3はズーミングのために移動しない(固定の)正の屈折力の第3レンズ群、L4はズーミングに際して光軸方向に移動する負の屈折力の第4レンズ群、L5はズーミングに際して光軸方向に移動する正の屈折力の第5レンズ群である。
In Reference Example 1, the first lens unit L1 is a cemented lens composed of a negative meniscus lens G1 having a convex surface facing the object side and a positive lens G2 in order from the object side, and has a stronger refractive power on the object side than on the image side. The diffractive optical part is composed of a positive meniscus lens G3 having a convex surface, and a rotationally symmetric diffraction grating with respect to the optical axis is provided on the bonding surface of the lenses G1 and G2. Then, by appropriately setting the curvature of the bonding surface provided with the diffractive optical part, the angle of the incident light beam to the diffractive optical part based on each angle of view is within a range of ± 15 degrees. High diffraction efficiency is maintained over the entire zoom range and the entire angle of view.
(Reference Example 2)
In the lens cross-sectional view shown in FIG. 9, L1 is a first lens unit having a positive refractive power that does not move for zooming (fixed), and L2 is a second lens having a negative refractive power that moves in the optical axis direction during zooming. The lens group, L3 is a third lens group having a positive refractive power that does not move for zooming (fixed), L4 is a fourth lens group having a negative refractive power that moves in the optical axis direction during zooming, and L5 is a light beam during zooming. It is the 5th lens group of the positive refractive power which moves to an axial direction.

SPは絞り、Gはフェースプレート、フィルター等に相当するガラスブロック、IPは像面である。   SP is a diaphragm, G is a glass block corresponding to a face plate, a filter, etc., and IP is an image plane.

広角端から望遠端へのズーミングに際しては、図9中の矢印に示すように第2レンズ群L2を像側に、第4レンズ群L4を像側に凸状の軌跡で、そして第5レンズ群L5を物体側に凸状の軌跡で移動させている。   During zooming from the wide-angle end to the telephoto end, as shown by the arrows in FIG. 9, the second lens unit L2 is on the image side, the fourth lens unit L4 is on the image side, and the fifth lens unit is convex. L5 is moved along a convex locus toward the object side.

また第5レンズ群L5を光軸方向に移動させてフォーカシングを行うリアフォーカス式を採用している。尚、本実施形態では第1レンズ群L1、第3レンズ群L3はズーミングに際して固定であるが必要に応じて移動させても良い。   In addition, a rear focus type is employed in which the fifth lens unit L5 is moved in the optical axis direction to perform focusing. In the present embodiment, the first lens unit L1 and the third lens unit L3 are fixed during zooming, but may be moved as necessary.

図9に示す第5レンズ群L5の実線の曲線5aと点線の曲線5bは、各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端へのズーミングに伴う像面変動を補正するための移動軌跡を示している。   The solid line curve 5a and the dotted line curve 5b of the fifth lens unit L5 shown in FIG. 9 show the image plane variation accompanying zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at close distance, respectively. A movement trajectory for correction is shown.

参考例2において、例えば望遠端において無限遠物体から近距離物体へのフォーカスは、同図の直線5cに示すように第5レンズ群L5を前方へ繰り出すことにより行っている。   In Reference Example 2, for example, focusing from an infinitely distant object to a close object at the telephoto end is performed by extending the fifth lens unit L5 forward as indicated by a straight line 5c in FIG.

尚、参考例2では第1レンズ群、第3レンズ群はズーミング及びフォーカスの際に固定としているが、必要に応じて移動させても良い。また第3レンズ群L3を光軸と垂直な方向の成分を持つように移動させることで、手ブレ等に起因した撮影像のブレを安定化させることも可能である。   In Reference Example 2, the first lens group and the third lens group are fixed during zooming and focusing, but may be moved as necessary. In addition, by moving the third lens unit L3 so as to have a component in a direction perpendicular to the optical axis, it is possible to stabilize the blur of the captured image caused by camera shake or the like.

参考例2では、このようなレンズ構成を採用することで、広角側での第2レンズ群L2の移動に対する焦点距離の変化を実施形態1に示したような正、負、正、正の屈折力の4つのレンズ群より成る4群ズームレンズに比べて大きくすることができ、かつ前玉有効径をより小さくすることができる。そしてズーミングに際して3つのレンズ群を移動させることで、全ズーム領域に渡って更に良好な光学性能を達成している。   In Reference Example 2, by adopting such a lens configuration, the change in focal length with respect to the movement of the second lens unit L2 on the wide angle side is positive, negative, positive, and positive refraction as shown in the first embodiment. Compared to a four-group zoom lens composed of four lens groups of power, the front lens effective diameter can be made smaller. Further, by moving the three lens groups during zooming, better optical performance is achieved over the entire zoom range.

参考例2では、第1レンズ群L1を物体側から順に物体側に凸面を向けた負メニスカスレンズG1と正レンズG2からなる貼合せレンズ、像面側に比べて物体側に強い屈折力の凸面を有する正メニスカスレンズG3で構成しており、レンズG1とレンズG2の貼合せ面に光軸に対して回転対称な回折格子で構成される回折光学素子を設けている。   In Reference Example 2, the first lens unit L1 is a cemented lens composed of a negative meniscus lens G1 and a positive lens G2 with convex surfaces facing the object side in order from the object side, and a convex surface having a stronger refractive power on the object side than the image surface side. And a diffractive optical element formed of a diffraction grating rotationally symmetric with respect to the optical axis is provided on the bonding surface of the lens G1 and the lens G2.

実施形態1と参考例1,2に示したズームレンズでは、第1レンズ群を負メニスカスレンズと正レンズの貼合せレンズと物体側に凸面を向けた正メニスカスレンズで構成し、貼合せレンズの貼合せ面に回折光学部を設け、それが透過波面に与える位相を適切に設定することで、第1レンズ群で発生する色収差を低減し、変倍全域に渡って色収差を良好に補正するようにしている。   In the zoom lenses shown in Embodiment 1 and Reference Examples 1 and 2, the first lens group is composed of a negative meniscus lens and a positive lens, and a positive meniscus lens having a convex surface facing the object side. By providing a diffractive optical part on the bonding surface and appropriately setting the phase it gives to the transmitted wavefront, the chromatic aberration generated in the first lens group is reduced, and the chromatic aberration is corrected well over the entire zooming range. I have to.

例えば、第1レンズ群を正レンズのみで構成し、第1レンズ群中に回折光学素子を設けても、例えばd線とg線といった2波長のみの色収差を考えたときは色収差を抑えることができる。しかし、回折光学面は大きな異常分散性を有しているため、特に望遠端ではそれ以外の波長に対する色収差いわゆる2次スペクトルが大きくなってしまい、全可視波長範囲内で色収差を補正することができない。   For example, even if the first lens group is composed of only positive lenses and a diffractive optical element is provided in the first lens group, the chromatic aberration can be suppressed when considering chromatic aberrations of only two wavelengths such as d-line and g-line. it can. However, since the diffractive optical surface has a large anomalous dispersion, the chromatic aberration for the other wavelengths, that is, the so-called secondary spectrum becomes large, especially at the telephoto end, and the chromatic aberration cannot be corrected within the entire visible wavelength range. .

そこで本発明では、屈折系の色消し条件と回折光学面の色消し条件を最適に組み合わせることで、特に望遠端での2次スペクトルまで含めた色収差を良好に補正して高い光学性能を得ている。   Therefore, in the present invention, the chromatic aberration including the secondary spectrum at the telephoto end is corrected well by combining the refractive achromatic condition and the achromatic condition of the diffractive optical surface optimally to obtain high optical performance. Yes.

第1レンズ群の色消し効果を回折光学面に分担させるには、回折による光学的パワーが正の値を持つことが望ましい。回折光学面の光学的パワーが負の値になってしまうと、通常の屈折光学系と発生する色収差の方向が同じになってしまい、回折光学面による色消し効果が出ず、光学系全域で十分な色収差の補正が行えないからである。   In order to share the achromatic effect of the first lens group with the diffractive optical surface, it is desirable that the optical power by diffraction has a positive value. If the optical power of the diffractive optical surface becomes a negative value, the direction of chromatic aberration generated will be the same as that of a normal refractive optical system, and the achromatic effect due to the diffractive optical surface will not appear, and the entire optical system will This is because sufficient correction of chromatic aberration cannot be performed.

また一般に、ズーム比10倍程度以上の高変倍比を有するズームレンズでは、第1レンズ群に入射する光線の角度がズーム位置や画角によって大きく変化する。回折光学面への入射光線の角度が変動すると、回折効率が低下して色フレアーの原因となる。そこで、実施形態と参考例1,2で示したズームレンズでは、回折光学部を設けるレンズ面の位置やその曲率半径を適切な値とし、又各レンズ群を適切に設定することで全ズーム域、全画角で高い回折効率が得られるようにしている。   In general, in a zoom lens having a high zoom ratio of about 10 times or more, the angle of light rays incident on the first lens group varies greatly depending on the zoom position and angle of view. When the angle of the incident light beam on the diffractive optical surface varies, the diffraction efficiency is lowered, causing color flare. Therefore, in the zoom lenses shown in the embodiment and Reference Examples 1 and 2, the position of the lens surface on which the diffractive optical unit is provided and the radius of curvature thereof are set to appropriate values, and each lens group is appropriately set to set the entire zoom range. High diffraction efficiency is obtained at all angles of view.

図19は、実施形態1(数値実施例1)の回折光学面における光軸からの高さに対する入射角度の変動を示すものである。横軸が光軸からの高さで縦軸が入射角度である。斜線部の中の領域が入射光線の分布範囲である。   FIG. 19 shows the variation of the incident angle with respect to the height from the optical axis in the diffractive optical surface of Embodiment 1 (Numerical Example 1). The horizontal axis is the height from the optical axis, and the vertical axis is the incident angle. The area within the shaded area is the distribution range of incident light.

図19において、入射角0度の光線に対して回折効率が最大となるように回折格子の形状を設定した場合には、回折光学面の高さ19付近では設定した入射角に対して+20度程度の差がある光線が入射することになる。これに対し、回折光学面への入射角度が約9度の光線に対して回折効率が最大となるように回折格子の形状を設定した場合には、設定した入射角に対して±11度程度の範囲に入射角の変動を抑制することができる。回折効率の低下を考慮すると、回折光学面での入射角の変動は±15度以内であることが望ましい。   In FIG. 19, when the shape of the diffraction grating is set so that the diffraction efficiency is maximized with respect to a light beam having an incident angle of 0 degrees, the height of the diffractive optical surface is near +19 degrees with respect to the set incident angle. A light beam having a difference in degree is incident. On the other hand, when the shape of the diffraction grating is set so that the diffraction efficiency is maximized with respect to a light beam having an incident angle on the diffractive optical surface of about 9 degrees, about ± 11 degrees with respect to the set incident angle. The fluctuation of the incident angle can be suppressed within the range. Considering the decrease in diffraction efficiency, it is desirable that the variation of the incident angle on the diffractive optical surface is within ± 15 degrees.

そこで実施形態1と参考例1,2では、波長590nm、所望の次数、そして3度から10度の間の所定の入射角で入射する光線に対して回折効率が最も高くなるように、回折光学部を構成する回折格子の形状を最適化している。これにより、ズーム全域に渡って必要十分な回折効率を得ている。   Therefore, in the first embodiment and the reference examples 1 and 2, the diffractive optical system has the highest diffraction efficiency with respect to a light beam incident at a wavelength of 590 nm, a desired order, and a predetermined incident angle between 3 degrees and 10 degrees. The shape of the diffraction grating constituting the part is optimized. As a result, necessary and sufficient diffraction efficiency is obtained over the entire zoom range.

更に、回折光学部の領域を分割して、例えば中心領域と周辺領域で回折光学面への想定入射角を変えて領域ごとに回折格子形状を最適化すると、回折光学面への入射角の変動による回折効率の低下を更に抑制することができる。特に実施形態1と参考例1,2で示したズームレンズの場合には、周辺領域での格子厚を中心領域より薄く設定するのが好ましい。   Furthermore, by dividing the region of the diffractive optical part and changing the assumed incident angle on the diffractive optical surface in the central region and the peripheral region, for example, and optimizing the diffraction grating shape for each region, the variation in the incident angle on the diffractive optical surface It is possible to further suppress the decrease in diffraction efficiency due to. In particular, in the zoom lenses shown in Embodiment 1 and Reference Examples 1 and 2, it is preferable to set the grating thickness in the peripheral region to be thinner than the central region.

以上の実施形態1と参考例1,2から明らかなように、本発明のズームレンズは、物体側より順に、ズーミングのためには移動しない正の屈折力の第1レンズ群と、ズーミングに際して光軸方向に移動する負の屈折力の第2レンズ群とを有することを基本構成としている。   As is clear from Embodiment 1 and Reference Examples 1 and 2, the zoom lens according to the present invention includes, in order from the object side, a first lens unit having a positive refractive power that does not move for zooming, and light during zooming. It has a basic configuration including a second lens unit having a negative refractive power that moves in the axial direction.


そして、本発明は大別して第1発明と第2発明を有している。このうち第1発明では、第1レンズ群が物体側に凸状の貼合せ面を有し、この貼合せ面に回折格子を有する回折光学部が設けられていることを特徴としている。

The present invention is broadly divided into first and second inventions. Of these, the first invention is characterized in that the first lens group has a convex bonding surface on the object side, and a diffractive optical part having a diffraction grating is provided on the bonding surface.

又、第2発明では、第1レンズ群が、物体側から順に、物体側に凸面を向けた負メニスカスレンズと正レンズからなる貼合せレンズを有し、この貼合せレンズの貼合せ面に回折格子を有する回折光学部が設けられていることを特徴としている。同時に、貼合せ面の曲率半径をRD、第1レンズ群の焦点距離をf1とするとき、
0.5 < RD/f1 < 1.2 ・・・(1)
なる条件を満足することを特徴としている。
In the second invention, the first lens unit has a cemented lens composed of a negative meniscus lens having a convex surface facing the object side and a positive lens in order from the object side, and diffracted on the cemented surface of the cemented lens. A diffractive optical part having a grating is provided. At the same time, when the radius of curvature of the bonding surface is RD and the focal length of the first lens group is f1,
0.5 <RD / f1 <1.2 (1)
It is characterized by satisfying the following conditions.

尚、第1発明においては、次の条件のうち1以上を満足させるのが良い。   In the first invention, one or more of the following conditions should be satisfied.

(ア−1)回折光学部が互いに分散の異なる材料より成る複数の回折格子の積層構造により構成されていることである。   (A-1) The diffractive optical part is constituted by a laminated structure of a plurality of diffraction gratings made of materials having different dispersions.

(ア−2)回折光学部が設けられた貼合せ面の曲率半径をRD、第1レンズ群の焦点距離をf1とするとき、
0.5 < RD/f1 < 1.2 ・・・(1)なる条件を満足することである。
(A-2) When the radius of curvature of the bonding surface provided with the diffractive optical part is RD and the focal length of the first lens group is f1,
0.5 <RD / f1 <1.2 (1) is satisfied.

(ア−3)回折光学部が設けられた貼合せ面は、物体側より順に負レンズと正レンズから成る貼合せレンズの貼合せ面であることである。   (A-3) The bonding surface on which the diffractive optical unit is provided is a bonding surface of a bonding lens including a negative lens and a positive lens in order from the object side.

又、第1、第2発明においては、次の条件のうちの1以上を満足させるのが良い。   In the first and second inventions, it is preferable to satisfy one or more of the following conditions.

(イ−1)d線の波長をλd、光軸からの距離をhとして、回折光学部によって波面に与える位相が
φ(h)=(2π/λd)・(C2・h2+C4・h4+・・C2i・h2i
で表わされ、全系の望遠端での焦点距離をft、望遠端でのFナンバーをFnoTとするとき、
−0.01 < C2・(ft/FnoT)< 0 ・・・(2)
なる条件を満足することである。
(A-1) The wavelength given to the wavefront by the diffractive optical unit is φ (h) = (2π / λd) · (C 2 · h 2 + C 4 · h 4 + ・ ・ C 2i・ h 2i )
When the focal length at the telephoto end of the entire system is ft and the F number at the telephoto end is FnoT,
−0.01 <C 2 · (ft / FnoT) <0 (2)
To satisfy the following conditions.

(イ−2)実施形態1と参照例1,2のように、第2レンズ群の像側に、ズーミングのために移動しない第3レンズ群を配置することである。   (A-2) As in Embodiment 1 and Reference Examples 1 and 2, the third lens group that does not move for zooming is disposed on the image side of the second lens group.

(イ−3)実施形態1と参考例1,2のように、第2レンズ群の像側に、ズーミングのためには移動しない第3レンズ群と、ズーミングのために光軸方向に移動する正の屈折力の第4レンズ群を配置することである。   (A-3) As in Embodiment 1 and Reference Examples 1 and 2, the third lens group does not move for zooming on the image side of the second lens group, and moves in the optical axis direction for zooming. The fourth lens group having a positive refractive power is arranged.

(イ−4)参考例1,2のように、第2レンズ群の像側に、ズーミングのためには移動しない第3レンズ群と、ズーミングに際して光軸方向に移動する負の屈折力の第4レンズ群が配置されていることである。   (A-4) As in Reference Examples 1 and 2, a third lens group that does not move for zooming on the image side of the second lens group, and a negative refractive power that moves in the optical axis direction during zooming. That is, four lens groups are arranged.

(イ−5)参考例1,2のように、第2レンズ群の像側に、ズーミングのためには移動しない第3レンズ群と、ズーミングに際して光軸方向に移動する負の屈折力の第4レンズ群と、正の屈折力の第5レンズ群を配置することである。   (I-5) As in Reference Examples 1 and 2, the third lens group that does not move for zooming on the image side of the second lens group, and the negative refractive power that moves in the optical axis direction during zooming. 4 lens groups and a fifth lens group having a positive refractive power are arranged.

(イ−6)回折光学部は1以上の回折格子より成り、このうち1つの回折格子は中心部から周辺部に行くに従って格子高さが変化する領域を有していることである。   (A-6) The diffractive optical part is composed of one or more diffraction gratings, and one of these diffraction gratings has a region in which the grating height changes from the central part to the peripheral part.

以下回折光学部への光線の入射角度とは、回折格子が設けられているレンズ面に対する入射角度、回折格子の格子面への入射角度、又は前述した回折光学面への入射角度をいう。   Hereinafter, the incident angle of the light beam to the diffractive optical unit refers to the incident angle with respect to the lens surface provided with the diffraction grating, the incident angle with respect to the grating surface of the diffraction grating, or the incident angle with respect to the diffractive optical surface described above.

(イ−7)回折光学部の最も回折効率が高くなる回折次数において、波長590nmの光の最も回折効率が高くなる回折光学部への入射角度は3度から10度の範囲内であることである。   (A-7) In the diffraction order in which the diffraction efficiency of the diffractive optical part is the highest, the incident angle of the light having a wavelength of 590 nm to the diffractive optical part in which the diffraction efficiency is the highest is in the range of 3 degrees to 10 degrees. is there.

(イ−8)第1レンズ群の焦点距離をf1、全系の広角端と望遠端での焦点距離を各々fw,fTとするとき、   (A-8) When the focal length of the first lens unit is f1, and the focal lengths at the wide-angle end and the telephoto end of the entire system are fw and fT, respectively.

なる条件を満足することである。 To satisfy the following conditions.

(イ−9)第2レンズ群の像側に、ズーミングのためには移動せず、像安定化のために光軸と垂直な方向の成分を持つように移動する第3レンズ群と、ズーミング際して光軸方向に移動する少なくとも1つのレンズ群を配置し、望遠端でかつ無限遠物体に対する第3レンズ群の倍率をβ3、第3レンズ群より像側の光学系の倍率をβrとするとき、
0.5<|(1−β3)・βr|<3・・・(4)
なる条件を満足することである。
(A-9) A third lens group that does not move to the image side of the second lens group for zooming but moves so as to have a component in a direction perpendicular to the optical axis for image stabilization, and zooming In this case, at least one lens unit that moves in the optical axis direction is arranged, the magnification of the third lens unit for the telephoto end and the object at infinity is β3, and the magnification of the optical system on the image side from the third lens unit is βr. and when,
0.5 <| (1-β3) · βr | <3 (4)
To satisfy the following conditions.

(イ−10)第3レンズ群を光軸と垂直な方向の成分を持つように移動させて像を変位させ、手ブレ等に起因した撮影像のブレを安定化させることである。   (A-10) The third lens group is moved so as to have a component in a direction perpendicular to the optical axis to displace the image, thereby stabilizing the blur of the photographed image caused by camera shake or the like.

次に前述の各条件式の技術的意味について説明する。   Next, the technical meaning of each conditional expression described above will be described.

条件式(1)は、第1レンズ群内の貼合せ面に回折光学部(回折光学面)を導入しつつ、回折光学部に対する入射角の変動を低減する為のものである。ここで「回折光学部に対する入射角」とは、回折光学部を幾何光学的に回折光学面とみなしたときの入射角を想定しており、後述の各実施形態の数値実施例においては回折光学部がが設けられている光学面(レンズ面)への入射角を意味している。   Conditional expression (1) is for reducing the fluctuation of the incident angle with respect to the diffractive optical part while introducing the diffractive optical part (diffractive optical surface) to the bonding surface in the first lens group. Here, the “incident angle with respect to the diffractive optical part” assumes an incident angle when the diffractive optical part is geometrically optically regarded as a diffractive optical surface, and in the numerical examples of each embodiment described later, diffractive optics. This means the angle of incidence on the optical surface (lens surface) on which the part is provided.

条件式(1)の下限を超えて回折光学面(貼合せ面)の曲率が強く(大きく)なり過ぎると、特に望遠端の軸上光線に対する入射角が大きくなりすぎて回折効率が低下してしまうので良くない。逆に上限を超えて曲率が弱く(小さく)なり過ぎると、広角側の周辺で入射角が大きくなって良くない。   If the curvature of the diffractive optical surface (bonding surface) exceeds the lower limit of conditional expression (1) and becomes too strong (large), the incident angle with respect to the axial ray at the telephoto end becomes too large and the diffraction efficiency decreases. It ’s not good. On the other hand, if the curvature exceeds the upper limit and the curvature becomes too weak (small), the incident angle becomes large around the wide angle side.

更に好ましくは条件式(1)の数値範囲を次の如く設定するのが良い。   More preferably, the numerical range of conditional expression (1) is set as follows.

0.6< RD/f1 <1.0 ・・・(1a)
条件式(2)は回折光学部が与える波面への位相を適切に設定する、ひいては回折光学部を構成する回折格子の形状を適切に設定するためのものである。
0.6 <RD / f1 <1.0 (1a)
Conditional expression (2) is for appropriately setting the phase to the wavefront provided by the diffractive optical part, and thus for appropriately setting the shape of the diffraction grating constituting the diffractive optical part.

条件式(2)の下限を超えると回折光学部での色収差補正が大きくなり過ぎて2次スペクトルの色収差補正が過剰になるので良くない。逆に上限を超えると2次スペクトルの色収差が補正不足になってしまう。   If the lower limit of conditional expression (2) is exceeded, chromatic aberration correction in the diffractive optical unit becomes too large, and correction of chromatic aberration in the secondary spectrum becomes excessive, which is not good. Conversely, if the upper limit is exceeded, the chromatic aberration of the secondary spectrum will be undercorrected.

更に好ましくは条件式(2)の数値範囲を次の如く設定するのが良い。   More preferably, the numerical range of conditional expression (2) is set as follows.

−0.005 < C2・(ft/FnoT)< 0 ・・・(2a)
条件式(3)は第1レンズ群の屈折力に関するものであり、変倍に伴なう収差変動を少なくしつつ、所望の変倍比を効果的に得るためのものである。下限値を超えて第1レンズ群の屈折力が強くなりすぎると、小型化には有利になるが望遠端で発生する球面収差やコマ収差の補正が困難になる。逆に上限値を超えると、ズーミング時の第2レンズ群の移動量が大きくなり過ぎてレンズ全長が長くなってしまう。
−0.005 <C2 · (ft / FnoT) <0 (2a)
Conditional expression (3) relates to the refractive power of the first lens group, and is to effectively obtain a desired zoom ratio while reducing aberration fluctuations accompanying zooming. When the refractive power of the first lens unit becomes too strong beyond the lower limit, it is advantageous for downsizing, but it becomes difficult to correct spherical aberration and coma generated at the telephoto end. On the other hand, if the upper limit is exceeded, the amount of movement of the second lens unit during zooming becomes too large and the overall lens length becomes long.

更に好ましくは条件式(3)の数値範囲を次の如く設定するのが良い。   More preferably, the numerical range of conditional expression (3) is set as follows.

条件式(4)は第3レンズ群の結像倍率に関するものである。条件式(4)の下限を超えると、防振時に必要な第3レンズ群の移動量が大きくなって良くない。逆に上限を超えると第3レンズ群の敏感度が大きくなり過ぎて防振時の制御が困難になるので良くない。更に好ましくは条件式(4)の数値範囲を次の如く設定するのが良い。   Conditional expression (4) relates to the imaging magnification of the third lens group. If the lower limit of conditional expression (4) is exceeded, the amount of movement of the third lens unit necessary for image stabilization will not be good. On the other hand, if the upper limit is exceeded, the sensitivity of the third lens group becomes too high, and control during image stabilization becomes difficult. More preferably, the numerical range of conditional expression (4) is set as follows.

0.8<|(1−β3)・βr|<2.0 ・・・(4a)
以下に実施形態1と参考例1,2のズームレンズの数値データにそれぞれ相当する数値実施例1と参考数値実施例1,2を示す。各数値実施例において、iは物体側からの面の順序を示し、Riは物体側より第i番目の面の曲率半径、Diは物体側より第i番目と第i+1番目のレンズ厚または空気間隔、Niとνiは第i番目の光学部材の屈折率とアッベ数である。f,Fno,2ωはそれぞれ無限遠物体に焦点を合わせたときの全系の焦点距離、Fナンバー、画角を表わしている。
0.8 <| (1-β3) · βr | <2.0 (4a)
Numerical Example 1 and Reference Numerical Examples 1 and 2 corresponding to the numerical data of the zoom lenses of Embodiment 1 and Reference Examples 1 and 2 are shown below. In each numerical example, i indicates the order of surfaces from the object side, Ri is the radius of curvature of the i-th surface from the object side, Di is the i-th and i + 1-th lens thickness or air spacing from the object side , Ni and νi are the refractive index and Abbe number of the i-th optical member. f, Fno, and 2ω represent the focal length, the F number, and the angle of view of the entire system when focusing on an object at infinity, respectively.

非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正、Rを近軸曲率半径、kを離心率、B,C,Dを各々非球面係数としたとき   The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, k is the eccentricity, and B, C, and D are aspherical coefficients, respectively. When

なる式で表わしている。 It is expressed by the following formula.

回折光学面(回折面)は前述の位相関数、
φ(h)=(2π/λd)・(C2・h2+C4・h4+・・C2i・h2i)の位相係数を与えることで表している。
The diffractive optical surface (diffractive surface) is the aforementioned phase function,
This is expressed by giving a phase coefficient of φ (h) = (2π / λd) · (C 2 · h 2 + C 4 · h 4 + ·· C 2 · i · h 2 · i ).

また、例えば「e−Z」の表示は「10-z」を意味する。 Further, for example, the display of “e-Z” means “10 −z ”.

そして、前述の各条件式と数値実施例における諸数値との関係を表−1に示す。   Table 1 shows the relationship between the conditional expressions described above and the numerical values in the numerical examples.

(実施形態2)
次に実施形態1と参考例1,2に示したようなズームレンズを撮影光学系として用いたビデオカメラ(光学機器)の実施形態を図13を用いて説明する。
(Embodiment 2)
Next, an embodiment of a video camera (optical apparatus) using a zoom lens as shown in Embodiment 1 and Reference Examples 1 and 2 as a photographing optical system will be described with reference to FIG.

図13において、10はビデオカメラ本体、11は実施形態1と参考例1,2で説明したいずれかのズームレンズによって構成された撮影光学系、12は撮影光学系11によって被写体像を受光するCCD,CMOS等の固体撮像素子(光電変換素子)、13は撮像素子12が受けた被写体像を記録する記録手段、14は不図示の表示素子に表示された被写体像を観察するためのファインダーである。表示素子は液晶パネル等によって構成され、撮像素子12上に形成された被写体像が表示されている。   In FIG. 13, 10 is a video camera body, 11 is a photographing optical system constituted by any of the zoom lenses described in the first embodiment and Reference Examples 1 and 2, and 12 is a CCD for receiving a subject image by the photographing optical system 11. , CMOS, etc., a solid-state imaging device (photoelectric conversion device), 13 is a recording means for recording a subject image received by the imaging device 12, and 14 is a viewfinder for observing a subject image displayed on a display device (not shown). . The display element is constituted by a liquid crystal panel or the like, and a subject image formed on the imaging element 12 is displayed.

このように本発明のズームレンズをビデオカメラ等の光学機器に適用することにより、小型で高い光学性能を有する光学機器が実現できる。   Thus, by applying the zoom lens of the present invention to an optical apparatus such as a video camera, an optical apparatus having a small size and high optical performance can be realized.

数値実施例1のズームレンズの広角端におけるレンズ断面図Lens cross-sectional view at the wide-angle end of the zoom lens according to Numerical Example 1 数値実施例1のズームレンズの広角端における収差図Aberration diagram at the wide-angle end of the zoom lens according to Numerical Example 1 数値実施例1のズームレンズの中間のズーム位置における収差図Aberration diagram at the intermediate zoom position of the zoom lens according to Numerical Example 1. 数値実施例1のズームレンズの望遠端における収差図Aberration diagram at the telephoto end of the zoom lens according to Numerical Example 1 参考数値実施例1のズームレンズの広角端におけるレンズ断面図Cross-sectional view of the zoom lens of Reference Numerical Example 1 at the wide-angle end 参考数値実施例1のズームレンズの広角端における収差図Aberration diagram at the wide-angle end of the zoom lens of Reference Numerical Example 1 参考数値実施例1のズームレンズの中間のズーム位置における収差図Aberration diagram at the intermediate zoom position of the zoom lens of the reference numerical value example 1 参考数値実施例1のズームレンズの望遠端における収差図Aberration diagram at the telephoto end of the zoom lens of Reference Numerical Example 1 参考数値実施例2のズームレンズの広角端におけるレンズ断面図Cross-sectional view of the zoom lens of Reference Numerical Example 2 at the wide-angle end 参考数値実施例2のズームレンズの広角端における収差図Aberration diagram at the wide-angle end of the zoom lens of Reference Numerical Example 2 参考数値実施例2のズームレンズの中間のズーム位置における収差図Aberration diagram at the intermediate zoom position of the zoom lens of the reference numerical example 2 参考数値実施例2のズームレンズの望遠端における収差図Aberration diagram at the telephoto end of the zoom lens of Reference Numerical Example 2 本発明の光学機器の要部断面図Sectional drawing of the principal part of the optical apparatus of the present invention 単層構造の回折光学素子の断面図Cross section of diffractive optical element with single layer structure 単層構造の回折光学素子の回折効率の説明図Illustration of diffraction efficiency of a diffractive optical element with a single layer structure 積層構造の回折光学素子の断面図Cross-sectional view of a laminated diffractive optical element 積層構造の回折光学素子の回折効率の説明図Illustration of diffraction efficiency of diffractive optical element with laminated structure 積層構造の回折光学素子の断面図Cross-sectional view of a laminated diffractive optical element 数値実施例1の回折光学部への入射角を示す図The figure which shows the incident angle to the diffraction optical part of Numerical Example 1

符号の説明Explanation of symbols

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
L5 第5レンズ群
d d線
g g線
ΔM メリディオナル像面
ΔS サジタル像面
SP 絞り
IP 像面
G ガラスブロック
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group L5 5th lens group d d line g g line ΔM meridional image plane ΔS sagittal image plane SP aperture IP image plane G glass block

Claims (11)

物体側より順に、ズーミングのために移動しない正の屈折力 の第1レンズ群、ズーミングに際して光軸方向に移動する負の屈折力の第2レンズ群、ズーミングのために移動しない第3レンズ群、ズーミングに際して光軸方向に移動する正の屈折力の第4レンズ群の4つのレンズ群のみをレンズ群として有するズームレンズにおいて、該第1レンズ群は物体側に凸状の貼合せ面を有し、該貼合せ面に回折格子により構成される回折光学部が設けられており、該貼合せ面の曲率半径をRD、該第1レンズ群の焦点距離をf1とするとき、
0.5 < RD/f1 < 1.2
なる条件を満足することを特徴とするズームレンズ。
In order from the object side, a first lens group having a positive refractive power that does not move for zooming, a second lens group having a negative refractive power that moves in the optical axis direction during zooming, a third lens group that does not move for zooming, In a zoom lens having only four lens units of a fourth lens unit having a positive refractive power moving in the optical axis direction during zooming as a lens unit, the first lens unit has a convex bonding surface on the object side. A diffractive optical part composed of a diffraction grating is provided on the bonding surface, the radius of curvature of the bonding surface is RD, and the focal length of the first lens group is f1,
0.5 <RD / f1 <1.2
A zoom lens characterized by satisfying the following conditions:
前記回折光学部は互いに分散の異なる材料より成る複数の回折格子の積層構造により構成されていることを特徴とする請求項1記載のズームレンズ。   2. The zoom lens according to claim 1, wherein the diffractive optical part is constituted by a laminated structure of a plurality of diffraction gratings made of materials having different dispersions. 前記貼合せ面は、物体側より順に負レンズと正レンズから成る貼合せレンズの貼合せ面であることを特徴とする請求項1又は2に記載のズームレンズ。   The zoom lens according to claim 1, wherein the bonding surface is a bonding surface of a bonding lens including a negative lens and a positive lens in order from the object side. 物体側より順に、正の屈折力の第1レンズ群、ズーミングに際して光軸方向に移動する負の屈折力の第2レンズ群、ズーミングのために移動しない第3レンズ群と、ズーミングに際して光軸方向に移動する正の屈折力の第4レンズ群の4つのレンズ群のみをレンズ群として有するズームレンズにおいて、
該第1レンズ群は、物体側から順に、物体側に凸面を向けた負メニスカスレンズと正レンズから成る貼合せレンズを有し、該貼合せレンズの貼合せ面に回折格子により構成される回折光学部が設けられており、該貼合せ面の曲率半径をRD、該第1レンズ群の焦点距離をf1とするとき、
0.5 < RD/f1 < 1.2
なる条件を満足することを特徴とするズームレンズ。
In order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power that moves in the optical axis direction during zooming, a third lens group that does not move for zooming, and an optical axis direction during zooming In the zoom lens having only four lens groups of the fourth lens group having a positive refractive power moving to the lens group,
The first lens group includes, in order from the object side, a cemented lens composed of a negative meniscus lens having a convex surface facing the object side and a positive lens, and a diffraction grating composed of a diffraction grating on the cemented surface of the cemented lens. When an optical part is provided, the radius of curvature of the bonding surface is RD, and the focal length of the first lens group is f1,
0.5 <RD / f1 <1.2
A zoom lens characterized by satisfying the following conditions:
d線の波長をλd、光軸からの距離をhとして、前記回折光学部によって波面に与えられる位相が、
φ(h)=(2π/λd)・(C2・h2+C4・h4+・・C2・i・h2・i
で表わされ、全系の望遠端での焦点距離をft、望遠端でのFナンバーをFnoTとするとき、
−0.01 < C2・(ft/FnoT)< 0
なる条件を満足することを特徴とする請求項1から4のいずれか1項に記載のズームレンズ。
Assuming that the wavelength of the d-line is λd and the distance from the optical axis is h, the phase given to the wavefront by the diffractive optical unit is
φ (h) = (2π / λd) · (C 2 · h 2 + C 4 · h 4 + ·· C 2 · i · h 2 · i )
When the focal length at the telephoto end of the entire system is ft and the F number at the telephoto end is FnoT,
−0.01 <C 2 · (ft / FnoT) <0
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記回折光学部は、3度から10度の入射角で入射する光線に対して回折効率が最も高くなることを特徴とする請求項1から5のいずれか1項に記載のズームレンズ。   6. The zoom lens according to claim 1, wherein the diffractive optical unit has the highest diffraction efficiency with respect to a light ray incident at an incident angle of 3 degrees to 10 degrees. 前記回折光学部は1以上の回折格子で構成され、このうち1つの回折格子は中心部から周辺部に行くに従って格子高さが変化する領域を有していることを特徴とする請求項1から6のいずれか1項に記載のズームレンズ。   The diffractive optical part is composed of one or more diffraction gratings, and one of the diffraction gratings has a region in which the grating height changes from the central part to the peripheral part. The zoom lens according to any one of 6. 前記第1レンズ群の焦点距離をf1、全系の広角端と望遠端での焦点距離を各々fw,fTとするとき、
なる条件を満足することを特徴とする請求項1から7のいずれか1項に記載のズームレンズ。
When the focal length of the first lens group is f1, and the focal lengths at the wide-angle end and the telephoto end of the entire system are fw and fT, respectively.
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第3レンズ群は、像を安定化するために光軸と垂直な方向の成分を持つように移動可能であり、望遠端でかつ無限遠物体に対する第3レンズ群の倍率をβ3、第3レンズ群より像側の光学系の倍率をβrとするとき、
0.5<|(1−β3)・βr|<3
なる条件を満足することを特徴とする請求項1から8のいずれか1項に記載のズームレンズ。
The third lens group is movable so as to have a component in a direction perpendicular to the optical axis in order to stabilize the image, and the magnification of the third lens group with respect to an object at infinity is β3, When the magnification of the optical system on the image side from the lens group is βr,
0.5 <| (1-β3) · βr | <3
The zoom lens according to claim 1, wherein the following condition is satisfied.
光電変換素子上に像を形成することを特徴とする請求項1から9のいずれか1項に記載のズームレンズ。   The zoom lens according to claim 1, wherein an image is formed on the photoelectric conversion element. 請求項1から10のいずれか1項に記載のズームレンズと、該ズームレンズによって形成された像を受光する光電変換素子とを有することを特徴とするカメラ。   11. A camera comprising: the zoom lens according to claim 1; and a photoelectric conversion element that receives an image formed by the zoom lens.
JP2005217473A 2005-07-27 2005-07-27 Zoom lens and optical apparatus having the same Expired - Fee Related JP4182089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005217473A JP4182089B2 (en) 2005-07-27 2005-07-27 Zoom lens and optical apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005217473A JP4182089B2 (en) 2005-07-27 2005-07-27 Zoom lens and optical apparatus having the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002016946A Division JP2003215452A (en) 2002-01-25 2002-01-25 Zoom lens and optical equipment having the same

Publications (2)

Publication Number Publication Date
JP2006011469A JP2006011469A (en) 2006-01-12
JP4182089B2 true JP4182089B2 (en) 2008-11-19

Family

ID=35778718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005217473A Expired - Fee Related JP4182089B2 (en) 2005-07-27 2005-07-27 Zoom lens and optical apparatus having the same

Country Status (1)

Country Link
JP (1) JP4182089B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5594607B2 (en) * 2011-08-22 2014-09-24 株式会社ニコン Zoom lens and imaging device
US8995064B2 (en) 2011-08-22 2015-03-31 Nikon Corporation Zoom lens, imaging apparatus, and method for manufacturing zoom lens

Also Published As

Publication number Publication date
JP2006011469A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP4764051B2 (en) Zoom lens and imaging apparatus having the same
JP4881035B2 (en) Zoom lens and imaging apparatus having the same
JP5197242B2 (en) Zoom lens and imaging apparatus having the same
JP4182088B2 (en) Zoom lens and optical apparatus having the same
JP5028110B2 (en) Zoom lens and imaging apparatus having the same
JP5309553B2 (en) Zoom lens and optical apparatus provided with the zoom lens
JP4636812B2 (en) Zoom lens
JP7021683B2 (en) Zoom lenses and optics
JP5395495B2 (en) Variable magnification optical system
JP2009198960A (en) Imaging optical system and imaging device having the same
JP6938841B2 (en) Zoom lens and optical equipment
JP5845887B2 (en) Zoom lens and imaging device
JPWO2017099244A1 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP5935879B2 (en) Zoom lens and optical device
JP2003215452A (en) Zoom lens and optical equipment having the same
JP7217858B2 (en) optical system, optical equipment
JP5845886B2 (en) Zoom lens and imaging device
JP4182089B2 (en) Zoom lens and optical apparatus having the same
JP2016156941A (en) Lens system, optical device, and method for manufacturing lens system
JP2004252101A (en) Super wide angle lens
JP2001318316A (en) Zoom lens and optical apparatus using the same
JP3720767B2 (en) Zoom lens and optical apparatus having the same
JP4470141B2 (en) Zoom lens
JP5505770B2 (en) Zoom lens, optical equipment
JP2004258247A (en) Zoom lens

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees