JP4179289B2 - 電気光学装置、その駆動方法及び電子機器 - Google Patents

電気光学装置、その駆動方法及び電子機器 Download PDF

Info

Publication number
JP4179289B2
JP4179289B2 JP2005025981A JP2005025981A JP4179289B2 JP 4179289 B2 JP4179289 B2 JP 4179289B2 JP 2005025981 A JP2005025981 A JP 2005025981A JP 2005025981 A JP2005025981 A JP 2005025981A JP 4179289 B2 JP4179289 B2 JP 4179289B2
Authority
JP
Japan
Prior art keywords
signal
scanning
image
horizontal
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005025981A
Other languages
English (en)
Other versions
JP2005258419A (ja
Inventor
英仁 飯坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005025981A priority Critical patent/JP4179289B2/ja
Publication of JP2005258419A publication Critical patent/JP2005258419A/ja
Application granted granted Critical
Publication of JP4179289B2 publication Critical patent/JP4179289B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、クロストークを軽減するようにした電気光学装置、その駆動方法及び電子機器に関する。
電気光学装置、例えば、電気光学物質として液晶を用いた液晶表示装置は、陰極線管(CRT)に代わるディスプレイデバイスとして、各種情報処理機器の表示部や液晶テレビ等に広く用いられている。
このような液晶表示装置は、例えば、マトリクス状に配列した画素電極と、この画素電極に接続されたTFT(Thin Film Transistor : 薄膜トランジスタ)のようなスイッチング素子等が設けられた素子基板と、画素電極に対向する対向電極が形成された対向基板と、これら両基板との間に充填された電気光学物質たる液晶とによって構成される。
TFTは走査線(ゲート線)を介して供給される走査信号(ゲート信号)によって導通する。走査信号を印加してスイッチング素子を導通状態にした状態で、データ線(ソース線)を介して画素電極に、階調に応じた電圧の画像信号を印加する。そうすると、画素電極と対向電極に、画像信号の電圧に応じた電荷が蓄積される。電荷蓄積後、走査信号を取り去りTFTを非導通状態にしても、各電極における電荷の蓄積状態は、液晶層の容量性や蓄積容量等によって維持される。
このように、各スイッチング素子を駆動させ、蓄積させる電荷量を階調に応じて制御すると、画素毎に液晶の配向状態が変化して光の透過率が変わり、画素毎に明るさを変化させることができる。こうして、階調表示することが可能となる。
ところで、液晶装置では、印加信号の直流成分の印加などによって、例えば、液晶成分の分解、液晶セル中の不純物による汚染が発生し、表示画像の焼き付き等の現象が現れる。そこで、一般的には、各画素電極の駆動電圧の極性を、例えば画像信号におけるフレーム毎に反転させる反転駆動が行われる。面反転駆動は、画像表示領域を構成する全画素電極の駆動電圧の極性を面内で全て同じにして、一定周期で駆動電圧を反転させる方式である。
液晶層及び蓄積容量の容量性を考慮すると、各画素の液晶層に電荷を印加するのは一部の期間のみでよい。従って、マトリクス状に配設された複数の画素を駆動する場合には、同一走査ラインに接続された画素に各走査線によって同時に走査信号を印加し、画像信号をデータ線を介して各画素に供給し、また画像信号を供給する走査線を順次切換えればよい。即ち、液晶表示装置では、走査線及びデータ線を複数の画素について共通化した時分割マルチプレックス駆動が可能となる。
このように、液晶装置では、容量性を考慮して、画素には一部の期間にのみ駆動電圧が印加される。しかしながら、結合容量の影響及び電荷のリークによって、画素電極はTFTがオフの期間においてもソース線電位の影響を受ける。画素の印加電圧のこのような電位変動によって、画面内の表示が不均一となり、特に、中間調領域では画質の劣化が目立ってしまう。
そこで、このような問題点を回避するために、液晶装置においては、1フレーム毎の反転駆動処理と共に、例えばライン毎に駆動電位の極性を異ならせるライン反転駆動等とを組み合わせた反転駆動が採用される。ソース線を介して転送される画像信号の極性を比較的短時間に切換えることで、結合容量の影響及び電荷のリークの影響を低減するのである。
しかしながら、ライン反転駆動方式の場合には、極性が相異なる電圧が印加される列方向又は行方向において、同一基板上の相隣接する画素電極間で電界(以下、横電界という)が生じてしまう。また、ドット毎に駆動電位の極性を異ならせるドット反転駆動方式の場合には、極性が相異なる電圧が印加させる行方向及び列方向に相隣接する画素電極間で横電界が生じる。
隣接する画素間にこのような横電界が生じると、画素電極の一縁辺部は、この横電界の影響を受け、液晶分子の傾斜方向が他の液晶分子と異なる部分が生じやすい。このような液晶分子の配列の乱れ(ディスクリネーション)によって、配向不良の部分に沿ったスジ状の模様(スジむら)が現れる。即ち、ディスクリネーション領域においては光抜けが生じ、また、このディスクリネーション領域を非開口領域とした場合には開口率が低下してしまう。
そこで、特許文献1においては、横電界によるディスクリネーションの発生を抑制すると共に、画面の均一性を確保する手段として、1水平期間内を第1期間と第2期間とに分割し、第1期間において走査線に駆動パルスを供給すると共にデータ線に画像信号を供給することによって各画素電極に画像信号を印加する一方、第2期間においては走査線に駆動パルスを供給せずにデータ線に前とは逆極性の画像信号を供給する技術が提案されている。
特開平5−313608号公報
しかしながら、上記の特許文献1に記載された技術では、画素の書き込みに用いることのできる時間が通常の半分になり、書き込みが不十分になる等の問題が生じる。
本件出願人は、このような課題に対して、1水平期間に例えば2本の異なるラインに対応した2本の走査線を駆動して、それぞれ極性の異なる書き込みを行う駆動方法を開発したが、この駆動においては1垂直期間における水平走査線数が奇数の場合、或いは整数でない場合には、垂直期間の切換り時において書込み時間不足等が生じ、表示画像が劣化してしまうという問題もあった。
本発明はかかる問題点に鑑みてなされたものであって、画面内の表示品位の均一性を確保しながら、ディスクリネーションの発生を抑制すると共に、さらに書き込み不足等の問題が生じることを防止することができる電気光学装置、その駆動方法及び電子機器を提供することを目的とする。
本発明に係る電気光学装置は、格子状に配設された複数のソース線及び複数の走査線の各交差に対応して画素が構成され、前記走査線に供給されるゲートパルスによって前記画素に設けられたスイッチング素子がオンされることによって前記ソース線に供給された画像信号が前記スイッチング素子を介して各画素の画素電極に与えられる表示部と、前記表示部の画素数に対応した入力画像の水平走査に同期した転送クロックを自走式で発生し、発生した前記転送クロックに基づいて前記入力画像の垂直同期信号をリタイミングして垂直リセット信号を生成し、生成した前記垂直リセット信号及び前記転送クロックに基づいてスタートパルスを生成して前記走査ドライブ手段に与えるタイミング信号生成手段と、前記入力画像の1水平期間に、相互に離間したn(nは2以上の整数)本の走査線を選択するとともに、選択したn本の走査線に順次ゲートパルスを供給し、次の1水平期間に選択するn本の走査線を夫々1本ずつシフトさせる走査ドライブ手段と、前記入力画像の画像信号とその遅延信号とを合成し、前記入力画像の水平周波数に対してn倍の水平周波数の合成画像を前記走査ドライブ手段の走査に応じた信号配列で配列し、配列した合成画像を前記垂直リセット信号及び前記転送クロックに基づいて遅延させて書込み画像を得る書込み画像生成手段と、前記書込み画像生成手段からの書込み画像の画像信号を、前記入力画像の水平期間の1/n倍の水平書込み期間毎に極性反転させて前記複数のソース線に夫々供給するデータドライブ手段と、を具備し、前記走査ドライブ手段は、前記スタートパルスを、前記複数の走査線のそれぞれに対応するように、前記転送クロックにしたがって順次シフトさせるシフトレジスタを有し、シフトさせたスタートパルスが出力されたときに、当該出力に対応する走査線の選択が示され、前記ゲートパルスの幅を、前記入力画像の1水平期間の1/n以下としたことを特徴とする。
このような構成によれば、表示部は、格子状に配設された複数のソース線及び複数の走査線の各交差に対応して画素が構成され、走査ドライブ手段から走査線に供給される走査信号によって画素に設けられたスイッチング素子がオンされ、これにより、ソース線に供給された画像信号がスイッチング素子を介して各画素の画素電極に与えられて電気光学物質が駆動される。タイミング信号生成手段は、入力画像の水平周波数と同一周波数の信号に同期した転送クロックを自走式で発生し、発生した転送クロックに基づいて入力画像の垂直同期信号をリタイミングして垂直リセット信号を生成し、生成した垂直リセット信号及び転送クロックに基づいて、走査信号を発生させるためのタイミング信号を生成する。即ち、タイミング信号は、自走式の転送クロックに同期したものとなる。また、書込み画像生成手段は、入力画像の画像信号とその遅延信号とを合成し、入力画像の水平周波数に対してn倍の水平周波数の合成画像を走査ドライブ手段の走査に応じた信号配列で配列し、配列した合成画像を垂直リセット信号及び転送クロックに基づいて遅延させて書込み画像を得る。ソース線に供給される画像信号は、入力画像の水平周波数に対してn倍の水平周波数の書込み画像の画像信号であり、データドライブ手段によって、入力画像の水平周期の1/n倍の水平書込み期間毎に極性反転されている。走査ドライブ手段は、入力画像の1水平期間に、相互に離間したn(nは2以上の整数)本のラインの走査線を選択して順次ゲートパルスを供給し、次の1水平期間には選択するn本のラインを夫々1ラインずつシフトさせる。これにより、大部分の隣接するライン間では同一極性の画像信号で駆動されることになり、面反転駆動により横電界の発生を防止することができる。こうして、画面内の表示品位の均一性を確保しながら、ディスクリネーションの発生を抑制することができる。垂直走査のタイミングは、自走式の転送クロックによって規定されることになり、垂直期間の開始タイミング前後においても、転送クロックの周期が変化することはなく、1垂直期間内の水平期間が整数でない場合或いは1垂直期間内の水平走査線数が奇数個の場合でも、十分な書込み時間で、一定の連続した書込み画像の書込みが行われる。
前記タイミング信号生成手段は、前記入力画像信号の水平周波数と同一周波数の信号に同期し前記走査信号を前記各走査線に順次転送するための転送クロックを自走式で発生して前記タイミング信号として出力する転送クロック生成手段と、前記入力画像の垂直同期信号に近接して発生する前記転送クロックに同期した垂直リセット信号を生成する垂直リセット信号生成手段と、前記転送クロック及び前記垂直リセット信号に基づいて垂直走査の開始タイミングを規定する走査スタートパルスを生成して、前記タイミング信号として出力する走査スタートパルス生成手段とを具備したことを特徴とする。
このような構成によれば、転送クロックは、入力画像信号の水平周波数と同一周波数の信号に同期して自走式で発生する。この転送クロックに同期して垂直リセット信号が生成され、転送クロック及び垂直リセット信号に基づいて垂直走査の開始タイミングを規定する走査スタートパルスが生成される。即ち、垂直走査のためのタイミング信号は、自走式の転送クロックに同期したものとなる。これにより、垂直期間の開始タイミング前後においても、転送クロックの周期が変化することはなく、1垂直期間内の水平期間が整数でない場合或いは1垂直期間内の水平走査線数が奇数個の場合でも、十分な書込み時間で、一定の連続した書込み画像の書込みが行われる。
また、前記転送クロックは、ドットクロックに基づいて生成されることを特徴とする。
このような構成によれば、入力画像信号の水平周波数と同一周波数の信号に同期した自走式の転送クロックを高精度に生成することができる。
本発明に係る電気光学装置の駆動方法は、格子状に配設された複数のソース線及び複数の走査線の各交差に対応して画素が構成され、前記走査線に供給されるゲートパルスによって前記画素に設けられたスイッチング素子がオンされることによって前記ソース線に供給された画像信号が前記スイッチング素子を介して各画素の画素電極に与えられて電気光学物質が駆動される表示部を有する電気光学装置の駆動方法であって、前記表示部の画素数に対応した入力画像の水平走査に同期した転送クロックを自走式で発生し、発生した前記転送クロックに基づいて前記入力画像の垂直同期信号をリタイミングして垂直リセット信号を生成し、生成した前記垂直リセット信号及び前記転送クロックに基づいてスタートパルスを生成するタイミング信号生成処理と、前記入力画像の1水平期間に、相互に離間したn(nは2以上の整数)本の走査線を選択するとともに、選択したn本の走査線に順次ゲートパルスを供給し、次の1水平期間に選択するn本の走査線を夫々1ラインずつシフトさせる走査ドライブ処理と、前記入力画像の画像信号とその遅延信号とを合成し、前記入力画像の水平周波数に対してn倍の水平周波数の合成画像を前記走査ドライブ処理における走査に応じた信号配列で配列し、配列した合成画像を前記垂直リセット信号及び前記転送クロックに基づいて遅延させて書込み画像を得る書込み画像生成処理と、
前記書込み画像生成処理によって得られる書込み画像の画像信号を、前記入力画像の水平期間の1/n倍の水平書込み期間毎に極性反転させて前記複数のソース線に夫々供給するデータドライブ処理と、を具備し、前記走査ドライブ処理は、前記スタートパルスを、前記複数の走査線のそれぞれに対応するように、前記転送クロックにしたがって順次シフトさせるシフト処理を含み、シフトしたスタートパルスが出力されたとき、当該出力に対応する走査線の選択が示され、前記ゲートパルスの幅を、前記入力画像の1水平期間の1/n以下としたことを特徴とする。
このような構成によれば、タイミング信号生成処理によって、垂直走査の基となるタイミング信号は、入力画像の水平周波数と同一周波数の信号に同期して自走式で生成された転送クロックに同期する。また、画像生成処理では、入力画像とその遅延信号とが合成され、入力画像の水平周波数に対してn倍の水平周波数の画像が走査ドライブ手段の走査に応じた信号配列で配列されて書込み画像が得られ、更に、この書込み画像は、転送クロック及び垂直リセット信号に基づいて遅延される。これにより、垂直走査のタイミングと書込み画像の書込みタイミングとの位相を一致させることができる。書込み画像の画像信号は、データドライブ処理において、水平書込み期間周期で極性反転される。走査ドライブ処理では、複数ラインの走査線が選択され、1水平期間内に順次ゲートパルスが供給される。更に、走査ドライブ処理による次の1走査期間には、選択される走査線がいずれも1ラインずつシフトされる。これにより、隣接するラインの画素には同一極性の書込み画像信号を書込むことができる。また、垂直走査が自走式の転送クロックに同期しているので、垂直期間の開始タイミング前後においても、転送クロックの周期が変化することはなく、1垂直期間内の水平期間が整数でない場合或いは1垂直期間内の水平走査線数が奇数個の場合でも、十分な書込み時間で、一定の連続した書込み画像の書込みが行われる。
また、本発明に係る電子機器は、上記電気光学装置を具備したことを特徴とする。
このような構成によれば、横電界及びクロストークの悪影響を回避した高画質の画像が得られる。
以下、図面を参照して本発明の実施の形態について詳細に説明する。図1乃至図16は本発明の一実施の形態に係り、図1は本実施の形態に係る電気光学装置を示すブロック図、図2は本実施の形態の電気光学装置において採用される液晶パネルの概略構成図、図3は図2のH−H'線に沿う断面図、図4は液晶パネルの画素領域においてマトリクス状に形成された複数の画素の等価回路図、図5は図1中の走査ドライバ104の具体的な構成を示す回路図、図6は図5中の要部の詳細回路図、図7は電気光学装置の動作を説明するためのタイミングチャート、図8は図7中の要部を取りだして示すタイミングチャート、図9は画面のイメージを示す説明図、図10は画面上の書込み(駆動)の様子を示す説明図である。また、図11は面反転駆動の例として、1垂直期間毎に画像信号を反転させるフィールド反転駆動の画像信号を示す説明図である。図12は本駆動方法に用いられる画像信号波形の一例を示す波形図である。また、図13は垂直期間毎にリセットを行うことができないことによる問題を説明するためのタイミングチャートであり、図14は1垂直期間の水平走査線数が奇数個の場合の問題を示す説明図である。また、図15は図1中のコントローラ61に内蔵されたタイミングジェネレータ及びメモリコントローラの具体的な構成を示すブロック図である。また、図16はタイミングジェネレータ及びメモリコントローラ86の動作を説明するためのタイミングチャートである。なお、各図においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に縮尺を異ならしめてある。
本実施の形態は、例えば投射型表示装置の光変調装置として用いる液晶ライトバルブに適用した例を示している。
本実施の形態に係る電気光学装置は、電気光学材料である液晶を用いた表示領域101aと、この表示領域101aの各画素を駆動する走査ドライバ104及びデータドライバ201と、これらの走査ドライバ104及びデータドライバ201に各種信号を供給するためのコントローラ61、DAコンバータ(DAC)64及び第1,第2フレームメモリ62,63とによって構成されている。
図2は図1中の表示領域101a、走査ドライバ104及びデータドライバ201によって構成される液晶パネル1の概略構成を示し、図3はその断面を示している。
液晶パネル1の中央に表示領域101aが形成される。表示領域101aは、素子基板としてガラス基板等の透明基板が用いられ、素子基板上に、画素を駆動するTFTと共に、周辺駆動回路等も形成されている。素子基坂上の表示領域101aには、複数本のゲート線(走査線)G1 ,G2 ,…が、図1のX(行)方向に延在して形成され、また、複数本のソース線(データ線)S1 ,S2 ,…が、Y(列)方向に沿って延在して形成されている。画素110は、各走査線と各ソース線との各交差に対応して設けられて、マトリクス状に配列されている。
なお、表示領域101aは、例えばXGA規格に対応させると、1024×768の有効画素に対して、ダミー画素を含んだ場合には例えば1044×780の画素を有している。
液晶パネルは、図2及び図3に示すように、例えば、石英基板、ガラス基板、シリコン基板を用いたTFT基板10と、これに対向配置される、例えばガラス基板や石英基板を用いた対向基板20との間に液晶50を封入して構成される。対向配置されたTFT基板10と対向基板20とは、シール材52によって貼り合わされている。
TFT基板10上には画素110を構成する画素電極(ITO)9等がマトリクス状に配置される。また、対向基板20上には全面に対向電極(ITO)21が設けられる。TFT基板10の画素電極9上には、ラビング処理が施された配向膜(図示省略)が設けられている。一方、対向基板20上の全面に渡って形成された対向電極21上にも、ラビング処理が施された配向膜(図示省略)が設けられている。なお、各配向膜は、例えば、ポリイミド膜等の透明な有機膜からなる。
図4は画素を構成するTFT基板10上の素子の等価回路を示している。図4に示すように、表示領域101aにおいては、複数本の走査線G1 ,G2 ,…と複数本のソース線S1 ,S2 ,…とが交差するように配線され、走査線G1 ,G2 ,…とソース線S1 ,S2 ,…とで区画された領域に画素電極9がマトリクス状に配置される。そして、走査線G1 ,G2 ,…とソース線S1 ,S2 ,…の各交差部分に対応してスイッチング手段としてのTFT30が設けられ、このTFT30に画素電極9が接続される。
各画素110を構成するTFT30は、ゲートが走査線G1 ,G2 ,…に、ソースがソース線S1 ,S2 ,…に、ドレインが画素電極9に、それぞれ接続される。画素電極9と対向電極21との間には電気光学材料たる液晶50が挟持されて液晶層が形成されている。
各走査線G1 ,G2 ,…には後述する走査ドライバ104から夫々走査信号G1,G2,…Gmが供給される。また、対向電極21には対向電極電圧が印加される。各走査信号によって、各ライン毎にそのラインの画素を構成する全てのTFT30が同時にオンとなり、これにより、後述するデータドライバ201から各ソース線S1 ,S2 ,…に供給された画像信号(書き込み画像の画像信号)が画素電極9に書込まれる。画像信号が書き込まれた画素電極9と対向電極21との電位差に応じて液晶50の分子集合の配向状態が変化して、光の変調が行われ、階調表示が可能となる。
また、画素電極9と並列に蓄積容量70が設けられており、蓄積容量70によって、画素電極9の電圧はソース電圧が印加された時間よりも例えば3桁も長い時間の保持が可能となる。蓄積容量70によって、電圧保持特性が改善され、コントラスト比の高い画像表示が可能となる。
また、図2及び図3に示すように、対向基板20には表示領域を区画する額縁としての遮光膜53が設けられている。遮光膜53の外側の領域には液晶を封入するシール材52が、TFT基板10と対向基板20間に形成されている。シール材52は対向基板20の輪郭形状に略一致するように配置され、TFT基板10と対向基板20を相互に固着する。シール材52は、TFT基板10の1辺の一部において欠落しており、液晶50を注入するための液晶注入口52aが形成される。貼り合わされた素子基板10及び対向基板20相互の間隙には、液晶注入口52aより液晶が注入される。液晶注入後に、液晶注入口52aを封止材25で封止するようになっている。
シール材52の外側の領域には、ソース線S1 ,S2 ,…に画像信号を所定のタイミングで供給することにより該ソース線S1 ,S2 ,…を駆動するデータドライバ201及び外部回路との接続のための外部接続端子202がTFT基板10の一辺に沿って設けられている。この一辺に隣接する二辺に沿って、走査線G1 ,G2 ,…を介してTFT30の図示しないゲート電極に走査信号を所定のタイミングで供給することによりゲート電極を駆動する走査ドライバ104が設けられている。走査ドライバ104は、シール材52の外側のTFT基板10の2辺に沿って形成される。また、TFT基板10上には、データドライバ201、走査ドライバ104、外部接続端子202及び上下導通端子107を接続する配線105が、TFT基板10の縁辺に沿って設けられている。
上下導通端子107は、シール材52のコーナー部の4箇所のTFT基板10上に形成される。そして、TFT基板10と対向基板20相互間には、下端が上下導通端子107に接触し、上端が対向電極21に接触する上下導通材106が設けられており、上下導通材106によって、TFT基板10と対向基板20との間で電気的な導通がとられている。
本実施の形態における電気光学装置の駆動回路部60は、液晶パネル1に含まれるデータドライバ201、走査ドライバ104の外、図1に示すように、書込み画像生成手段としてのコントローラ61、第1フレームメモリ62、第2フレームメモリ63の2画面分のフレームメモリ、DAコンバータ64等から構成されている。第1フレームメモリ62、第2フレームメモリ63のうちの一方は外部から入力された1フレーム分の映像を一時的に蓄えるためのもの、また他方は表示用に用いられ、1フレーム毎に役割が切換るものである。
コントローラ61には、垂直同期信号Vsync、水平同期信号Hsync、ドットクロック信号dotclk及び入力画像の画像信号DATAが入力される。コントローラ61は、第1フレームメモリ62、第2フレームメモリ63の制御、および書き込む走査線に対応したデータのフレームメモリからの読み出しを行う。
コントローラ61は、メモリ62,63を用いることで、外部から入力された画像信号に対して所定時間遅延させた画像信号を得ることができる。例えば、コントローラ61は、入力された画像信号から相互に垂直期間の1/2の期間だけ前後した画像信号を得ることができる。更に、コントローラ61は、相互に垂直期間の1/2の期間だけ前後した画像信号を合成して、入力画像の水平周波数の倍の水平周波数の信号に変換し、表示領域101aの後述する走査に応じて画像信号の信号配列を再配列させて出力することができる。
コントローラ61からの画像信号はDAC64に与えられる。DAC64は、コントローラ61からのディジタル画像信号をアナログ信号に変換してデータドライバ201に供給するようになっている。
また、コントローラ61は、データドライバ201及び走査ドライバ104を駆動する各種信号を生成する。これらの各種信号を生成するために、コントローラ61はタイミング信号生成手段としてのタイミングジェネレータ(図示せず)を備えている。タイミングジェネレータは、外部から供給された垂直同期信号Vsync、水平同期信号Hsync及びドットクロック信号dotclkを基に、各種タイミング信号を生成する。
即ち、コントローラ61は、タイミングジェネレータを用いて、ディスプレイ駆動用の信号である、転送クロックCLX等を生成してデータドライバ201に出力する。また、コントローラ61は、走査スタートパルスDY、転送クロックCLY,/CLYを生成して走査ドライバ104に出力する。また、コントローラ61は、イネーブル信号ENBY1,ENBY2を生成して、走査ドライバ104に供給するようになっている。
本実施の形態においては、転送クロックCLYとして自走のクロックを用いる。この場合においても正しく書込みが行われるように、コントローラ61は、タイミングジェネレータより各種タイミング信号を生成すると共に、画像信号の出力タイミングを規定するようになっている。タイミングジェネレータ等の詳細については、後述する。
データドライバ201は、図示しないサンプリングホールド回路に水平画素数分の画像信号を保持させる。転送クロックCLXは、各ソース線に対応したサンプリングホールド回路のサンプリングタイミングを決定するクロック信号である。データドライバ201は、サンプリングホールド回路に保持された画像信号を各ソース線を介して出力する。
コントローラ61が生成する走査スタートパルスDYは、走査の開始を指示するためのパルス信号であり、本実施の形態においては1垂直期間に2回発生する。例えば、コントローラ61は、1/2垂直期間だけずれたタイミングで走査スタートパルスDYを発生させる。走査スタートパルスDYが走査ドライバ104に入力されることにより、走査ドライバ104は各走査線G1 〜Gmに各画素のTFT30をオンにさせる走査信号(以下、ゲートパルスという)(G1〜Gm)を出力する。
転送クロックCLY,/CLYは、走査側(Y側)の走査速度を規定する信号で、入力画像信号の1水平期間に対応して立上り又は立下るパルスである。後述するように、走査ドライバ104は、転送クロックCLY(/CLY)に同期して、ゲートパルスを出力する走査線をシフトさせる。
本実施の形態においては、1垂直期間で2つの走査スタートパルスDYが発生するので、表示領域101aでは、1水平期間において、2つの走査スタータパルスのずれに応じたライン数だけ隔てた2ラインの走査線にゲートパルスが供給される。
この場合において、これらの2つの走査線に接続されたTFT30が同時にオンとなってソース線を介して転送された同一の画像信号が2ラインの画素電極9に書込まれることがないように、1水平期間を前半と後半に分け、1水平期間の前半と後半とで、これらの2つの走査線に交互にゲートパルスを供給するようになっている。
また、コントローラ61は、入力画像信号とその遅延信号とを、上述した走査に応じて配列し直すと共に、1水平期間毎に極性反転させてデータドライバ201に供給する。例えば、コントローラ61は、入力画像信号とその遅延信号とを各ライン毎に交互に配列することで、書込み画像を得る。即ち、データドライバ201に入力される書込み画像の画像信号は、コントローラ61に入力される入力画像の画像信号の2倍の伝送レートとなり、表示パネル1では、同一画素信号を2回ずつ画素電極9に書込む、所謂倍速走査が行われることになる。
つまり、データドライバ201に入力される画像信号の水平期間は、元の入力画像信号の水平期間Hの1/2の期間h(=H/2)である。液晶パネル1の表示領域101aの1ラインの画素の書込み期間(以下、水平書込み期間という)は、書込み画像の水平期間に一致させる。
1水平期間Hは、2回の水平書込み期間hを含み、各水平書込み期間において2ラインの画素に夫々のラインの画像に対応した画素信号が供給される。これらの異なる2ラインの画素信号を、夫々2回の水平書込み期間hで書込むために、イネーブル信号ENBY1,ENBY2が用いられる。
次に、図5を参照して走査ドライバ104について説明する。
走査ドライバ104は、図5に示すように、コントローラ61から走査スタートパルスDY、クロック信号CLY、反転クロック信号/CLYがそれぞれ入力されるシフトレジスタ66と、シフトレジスタ66からの出力が入力されるm個のAND回路67を有している。AND回路67の出力端は夫々m本の走査線G1〜Gmに接続される。
図6はシフトレジスタ66の具体的な構成を示している。
クロックドインバータ66aに入力される走査スタートパルスDYは所定幅のパルスであり、走査スタートパルスDYに基づくパルスが、クロックドインバータ66a、インバータ66c、クロックドインバータ66d及びインバータ66fを介して各AND回路67に順次転送される。また、クロックドインバータ66bの出力をAND回路67に与えることで、AND回路67の出力パルスの立上り,立下りをクロック信号CLYによって規定している。
更に、AND回路67にはイネーブル信号ENBY1又はENBY2も図5又は図6に示されるように入力されるAND回路67は、3入力の論理和を求めて走査信号として各走査線に出力する。これにより、ゲートパルスのパルス幅はイネーブル信号ENBY1,ENBY2のパルス幅に一致し、このパルス幅が水平書込み期間となる。
次に、図7及び図8を参照して駆動回路部60の動作を詳細に説明する。
駆動回路部60においては、図7に示すように、入力される画像信号の1垂直期間中に走査スタートパルスDYが2回出力される。走査スタートパルスDYは、1水平期間毎に1パルスが立上り、または立下る2水平期間周期のクロック信号CLYによって、走査ドライバ104のシフトレジスタ66中をシフトしていく。
1垂直期間に2つの走査スタートパルスDYが発生するので、例えば、1つ目の走査スタートパルスDYに基づいて各走査線のAND回路67から発生する“H”のゲートパルスは、入力画像信号の水平期間H周期で次段にシフトし、そのパルス幅はイネーブル信号ENBY1,またはENBY2の“H”期間によって規定される。また、2つ目の走査スタートパルスDYに基づいて各走査線のAND回路67から発生する“H”のゲートパルスは、入力画像信号の水平期間H周期で次段にシフトし、そのパルス幅はイネーブル信号ENBY1,またはENBY2の“H”期間で規定される。
ENBY1、ENBY2を順次立ち上げることにより、1水平期間H中に、ゲートパルスは走査線m本分離れた画面上の2個所に交互に出力される。次の1水平期間Hには、夫々次のラインの走査線に対してゲートパルスが発生する。すなわち、所定の走査線からm本離れた走査線に飛び越しては前記所定の走査線の次段の走査線に戻り、その走査線からm本離れた走査線に飛び越してはまたその次段の走査線に戻るというように(つまり、走査線G1 、走査線(Gm/2)+1 、走査線G2 、走査線(Gm/2)+2 、G3 、…という順序で)順次出力される。
このように走査スタートパルスDY、イネーブル信号ENBY1、ENBY2を用いることで、液晶パネル1の水平書込み期間を、入力される画像信号の水平期間Hの略1/2の期間とする設定での動作が可能となる。
一方、データドライバ201からの出力であるデータ信号Sxは、コモン電位LCCOMを中心として1水平書込み期間h毎に正極性電位と負極性電位とに極性が反転する。従って、データ信号Sx側が1水平書込み期間毎に極性反転しつつ、ゲートパルス側は上記の順番で走査線m本分離れた画面の2個所に交互に出力されることになる。その結果、画面上は、図9に示すように、ある1水平期間に着目すると、例えば走査線G3 〜(Gm/2)+2 に対応するドット(画素)は正極性電位のデータが書き込まれる領域(以下、単に正極性領域という)となり、走査線G1 〜G2及び(Gm/2)+3 〜Gmに対応するドットは負極性電位のデータが書き込まれる領域(以下、単に負極性領域という)となる。即ち、画面内があたかも異なる極性のデータが書き込まれた正極性領域と負極性領域の3つの領域に分割されたような状態となる。
図9は任意の1水平期間の瞬間を見た画面のイメージを示しており、図10は時間の流れを追って画面上の極性の変化の状態を示すものである。図10の横軸を時間(単位:1水平書込み期間)とすると、例えば第1水平書込み期間では走査線Gm に対応するドットに負電位が書き込まれ、次の第2水平書込み期間では第1水平書込み期間で負電位が書き込まれていた走査線(Gm/2)+1 に対応するドットに正電位が書き込まれ、次の第3水平書込み期間では1/2垂直期間以前に正電位が書き込まれていた走査線G1 に対応するドットに負電位が書き込まれる。
従って、正極性領域と負極性領域はそれぞれ1水平書込み期間h毎に1ラインずつ移動していき、走査線が画面の半分を移動したときに正極性領域と負極性領域とが完全に反転する。つまり1画面の書き換えが行われたことになる。この画面の書換えは1/2垂直周期で行われ、1垂直周期では、各画素はもう一度書き換えられる。即ち、この方法によると、走査線が全画面を移動することにより、書き換えは2度行われることになる。
上述したように、データドライバ201に入力される画像信号は、所定期間(図10の例では1/2垂直周期)前後した同一画像を2倍の伝送レートで配列したものであり、結果的に、液晶パネル1の各画素は、1垂直期間に同一画像が2回書込まれることになり、所謂倍速走査が行われたこととなる。
このように、本実施の形態においては、1垂直期間内に所定の期間ずらして2回書き込みを開始させることで、1水平期間内に2本の走査線にゲートパルスを供給する。そして、この場合には、イネーブル信号を用いることで、1水平期間の半分の時間の水平書込み期間毎に交番的に走査線にゲートパルスを供給して画素への書込みを行う。例えば同一画像信号を1/2垂直期間だけずらしながら、各画素を2回ずつ重ね書きする。即ち、一部(複数本)の走査線を飛び越しつつ、行ったり来たりしながら全ての走査線にわたって1垂直期間に2回ずつの走査が行なわれる。これにより、任意のタイミングでは、画面内には各フィールドに対応して正電位印加領域と負電位印加領域とからなる複数の領域が存在することとなる。以下、このような駆動方法を領域走査反転駆動という。
尚、極性反転のコモン電位LCCOMは、正負のビデオ電位の中心にある電位であり、通常は画素電極に対向する対向電極の電位とほぼ等しくすることができる。また、コモン電位を極性反転のタイミングに合わせて変動させることで、必要なデータ信号の振幅に対して必要な電源電圧を小さくすることも可能である。この場合は、極性反転のタイミングで対向電極に対する画素電位の電位が正極性、負極性と変化するようにデータ信号が調整される。このときコモン電位は、それぞれの極性におけるデータ信号の基準電位となる。
図11に従来例のひとつである面反転駆動を例として、1垂直期間の画像信号を示す。図11(a)は2垂直期間の画像信号の波形を示し、図11(b)は図11(a)の画像信号波形と画面上の位置との関係を示している。
図11に示すように面反転駆動の場合、画像信号は1垂直期間毎に極性が反転している。1垂直期間の終端には、ブランキング期間が設定されている。図11(b)において、垂直走査期間に相当する領域が有効画素の領域である。これに対し、一般的には、ブランキングでは、次の画面の表示の準備が行われる。
即ち、垂直同期信号の入力期間(ブランキング期間)においては、画面の書き込みは行われないので、垂直同期信号を用いて各種信号(動作)をリセットするようになっている。例えば、垂直同期信号が入力されることよって、転送クロックCLYを作成し、1垂直期間毎にタイミング制御を行う。
これに対し、図12は上述した領域走査反転駆動に用いられる画像信号波形の一例を示している。正極性又は負極性の1パルスによって1水平書込み期間を示し、振幅は画像信号レベルを示している。なお、図12では図面を簡略化するために、垂直期間におけるパルス数(水平期間の数)は実際よりも少なく示してある。
ブランキング期間を含む1垂直期間の正極性の画像信号によって、全有効画素の書込み及び次の書込みの準備が行われ、また、ブランキング期間を含む1垂直期間の負極性の画像信号によって、全有効画素の書込み及び次の書込みの準備が行われる。こうして、上述したように、1垂直期間に同一画像による2回の書込みが行われる。
上述したように、1垂直期間に2回の走査スタートパルスが発生し、最初の走査スタートパルスDYに基づく書込みと次の走査スタートパルスに基づく書込みとでは、図12に示すように例えば1/2垂直期間だけ時間差がある。例えば、1回目の走査スタートパルスDYに基づいて正極性の画像信号を書き込むものとすると、次の走査スタートパルスに基づいて負極性の画像信号が書き込まれる。上述したように、これらの書込みは、相互に異なる水平書込み期間において行われる。
1/2垂直期間だけ開始がずれた正極性画像信号による書込みと負極性画像信号による書込みとが、水平書込み期間だけずれて同時に進行するので、図12に示すように、ブランキング期間は1/2垂直周期で現れ、ブランキング期間においては、一方極性の黒レベル信号(ブランキング信号)と逆極性の画像信号とが、隣接して画素に供給されることになる。つまり、領域走査反転駆動では、一方極性のブランキング期間においても他方極性の画像信号による書込みが行われている。
即ち、領域走査反転駆動では、垂直同期信号の入力期間であってもリセットを行うことができない。仮にリセットを行った場合には、書込み動作に影響を与えてしまい、走査速度が変更されたり、書込み画素が変更されてしまったりする。
図13に1垂直期間あたりの水平期間が整数でない場合の例を示す。図13(a)は垂直同期信号Vsyncを示し、図13(b)は入力画像信号に同期した転送クロックCLYを示している。
例えば、1垂直期間が1280.5水平期間で構成される入力画像について、外部から入力された垂直同期信号に同期してリセットを行なった場合、図13(b)に示すように、垂直同期信号の直前の転送クロックCLYはパルス幅が0.5Hになってしまい、転送が正常に行われなくなってしまう。このため、画像が乱れてしまう等の問題が生じる。
図14は1垂直期間の水平期間が奇数の場合を示している。図8に示すように、走査ドライバ104は、2Hの周期を持つ転送クロックCLYによって、転送動作を行っている。このため、水平期間が奇数のときに外部から入力された垂直同期信号に同期してリセットを行うと転送クロックCLYが乱れ、この場合もまた画像が乱れてしまう等の問題が生じる。
そこで、本実施の形態においては、垂直同期信号とは無関係に自走する転送クロックCLYを用い、この転送クロックCLYに基づいて各種タイミング信号を生成すると共に、書込み画像信号の入力タイミングを制御するようになっている。これらの制御は、コントローラ61によって行われる。
図15は図1中のコントローラ61に内蔵されたタイミングジェネレータ及びメモリコントローラの具体的な構成を示すブロック図である。
図15のタイミングジェネレータには、入力画像信号から抽出された垂直同期信号Vsync及びコントローラ61において生成されたドットクロックCLKが入力される。クロックCLKはCLY生成部81に入力される。本実施の形態においては、CLY生成部8は入力されたクロックCLKに基づいて、入力画像信号の水平周波数と同一の周波数の転送クロックCLYを生成する。即ち、転送クロックCLYは、自走クロックであり、垂直同期信号に同期するとは限らない。CLY生成部81が生成した転送クロックCLYが走査ドライバ104に供給される。
CLY生成部81からの転送クロックCLYが各種タイミング信号の基となり、この転送クロックCLYは垂直リセット信号(rVRESET)生成部82、走査スタートパルス(DY)生成部83,ENBY生成部84、水平系タイミング信号生成部85及びメモリコントローラ86に出力される。
垂直リセット信号生成部82は、入力画像信号の垂直同期信号Vsync及びクロックCLKも与えられており、垂直同期信号Vsyncに近接して発生する転送クロックCLYのタイミングで、垂直リセット信号rVRESETを発生する。この垂直リセット信号rVRESETは、走査スタートパルス生成部83、ENBY生成部84、水平系タイミング信号生成部85及びメモリコントローラ86に出力される。
走査スタートパルス生成部83は、1垂直期間に2回発生する走査スタートパルスDYを生成する。例えば、走査スタートパルス生成部83は、垂直リセット信号rVRESETに同期した走査スタートパルスDYを生成すると共に、転送クロックCLYをカウントすることで、垂直期間最初の走査スタートパルスDYから所定水平期間だけ遅延したタイミングの走査スタートパルスDYを生成する。走査スタートパルス生成部83からの走査スタートパルスDYは、走査ドライバ104に供給される。また、ENBY生成部84は、1水平期間Hに2回発生するイネーブル信号ENBY1,ENBY2を生成して、走査ドライバ104に供給する。
CLY生成部81からの転送クロックCLY、走査スタートパルス生成部83からの走査スタートパルスDY及びENBY生成部84からのイネーブル信号ENBY1,ENBY2は、相互に同期しており、これらのタイミング信号を用いることで、図8に示す垂直系の走査を行うことができる。
また、水平系タイミング信号生成部85は、転送クロックCLYに基づいて、水平走査系の転送クロックCLX及び走査スタートパルスDXを生成する。走査スタートパルス生成部83、ENBY生成部84及び水平系タイミング信号生成部85によって、水平及び垂直走査系を、転送クロックCLYに同期させることが可能となる。
一方、書込み画像についても、転送クロックCLYに同期させる必要がある。コントローラ61のメモリコントローラ86は、クロックCLK、転送クロックCLY及び垂直リセット信号rVRESETに基づいて、第1,第2フレームメモリ62,63からの画像信号の読出しを制御する。例えば、メモリコントローラ86は、入力画像信号の垂直同期信号Vsyncと転送クロックCLYとの差に相当する時間だけ、書込み画像の画像信号を遅延させる。これにより、書込み画像の画像信号のタイミングを、水平及び垂直走査系のタイミングに一致させることができる。
次に、タイミングジェネレータ及びメモリコントローラ86の動作について図16を参照して説明する。図16(a)は入力画像の垂直同期信号Vsyncを示し、図16(b)はCLY生成部81からの転送クロックCLYを示し、図16(c)は垂直リセット信号生成部82からの垂直リセット信号rVRESETを示し、図16(d)は走査スタートパルス生成部83からの走査スタートパルスDYを示し、図16(e)はメモリコントローラ86からの書込み画像の画像信号を示している。なお、図16(e)は、斜線部及び網線部の下方の数字によって走査線の番号を示しており、正極性の書込み画像信号(斜線)と負極性の書込み画像信号(網線)との書込み開始時間が800画素分遅延した場合の例を示している。
図16(a)は入力画像信号の垂直同期信号Vsyncを示している。一方、CLY生成部81は、入力されたクロックCLKに基づいて、入力画像信号の水平周波数と同一の周波数の転送クロックCLYを生成する。この転送クロックCLYは、図16(a),(b)に示すように、入力画像信号の垂直同期信号Vsyncに同期していない。本実施の形態においては、自走式で転送クロックCLYを生成しており、転送クロックCLYに対して、入力画像信号の垂直同期信号Vsyncに同期させるための周期の変更等の処理を施すことはない。なお、転送クロックCLYは、入力画像信号の水平同期信号を基に生成してもよい。
垂直リセット信号生成部82は、図16(c)に示すように、入力された垂直同期信号Vsyncに近接した転送クロックCLYのタイミングで、垂直リセット信号rVRESETを発生する。即ち、入力画像信号の垂直同期信号Vsyncは、装置内部において自走式で生成する転送クロックCLYによってリタイミングされる。
走査スタートパルス生成部83は、転送クロックCLY及びこの転送クロックCLYによってリタイミングされた垂直リセット信号rVRESETを用いて走査スタートパルスDYを生成する。例えば、走査スタートパルス生成部83は、垂直リセット信号rVRESET入力後の最初の転送クロックCLYの立上りタイミングに同期させて、走査スタートパルスDYを発生する(図16(d))。こうして、走査は、転送クロックCLYに同期して行われることになる。
一方、メモリコントローラ86は、転送クロックCLY及びこの転送クロックCLYによってリタイミングされた垂直リセット信号rVRESETを用いて、第1,第2フレームメモリ62,63の読出しを制御することで、書込み画像の位相を転送クロックCLYに一致させる。即ち、図16(e)に示すように、メモリコントローラ86は、転送クロックCLYに同期した走査スタートパルスDYの入力後の最初の転送クロックCLY中に発生するイネーブル信号ENBY1,ENBY2(図8参照)のタイミングに合わせて、垂直期間の最初のラインの画素信号の読出しを行う。こうして、転送クロックCLYに同期した書込み画像信号が得られる。
なお、図16(e)においては、図16(d)に示す走査スタートパルスDYの1つ前の走査スタートパルスDYに基づいて、例えば正極性の画像信号(斜線)による書込みが1水平期間H毎に行われていることを示しており、更に、図16(c)に示す垂直リセット信号rVRESETに基づいた、走査スタートパルスDYによって網線にて示す負極性の画像信号による書込みも開始されて、正極性及び負極性の書込み画像信号によって1水平書込み期間(略1/2水平期間)毎に書込みが行われていることを示している。
このように、垂直リセット信号rVRESETは、転送クロックCLYに同期して生成され、これらの垂直リセット信号rVRESET及び転送クロックCLYに同期して、正極性及び負極性の書込み画像信号の書込みの開始(垂直走査の開始)を規定する走査スタートパルスDYも発生する。即ち、正極性書込み画像信号の開始タイミング及び負極性の書込み画像信号の開始タイミングは、入力画像の垂直同期信号Vsyncによるリセットを行うことなく、転送クロックCLYに同期する。転送クロックCLYは自走式であり常に一定周期で発生していることから、垂直期間の開始タイミング前後においてゲートパルスは同一間隔で連続的に発生し、図13及び図14における不具合が生じることはない。
このように、本実施の形態においては、画面の半分の広さを持った正極性領域と負極性領域とが1垂直期間で反転することになり、領域毎には面反転駆動が行われる。1垂直期間において、任意の1ドットと隣接する1ドットとの間は水平書込み期間だけ逆極性電位となるが、残りの大部分の時間は同極性電位となっているので、ディスクリネーションはほとんど発生しない。一方、ソース線S1 ,S2 ,…には、図8の信号波形Snに示すように、従来のライン反転駆動と同様の信号極性の信号が転送されることになり、従来の面反転方式で駆動したときのように画面の上側の画素と下側の画素で画素電極−データ線間の時間的な電位の関係に大きな差異が生じることがなく、クロストークを抑制しつつ、画面の場所による表示の不均一を回避することができる。
更に、入力画像の垂直同期信号を、自走式の転送クロックCLYによってリタイミングし、垂直リセット信号として用いて垂直走査系のタイミング信号及び書込み画像の位相合わせを行っており、垂直期間の開始タイミング前後における転送クロックCLYの動作が乱れることを防止することができる。これにより、入力される1垂直期間の水平期間が整数でない場合、或いは奇数個の走査線によって構成されている場合でも、書込み時間の不足や画像の乱れ等の不具合が発生することを防止することができる。
[投射型液晶装置]
図17は上記実施の形態の液晶ライトバルブを3個用いた、いわゆる3板式の投射型液晶表示装置(液晶プロジェクタ)の一例を示す概略構成図である。図中、符号1100は光源、1108はダイクロイックミラー、1106は反射ミラー、1122,1123,1124はリレーレンズ、100R,100G,100Bは液晶ライトバルブ、1112はクロスダイクロイックプリズム、1114は投射レンズ系を示す。
光源1100は、メタルハライド等のランプ1102とランプ1102の光を反射するリフレクタ1101とから構成されている。青色光・緑色光反射のダイクロイックミラー1108は、光源1100からの白色光のうちの赤色光を透過させるとともに、青色光と緑色光とを反射する。透過した赤色光は反射ミラー1106で反射され、赤色光用液晶ライトバルブ100Rに入射される。
一方、ダイクロイックミラー1108で反射された色光のうち、緑色光は、緑色光反射のダイクロイックミラー1108によって反射され、緑色用液晶ライトバルブ100Gに入射される。一方、青色光は、第2のダイクロイックミラー1108も透過する。青色光に対しては、光路長が緑色光、赤色光と異なるのを補償するために、入射レンズ1122、リレーレンズ1123、出射レンズ1124を含むリレーレンズ系からなる導光手段1121が設けられ、これを介して青色光が青色光用液晶ライトバルブ100Bに入射される。
各ライトバルブ100R,100G,100Bにより変調された3つの色光はクロスダイクロイックプリズム1112に入射する。このプリズムは、4つの直角プリズムが貼り合わされ、その内面に赤色光を反射する誘電体多層膜と青色光を反射する誘電体多層膜とが十字状に形成されたものである。これらの誘電体多層膜によって3つの色光が合成されて、カラー画像を表す光が形成される。合成された光は、投射光学系である投射レンズ系1114によってスクリーン1120上に投射され、画像が拡大されて表示される。
上記構成の投射型液晶表示装置においては、上記実施の形態の液晶ライトバルブを用いたことにより、表示の均一性に優れた投射型液晶表示装置を実現することができる。
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば上記の実施の形態では画面上を異なる極性電位を書き込む2つの領域に分割した例を示したが、分割数はこれに限るものではなく、さらに分割数を多くしても良い。ただし、分割数を多くすればする程、隣接する走査線に逆極性電位が印加された状態となる時間が長くなる。その場合でも、時間にして少なくとも1垂直期間の50%以上の割合で同極性電位が印加された状態とすることが望ましい。また、各領域内での走査の順序については上記実施の形態に限らず、適宜変更が可能である。
また、本発明の電気光学装置は、パッシブマトリクス型の液晶表示パネルだけでなく、アクティブマトリクス型の液晶パネル(例えば、TFT(薄膜トランジスタ)やTFD(薄膜ダイオード)をスイッチング素子として備えた液晶表示パネル)にも同様に適用することが可能である。また、液晶表示パネルだけでなく、エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置、プラズマディスプレイ装置、電気泳動ディスプレイ装置、電子放出を用いた装置(Field Emission Display 及び Surface-Conduction Electron-Emitter Display 等)、DPL(Digital Light Processing)(別名DMD:Digital Micromirror Device)等の各種の電気光学装置においても本発明を同様に適用することが可能である。
本実施の形態に係る電気光学装置を示すブロック図。 本実施の形態の電気光学装置において採用される液晶パネルの概略構成図。 図2のH−H'線に沿う断面図。 液晶パネルの画素領域においてマトリクス状に形成された複数の画素の等価回路図。 図1中の走査ドライバ104の具体的な構成を示す回路図。 図5中の要部の詳細回路図。 電気光学装置の動作を説明するためのタイミングチャート。 図7中の要部を取りだして示すタイミングチャート。 画面のイメージを示す説明図。 画面上の書込み(駆動)の様子を示す説明図。 面反転駆動の例として、1垂直期間毎に画像信号を反転させるフィールド反転駆動の画像信号を示す説明図である。 領域走査反転駆動に用いられる画像信号波形の一例を示す波形図である。 垂直期間毎にリセットを行うことができないことによる問題を説明するためのタイミングチャート。 1垂直期間の水平走査線数が奇数個の場合の問題を示す説明図。 図1中のコントローラ61に内蔵されたタイミングジェネレータ及びメモリコントローラの具体的な構成を示すブロック図。 タイミングジェネレータ及びメモリコントローラ86の動作を説明するためのタイミングチャート。 上記実施の形態の液晶ライトバルブを3個用いた、いわゆる3板式の投射型液晶表示装置(液晶プロジェクタ)の一例を示す概略構成図。
符号の説明
60…駆動回路部、61…コントローラ、62,63…フレームメモリ、101a…表示部、104…走査ドライバ、201…データドライバ。

Claims (5)

  1. 格子状に配設された複数のソース線及び複数の走査線の各交差に対応して画素が構成され、前記走査線に供給されるゲートパルスによって前記画素に設けられたスイッチング素子がオンされることによって前記ソース線に供給された画像信号が前記スイッチング素子を介して各画素の画素電極に与えられる表示部と、
    前記表示部の画素数に対応した入力画像の水平走査に同期した転送クロックを自走式で発生し、発生した前記転送クロックに基づいて前記入力画像の垂直同期信号をリタイミングして垂直リセット信号を生成し、生成した前記垂直リセット信号及び前記転送クロックに基づいてスタートパルスを生成して前記走査ドライブ手段に与えるタイミング信号生成手段と、
    前記入力画像の1水平期間に、相互に離間したn(nは2以上の整数)本の走査線を選択するとともに、選択したn本の走査線に順次ゲートパルスを供給し、次の1水平期間に選択するn本の走査線を夫々1本ずつシフトさせる走査ドライブ手段と、
    前記入力画像の画像信号とその遅延信号とを合成し、前記入力画像の水平周波数に対してn倍の水平周波数の合成画像を前記走査ドライブ手段の走査に応じた信号配列で配列し、配列した合成画像を前記垂直リセット信号及び前記転送クロックに基づいて遅延させて書込み画像を得る書込み画像生成手段と、
    前記書込み画像生成手段からの書込み画像の画像信号を、前記入力画像の水平期間の1/n倍の水平書込み期間毎に極性反転させて前記複数のソース線に夫々供給するデータドライブ手段と、
    を具備し、
    前記走査ドライブ手段は、
    前記スタートパルスを、前記複数の走査線のそれぞれに対応するように、前記転送クロックにしたがって順次シフトさせるシフトレジスタを有し、
    シフトさせたスタートパルスが出力されたときに、当該出力に対応する走査線の選択が示され、前記ゲートパルスの幅を、前記入力画像の1水平期間の1/n以下とした
    ことを特徴とする電気光学装置。
  2. 前記タイミング信号生成手段は、
    前記入力画像信号の水平周波数と同一周波数の信号に同期し前記走査信号を前記各走査線に順次転送するための転送クロックを自走式で発生して前記タイミング信号として出力する転送クロック生成手段と、
    前記入力画像の垂直同期信号に近接して発生する前記転送クロックに同期した垂直リセット信号を生成する垂直リセット信号生成手段と、
    前記転送クロック及び前記垂直リセット信号に基づいて垂直走査の開始タイミングを規定する走査スタートパルスを生成して、前記タイミング信号として出力する走査スタートパルス生成手段と
    を具備したことを特徴とする請求項1に記載の電気光学装置。
  3. 前記転送クロックは、ドットクロックに基づいて生成される
    ことを特徴とする請求項1又は2に記載の電気光学装置。
  4. 格子状に配設された複数のソース線及び複数の走査線の各交差に対応して画素が構成され、前記走査線に供給されるゲートパルスによって前記画素に設けられたスイッチング素子がオンされることによって前記ソース線に供給された画像信号が前記スイッチング素子を介して各画素の画素電極に与えられて電気光学物質が駆動される表示部を有する電気光学装置の駆動方法であって、
    前記表示部の画素数に対応した入力画像の水平走査に同期した転送クロックを自走式で発生し、発生した前記転送クロックに基づいて前記入力画像の垂直同期信号をリタイミングして垂直リセット信号を生成し、生成した前記垂直リセット信号及び前記転送クロックに基づいてスタートパルスを生成するタイミング信号生成処理と、
    前記入力画像の1水平期間に、相互に離間したn(nは2以上の整数)本の走査線を選択するとともに、選択したn本の走査線に順次ゲートパルスを供給し、次の1水平期間に選択するn本の走査線を夫々1ラインずつシフトさせる走査ドライブ処理と、
    前記入力画像の画像信号とその遅延信号とを合成し、前記入力画像の水平周波数に対してn倍の水平周波数の合成画像を前記走査ドライブ処理における走査に応じた信号配列で配列し、配列した合成画像を前記垂直リセット信号及び前記転送クロックに基づいて遅延させて書込み画像を得る書込み画像生成処理と、
    前記書込み画像生成処理によって得られる書込み画像の画像信号を、前記入力画像の水平期間の1/n倍の水平書込み期間毎に極性反転させて前記複数のソース線に夫々供給するデータドライブ処理と、
    を具備し、
    前記走査ドライブ処理は、
    前記スタートパルスを、前記複数の走査線のそれぞれに対応するように、前記転送クロックにしたがって順次シフトさせるシフト処理を含み、
    シフトしたスタートパルスが出力されたとき、当該出力に対応する走査線の選択が示され、前記ゲートパルスの幅を、前記入力画像の1水平期間の1/n以下とした
    ことを特徴とする電気光学装置の駆動方法。
  5. 請求項1乃至3のいずれか1つに記載の電気光学装置を具備した
    ことを特徴とする電子機器。
JP2005025981A 2004-02-12 2005-02-02 電気光学装置、その駆動方法及び電子機器 Active JP4179289B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005025981A JP4179289B2 (ja) 2004-02-12 2005-02-02 電気光学装置、その駆動方法及び電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004035087 2004-02-12
JP2005025981A JP4179289B2 (ja) 2004-02-12 2005-02-02 電気光学装置、その駆動方法及び電子機器

Publications (2)

Publication Number Publication Date
JP2005258419A JP2005258419A (ja) 2005-09-22
JP4179289B2 true JP4179289B2 (ja) 2008-11-12

Family

ID=35084128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025981A Active JP4179289B2 (ja) 2004-02-12 2005-02-02 電気光学装置、その駆動方法及び電子機器

Country Status (1)

Country Link
JP (1) JP4179289B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590879B2 (ja) * 2004-02-12 2010-12-01 セイコーエプソン株式会社 液晶装置、液晶装置の駆動回路及びその駆動方法並びに電子機器
US8830411B2 (en) * 2009-01-16 2014-09-09 Samsung Display Co., Ltd. Array substrate and method of manufacturing the same
JP2022001924A (ja) * 2020-06-22 2022-01-06 シャープ福山セミコンダクター株式会社 近接センサおよび電子機器

Also Published As

Publication number Publication date
JP2005258419A (ja) 2005-09-22

Similar Documents

Publication Publication Date Title
KR100686502B1 (ko) 전기광학장치 및 그 구동방법, 전기광학장치의 구동 회로및 전자기기
KR100632750B1 (ko) 전기광학장치용 구동회로 및 구동방법
JP4701589B2 (ja) 液晶装置と投射型表示装置
US7348951B2 (en) Circuit and method for driving electro-optical device, electro-optical device, and electronic apparatus
KR101620104B1 (ko) 전기 광학 장치의 구동 장치 및 방법과 전기 광학 장치 및 전자 기기
KR100608401B1 (ko) 전기 광학 장치와 그 구동 방법, 투사형 표시 장치, 및전자기기
JP4179289B2 (ja) 電気光学装置、その駆動方法及び電子機器
JP2012058335A (ja) 電気光学装置および電子機器
US20070285383A1 (en) Electro-optical device, method for driving electro-optical device, and electronic apparatus
JP4543633B2 (ja) 画像表示装置とその駆動方法ならびに投射型表示装置
JP4525152B2 (ja) 電気光学装置用駆動回路及び電気光学装置用駆動方法、並びにこれを備えた電気光学装置及び電子機器
JP4590879B2 (ja) 液晶装置、液晶装置の駆動回路及びその駆動方法並びに電子機器
JP4617680B2 (ja) 液晶装置、液晶装置の駆動回路及びその駆動方法並びに電子機器
JP2008046186A (ja) 画像信号処理回路及び方法、電気光学装置、並びに電子機器
JP4561260B2 (ja) 電気光学装置用駆動回路及び駆動方法並びに電気光学装置及び電子機器
JP4561259B2 (ja) 電気光学装置用駆動回路及び駆動方法並びに電気光学装置及び電子機器
JP2004233808A (ja) 液晶装置及びその駆動方法並びに電子機器
JP2005227473A (ja) 液晶装置、液晶装置の駆動回路及びその駆動方法並びに電子機器
JP2005148386A (ja) 電気光学装置の駆動方法、電気光学装置および電子機器
JP5494196B2 (ja) 表示装置、電子機器および投射型表示装置
JP2006078621A (ja) 電気光学装置用駆動回路及び駆動方法並びに電気光学装置及び電子機器
JP2006276119A (ja) データ信号供給回路、供給方法、電気光学装置および電子機器
JP2006195387A (ja) 電気光学装置および電子機器
JP2004233807A (ja) 液晶装置及びその駆動方法並びに電子機器
JP2004233968A (ja) 液晶装置及びその駆動方法並びに電子機器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Ref document number: 4179289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350