JP4176423B2 - 液晶表示装置の駆動方法 - Google Patents

液晶表示装置の駆動方法 Download PDF

Info

Publication number
JP4176423B2
JP4176423B2 JP2002255564A JP2002255564A JP4176423B2 JP 4176423 B2 JP4176423 B2 JP 4176423B2 JP 2002255564 A JP2002255564 A JP 2002255564A JP 2002255564 A JP2002255564 A JP 2002255564A JP 4176423 B2 JP4176423 B2 JP 4176423B2
Authority
JP
Japan
Prior art keywords
potential
signal electrode
period
electrode
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002255564A
Other languages
English (en)
Other versions
JP2004093951A (ja
Inventor
眞誠 一色
智弘 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Display Corp
Original Assignee
Kyocera Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Display Corp filed Critical Kyocera Display Corp
Priority to JP2002255564A priority Critical patent/JP4176423B2/ja
Publication of JP2004093951A publication Critical patent/JP2004093951A/ja
Application granted granted Critical
Publication of JP4176423B2 publication Critical patent/JP4176423B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置の駆動方法に関し、特に消費電力を低減する液晶表示装置の駆動方法に関する。
【0002】
【従来の技術】
液晶表示装置は、マンマシンインタフェース用の表示装置として広く利用されている。例えば、軽量で薄型の表示装置を実現できるという特徴を活かして、PDA(Personal Digital Assistants )や携帯電話機等の表示装置として広く利用されている。
【0003】
複数の走査電極と、走査電極に直交するように配置される複数の信号電極との間に液晶を挟持する液晶表示装置の駆動方法として、走査電極を一つずつ選択して選択した走査電極に所定の電圧を印加する線順次駆動法がある。線順次駆動法には、非選択行の走査電極の電位を一定にするAPT(Alto Pleshko Technique)や、一定周期で非選択行の走査電極の電位を変化させるIAPT(Improved APT)等がある。また、線順次駆動法の他に、複数の走査電極を同時に選択する複数ライン同時選択法(マルチラインアドレッシング法:MLA法)もある。
【0004】
また、液晶表示装置に中間調の画像を表示する方法も種々存在する。中間調を表示する方法として、パルス幅変調方式(PWM:Pulse Width Modulation)が知られている。PWMでは、選択期間の途中で、信号電極の電位を、オン表示にするための電位からオフ表示にするための電位に切り替えたり、逆にオフ表示にするための電位からオン表示にするための電位に切り替える。選択期間のうち、信号電極をオン表示にするための電位に設定した時間の割合によって、階調を変化させることができる。また、中間調を表示する方法として、PWMの他にパルス振幅変調方式(PHM)やフレームレートコントロール(FRC)等がある。また、PWMとFRCとを複合させた方法も知られている。
【0005】
液晶表示装置をAPTで駆動し、PWMによって中間調表示を行う場合の例について説明する。APTでは時間の経過に伴い、各走査電極を順次選択していく。そして、選択した走査電極の電位をVr1に設定する。また、他の走査電極の電位をVr1とは異なる所定の電圧Vに設定する。また、各信号電極の電位は、選択行の画素の表示データに応じて設定される。点灯させるべき画素が存在する信号電極の電位はVc2に設定され、その画素には選択時にVr1−Vc2の電圧が印加される。点灯させるべき画素が存在しない信号電極の電位はVc1に設定され、その画素には選択時にVr1−Vc1の電圧が印加される。
【0006】
また、中間調を表示すべき画素が存在する信号電極の電位は、選択期間の途中でVc2からVc1(またはVc1からVc2)に切り替えられる。その結果、その画素には、選択期間中の一部の期間にVr1−Vc2の電圧が印加され、残りの期間にVr1−Vc1の電圧が印加される。信号電圧の電位の切り替えタイミングを変化させることで、階調を変化させることができる。
【0007】
このように信号電極の電位を設定することによって、選択行に所望の画像を表示することができる。ただし、電位Vc2,Vc1は、(Vc2+Vc1)/2=V、かつ、Vc2<V<Vc1<Vr1を満足するように定められる。
【0008】
また、選択した走査電極の電位と信号電極の電位との高低関係を一定周期毎に逆転させることが多い。選択した走査電極の電位が信号電極の電位より高くなるように駆動することを正極性駆動という。また、選択した走査電極の電位が信号電極の電位より低くなるように駆動することを負極性駆動という。負極性駆動で駆動する場合には、選択した走査電極の電位を所定の電位Vr2に設定する。ただし、電位Vr1,Vr2は、(Vr1+Vr2)/2=Vとなるように定める。例えば、Vr2=−Vr1、V=0Vとする。また、負極性駆動の場合、点灯させるべき画素が存在する信号電極の電位をVc1に設定し、点灯させるべき画素が存在しない信号電極の電位をVc2に設定すればよい。中間調を表示すべき画素が存在する信号電極の電位は選択期間の途中で切り替えられる。
【0009】
図40は、中間調を表示すべき画素が存在する信号電極に印加される電位の例を示す。ここでは、選択行の走査電極の電位をVr1に設定する場合(すなわち、正極性駆動の場合)を例に説明する。また、いわゆるノーマリブラックの液晶表示装置(電圧が高くなるほど透過率が高くなる液晶表示装置)を駆動する場合を例に説明する。図40に示す各期間(a)〜(h)は、それぞれ選択期間Tである。図40に示すように、ある信号電極の電位は、期間(a)として示す選択期間の前半でVc1に設定され、後半でVc2に設定されている。従って、この信号電極と選択された走査電極とに挟まれる画素は、選択期間の前半にVr1−Vc1の電圧が印加され、後半ではVr1−Vc2の電圧が印加される。そして、その画素は中間調で表示される。選択期間TにおけるVr1−Vc1の印加時間が占める割合が大きくなれば、輝度が低下し、Vr1−Vc1の印加時間が占める割合が小さくなれば、輝度が上昇する。図40に示す期間(a)では、選択期間Tの15/30の期間が経過したときに信号電極を切り替えて中間調表示を行う場合の例を示す。
【0010】
なお、非選択行の走査電極の電位はVに設定される。そして、VはVc1,Vc2の平均電位である。従って、選択期間の途中で信号電極の電位を切り替えたとしても、非選択行の画素に印加される電圧の大きさは変化しない。よって、信号電極の電位の切り替えは非選択行の画素の表示に影響を与えない。
【0011】
また、MLAを採用する場合の駆動方法が種々提案されている。例えば、特開2000−258751公報には、信号電極の電位レベル数を減少することができるMLAの駆動方法が記載されている。
【0012】
【発明が解決しようとする課題】
図40に示すように、中間調を表示すべき画素が存在する信号電極では、選択期間の途中に電位を切り替えなければならない。この電位の切り替え回数が多いと、消費電力が大きくなってしまう。この理由について説明する。一本の信号電極と各走査電極とがなすコンデンサの静電容量をCとする。すると、信号電極の電位をVc1からVc2に切り替える場合、その信号電極からC・(Vc1−Vc2)の電荷を放出しなければならない。また、電位をVc2からVc1に切り替える場合、電源回路から信号電極に、新たにC・(Vc1−Vc2)の電荷を供給しなければならない。そのため、信号電極電位の切替回数が多くなれば電源回路から信号電極に供給すべき電荷も増大し、消費電力が大きくなってしまう。このことは、IAPTやMLAの場合でも同様である。
【0013】
特開平9−297294号公報には、消費電力を少なくするLCDの駆動方法が記載されている。この駆動方法では、図41に示すように、選択期間を切り替えるときに信号電極の電位を切り替えないようにする。この駆動方法によれば、信号電極の電位を切り替える回数を減少させるので、図40に例示する場合よりも消費電力を減少させることができる。
【0014】
また、特願2001−248338号や特願2002−221893号では、MLAにPWMを適用した場合に、消費電力を減少させることができる液晶表示装置の駆動方法が提案されている。
【0015】
しかし、携帯機器(例えば携帯電話機やPDA等)に使用される液晶表示装置に対しては、より一層の低消費電力化が求められている。
【0016】
そこで本発明は、消費電力をより低減できるようにすることを目的とする。
【0017】
【課題を解決するための手段】
本発明の要旨は、複数の走査電極と複数の信号電極との間に液晶を挟持する液晶表示装置の駆動方法であって、セグメント側の駆動電圧を2レベルとし、PWMで階調表示を行い、選択期間中にセグメントの波形(レベル)を変化せしめる際に、コンデンサに接続するようにし、そして、コンデンサに接続することによる電圧不足を、ダミー期間を設けることによって補償することを特徴とするものである。
【0018】
本発明の態様1は、複数の走査電極と複数の信号電極との間に液晶を挟持する液晶表示装置の駆動方法であって、走査電極を選択しながら走査電極を走査する走査期間を設け、走査期間内で、走査電極の選択を複数回行い、走査期間の後に、全ての走査電極の電位を非選択時電位に設定するダミー期間とを設け、走査期間では、走査電極を選択する各選択期間内で、オン表示とすべき画素が存在する信号電極の電位を所定のオン表示電位に維持し、オフ表示とすべき画素が存在する信号電極の電位を所定のオフ表示電位に維持し、オフ表示とオン表示との間の中間調とすべき画素が存在する信号電極の電位を選択期間の途中で切り替え、選択期間の途中で信号電極の電位をオン表示電位またはオフ表示電位に切り替える場合には、その信号電極を一旦所定のコンデンサに所定の接続時間だけ接続してからオン表示電位またはオフ表示電位に設定し、ダミー期間では、個々の信号電極毎に、走査期間内で信号電極をコンデンサに接続した回数と接続時間との積に応じた期間だけ信号電極をオン表示電位またはオフ表示電位に設定し、残りのダミー期間の間、信号電極をコンデンサに接続することを特徴とする液晶表示装置の駆動方法を提供する。
【0019】
本発明の態様2は、走査期間では、走査電極を一本ずつ選択し、選択した走査電極を第一の選択時電位または第二の選択時電位に設定し、選択した走査電極を第一の選択時電位に設定する走査期間と、選択した走査電極を第二の選択時電位に設定する走査期間とで、非選択時電位を共通の電位とし、選択した走査電極を第一の選択時電位に設定する走査期間と、選択した走査電極を第二の選択時電位に設定する走査期間とで、信号電極を接続する所定のコンデンサを共通のコンデンサとする液晶表示装置の駆動方法を提供する。
【0020】
本発明の態様3は、走査電極を一本ずつ選択し、選択した走査電極を第一の選択時電位または第二の選択時電位に設定し、走査期間中に、選択した走査電極を第一の選択時電位に設定する場合には、非選択行の走査電極の電位を第一の非選択時電位に設定し、中間調とすべき画素が存在する信号電極を第一の所定のコンデンサに接続してから第一のオン表示電位または第一のオフ表示電位に設定し、選択した走査電極を第二の選択時電位に設定する場合には、非選択行の走査電極の電位を第二の非選択時電位に設定し、中間調とすべき画素が存在する信号電極を第二の所定のコンデンサに接続してから第二のオン表示電位または第二のオフ表示電位に設定し、走査期間後のダミー期間では、個々の信号電極毎に、走査期間内で信号電極を第一の所定のコンデンサに接続した回数および第二の所定のコンデンサに接続した回数の和と所定の接続時間との積に応じた期間だけ信号電極を第一のオン表示電位、第一のオフ表示電位、第二のオン表示電位または第二のオフ表示電位のいずれかの電位に設定し、残りのダミー期間の間、信号電極を第一の所定のコンデンサまたは第二の所定のコンデンサに接続する液晶表示装置の駆動方法を提供する。
【0021】
本発明の態様4は、複数の走査電極と複数の信号電極との間に液晶を挟持する液晶表示装置の駆動方法であって、走査電極を選択しながら走査電極を走査する走査期間を設け、走査期間内で、三本の走査電極の選択を複数回行い、走査期間の後に、全ての走査電極の電位を非選択時電位に設定するダミー期間を設け、走査期間では、同時の三本の走査電極を選択し、選択した走査電極を第一の選択時電位または第二の選択時電位に設定し、各選択期間内で、オン表示またはオフ表示とすべき画素が存在する信号電極の電位を第一の信号電極電位または第二の信号電極電位に維持し、オフ表示とオン表示との間の中間調とすべき画素が存在する信号電極の電位を選択期間の途中で切り替え、選択期間の途中で信号電極の電位を第一の信号電極電位または第二の信号電極電位に切り替える場合には、その信号電極を一旦所定のコンデンサに所定の接続時間だけ接続してから第一の信号電極電位または第二の信号電極電位に設定し、ダミー期間では、個々の信号電極毎に、走査期間内で信号電極をコンデンサに接続した回数と接続時間との積に応じた期間だけ信号電極を第一の信号電極電位または第二の信号電極電位に設定し、残りのダミー期間の間、信号電極をコンデンサに接続することを特徴とする液晶表示装置の駆動方法を提供する。
【0022】
本発明の態様5は、階調を示す三行分の表示データから、1選択期間を分割したそれぞれの分割期間に対応する要素データを求め、各分割期間に対応する三行分の要素データと所定の選択行列の列成分とを用いて信号電極の電位を各分割期間毎に算出し、信号電極の電位を第一の信号電極電位または第二の信号電極電位とすべき分割期間の数に応じて、選択期間の途中で信号電極の電位を第一の信号電極電位または第二の信号電極電位に切り替えるタイミングを決定する液晶表示装置の駆動方法を提供する。
【0023】
本発明の態様6は、携帯機器に用いられる液晶表示装置を駆動する液晶表示装置の駆動方法を提供する。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
[実施の形態1]第一の実施の形態について説明する。第一の実施の形態では、APTを採用する。図1は、APTを採用する場合の液晶表示装置の駆動装置の例を示すブロック図である。液晶セル1は、複数の走査電極と複数の信号電極との間に液晶を備える。各走査電極と各信号電極は互いに直交するように配置される。以下、液晶セル1がノーマリブラックの液晶表示装置である場合を例に説明する。
【0025】
走査電極ドライバ2および信号電極ドライバ3は、それぞれ複数の電圧出力端子を有する。液晶セル1の個々の走査電極は、走査電極ドライバ2の個々の電圧出力端子と一対一に接続される。液晶セル1の個々の信号電極は、信号電極ドライバ3の個々の電圧出力端子と一対一に接続される。
【0026】
走査電極ドライバ2は、走査電極を選択しながら全ての走査電極を走査するように液晶セル1を駆動する。APTでは、選択した一本の走査電極を所定の電位に設定し、非選択行の走査電極の電位をV(非選択時電位)に設定する。ここでは、V=0Vであり、正極性駆動時において選択する走査電極を電位V(第一の選択時電位)に設定し、負極性駆動時において選択する走査電極を電位−V(第二の選択時電位)に設定する場合を例に説明する。
【0027】
信号電極ドライバ3は、一本の走査電極の選択期間中、各信号電極の電位を、選択行の画素の表示データに応じた電位に設定する。正極性駆動時において信号電極ドライバ3は、選択行の画素のうち最高輝度(オン表示)とすべき画素が存在する信号電極の電位を−Vに設定し、最低輝度(オフ表示)とすべき画素が存在する信号電極の電位をVに設定する。中間調を表示すべき画素が存在する信号電極の電位は、選択期間の途中でVから−Vまたは−VからVに切り替えられる。ただし階調が最高輝度に近いほど、電位を−Vに設定する期間を長くする。負極性駆動時において信号電極ドライバ3は、選択行の画素のうち最高輝度とすべき画素が存在する信号電極の電位をVに設定し、最低輝度とすべき画素が存在する信号電極の電位を−Vに設定する。中間調を表示すべき画素が存在する信号電極の電位は、正極性駆動時と同様に、選択期間の途中でVから−Vまたは−VからVに切り替えられる。ただし階調が最高輝度に近いほど、電位をVに設定する期間を長くする。ここで、−V<−V<V<V<Vを満足しているものとする。
【0028】
また、信号電極ドライバ3は、中間調を表示すべき画素が存在する信号電極の電位を切り替えるタイミングを特定するためのカウンタを備える。信号電極ドライバ3は、コントローラ22から所定の信号(後述するSCK)が入力される度にカウンタのカウンタ値を1増加させる。信号電極ドライバ3は、このカウンタ値に応じて、中間調を表示すべき画素が存在する信号電極の電位を切り替える。以下、このカウンタ値をSCKカウンタ値と記す。
【0029】
電源回路23は、信号電極ドライバ3に電圧V,−Vを供給する。V配線24および−V配線26は、それぞれ電圧V,−Vを信号電極ドライバ3に供給するための配線である。また、コンデンサ配線25は、電源回路23が備える所定のコンデンサ(後述する電荷蓄積コンデンサ)に各信号電極を接続するための配線である。また、電源回路23は、走査電極ドライバ2に、電圧V,V(0V),−Vを供給する。なお、図1では、走査電極ドライバ2に電圧を供給するための配線を一本に簡略化して示した。
【0030】
図2は電源回路23の例を示す説明図である。電源回路23は、電圧Vの出力端27と、電圧−Vの出力端29とを備える。また、電源回路23は電圧V,V,−Vの出力端も備えるが、図2では省略した。電圧Vの出力端27と電圧−Vの出力端29には、それぞれ出力電圧を安定させるためのコンデンサ27,29が設けられる。また、電源回路23は、各信号電極が放出する電荷を蓄積し、また、各信号電極に電荷を供給するための電荷蓄積コンデンサ28を備える。電荷蓄積コンデンサ28は、コンデンサ配線25を介して信号電極ドライバ3に接続される。電荷蓄積コンデンサ28の一方の電極は接地される。
【0031】
電荷蓄積コンデンサ28の静電容量(Cとする。)は、液晶を挟持する一本の信号電極と各走査電極とが形成するコンデンサの静電容量Cの10倍以上であることが好ましい。さらに好ましくは100倍以上とする。CがCよりも十分大きいならば、時間が経過すると、電荷蓄積コンデンサ28の接地されていない方の電極はほぼ一定の電位(V)に収束する。この電極の電位がVに収束する理由については後述する。また、CがCよりも十分に大きいと、電荷蓄積コンデンサ28に接続される信号電極が切り替えられても、収束した電位はほとんど変化しない。以下の説明では、電荷蓄積コンデンサ28の接地されていない方の電極の電位がVであるものとして説明する。
【0032】
メモリ21は、各走査電極に対応する表示データを記憶する記憶領域と、コントローラ22の制御に従って一行分の表示データ(Data)を信号電極ドライバ3に出力する出力部(図示せず。)とを備える。コントローラ22は、メモリ21が出力すべき一行分のデータのアドレスを指定するメモリ制御信号をメモリ21に出力する。メモリ21が備える出力部は、メモリ制御信号によって指定されるアドレスに記憶する表示データを信号電極ドライバ3への出力データ領域にコピーする。
【0033】
また、コントローラ22は、信号電極ドライバ3に、CL(クロック信号)、FR、DUM、SCKおよびPHを出力する。CLは、選択する走査電極の切り換えを示すラッチパルスである。FRは、正極性駆動にすべきか負極性駆動にすべきかを指示する信号である。ここでは、正極性駆動を指示する場合にFRをハイレベルにするものとする。DUMは、後述するダミー期間を指示するための信号である。ここでは、ダミー期間を指示する場合にDUMをハイレベルにするものとする。SCKは、信号電極ドライバ3が備えるカウンタのSCKカウンタ値を1増加させるための信号である。
【0034】
PHは、選択期間中に、中間調を表示すべき画素の印加電圧を高電圧から低電圧に切り替えるのか、低電圧から高電圧に切り替えるのかを指示する信号である。ここでは、高電圧から低電圧への切り替えを指示する場合にPHをハイレベルにするものとする。従って、FRがハイレベル(正極性駆動)である場合、PHがハイレベルならば中間調を表示すべき画素が存在する信号電極の電位を−VからVに切り替え、PHがローレベルならばVから−Vに切り替える。また、FRがローレベル(負極性駆動)である場合、PHがハイレベルならば中間調を表示すべき画素が存在する信号電極の電位をVから−Vに切り替え、PHがローレベルならば−VからVに切り替える。
【0035】
また、コントローラ22は、走査電極ドライバ2に、CLと、FRと、DUMと、1フレームの開始を示すFLM(ファーストラインマーカ)とを出力する。なお、コントローラ22が走査電極ドライバ2に出力するCLをハイレベルにするタイミングと、信号電極ドライバ3に出力するCLをハイレベルにするタイミングとは異なる。以下の説明では、コントローラ22が走査電極ドライバ2に出力するCLをCL_COMと記し、信号電極ドライバ3に出力するCLをCL_SEGと記すことにより、両者を区別する。
【0036】
図3は、コントローラ22が各信号を出力するタイミングの例を示す説明図である。コントローラ22は、FR,FLM,DUM,PH,CL_COMおよびCL_SEGのレベル切り替えを、SCKの立ち上がりに同期して行うようにする。ただし、SCKが立ち上がるときに、必ず他の各信号を切り替えるわけではない。図3に示すように、CL_COMが立ち下がるタイミング(ハイレベルからローレベルになるタイミング)で選択期間Tが開始する。従って、あるCL_COMの立ち下がりタイミングから次のCL_COMの立ち下がりタイミングまでが選択期間Tとなる。また、図3に示すように、CL_COMの立ち下がりタイミングよりも先にFRやPHを切り替え、ある選択期間の開始時(CL_COMの立ち下がりタイミング)ではその選択期間に応じたFRやPHが設定されているようにする。さらに、第一行の選択期間の開始時では、FLMがハイレベルに設定されているようにする。
【0037】
FRの切り替え周期(正極性駆動と負極性駆動の切り替え周期)は、選択期間以上である。図3では、1フレーム毎にFRを切り替える場合の例を示す。また、PHの切り替え周期は、選択期間Tと等しい。
【0038】
図3では、1フレーム期間の最後にダミー期間を設ける場合の例を示す。ダミー期間以外の期間(DUMがローレベルとなる期間)では、走査電極ドライバ2は、入力されるFR,FLMおよびCL_COMに従って走査電極を一本ずつ選択する。このとき、信号電極ドライバ3は選択行の画像データに応じて各信号電極の電位を設定する。一方、ダミー期間(DUMがハイレベルとなる期間)になると、走査電極ドライバ2は全ての走査電極の電位をVに設定する。また、ダミー期間中、信号電極ドライバ3は、所定期間(例えば各行を一回ずつ選択して走査する期間)内における各信号電極への電位の設定状況に応じた駆動波形で各信号電極の電位を設定する。ダミー期間中における信号電極電位の波形については後述する。
【0039】
また、コントローラ22は、定期的にSCKが立ち上がるようにSCKを出力する。以下の説明では、SCKの立ち上がりタイミングから次のSCKの立ち上がりタイミングまでの期間をPWM期間と記す。CL_COMをハイレベルにする期間およびCL_SEGをハイレベルにする期間は、それぞれPWM期間に等しい。また、コントローラ22は、CL_SEGをローレベルに切り替えるタイミングでCL_COMをハイレベルに切り替えるようにCL_SEGおよびCL_COMのレベルを切り替える。すなわち、CL_COMはCL_SEGを1PWM期間遅らせた信号である。
【0040】
信号電極ドライバ3のカウンタは、SCKが立ち上がったときにCL_SEGがハイレベルになっているならばSCKカウンタ値を0に初期化する。SCKが立ち上がったときにCL_SEGがローレベルになっているならばSCKカウンタ値を1増加する。また、信号電極ドライバ3は、各PWM期間において、電位を変更すべき信号電極の電位を切り替えるように制御する。具体的には、信号電極ドライバ3は、SCKが立ち上がったときに新たなPWM期間に移行したと判断し、そのPWM期間において電位を変更すべき信号電極の電位を切り替える。SCKカウンタ値の更新および信号電極の電位の切り替えは、いずれもSCKの立ち上がりタイミングにおいて行われる。ただし、信号電極ドライバ3は、SCKが立ち上がりタイミングで、更新前のSCKカウンタ値を参照する。以下、信号電極ドライバ3が参照するSCKカウンタ値を用いて各PWM期間を表すことにする。例えば、SCKカウンタ値「x」を参照するPWM期間をPWM期間「x」と表す。PWM期間「x」では、SCKカウンタ値は「x+1」に更新される。すなわち、PWM期間を示す番号として、更新されたSCKカウンタ値よりも一つ前の値を用いる。なお、信号電極ドライバ3がSCKカウンタ値の最大値を参照するPWM期間では、SCKカウンタ値は0に初期化される。従って、SCKカウンタ値の最大値をXとすると、PWM期間「X」ではSCKカウンタ値は0になる。
【0041】
図3を用いて、SCKカウンタ値の変化の具体例を説明する。コントローラ22は、第一行の選択を開始する前にCL_SEGをハイレベルにする。このとき、コントローラ22は、SCKの立ち上がりに同期してCL_SEGをハイレベルにする。このSCKが立ち上がったときのCL_SEGはローレベルであるので、信号電極ドライバ3はSCKカウンタ値を1増加させる。図3では、29から30に増加させている。
【0042】
コントローラ22は、次のSCKの立ち上がりに同期してFR,FLM,PHおよびCL_COMをローレベルからハイレベルに切り替え、DUMおよびCL_SEGをハイレベルからローレベルに切り替える。このSCKが立ち上がったときのCL_SEGはハイレベルであるので、信号電極ドライバ3はSCKカウンタ値を0に初期化する。ただし、このPWM期間において、信号電極ドライバ3は、「0」に更新される前のSCKカウンタ値「30」を参照する。すなわち、このPWM期間はPWM期間「30」である。また、このPWM期間では、まだCL_COMは立ち下がっていない。このとき信号電極ドライバ30は、各信号電極の電位を、ダミー時間内で設定すべき電位に設定している。
【0043】
コントローラ22は、次のSCKの立ち上がりに同期してCL_COMをハイレベルからローレベルに切り替える。このSCKが立ち上がったときのCL_SEGはローレベルであるので、信号電極ドライバ3はSCKカウンタ値を「1」に更新する。ただし、このPWM期間は、PWM期間「0」である。CL_COMがローレベルになることによって、走査電極ドライバ2は、選択期間Tの開始を認識する。また、信号電極ドライバ3は、PWM期間「0」を選択期間Tの開始タイミングとして認識する。信号電極ドライバ3は、PWM期間「0」で電位を切り替えるべき信号電極の電位を切り替える。また、走査電極ドライバ2は、CL_COMがローレベルになったときのFLMがハイレベルであるので1行目の走査電極を選択する。
【0044】
コントローラ22は、次のSCKの立ち上がりに同期してFLMをハイレベルからローレベルに切り替える。このSCKが立ち上がったときのCL_SEGはローレベルであるので、信号電極ドライバ3はSCKカウンタ値を「2」に更新する。ただし、このPWM期間は、PWM期間「1」である。信号電極ドライバ3は、PWM期間「1」で電位を切り替えるべき信号電極の電位を切り替える。FLMは、次のフレーム開始時までローレベルに維持される。
【0045】
コントローラ22は、一定期間毎にSCKを立ち上げる。信号電極ドライバ3は、各PWM期間で、電位を切り替えるべき信号電極があれば、その信号電極の電位を切り替える。また、選択期間終了前に、CL_SEGおよびCL_COMをそれぞれハイレベルに切り替える。このとき、CL_SEGをCL_COMより先に立ち上げ、CL_SEGの立ち下がりタイミングでCL_COMを立ち上げて、PWM期間「0」が選択期間Tの開始時に設けられるようにする。コントローラ22は、以後同様にSCKを立ち上げ,CL_SEGおよびCL_COMのレベルを切り替えていく。
【0046】
なお、コントローラ22は、CL_COMをハイレベルにする度にPHのレベルを切り替える。また、DUMをローレベルに維持し、最終行の選択を終えたときにハイレベルになっているようにDUMを切り替える。具体的には、最終行の選択させるためにCL_COMをハイレベルにしたならば、次にCL_COMをハイレベルにするタイミングでDUMをローレベルに切り替える。
【0047】
図4は、信号電極ドライバ3の構成例を示す説明図である。信号電極ドライバ3は、V配線24に接続され電圧Vが供給される第一の配線14と、コンデンサ配線25に接続される第二の配線15と、−V配線26に接続され電圧−Vが供給される第三の配線16とを備える。各信号電極は第一の配線15から第三の配線16のいずれかに接続される。信号電極が接続される配線が切り替えられると、その信号電極の電位も切り替えられる。接続の切り替えは、各信号電極と一対一に対応するスイッチ11〜13等によって行う。図4では、三つのスイッチを示すが、信号電極ドライバ3は各信号電極に対応するスイッチを備える。
【0048】
信号電極ドライバ3は、選択期間開始時のPHおよびFRに基づいて、中間調を表示すべき画素が存在する信号電極の電位を切り替える。ただし、電位V(信号電極を第一の配線14に接続させた状態)から電位−V(信号電極を第三の配線16に接続させた状態)に切り替えるときには、その信号電極を第二の配線15に接続させてから切り替える。電位−Vから電位Vに切り替える場合も同様である。信号電極を第二の配線15に接続すると、その信号電極はコンデンサ配線25を介して電荷蓄積コンデンサ28に接続される。すると、その信号電極の電位はVになる。従って、信号電極の電位をVから−Vまたは−VからVに切り替える場合、その信号電極の電位は一旦Vとなってから−VまたはVになる。
【0049】
図5〜8は、選択期間内における信号電極の電位の波形パターンを示す説明図である。ただし、DUMはローレベルであるものとする。図5〜8では、全32階調の表示を行う場合の例を示す。この場合、コントローラ22は1選択期間に31回SCKを出力し、信号電極ドライバ3のSCKカウンタ値は1選択期間に0から30までの間で変化する。
【0050】
図5は、FRとPHとがともにハイレベルである場合を示す。第0階調は最低輝度を表すので、信号電極ドライバ3は、第0階調とすべき信号電極の電位を選択期間中Vのままとする。また、第31階調は最高輝度を表すので、信号電極ドライバ3は、第31階調とすべき信号電極の電位を選択期間中−Vのままとする。第1階調から第31階調までは中間調表示であり、低い階調ほど最低輝度に近い表示となる。信号電極ドライバ3は、選択期間開始時に、中間調とすべき各信号電極を第三の配線16に接続し、その各信号電極の電位を−Vとする。そして、PWM期間「1」になると、第1階調とすべき信号電極を第二の配線15に接続する。すると、その信号電極はコンデンサ配線25を介して電荷蓄積コンデンサ28に接続され、その信号電極の電位は−VからVに変化する。PWM期間「2」になると、第1階調とすべき信号電極を第一の配線14に接続する。すると、その信号電極はV配線24を介して電圧Vの出力端27に接続され、その信号電極の電位はVからVに変化する。ここでは、第1階調とすべき信号電極を例に説明したが、他の階調とすべき信号電極の電位も同様に切り替える。ただし、信号電極を第二の配線15や第一の配線14に接続するタイミングを規定するPWM期間は、階調毎に異なる。なお、第30階調とすべき信号電極の電位は、PWM期間「30」でVに変化し、その状態で選択期間Tが終了する。
【0051】
図6は、FRがハイレベルでありPHがローレベルである場合を示す。第0階調および第31階調とすべき信号電極の電位は、図5に示す場合と同様である。信号電極ドライバ3は、選択期間開始時に、中間調(ただし、第30階調は除く。)とすべき各信号電極を第一の配線14に接続し、その各信号電極の電位をVとする。また、第30階調とすべき信号電極を第二の配線15に接続し、その信号電極の電位をVとする。PWM期間「1」になると、第30階調とすべき信号電極を第三の配線16に接続する。すると、その信号電極は−V配線26を介して電圧−Vの出力端29に接続され、その信号電極の電位はVから−Vに変化する。また、PWM期間「1」になったとき、第29階調とすべき信号電極を第二の配線15に接続する。すると、その信号電極はコンデンサ配線25を介して電荷蓄積コンデンサ28に接続され、その信号電極の電位はVからVに変化する。PWM期間「2」になると、第29階調とすべき信号電極を第三の配線16に接続する。すると、その信号電極は−V配線26を介して電圧−Vの出力端29に接続され、その信号電極の電位はVから−Vに変化する。他の階調とすべき信号電極の電位も第29階調とすべき信号電極の場合と同様に切り替える。ただし、信号電極を第二の配線15や第三の配線16に接続するタイミングを規定するPWM期間は、階調毎に異なる。
【0052】
PHの切り替え周期は選択期間Tと等しい。従って、正極性駆動時において、信号電極ドライバ3は、図5,6に示す二種類の波形パターンを選択期間毎に切り替えて各信号電極の電位を設定する。そして、図5に示すPWM期間「30」のときの各設定電位は、第30階調または第31階調とすべき信号電極以外、いずれもVである。また、図6に示すPWM期間「0」のときの各設定電位は、第30階調または第31階調とすべき信号電極以外、いずれもVである。従って、PHがハイレベルである選択期間からPHがローレベルとなる選択期間への切り替えタイミングでは、多くの信号電極で電位を切り替える必要がない。PHがローレベルである選択期間からPHがハイレベルである選択期間への切り替えタイミングでも同様である。
【0053】
図7は、FRがローレベルでありPHがハイレベルである場合を示す。信号電極ドライバ3は、第0階調とすべき信号電極の電位を選択期間中−Vのままとする。また、第31階調とすべき信号電極の電位を選択期間中Vのままとする。信号電極ドライバ3は、選択期間開始時に、中間調とすべき各信号電極を第一の配線14に接続し、その各信号電極の電位をVとする。そして、PWM期間「1」になると、第1階調とすべき信号電極を第二の配線15に接続する。すると、その信号電極はコンデンサ配線25を介して電荷蓄積コンデンサ28に接続され、その信号電極の電位はVからVに変化する。PWM期間「2」になると、第1階調とすべき信号電極を第三の配線16に接続する。すると、その信号電極は−V配線26を介して電圧−Vの出力端29に接続され、その信号電極の電位はVから−Vに変化する。ここでは、第1階調とすべき信号電極を例に説明したが、他の階調とすべき信号電極の電位も同様に切り替える。ただし、信号電極を第二の配線15や第三の配線16に接続するタイミングを規定するPWM期間は、階調毎に異なる。なお、第30階調とすべき信号電極の電位は、PWM期間「30」でVに変化し、その状態で選択期間Tが終了する。
【0054】
図8は、FRとPHとがともにローレベルである場合を示す。第0階調および第31階調とすべき信号電極の電位は、図7に示す場合と同様である。信号電極ドライバ3は、選択期間開始時に、中間調(ただし、第30階調は除く。)とすべき各信号電極を第三の配線16に接続し、その各信号電極の電位を−Vとする。また、第30階調とすべき信号電極を第二の配線15に接続し、その信号電極の電位をVとする。PWM期間「1」になると、第30階調とすべき信号電極を第一の配線16に接続する。すると、その信号電極はV配線24を介して電圧Vの出力端27に接続され、その信号電極の電位はVからVに変化する。また、PWM期間「1」になったとき、第29階調とすべき信号電極を第二の配線15に接続する。すると、その信号電極はコンデンサ配線25を介して電荷蓄積コンデンサ28に接続され、その信号電極の電位は−VからVに変化する。PWM期間「2」になると、第29階調とすべき信号電極を第一の配線14に接続する。すると、その信号電極はV配線24を介して電圧Vの出力端27に接続され、その信号電極の電位はVからVに変化する。他の階調とすべき信号電極の電位も第29階調とすべき信号電極の場合と同様に切り替える。ただし、信号電極を第二の配線15や第一の配線14に接続するタイミングを規定するPWM期間は、階調毎に異なる。
【0055】
負極性駆動時において、信号電極ドライバ3は、図7,8に示す二種類の波形パターンを選択期間毎に切り替えて各信号電極の電位を設定する。そして、図7に示すPWM期間「30」での各設定電位は、第30階調または第31階調とすべき信号電極以外、いずれも−Vである。また、図8に示すPWM期間「0」での各設定電位は、第30階調または第31階調とすべき信号電極以外、いずれも−Vである。従って、PHがハイレベルである選択期間からPHがローレベルとなる選択期間への切り替えタイミングでは、多くの信号電極で電位を切り替える必要がない。PHがローレベルである選択期間からPHがハイレベルである選択期間への切り替えタイミングでも同様である。
【0056】
図5〜8に示す波形パターンで各信号電極の電位を設定した場合、1選択期間中に選択行の画素に印加される実効電圧の平均値は、階調によって異なる。表1は、1選択期間中に選択行の画素に印加される実効電圧の平均値を階調毎にまとめたものである。ただし、第3階調から第27階調については省略した。また、各信号電極には、図5〜8に示す波形パターンで電位を設定しているものとする。
【0057】
【表1】
Figure 0004176423
【0058】
表1に示すように、1選択期間中に選択行の画素に印加される実効電圧の平均値は、高い階調ほど上昇する。
【0059】
次に、信号電極の電位をVからVを経て−Vに変化させるときの電荷の移動について説明する。第一の配線14に接続されている信号電極を第二の配線15に接続すると、その信号電極の電位はVからVに変化する。このとき、信号電極は、電圧−Vの出力端29に電荷を放出せず、C・(V−V)の電荷を電荷蓄積コンデンサ28に移動させる。電荷蓄積コンデンサ28はこの電荷を蓄積する。続いて、その信号電極を第三の配線16に接続すると、信号電極は、電圧−Vの出力端29にC・(V−V)の電荷を放出する。そして、信号電極の電位は−Vとなる。このように電位Vの信号電極からC・(V−V)の電荷を放出して電位を−Vにすればよく、電位Vの信号電極から2・C・(V−V)の電荷を放出させて信号電極の電位を−Vにする必要はない。従って、電圧−Vの出力端29に放出する電荷は少なくて済む。
【0060】
また、第三の配線16に接続されている信号電極を第二の配線15に接続すると、その信号電極の電位は−VからVに変化する。このとき、電圧Vの出力端27は信号電極に電荷を供給せず、電荷蓄積コンデンサ28が信号電極にC・(V−V)の電荷を供給する。続いて、その信号電極を第一の配線14に接続すると、電圧Vの出力端27は信号電極にC・(V−V)の電荷を供給し、信号電極の電位はVからVに変化する。このように電位Vの信号電極にC・(V−V)の電荷を供給して電位をVにすればよく、電位−Vの信号電極に2・C・(V−V)の電荷を供給して電位をVにする必要はない。従って、電圧Vの出力端27から供給すべき電荷は少なくなる。
【0061】
従来の駆動方法では、信号電極の電位をVから−V(または−VからV)に変化させるとき、信号電極を一旦電荷蓄積コンデンサに接続していなかった。本発明のように電荷蓄積コンデンサを用いると、従来の駆動方法に比べて、中間調表示のために電圧−Vの出力端29に放出される電荷は約1/2になる。また、中間調表示のために電圧Vの出力端27から供給すべき電荷も約1/2になる。ただし、ここでは信号電極ドライバ3のスイッチの駆動等に必要な電力は考慮していない。
【0062】
このように、電圧−Vの出力端29に放出される電荷や電圧Vの出力端27から供給すべき電荷を少なくすることができるので、消費電力は低減される。また、選択期間が切り替わるタイミングでは、多くの信号電極で電位を切り替える必要がない。従って、選択期間が切り替わるタイミングで生じる消費電力も低減することができる。
【0063】
次に、ダミー期間の必要性およびダミー期間中における信号電極電位の波形について説明する。まず、図5〜8に示す波形パターンを用いて図9に示す画像を表示する場合の表示品位を検討する。ただし、走査電極の本数はN本であり、第x行の走査電極を#xと表すものとする。また、液晶表示装置はいわゆるノーマリブラックの液晶パネルであるとする。すなわち、電圧が高くなるほど透過率が高くなるものとする。第一の信号電極501と#1〜#Nとが交差する領域は白色で表示する。第二の信号電極502と#1〜#mとが交差する領域は中間調(例えば第15階調)で表示し、第二の信号電極502と#m+1〜#Nとが交差する領域は白色で表示する。第三の信号電極503そ#1〜#nとが交差する領域は中間調で表示し、第三の信号電極503そ#n+1〜#Nとが交差する領域は白色で表示する。なお、1<m<n<Nであり、m,nおよびNは整数である。また、#1から#Nまで順番に選択していくものとする。さらに、PWM期間は、T/31であるものとする。
【0064】
#Nとそれぞれの信号電極との交差部に存在する画素504〜506に着目する。#1から#N−1までを選択する期間中、#Nの電位はV(0V)に保たれる。この期間中、第一の信号電極の電位はV(または−V)に保たれる。従って、#1から#N−1までを選択する期間中、第一の信号電極上の画素504に印加される実効電圧はVである。
【0065】
第二の信号電極502と#1〜#mとが交差する領域は中間調表示とするので、#1から#mまでを選択する期間中、第二の信号電極502の電位をVにする期間がm・(T/31)だけ存在する。その後、#m+1から#N−1までを選択する期間中、第二の信号電極の電位はV(または−V)に保たれる。この場合、#1から#N−1までを選択する期間中、第二の信号電極上の画素505に印加される実効電圧はVより低くなる。
【0066】
また、#1から#nまでを選択する期間中、第三の信号電極503の電位をVにする期間がn・(T/31)だけ存在する。従って、#1から#N−1までを選択する期間中、第三の信号電極上の画素506に印加される実効電圧はさらに低くなる。
【0067】
第一の信号電極上の画素504、第二の信号電極上の画素505および第三の信号電極上の画素506は、いずれも白色表示とすべき画素である。しかし、#1から#N−1までを選択する期間に印加される実効電圧がそれぞれ異なるため輝度が異なってしまう。このような輝度の不一致は、他の行においても生じる。この結果、白色表示領域の輝度が各列毎に異なり、表示品位が低下してしまう。このような輝度の不一致(クロストーク)をなくすため、各信号電極毎に実効電圧不足を補うための期間を設ける必要がある。本発明では、実効電圧不足を補うための期間としてダミー期間を設けた。
【0068】
1選択期間中に、中間調表示とすべき一本の信号電極の電位をVとする期間はPWM期間である。所定期間中(例えば、各走査電極を1回ずつ選択する期間中)、信号電極の電位をVまたは−Vのいずれかのみに設定すれば、非選択行の画素に印加される実効電圧は統一される。従って、個々の信号電極毎に、所定期間内において電位をVまたは−Vとすることができなかった期間(すなわち電位をVとした期間)だけ、別途電位をVまたは−Vに設定すれば、非選択行の画素に印加される実効電圧を統一することができ、表示品位の低下を防げる。ここで、所定期間内において電位をVにした期間とは、所定期間内に一本の信号電極を第二の配線15に接続させた回数とPWM期間との積である。なお、信号電極ドライバ3は、所定期間内に信号電極を第二の配線15に接続させた回数を信号電極毎に記憶しておく。
【0069】
図10は、ダミー期間での信号電極電位の例を示す説明図である。図9に示した第一の信号電極501は、常にVまたは−Vに設定される。従って、図10に示すように、ダミー期間中、電位をVにしたままでよい。また、所定期間(#1から#Nまでを1回ずつ選択する期間)中、図9に示した第二の信号電極502は第二の配線15にm回接続される。従って、ダミー期間のうち、PWM期間のm倍、すなわちm×(T/31)の期間だけ、第二の信号電極を第一の配線14に接続し、電位をVに設定する。さらにその期間の経過後、第二の信号電極を電荷蓄積コンデンサ28に接続し、その電位をVに設定する。また、所定期間中、図9に示した第三の信号電極503は第二の配線15にn回接続される。従って、ダミー期間のうち、PW期間のn倍、すなわちn×(T/31)の期間だけ、第三の信号電極を第一の配線14に接続し、電位をVに設定する。さらにその期間の経過後、第三の信号電極を電荷蓄積コンデンサ28に接続し、その電位をVに設定する。このように、ダミー期間では、個々の信号電極に応じた時間だけ各信号電極の電位をVに設定する。
【0070】
ダミー期間の長さは、PWM期間に走査電極数を乗じた期間よりも長く設定される。各走査電極を1回ずつ選択する所定期間において、一本の信号電極を第二の配線に接続する回数の最大値は走査電極数に等しいからである。例えば、PWM期間がT/31であり、走査電極数が160本の場合、ダミー期間の長さを、160・(T/31)≒5.2・T以上とする。この場合、小数点以下を切り上げて6・Tsとしてもよい。
【0071】
また、信号電極の電位を第二の配線15に接続させた状態から、第一の配線14または第三の配線16に接続させた状態に切り替える場合、瞬間的に電位がVまたは−Vに変化するわけではない。すなわち、液晶を挟持する電極によって形成されるコンデンサの静電容量や電極の抵抗の存在により、完全な矩形波状に電位が変化するわけでななく、電位変化にわずかながら時間がかかる。そのため、実際には、1選択期間内で電位をVまたは−Vにすることができない期間はPWM期間よりも若干長くなる。従って、PWM期間に走査電極数を乗じた期間よりも長く設定してもよい。そして、ダミー期間では、所定期間内に一本の信号電極を第二の配線15に接続させた回数とPWM期間との積より長い時間、信号電極の電位をVに設定してもよい。例えば、ダミー時間では、所定期間内に一本の信号電極を第二の配線15に接続させた回数とPWM期間との積の1.2倍の期間、信号電極の電位をVに設定してもよい。1選択期間内で電位をVまたは−Vにすることができない期間がPWM期間よりも若干長くなることを考慮して、ダミー期間中における電位Vの設定時間を定めれば、クロストークを一層改善することができる。
【0072】
図10では、ダミー期間中、信号電極の電位をVに設定する場合を示したが、信号電極を第三の配線16に接続して、信号電極の電位を−Vに設定してもよい。ダミー期間に信号電極に設定する電位を、定期的にVと−Vとに切り替えてもよい。例えば、1フレームあるいは数フレームごとに切り替えてもよい。または、正極性駆動とするフレームではVに設定し、負極性駆動とするフレームでは−Vに設定するように定めてもよい。
【0073】
また、図3では、FRを1フレーム毎に切り替える場合を示したが、FRの切り替え周期は、1フレームに限定されない。各行を順次選択していく途中でFRを切り替えてもよい。この場合であっても、ダミー期間中に信号電極の電位をVまたは−Vに設定する期間は、所定期間内に一本の信号電極を第二の配線15に接続させた回数とPWM期間との積に応じた期間として定めればよい。さらに、ダミー期間中にFRを切り替えてもよい。この場合、信号電極の電位をV,Vのいずれにするかは、ダミー期間内におけるFRに応じて決定してもよい。例えば、ダミー期間のうちFRがハイレベルであるときには、信号電極の電位をVとし、ローレベルに切り替わったときにはその電位を−Vに切り替えてもよい。
【0074】
また、図10では、1フレームの最後にダミー期間を設ける場合を示したが、1フレーム内でダミー期間を分散させてもよい。例えば、X行目までの選択が終了したときに一旦ダミー期間を設け、残りの行の選択が終了したときに再度ダミー期間を設けるようにしてもよい。また、複数フレーム(例えば2フレーム)分のダミー期間を一つにまとめて設けてもよい。すなわち、各走査電極を1回ずつ選択する期間以外の期間を所定期間として定め、その後にダミー期間を設けるようにしてもよい。ダミー期間内において個々の信号電圧の電位をVまたは−Vにすべき期間は、その所定期間内で、個々の信号電極を第二の配線15に接続させた回数とPWM期間との積によって定まる。
【0075】
次に、電荷蓄積コンデンサ28の接地されていない方の電極の電位がVに収束する理由について説明する。既に述べたように、電荷蓄積コンデンサ28の静電容量Cは、一本の信号電極と各走査電極とがなすコンデンサの静電容量Cに比べ十分大きいものとする。
【0076】
ある時点において、電荷蓄積コンデンサ28の接地されていない方の電極の電位がVであったとする。その後、電位Vの信号電極が電荷蓄積コンデンサ28に接続されると、その信号電極から電荷蓄積コンデンサ28にC・(V−V)の電荷が移動する。一方、電位−Vの信号電極が電荷蓄積コンデンサ28に接続された場合には、電荷蓄積コンデンサ28からその信号電極にC・(V+V)の電荷が移動する。電位V・の信号電極が電荷蓄積コンデンサ28に接続される回数と、電位−Vの信号電極が電荷蓄積コンデンサ28に接続される回数とは等しい。従って、電荷蓄積コンデンサ28の接地されていない方の電極の電位Vは、信号電極から供給される電荷と、信号電極に供給する電荷とが等しくなる電位で安定する。従って、V=0V、すなわちVとなる。
【0077】
電荷蓄積コンデンサ28の接地されていない方の電極の電位の初期値がVより大きい場合、信号電極から電荷蓄積コンデンサ28に流れ込む電荷量よりも、電荷蓄積コンデンサ28から信号電極に移動する電荷量の方が多くなる。その結果、電荷蓄積コンデンサ28の接地されていない方の電極の電位はVに近づく。また、電荷蓄積コンデンサ28の接地されていない方の電極の電位の初期値がVより小さい場合、信号電極から電荷蓄積コンデンサ28に流れ込む電荷量の方が、電荷蓄積コンデンサ28から信号電極に移動する電荷量よりも多くなる。その結果、電荷蓄積コンデンサ28の接地されていない方の電極の電位はVに近づく。
【0078】
また、選択期間内における信号電極の電位の波形パターンは、図5〜8に示す波形パターンに限定されない。図11〜14は、他の波形パターンの例を示す。図11は、FRとPHとがともにハイレベルである場合の波形パターンの例を示す。図11に示す波形パターンでは、中間調とすべき信号電極を第二の配線15に接続する期間(電位をVにする期間)を、図5に示す場合よりも1PWM期間分だけ早めている。図12は、FRがハイレベルでありPHがローレベルである場合の波形パターンの例を示す。図12に示す波形パターンでは、中間調とすべき信号電極を第二の配線15に接続する期間(電位をVにする期間)を、図6に示す場合よりも1PWM期間分だけ遅らせている。
【0079】
また、図13は、FRがローレベルでありPHがハイレベルである場合の波形パターンの例を示す。図13に示す波形パターンでは、中間調とすべき信号電極を第二の配線15に接続する期間(電位をVにする期間)を、図7に示す場合よりも1PWM期間分だけ早めている。図14は、FRとPHとがともにローレベルである場合の波形パターンの例を示す。図14に示す波形パターンでは、中間調とすべき信号電極を第二の配線15に接続する期間(電位をVにする期間)を、図8に示す場合よりも1PWM期間分だけ遅らせている。
【0080】
信号電極の電位の波形パターンとして、図5〜8に示す波形パターンの組み合わせのみを採用してもよい。また、図11〜14に示す波形パターン組み合わせのみを採用してもよい。あるいは、この二種類の組み合わせを1フレーム毎に交互に切り替えてもよい。例えば、あるフレームで図5,6に示す波形パターンを採用し、その次のフレームで図13,14に示す波形パターンを採用してもよい。また、この二種類の組み合わせを1選択期間毎に交互に切り替えてもよい。例えば、ある選択期間で図5(または図7)に示す波形パターンを採用し、その次の選択期間で図12(または図14)に示す波形パターンを採用してもよい。
【0081】
本実施の形態において、個々の信号電極を電荷蓄積コンデンサに接続する期間はPWM期間と異なっていてもよい。この場合、信号電極ドライバ3は、PWM期間とは異なる期間ごとに、SCKとは異なる信号を出力する。この信号をSCKsubとする。信号電極ドライバ3は、SCK入力時にカウントアップするためのカウンタとは別に、SCKsubが入力されたときにカウントアップするためのカウンタを備え、SCKsubが入力される度にそのカウンタ値を更新する。SCKカウンタ値を0に初期化するときに、SCKsubのカウンタ値も0に初期化するものとする。また、信号電極ドライバ3は、SCKsubの立ち上がりタイミングで、SCKsubのカウンタ値を参照する。ただし、信号電極ドライバ3は、更新前のSCKsubのカウンタ値を参照する。信号電極ドライバ3は、参照したSCKカウンタ値およびSCKsubのカウンタ値が所定の値になった場合に、信号電極を電荷蓄積コンデンサ28に接続すればよい。
【0082】
図15は、信号電極ドライバ3が参照するSCKカウンタ値およびSCKsubのカウンタ値の例を示す。信号電極ドライバ3は、例えば、SCKカウンタ値およびSCKsubのカウンタ値が、それぞれ1,3になったときに、第1階調とすべき信号電極を電荷蓄積コンデンサ28に接続すればよい。本例では、信号電極を電荷蓄積コンデンサ28に接続する期間は、PWM期間の1/3となる。
【0083】
ただし、中間調とすべき個々の信号電極を1選択期間内で第二の配線15に接続する期間は、少なくとも一本の信号電極の時定数(各信号電極の抵抗RとCとの積)の1/2以上に設定される。信号電極を第二の配線15に接続する期間をこのように定めることによって、電荷が電荷蓄積コンデンサ28と信号電極との間を移動する時間を確保することができる。
【0084】
本発明の駆動方法では、信号電極に供給すべき電荷や信号電極から放出される電荷を低減させている。併せて、走査電極に供給すべき電荷や信号電極から放出される電荷も低減させて、さらに消費電力を低減させることもできる。図16は、走査電極に供給すべき電荷や走査電極から放出される電荷も低減することができる電源回路23および走査電極ドライバ2の構成を示す。ただし、図16では、電圧Vの出力端、電圧−Vの出力端および電荷蓄積コンデンサの図示を省略した。
【0085】
図16に示す電源回路23は、電圧Vの出力端127と、電圧Vの出力端128と、電圧−Vの出力端129とを備える。各電圧の出力端127〜129には、それぞれ出力電圧を安定させるためのコンデンサ127〜129が設けられる。また、電源回路23は、電圧Vの出力端127に対応するV用コンデンサ132とV用スイッチ130とを備える。同様に、電圧−Vの出力端129に対応する−V用コンデンサ133と−V用スイッチ131とを備える。
【0086】
走査電極ドライバ2は、電圧Vが供給される第一の配線114と、電圧Vが供給される第二の配線115と、電圧−Vが供給される第三の配線116とを備える。各走査電極は第一の配線114から第三の配線116のいずれかに接続される。走査電極が接続される配線が切り替えられると、その走査電極の電位も切り替えられる。接続の切り替えは、各走査電極と一対一に対応するスイッチ111〜113等によって行う。スイッチ111〜113は、それぞれ第一行から第三行の走査電極に接続される。図16では、第一行から第三行に対応するスイッチを示すが、走査電極ドライバ2は各行に対応するスイッチを備える。
【0087】
コントローラ22は、V用スイッチ130および−V用スイッチ131の切り替えを制御する信号(以下、SHAREと記す。)を電源回路23に出力する。V用スイッチ130は、SHAREに応じて第一の配線114の接続先を電圧Vの出力端127またはV用コンデンサ132に切り替える。同様に、−V用スイッチ131は、SHAREに応じて第三の配線116の接続先を電圧−Vの出力端129または−V用コンデンサ133に切り替える。ここでは、SHAREがハイレベルのときに、第一の配線114と第三の配線116の接続先をそれぞれV用コンデンサ132、−V用コンデンサ133に切り替える場合を例に説明する。この場合、SHAREがローレベルになると、第一の配線114と第三の配線116の接続先をそれぞれVの出力端127、−Vの出力端129に切り替える。なお、第二の配線114は、電圧Vの出力端28に接続される。
【0088】
コントローラ22は、選択期間Tの最初の所定期間Tと最後の所定期間TにおいてSHAREをハイレベルとし、他の期間ではSHAREをローレベルにする。この所定期間Tの長さは、少なくとも一本の走査電極の時定数(各走査電極の抵抗RとCとの積)の1/2以上に設定される。
【0089】
走査電極ドライバ2は、正極性駆動時には、選択行に対応するスイッチを第一の配線114に接続し、他の行に対応するスイッチを第二の配線115に接続する。また、負極性駆動時には、選択行に対応するスイッチを第三の配線116に接続し、他の行に対応するスイッチを第二の配線115に接続する。ただし、走査電極ドライバ2は、ダミー期間中、全てのスイッチを第二の配線115に接続し、各走査電極の電位をVに設定する。
【0090】
用コンデンサ32および−V用コンデンサ33の静電容量(Cとする。)は、一本の走査電極と各信号電極とが形成するコンデンサの静電容量Cの10倍以上であることが好ましい。さらに好ましくは100倍以上とする。CがCよりも十分大きいならば、時間が経過すると、V用コンデンサ132のスイッチ側電極はほぼ一定の電位(V/2)に収束する。同様に、−V用コンデンサ133のスイッチ側電極もほぼ一定の電位(−V/2)に収束する。また、CがCよりも十分大きいと、V用スイッチ130や−V用スイッチ131によって第一の配線や第三の配線の接続先が切り替えられても、収束した電位はほとんど変化しない。以下の説明では、V用コンデンサ132と−V用コンデンサ133のスイッチ側電極がそれぞれV/2、−V/2であるものとして説明する。
【0091】
次に、各走査電極の電位の変化について説明する。ここでは正極性駆動を行うものとする。コントローラ22が第一行の選択期間の開始を指示するCL_COMを出力したとする。コントローラ22は、この選択期間Tの開始後、所定期間Tの間SHAREをハイレベルにする。走査電極ドライバ2は、CL_COMの立ち下がりタイミングで、第一行走査電極を第一の配線114に接続させ、他の信号電極を第二の配線115に接続させる。また、SHAREがハイレベルの間、V用スイッチ130は、第一の配線114をV用コンデンサ132に接続する。すると、V用コンデンサ132から第一行走査電極にC・(V/2)の電荷が移動し、第一行走査電極の電位はV/2に変化する。このとき、電圧Vの出力端127は電荷を供給しない。また、非選択行の走査電極の電位はVになる。
【0092】
所定期間Tが経過すると、V用スイッチ130は、第一の配線114を電圧Vの出力端127に接続する。すると、電圧Vの出力端127は、第一行走査電極にC・(V/2)の電荷を供給し、第一行走査電極の電位はVに変化する。選択期間Tの最後の所定期間Tにおいて、コントローラ22は再びSHAREをハイレベルにする。すると、V用スイッチ130は、第一の配線114をV用コンデンサ132に接続する。すると、第一行走査電極からV用コンデンサ132にC・(V/2)の電荷が移動し、第一行走査電極の電位はV/2に変化する。このとき、第一行走査電極から電圧Vの出力端128に電荷が放出されることはない。
【0093】
さらに、走査電極ドライバ2は、次の選択期間の開始時に、第一行走査電極を第二の配線115に接続する。すると、第一行の走査電極から電圧Vの出力端128にC・(V/2)の電荷が放出され、第一行走査電極の電位はVに変化する。ここでは、第一行走査電極を例に説明したが、他の走査電極の電位も同様に変化する。
【0094】
電圧Vの出力端127から電位Vの走査電極に電荷を供給して、電位をVにしなければならないとすると、電圧Vの出力端127はC・Vの電荷を供給しなければならない。しかし、走査電極をV用コンデンサ132に接続して電位をV/2に上昇させた後に、電圧Vの出力端127から電荷を供給すると、電圧Vの出力端127が供給すべき電荷はC・(V/2)で済む。
【0095】
また、電位Vの走査電極から電圧Vの出力端128に電荷を放出して電位をVにしなければならないとすると、電位Vの出力端128にC・Vの電荷を供給しなければならない。しかし、走査電極をV用コンデンサ132に接続して電位をV/2に下降させた後に、電圧Vの出力端128に電荷を放出すると、放出する電荷はC・(V/2)で済む。
【0096】
このように、走査電極に供給すべき電荷や走査電極から放出される電荷も低減させることができる。なお、ここでは正極性駆動時の場合について説明したが、負極性駆動の場合も同様である。ただし、負極性駆動の場合には、−V用コンデンサ133を用いる。
【0097】
また、V用コンデンサ132や−V用コンデンサ133を用いずに、走査電極同士を短絡させることで、走査電極に供給すべき電荷や走査電極から放出される電荷も低減させることができる。走査電極を短絡させる場合、電源回路23は、V用コンデンサ132および−V用コンデンサ133を備えない。第一の配線114および第三の配線116は、それぞれ電圧Vの出力端127、電圧−Vの出力端129に接続される。また、コントローラ22は、電源回路23に対してSHAREを出力しない。
【0098】
一方、走査電極ドライバ2は、図16に示す配線114〜116に加え、第四の配線および第五の配線(図示せず。)を備える。第四の配線および第五の配線は、各走査電極同士を接続させるための配線であり、電源回路23とは接続されない。そして、各走査電極に対応するスイッチは、第一の配線から第五の配線のうちのいずれかに接続される。他の構成は図16に示す場合と同様である。
【0099】
コントローラ22は、各走査電極に対応するスイッチの切り替えを指示する短絡信号を走査電極ドライバ2に出力する。コントローラ22は、選択期間の最後に短絡信号をハイレベルにする。
【0100】
正極性駆動の場合、走査電極ドライバ2は、選択行に対応するスイッチによって、選択行の走査電極を第一の配線114に接続させ、選択行の電位をVに設定する。選択期間の最後に短絡信号がハイレベルになると、走査電極ドライバ2は、選択している走査電極を第四の配線に接続させる。また、負極性駆動の場合、走査電極ドライバ2は、選択行に対応するスイッチによって、選択行の走査電極を第三の配線116に接続させ、選択行の電位を−Vに設定する。選択期間の最後に短絡信号がハイレベルになると、走査電極ドライバ2は、選択している走査電極を第五の配線に接続させる。また、走査電極ドライバ2は、短絡信号がハイレベルになると、次に選択すべき走査電極を第四の配線または第五の配線に接続させる。このとき、次の選択期間において正極性駆動とすべき場合には次に選択すべき走査電極を第四の配線に接続させ、次の選択期間において負極性駆動とすべき場合には次に選択すべき走査電極を第五の配線15に接続させる。
【0101】
走査電極ドライバ2は、ダミー期間中、全ての走査電極を第二の配線115に接続し、各走査電極の電位をVに設定する。
【0102】
なお、走査電極ドライバ2が次の選択期間において正極性駆動になるのか負極性駆動になるのかを認識できるようにするためには、FRの切り替えタイミングを図3に示す場合よりも、1選択期間だけ早めればよい。そして、走査電極ドライバ2および信号電極ドライバ3は、選択期間開始時のFRの状態が次の選択期間における極性を示しているものと認識すればよい。
【0103】
コントローラ22が短絡信号をハイレベルにする期間は、少なくとも一本の走査電極の時定数の1/2以上に設定される。
【0104】
次に、各走査電極の電位の変化について説明する。ここでは正極性駆動を行うものとする。コントローラ22が選択期間の開始を指示するCL_COMを出力したとする。走査電極ドライバ2は、CL_COMの立ち下がりタイミングで、選択すべき走査電極を第一の配線114に接続させ、他の走査電極を第二の配線115に接続させる。すると、選択行の電位はVになり、非選択行の電位はVになる。
【0105】
コントローラ22は、選択期間Tの最後の所定期間、短絡信号をハイレベルにする。この期間中、走査電極ドライバ2は、選択している走査電極および次に選択すべき走査電極を、第四の配線に接続させる。すると、選択している走査電極は、第四の配線を介して、次に選択される走査電極にC・(V/2)の電荷を供給する。そして、選択している走査電極および次に選択すべき走査電極の電位は、ともにV/2になる。
【0106】
走査電極ドライバ2は、次の選択期間の開始時に、それまで選択していた走査電極の接続先を第四の配線から第二の配線115に切り替える。すると、その走査電極から電圧Vの出力端128にC・(V/2)の電荷が放出され、その走査電極の電位はV/2からVに変化する。また、新たに選択する走査電極の接続先を第四の配線から第一の配線114に切り替える。すると、電圧Vの出力端127は、新たに選択する走査電極にC・(V/2)の電荷を供給し、その走査電極の電位はVに変化する。従って、V用コンデンサ132や−V用コンデンサ133を用いた場合と同様に、走査電極に供給すべき電荷や走査電極から放出される電荷も低減させることができる。なお、ここでは正極性駆動の場合を例に示したが、負極性駆動の場合も同様である。
【0107】
また、選択している走査電極と次に選択すべき走査電極とを接続する際に、第四の配線や第五の配線を用いるのではなく、次に選択すべき走査電極を第一の配線114や第三の配線116に接続させてもよい。この場合、第一の配線や第三の配線にスイッチを設け、短絡信号がハイレベルになっている間、第一の配線や第三の配線と電源回路23との接続状態を断つようにすればよい。
【0108】
また、走査電極同士を接続させるのは、選択期間の最後でなくてもよい。例えば、選択期間の最初に、選択する走査電極と、直前に選択していた走査電極とを接続させるようにしてもよい。
【0109】
[実施の形態2]次に、第二の実施の形態について説明する。第二の実施の形態では、MLAを採用する。図17は、MLAを採用する場合の液晶表示装置の駆動装置の例を示すブロック図である。液晶セル1は、第一の実施の形態で示した液晶セル1と同様である。以下、液晶セル1がノーマリブラックである場合を例に説明する。走査電極ドライバ42および信号電極ドライバ43は、それぞれ複数の電圧出力端子を有する。液晶セル1の個々の走査電極は、走査電極ドライバ42の個々の電圧出力端子と一対一に接続される。液晶セル1の個々の信号電極は、信号電極ドライバ43の個々の電圧出力端子と一対一に接続される。
【0110】
電源回路23の構成は、第一の実施の形態に示した電源回路23と同様である(図2参照)。第一の実施の形態で説明したように、電荷蓄積コンデンサ28の静電容量Cは、一本の信号電極と各走査電極とがなすコンデンサの静電容量をCに比べて十分大きい。CをCの10倍以上とすることが好ましく、さらには100倍以上とすることが好ましい。このようにCを大きくすれば、電荷蓄積コンデンサ28の接地されていない方の電極の電位はVに収束し、ほとんど変化しない。また、電源回路23は、電圧Vの出力端27、電圧−Vの出力端28の他に、電圧V,V,−Vの出力端を備え、走査電極ドライバ42に電圧V,V,−Vを供給する。なお、−V<−V<V<V<Vを満足しているものとする。
【0111】
走査電極ドライバ42は、同時に複数本の走査電極を選択する。同時に選択される走査電極のグループをサブグループ(またはブロック)という。走査電極ドライバ42は、サブグループを切り替えながら各走査電極を選択して液晶セル1を駆動する。走査電極ドライバ42および信号電極ドライバ43は、サブグループ内の各走査電極の電位を定めるL行K列の選択行列の情報を保持する。Lは同時に選択する走査電極の本数である。ただし、本発明にMLAを適用する場合、L=3とする。図18は選択行列の例を示す。選択行列の各行はサブグループの各ラインに対応する。例えば、サブグループの第一番目のラインに対して、選択行列の第一行目の要素が適用される。また、コントローラ41は、選択行列の何列目の要素を適用すべきかを示す信号を走査電極ドライバ42および信号電極ドライバ43に出力する。以下、この信号を「ROW(1:0)」と表す。例えば、ROW(1:0)が第二列を指定する場合、サブグループの第一番目から第三番目の走査電極に対して、それぞれ第二列の要素「1」、「−1」、「1」が適用される。以下の説明では、走査電極ドライバ42および信号電極ドライバ43は図18に示す選択行列の情報を保持しているものとする。
【0112】
図18に示す選択行列において、「1」は、正極性駆動時に選択行の電位を所定の電位V(第一の選択時電位)に設定し、負極性駆動時に選択行の電位を−V(第二の選択時電位)に設定することを意味する。また、「−1」は、正極性駆動時に選択行の電位を−Vに設定し、負極性駆動時に選択行の電位をVに設定することを意味する。コントローラ41は、個々のサブグループに対して選択行列の各列を均等に指定するようにROW(1:0)を出力する。例えば、各サブグループを1回ずつ選択して再び第一番目のサブグループから選択をやり直すときに、指定する列を切り替える。以下、各サブグループを1回ずつ選択して再び第一番目のサブグループから選択をやり直すときに、指定する列を切り替える場合を例に説明する。この場合、あるサブグループを選択してから、次にそのサブグループを選択するまでの期間をサブフレームという。
【0113】
また、コントローラ41は、正極性駆動にすべきか負極性駆動にすべきかを示す信号FRと、第一番目のサブグループから選択をやり直すことを指示する信号(以下、PMと記す。)と、サブグループの切り替えを指示するクロック信号CLと、ダミー期間を指示するDUMを走査電極ドライバ42に出力する。走査電極ドライバ42は、CLが入力されると選択するサブグループを切り替える。また、走査電極ドライバ42は、CLの入力回数をカウントするカウンタを備え、CLが入力される度にカウンタ値を1増加させる。ただし、PMが入力された場合にはカウンタ値を初期化する。選択すべき各走査電極(サブグループ)は、カウンタ値から特定される。
【0114】
走査電極ドライバ42は、個々の選択期間の開始時(CLの立ち下がりタイミング)におけるFRとROW(1:0)に基づいて、選択対象となるサブグループ内の各走査電極に設定すべき電位を決定する。そして、電位を決定した選択期間の二つ後の選択期間において、選択対象としたサブグループの各走査電極に電位を設定する。図19は、走査電極ドライバ42が設定すべき電位を決定し、実際に走査電極にその電位を設定するまでの時間経過を示す説明図である。例えば、図19に示すように、走査電極ドライバ42が選択期間1の開始時におけるFRとROW(1:0)に基づいて、選択対象となるサブグループ内の各走査電極に設定すべき電位を決定したとする。この場合、走査電極ドライバ42は、決定した電位の情報を保持する。走査電極ドライバ42は、次の選択期間2でも、その情報を保持し続け、その次の選択期間3で、その情報に基づいて選択対象としたサブグループの各走査電極に電位を設定する。
【0115】
後述するように、信号電極ドライバ43もROW(1:0)やFR等に基づいて各信号電極の電位の波形を決定する。しかし、この決定には時間がかかる。例えば、図19に示す選択期間1の開始時におけるROW(1:0)やFRに基づいて各信号電極の波形を決定するためには時間がかかる。そのため、実際に各信号電極の電位を設定できるのは図19示す選択期間3になってからである。走査電極ドライバ42は、信号電極ドライバ42が各信号電極の電位を設定するタイミングに合わせて各走査電極に適切な電位を設定しなければならない。そのため、走査電極ドライバ42は、選択期間1で決定した電位の情報を保持し、選択期間3で実際に電位を設定する。
【0116】
また、走査電極ドライバ42は、選択していないサブグループの走査電極を所定の電位V(非選択時電位)設定する。ここでは、V=0Vとする。
【0117】
コントローラ41は、ROW(1:0)の他に、FRと、PHと、SCKと、DUMと、CLとを信号電極ドライバ43に出力する。PHは、選択期間内で信号電極の電位をどのように変化させるのかを規定する信号である。信号電極ドライバ43は、PHがハイレベルの場合、中間調を表示すべき画素が存在する信号電極の電位を−VからVを経てV(第一の信号電極電位)に変化させる。一方、PHがローレベルの場合、信号電極の電位をVからVを経て−V(第二の信号電極電位)に変化させる。SCKは信号電極ドライバ43が備えるカウンタのカウンタ値(SCKカウンタ値)を更新させるための信号である。信号電極ドライバ43は、第一の実施の形態と同様にカウンタを備え、SCKが入力される度にSCKカウンタ値を更新する。
【0118】
ただし、第一の実施の形態と同様に、走査電極ドライバ42に対するCLと信号電極ドライバ43に対するCLとでは、ハイレベルにするタイミングが異なる。第二の実施の形態においても、コントローラ41が走査電極ドライバ42に出力するCLをCL_COMと記し、信号電極ドライバ43に出力するCLをCL_SEGと記すことにより、両者を区別する。
【0119】
図20は、コントローラ41が各信号を出力するタイミングを示す説明図である。コントローラ22は、FR,PM,DUM,PH,CL_COMおよびCL_SEGのレベルやROW(1:0)の切り替えを、SCKの立ち上がりに同期して行うようにする。ただし、SCKが立ち上がるときに、必ず他の各信号を切り替えるわけではない。図20に示すように、CL_COMが立ち下がるタイミング(ハイレベルからローレベルになるタイミング)で選択期間Tが開始する。従って、あるCL_COMの立ち下がりタイミングから次のCL_COMの立ち下がりタイミングまでが選択期間Tとなる。また、図20に示すように、CL_COMの立ち下がりタイミングよりも先にFR、PHおよびROW(1:0)を切り替え、ある選択期間の開始時(CL_COMの立ち下がりタイミング)ではその選択期間に応じたFR、PHおよびROW(1:0)が設定されているようにする。さらに、一つ目のサブグループの選択期間の開始時では、PMがハイレベルに設定されているようにする。
【0120】
FRの切り替え周期(正極性駆動と負極性駆動の切り替え周期)は、選択期間以上である。また、PHの切り替え周期は、選択期間Tと等しい。
【0121】
ダミー期間以外の期間(DUMがローレベルとなる期間)では、走査電極ドライバ42は、入力されるFR,PMおよびCL_COMに従ってサブグループを一組ずつ選択する。このとき、信号電極ドライバ43は選択行の画像データに応じて各信号電極の電位を設定する。一方、ダミー期間(DUMがハイレベルとなる期間)になると、走査電極ドライバ42は全ての走査電極の電位をVに設定する。また、ダミー期間中、信号電極ドライバ3は、所定期間(例えば、各サブグループを一回ずつ選択して走査する期間)内における各信号電極への電位の設定状況に応じた駆動波形で各信号電極の電位を設定する。
【0122】
また、コントローラ41は、定期的にSCKが立ち上がるようにSCKを出力する。SCKの立ち上がりタイミングから次のSCKの立ち上がりタイミングまでの期間がPWM期間である。CL_COMをハイレベルにする期間およびCL_SEGをハイレベルにする期間は、それぞれPWM期間に等しい。また、コントローラ41は、CL_SEGをローレベルに切り替えるタイミングでCL_COMをハイレベルに切り替えるようにCL_SEGおよびCL_COMのレベルを切り替える。すなわち、CL_COMはCL_SEGを1PWM期間遅らせた信号である。
【0123】
信号電極ドライバ43のカウンタは、SCKが立ち上がったときにCL_SEGがハイレベルになっているならばSCKカウンタ値を0に初期化する。SCKが立ち上がったときにCL_SEGがローレベルになっているならばSCKカウンタ値を1増加する。また、信号電極ドライバ43は、SCKが立ち上がったときに新たなPWM期間に移行したと判断し、そのPWM期間において電位を変更すべき信号電極の電位を切り替える。そして、信号電極ドライバ43は、SCKが立ち上がりタイミングで、更新前のSCKカウンタ値を参照する。本実施の形態でも、信号電極ドライバ43が参照するSCKカウンタ値を用いて各PWM期間を表すことにする。例えば、SCKカウンタ値「x」を参照するPWM期間をPWM期間「x」と表す。PWM期間を示す番号は、更新されたSCKカウンタ値よりも一つ前の値である。なお、信号電極ドライバ43がSCKカウンタ値の最大値を参照するPWM期間では、SCKカウンタ値は0に初期化される。
【0124】
コントローラ41が走査電極ドライバ42および信号電極ドライバ43に出力するFR、DUM、PH、CL_COMおよびCL_SEGの各レベルを切り替えるタイミングやSCKを立ち上げるタイミングは第一の実施の形態と同様である。従って、信号電極ドライバ43におけるSCKカウンタ値の変化は、第一の実施の形態と同様である。なお、PMのレベルの切り替えは、第一の実施の形態におけるFLMと同様のタイミングで行えばよい。また、ROW(1:0)の切り替えは、例えば、FRの切り替えと同時に行えばよい。
【0125】
メモリ46は、各走査電極に対応する表示データを記憶する記憶領域と、選択される複数行分の表示データ(Data)を信号電極ドライバ43に出力する出力部(図示せず。)とを備える。コントローラ41は、メモリ46が出力すべき複数行分のデータのアドレスを指定するメモリ制御信号をメモリ46に出力する。メモリ46が備える出力部は、メモリ制御信号によって指定されるアドレスに記憶する表示データを信号電極ドライバ43への出力データ領域にコピーする。
【0126】
信号電極ドライバ43は、コントローラ41からCL_SEGが入力されると、メモリ46の出力データ領域から複数行分の表示データを読み込み、その表示データと、ROW(1:0)、FRおよびPHに基づいて、各信号電極に設定すべき電位の波形を計算する。信号電極ドライバ43は、各選択期間において、この演算結果に応じて各信号電極の電位を設定する。既に説明したように、ある選択期間の開始時におけるFR等に基づいて電位の波形を計算した場合、各信号電極に実際にその電位を設定できるのは、その選択期間の二つ後の選択期間になってからである。
【0127】
また、信号電極ドライバ43の構成は、図4に示した信号電極ドライバ3と同様である。以下、図2を用いて信号電極ドライバ43の構成を説明する。信号電極ドライバ43は、第一の配線14、第二の配線15および第三の配線16を備える。この三本の配線14,15,16は、それぞれV配線24、コンデンサ配線25、−V配線26に接続される。信号電極ドライバ43は、各信号電極に設定すべき電位の波形に応じて、各信号電極を第一の配線14、第二の配線15および第三の配線16のいずれかに接続する。
【0128】
各信号電極に設定すべき電位の波形の計算処理について説明する。個々の信号電極に対応する表示データには、サブグループ内の各行に応じた階調データが含まれる。図21(a)は、一本の信号電極に対応する表示データの例を示す。図21(a)に示す表示データの場合、サブグループの各行の階調を、それぞれ第4階調、第2階調、第29階調とすべきことを意味している。なお、ここでは、第一の実施の形態と同様に、全32階調の表示を行う場合の例を示す。信号電極ドライバ43は、個々の走査電極に対応する表示データを変換する。この変換後のデータを、以下、中間データと記すことにする。
【0129】
図21(b)は、各階調毎の中間データをまとめた一覧表である。各階調の中間データは、「1」または「−1」からなる要素を複数個含むデータである。要素の数は、1選択期間に含まれるPWM期間(分割期間)の数と同数であり、各要素は各PWM期間に対応する。全32階調表示を行う場合、各階調の中間データには、31個の要素が含まれる。第0階調(最低輝度)に対応する中間データの要素は全て「−1」である。第31階調(最高輝度)に対応する中間データの要素は全て「1」である。そして、輝度が1階調上がる毎に、中間データに含まれる「1」の要素が1つ増加し、「−1」の要素が一つ減少する。中間データ内では、例えば「1」の要素が連続して並び、その後「−1」の要素が連続して並ぶ。
【0130】
信号電極ドライバ43は、図21(a)に例示する表示データに含まれる各階調のデータを、対応する中間データに変換する。図21(c)は、表示データから変換された中間データおよびMLA演算結果の例を示す。図21(a)に示す表示データを変換すると、図21(c)に示すようになる。信号電極ドライバ43は、この変換後の中間データと、R(1:0)によってMLA演算を行う。ここでは、R(1:0)によって、図18に示す選択行列の第2列が指定されているものとする。この列の要素は、「1」、「−1」、「1」である。
【0131】
MLA演算は、中間データに含まれる各PWM期間の要素毎に行う。図21(c)において、最初のPWM期間に対応する要素は「1」、「1」、「1」である。この要素と指定された列の要素のうち、対応する要素同士の積を求め、さらのその積の総和を計算する。この場合、(1×1)+(−1×1)+(1×1)を計算する。その計算結果は1となる。信号電極ドライバ43は、この計算結果とFRとに基づいて、信号電極の電位をVにすべきか−Vにすべきかを判断する。FRがハイレベルの場合、計算結果が正ならば信号電極の電位をVにすべきと判断し、計算結果が負ならば信号電極の電位を−Vにすべきと判断する。FRがローレベルの場合、計算結果が正ならば信号電極の電位を−Vにすべきと判断し、計算結果が負ならば信号電極の電位をVにすべきと判断する。図21(c)に示した「設定すべき電位」は、FRがハイレベルである場合の電位である。
【0132】
なお、一般に、MLAでは、同時選択されるライン数をLとすると、信号電極の電位レベルの数はL+1になる。従って、3行を同時選択する場合、信号電極の電位レベルの数は一般に四つとなる。しかし、上述のように計算結果が正か負かによって電位を定めれば、信号電極の電位レベルの数を二つ(本例ではVと−V)に減少させることができる。特開2000−258751公報には、実際に表示されないダミーラインを設け、ダミーラインのデータを選択行列や列表示パターンに追加することによって、信号電極の電位レベル数を減少する方法が記載されている。計算結果が正か負かによって電位を定めて電位レベル数を減少させる方法と、ダミーラインを設けて電位レベル数を減少させる方法とでは、ダミーラインのデータを用いて計算を行うか否かの違いしかない。
【0133】
信号電極ドライバ43は、各PWM期間に対応する要素毎にMLA演算を行い、信号電極の電位をV,−Vのいずれかに定めたならば、全PWM期間内で電位をVに設定すべきとした回数を求める。この回数をNVと表す。図21(c)に示す例では、PWM期間「0」からPWM期間「30」までの各PWM期間のうち、電位をVに設定すべきとした回数は29回である。従って、図21(a)に示す表示データに対応する信号電極のNVは29である。信号電極43は、他の信号電極のNVも同様に求める。
【0134】
信号電極ドライバ43は、NVの値とPHによって、選択期間内における信号電極の電位の波形パターンを決定する。なお、ここでは、電位をVに設定する回数(NV)によって波形パターンを決定する場合について説明するが、電位をVに設定する回数を決定してもよい。図22,23は、選択期間内における信号電極の電位の波形パターンを示す説明図である。ただし、DUMはローレベルであるものとする。図22,23では、全32階調の表示を行う場合の例を示す。この場合、コントローラ41は1選択期間に31回SCKを出力し、信号電極ドライバ43のSCKカウンタ値は1選択期間に0から30までの間で変化する。
【0135】
図22は、PHがハイレベルである場合を示す。信号電極ドライバ43は、NV=31である信号電極の電位を選択期間中Vのままとする。また、NV=0である信号電極の電位を選択期間中−Vのままとする。NVが1から30のうちのいずれかである信号電極の電位は、中間調を表示するため選択期間内で切り替えられる。信号電極ドライバ43は、選択期間開始時に、NVが1〜30のうちのいずれかに該当する各信号電極を第三の配線16に接続し、その各信号電極の電位を−Vとする。そして、PWM期間「1」になると、NVが30である信号電極を第二の配線15に接続する。すると、その信号電極はコンデンサ配線25を介して電荷蓄積コンデンサ28に接続され、その信号電極の電位は−VからVに変化する。PWM期間「2」になると、NVが30である信号電極を第一の配線14に接続する。すると、その信号電極はV配線24を介して電圧Vの出力端27に接続され、その信号電極の電位はVからVに変化する。ここではNVが30である信号電極を例に説明したが、他の信号電極の電位も同様に切り替える。ただし、信号電極を第二の配線15や第一の配線14に接続するタイミングを規定するPWM期間は、NVの値によって異なる。なお、NVが1である信号電極の電位は、PWM期間「30」でVに変化し、その状態で選択期間Tが終了する。
【0136】
図23は、PHがローレベルである場合を示す。NVが0,31である信号電極の電位は、図22に示す場合と同様である。信号電極ドライバ43は、選択期間開始時に、NVが2〜30のうちのいずれかに該当する各信号電極を第一の配線14に接続し、その各信号電極の電位をVとする。また、NVが1である信号電極の電位を第二の配線15に接続し、その信号電極の電位をVとする。PWM期間「1」になると、NVが1である信号電極を第三の配線16に接続する。すると、その信号電極は−V配線26を介して電圧−Vの出力端29に接続され、その信号電極の電位はVから−Vに変化する。また、PWM期間「1」になったとき、NVが2である信号電極を第二の配線15に接続する。すると、その信号電極はコンデンサ配線25を介して電荷蓄積コンデンサ28に接続され、その信号電極の電位はVからVに変化する。PWM期間「2」になると、NVが2である信号電極を第三の配線16に接続する。すると、その信号電極は−V配線26を介して電圧−Vの出力端29に接続され、その信号電極の電位はVから−Vに変化する。他の信号電極の電位もNVが2である信号電極の場合と同様に切り替える。ただし、信号電極を第二の配線15や第三の配線16に接続するタイミングを規定するPWM期間は、NVの値によって異なる。
【0137】
PHの切り替え周期は選択期間Tと等しい。従って、信号電極ドライバ3は、図22,23に示す二種類の波形パターンを選択期間毎に切り替えて各信号電極の電位を設定する。そして、図22に示すPWM期間「30」のときの各設定電位は、NVが0,1である信号電極以外、いずれもVである。また、図23に示すPWM期間「0」のときの各設定電位は、NVが0,1である信号電極以外、いずれもVである。従って、PHがハイレベルである選択期間からPHがローレベルとなる選択期間への切り替えタイミングでは、多くの信号電極で電位を切り替える必要がない。PHがローレベルである選択期間からPHがハイレベルである選択期間への切り替えタイミングでも同様である。
【0138】
信号電極の電位を切り替えるときに電荷が移動する状況は、第一の実施の形態と同様である。すなわち、第一の配線14に接続されている信号電極を第二の配線15に接続すると、その信号電極の電位はVからVに変化する。このとき、信号電極は、電圧−Vの出力端29に電荷を放出せず、C・(V−V)の電荷を電荷蓄積コンデンサ28に移動させる。続いて、その信号電極を第三の配線16に接続すると、信号電極は、電圧−Vの出力端29にC・(V−V)の電荷を放出する。そして、信号電極の電位は−Vとなる。このように電位Vの信号電極からC・(V−V)の電荷を放出して電位を−Vにすればよく、電位Vの信号電極から2・C・(V−V)の電荷を放出させて信号電極の電位を−Vにする必要はない。
【0139】
また、第三の配線16に接続されている信号電極を第二の配線15に接続すると、その信号電極の電位は−VからVに変化する。このとき、電圧Vの出力端27は信号電極に電荷を供給せず、電荷蓄積コンデンサ28が信号電極にC・(V−V)の電荷を供給する。続いて、その信号電極を第一の配線14に接続すると、電圧Vの出力端27は信号電極にC・(V−V)の電荷を供給し、信号電極の電位はVからVに変化する。このように電位Vの信号電極にC・(V−V)の電荷を供給して電位をVにすればよく、電位−Vの信号電極に2・C・(V−V)の電荷を供給して電位をVにする必要はない。従って、第二の実施の形態の場合も、第一の実施の形態と同様に消費電力を低減することができる。
【0140】
第一の実施の形態と同様に、信号電極ドライバ43のスイッチの駆動等に必要な電力は考慮しなければ、従来の駆動方法に比べて、中間調表示のために電圧−Vの出力端29に放出される電荷は約1/2になる。また、中間調表示のために電圧Vの出力端27から供給すべき電荷も約1/2になる。
【0141】
第二の実施の形態では、選択期間内で、NVが1〜30である信号電極の電位を一旦Vに変化させる。従って、クロストークを防止するため、第一の実施の形態と同様に、ダミー期間を設けて実効電圧不足を補う必要がある。ダミー期間では、個々の信号電極毎に、所定期間内(例えば、各サブグループを1回ずつ選択しながら走査する期間内)において電位をVまたは−Vにすることができなかった期間(すなわち電位をVに設定した期間)だけ、電位をVに設定する。また、このダミー期間は、例えばサブフレームの最後に設ければよい。各サブグループを1回ずつ選択する間に一本の信号電極電位をVに設定した期間は、各サブグループを1回ずつ選択する間にその信号電極を第二の配線15に接続した回数とPWM期間との積として求められる。
【0142】
また、ダミー期間内において、電位をVに設定すべき期間が経過したならば、信号電極の電位をVに設定する。
【0143】
ダミー期間の長さは、PWM期間にサブグループ数を乗じた期間よりも長く設定される。サブフレームにおいて、一本の信号電極を第二の配線に接続する回数の最大値はサブグループ数に等しいからである。また、ダミー期間中に信号電極の電位をVに設定する期間を、サブフレーム中に一本の信号電極を第二の配線に接続させた回数とPWM期間との積の約1.2倍程度に定めてもよい。
【0144】
ここでは、ダミー期間中、信号電極の電位をVに設定する場合を示したが、信号電極を第三の配線16に接続して、信号電極の電位を−Vに設定してもよい。ダミー期間に信号電極に設定する電位を、定期的にVと−Vとに切り替えてもよい。例えば、1フレームあるいは数フレームごとに切り替えてもよい。または、FRがハイレベルであるフレームではVに設定し、FRがローレベルであるフレームでは−Vに設定するように定めてもよい。
【0145】
また、各サブグループを順次選択していく途中でFRを切り替えてもよい。この場合であっても、ダミー期間中に信号電極の電位をVまたは−Vに設定する期間は、所定期間内に一本の信号電極を第二の配線15に接続させた回数とPWM期間との積に応じた期間として定めればよい。さらに、ダミー期間中にFRを切り替えてもよい。この場合、信号電極の電位をV,Vのいずれにするかは、ダミー期間内におけるFRに応じて決定してもよい。
【0146】
また、一つのサブフレームの最後にダミー期間を設けるのではなく、サブフレーム内でダミー期間を分散させてもよい。また、複数のサブフレーム分のダミー期間を一つにまとめて設けてもよい。すなわち、各走査電極を1回ずつ選択する期間以外の期間を所定期間として定め、その後にダミー期間を設けるようにしてもよい。ダミー期間内において個々の信号電圧の電位をVまたは−Vにすべき期間は、その所定期間内で、個々の信号電極を第二の配線15に接続させた回数とPWM期間との積によって定まる。
【0147】
MLAを採用する場合、サブグループ内で白表示とすべき各画素の輝度に差が生じる場合がある。例えば、図24に示すようにサブグループである三本の走査電極と二本の信号電極とが交差しているとする。また、第一の信号電極511上の画素513および第二の信号電極512上の画素514は白色表示とすべき画素であるとする。第二の信号電極512上の画素515は中間調を表示すべき画素であるとする。この場合、図24に示すサブグループの選択期間中、第一の信号電極511の電位はVまたは−Vに設定される。一方、第二の信号電極512の電位は、その選択期間中、一旦Vに設定される。その結果、第一の信号電極511上の画素513に印加される実効電圧と、第二の信号電極512上の画素514に印加される実効電圧に差が生じ、画素513,514の輝度に差が生じてしまう。しかし、PWM期間を選択期間の1/15以下にすれば、観察者に輝度の差が認識されず、表示上問題とならない。従って、第二の実施の形態では、PWM期間を選択期間の1/15以下にすることがこのましい。
【0148】
また、選択期間内における信号電極の電位の波形パターンは、図22,23に示す波形パターンに限定されない。図25,26は、他の波形パターンの例を示す。 図25は、PHがハイレベルである場合の波形パターンの例を示す。図25に示す波形パターンでは、中間調とすべき信号電極を第二の配線15に接続する期間(電位をVにする期間)を、図22に示す場合よりも1PWM期間分だけ早めている。図26は、PHがローレベルである場合の波形パターンの例を示す。図26に示す波形パターンでは、中間調とすべき信号電極を第二の配線15に接続する期間(電位をVにする期間)を、図23に示す場合よりも1PWM期間分だけ遅らせている。
【0149】
信号電極の電位の波形パターンとして、図22,23に示す波形パターンの組み合わせのみを採用してもよい。また、図25,26に示す波形パターン組み合わせのみを採用してもよい。あるいは、この二種類の組み合わせを1サブフレーム毎に交互に切り替えてもよい。例えば、あるサブフレームで図22,23に示す波形パターンを採用し、その次のサブフレームで図25,26に示す波形パターンを採用してもよい。また、この二種類の組み合わせを1選択期間毎に交互に切り替えてもよい。例えば、ある選択期間で図22(または図23)に示す波形パターンを採用し、その次の選択期間で図26(または図25)に示す波形パターンを採用してもよい。
【0150】
本実施の形態においても、個々の信号電極を電荷蓄積コンデンサに接続する期間はPWM期間と異なっていてもよい。ただし、中間調とすべき個々の信号電極を1選択期間内で第二の配線15に接続する期間は、少なくとも一本の信号電極の時定数(各信号電極の抵抗RとCとの積)の1/2以上に設定される。
【0151】
本発明の駆動方法では、信号電極に供給すべき電荷や信号電極から放出される電荷を低減させている。併せて、走査電極に供給すべき電荷や走査電極から放出される電荷も低減させて、さらに消費電力を低減させることもできる。この場合、第一の実施の形態で説明したように、電源回路23および走査電極ドライバ2の構成を図16に示すような構成とすればよい。図16に示す電源回路23および走査電極ドライバ2を第二の実施の形態で用いる場合、走査電極ドライバは、選択したサブグループの各走査電極のうち、電位をVにすべき走査電極を第一の配線114に接続する。また、電位を−Vにすべき走査電極を第三の配線114に接続する。他の動作は、第一の実施の形態で説明した動作と同様である。
【0152】
また、第一の実施の形態と同様に、例えば、選択期間の最後で、選択している走査電極と次に選択すべき走査電極とを接続させることによって、走査電極に供給すべき電荷や走査電極から放出される電荷を低減させてもよい。走査電極ドライバ2は、例えば、選択期間の最後に、短絡信号がハイレベルになると、第一の配線114に接続している走査電極と次の選択期間で第一の配線114に接続すべき走査電極とを接続させればよい。また、第二の配線116に接続している走査電極と次の選択期間で第二の配線116に接続すべき走査電極とを接続させればよい。
【0153】
第一の実施の形態および第二の実施の形態では、図2に示すような電源回路で信号電極ドライバに3種類の電位を設定した。図2に示すような構成の電源回路は、本発明以外にも適用できる。例えば、2行を同時選択するMLAにおいて、信号電極に3種類の電位を設定する場合にも適用できる。
【0154】
[実施の形態3]次に、第三の実施の形態について説明する。第二の実施の形態では、IAPTを採用する。図27は、IAPTを採用する場合の液晶表示装置の駆動装置の例を示すブロック図である。液晶セル1は、第一の実施の形態で示した液晶セル1と同様である。以下、液晶セル1がノーマリブラックである場合を例に説明する。走査電極ドライバ52および信号電極ドライバ53は、それぞれ複数の電圧出力端子を有する。液晶セル1の個々の走査電極は、走査電極ドライバ52の個々の電圧出力端子と一対一に接続される。液晶セル1の個々の信号電極は、信号電極ドライバ53の個々の電圧出力端子と一対一に接続される。
【0155】
電源回路51は、信号電極ドライバ53に電圧V,V,V,Vを供給する。V配線61、V配線62、V配線65およびV配線66は、それぞれ電圧V,V,V,Vを信号電極ドライバ53に供給するための配線である。また、正極性用コンデンサ配線64および負極性用コンデンサ配線63は、それぞれ電源回路51が備える所定のコンデンサ(後述する正極性用電荷蓄積コンデンサ、負極性用電荷蓄積コンデンサ)に各信号電極を接続するための配線である。また、電源回路51は、走査電極ドライバ52に電圧V,V,V,Vを供給する。なお、図27では、走査電極ドライバ52に電圧を供給するための配線を一本に簡略化して示した。電源回路51が出力する電圧V〜Vは、V<V<V<V<V<VかつV−V=V−V=V−V=V−Vが成立するように定められる。
【0156】
なお、電圧Vは、正極性駆動時に選択された走査電極に印加され、また、負極性駆動時に最高輝度とすべき画素が存在する信号電極に印加される電圧である。電圧Vは、負極性駆動時に選択されていない走査電極に印加される電圧である。電圧Vは、負極性駆動時に最低輝度とすべき画素が存在する信号電極に印加される電圧である。電圧Vは、正極性駆動時に最低輝度とすべき画素が存在する信号電極に印加される電圧である。電圧Vは、正極性駆動時に選択されていない走査電極に印加される電圧である。電圧Vは、負極性駆動時に選択された走査電極に印加され、また、正極性駆動時に最高輝度とすべき画素が存在する信号電極に印加される電圧である。
【0157】
本実施の形態において、電位V,Vは、それぞれ第一の選択時電位、第一の非選択時電位である。電位V,Vは、それぞれ第一のオン表示電位、第一のオフ表示電位である。電位V,Vは、それぞれ第二の選択時電位、第二の非選択時電位である。電位V,Vは、それぞれ第二のオン表示電位、第二のオフ表示電位である。
【0158】
図28は電源回路51の例を示す説明図である。電源回路51は、電圧Vの出力端71と、電圧Vの出力端72と、電圧Vの出力端75と、電圧Vの出力端76とを備える。また、電源回路51は、電圧V,Vの出力端も備えるが図28では省略した。電圧Vの出力端71には、出力電圧を安定させるためのコンデンサ71が設けられる。同様に他の電圧の出力端にもコンデンサ72,75,76が設けられる。また、電源回路51は、正極性用電荷蓄積コンデンサ74および負極性用電荷蓄積コンデンサ73を備える。正極性用電荷蓄積コンデンサ74および負極性用電荷蓄積コンデンサ73は、いずれも各信号電極が放出する電荷を蓄積し、また、各信号電極に電荷を供給するためのコンデンサである。正極性用電荷蓄積コンデンサ74および負極性用電荷蓄積コンデンサ73は、それぞれ正極性用コンデンサ配線64、負極性用コンデンサ配線63を介して信号電極ドライバ53に接続される。また、各コンデンサ73,74の一方の電極は接地される。
【0159】
正極性用電荷蓄積コンデンサ74および負極性用電荷蓄積コンデンサ73の静電容量をそれぞれCとする。Cは、液晶を挟持する一本の信号電極と各走査電極とが形成するコンデンサの静電容量Cの10倍以上であることが好ましい。さらに好ましくは100倍以上とする。
【0160】
がCよりも十分大きいならば、時間が経過すると正極性用電荷蓄積コンデンサ74の接地されていない方の電極はほぼ一定の電位に収束する。正極性用電荷蓄積コンデンサ74は、電位Vの信号電極と電位Vの信号電極に接続される。そして、電位Vの信号電極に接続される回数と、電位Vの信号電極に接続される回数は同数である。従って、図2に示す電荷蓄積コンデンサ28の電位がV,−Vの平均電位Vに収束したのと同様に、正極性用電荷蓄積コンデンサ74の接地されていない方の電極の電位はV,Vの平均電位(V+V)/2に収束する。同様に、負極性用電荷蓄積コンデンサ73の接地されていない方の電極の電位は(V+V)/2に収束する。また、CがCよりも十分に大きいと、正極性用電荷蓄積コンデンサ74や負極性用電荷蓄積コンデンサ73に接続される信号電極が切り替えられても、収束した電位はほとんど変化しない。以下の説明では、正極性用電荷蓄積コンデンサ74の接地されていない方の電極の電位が(V+V)/2であるものとして説明する。また、負極性用電荷蓄積コンデンサ73の接地されていない方の電位が(V+V)/2であるものとして説明する。また、以下の説明では、(V+V)/2、(V+V)/2をそれぞれV、Vと表す。
【0161】
走査電極ドライバ52は、走査電極を一本ずつ選択しながら全ての走査電極を走査するように液晶セル1を駆動する。
【0162】
信号電極ドライバ53は、一本の走査電極の選択期間中、各信号電極の電位を、選択行の画素の表示データに応じた電位に設定する。正極性駆動時において信号電極ドライバ53は、選択行の画素のうち最高輝度とすべき画素が存在する信号電極の電位をVに設定し、最低輝度とすべき画素が存在する信号電極の電位をVに設定する。中間調を表示すべき画素が存在する信号電極の電位は、選択期間の途中でVからVまたはVからVに切り替えられる。ただし階調が最高輝度に近いほど、電位をVに設定する期間を長くする。負極性駆動時において信号電極ドライバ53は、選択行の画素のうち最高輝度とすべき画素が存在する信号電極の電位をVに設定し、最低輝度とすべき画素が存在する信号電極の電位をVに設定する。中間調を表示すべき画素が存在する信号電極の電位は、正極性駆動時と同様に、選択期間の途中でVからVまたはVからVに切り替えられる。ただし階調が最高輝度に近いほど、電位をVに設定する期間を長くする。
【0163】
また、信号電極ドライバ53は、中間調を表示すべき画素が存在する信号電極の電位を切り替えるタイミングを特定するためのカウンタを備える。信号電極ドライバ53は、第一の実施の形態と同様に、コントローラ22から所定の信号(SCK)が入力される度にカウンタのSCKカウンタ値を1増加させる。信号電極ドライバ53は、SCKカウンタ値に応じて、中間調を表示すべき画素が存在する信号電極の電位を切り替える。
【0164】
メモリ21は、各走査電極に対応する表示データを記憶する記憶領域と、コントローラ22の制御に従って一行分の表示データ(Data)を信号電極ドライバ53に出力する出力部(図示せず。)とを備える。コントローラ22は、メモリ21が出力すべき一行分のデータのアドレスを指定するメモリ制御信号をメモリ21に出力する。メモリ21が備える出力部は、メモリ制御信号によって指定されるアドレスに記憶する表示データを信号電極ドライバ53への出力データ領域にコピーする。
【0165】
また、コントローラ22は、信号電極ドライバ53に、CL(クロック信号)、FR、DUM、SCKおよびPHを出力する。CLは、選択する走査電極の切り換えを示すラッチパルスである。FRは、正極性駆動にすべきか負極性駆動にすべきかを指示する信号である。ここでは、正極性駆動を指示する場合にFRをハイレベルにするものとする。DUMは、後述するダミー期間を指示するための信号である。ここでは、ダミー期間を指示する場合にDUMをハイレベルにするものとする。SCKは、信号電極ドライバ53が備えるカウンタのSCKカウンタ値を1増加させるための信号である。
【0166】
PHは、選択期間中に、中間調を表示すべき画素の印加電圧を高電圧から低電圧に切り替えるのか、低電圧から高電圧に切り替えるのかを指示する信号である。ここでは、高電圧から低電圧への切り替えを指示する場合にPHをハイレベルにするものとする。従って、FRがハイレベル(正極性駆動)である場合、PHがハイレベルならば中間調を表示すべき画素が存在する信号電極の電位をVからVに切り替え、PHがローレベルならばVからVに切り替える。また、FRがローレベル(負極性駆動)である場合、PHがハイレベルならば中間調を表示すべき画素が存在する信号電極の電位をVからVに切り替え、PHがローレベルならばVからVに切り替える。
【0167】
また、コントローラ22は、走査電極ドライバ52に、CLと、FRと、DUMと、1フレームの開始を示すFLM(ファーストラインマーカ)とを出力する。第一の実施の形態と同様に、走査電極ドライバ52に対するCLと信号電極ドライバ53に対するCLとでは、ハイレベルにするタイミングが異なる。第三の実施の形態においても、コントローラ22が走査電極ドライバ52に出力するCLをCL_COMと記し、信号電極ドライバ53に出力するCLをCL_SEGと記すことにより、両者を区別する。
【0168】
コントローラ22が各信号を出力するタイミングは第一の実施の形態と同様であり、例えば、図3に示すように表される。コントローラ22は、FR,FLM,DUM,PH,CL_COMおよびCL_SEGのレベル切り替えを、SCKの立ち上がりに同期して行うようにする。ただし、SCKが立ち上がるときに、必ず他の各信号を切り替えるわけではない。図3に示すように、CL_COMが立ち下がるタイミング(ハイレベルからローレベルになるタイミング)で選択期間Tが開始する。従って、あるCL_COMの立ち下がりタイミングから次のCL_COMの立ち下がりタイミングまでが選択期間Tとなる。また、図3に示すように、CL_COMの立ち下がりタイミングよりも先にFRやPHを切り替え、ある選択期間の開始時(CL_COMの立ち下がりタイミング)ではその選択期間に応じたFRやPHが設定されているようにする。さらに、第一行の選択期間の開始時では、FLMがハイレベルに設定されているようにする。
【0169】
FRの切り替え周期(正極性駆動と負極性駆動の切り替え周期)は、選択期間以上である。また、PHの切り替え周期は、選択期間Tと等しい。
【0170】
ダミー期間以外の期間(DUMがローレベルとなる期間)では、走査電極ドライバ52は、入力されるFR,FLMおよびCL_COMに従って走査電極を一本ずつ選択する。このとき、信号電極ドライバ53は選択行の画像データに応じて各信号電極の電位を設定する。一方、ダミー期間(DUMがハイレベルとなる期間)になると、走査電極ドライバ52は全ての走査電極の電位をVまたはVに設定する。ダミー期間にFRがハイレベルとなっているならばVに設定し、ローレベルとなっているならばVに設定する。また、ダミー期間中、信号電極ドライバ53は、所定期間(例えば、各行を一回ずつ選択しながら走査する期間)内における各信号電極への電位の設定状況に応じた駆動波形で各信号電極の電位を設定する。ダミー期間中における信号電極電位の波形については後述する。
【0171】
また、コントローラ22は、定期的にSCKが立ち上がるようにSCKを出力する。SCKの立ち上がりタイミングから次のSCKの立ち上がりタイミングまでの期間がPWM期間である。CL_COMをハイレベルにする期間およびCL_SEGをハイレベルにする期間は、それぞれPWM期間に等しい。また、コントローラ22は、CL_SEGをローレベルに切り替えるタイミングでCL_COMをハイレベルに切り替えるようにCL_SEGおよびCL_COMのレベルを切り替える。すなわち、CL_COMはCL_SEGを1PWM期間遅らせた信号である。
【0172】
信号電極ドライバ53のカウンタは、SCKが立ち上がったときにCL_SEGがハイレベルになっているならばSCKカウンタ値を0に初期化する。SCKが立ち上がったときにCL_SEGがローレベルになっているならばSCKカウンタ値を1増加する。また、信号電極ドライバ53は、SCKが立ち上がったときに新たなPWM期間に移行したと判断し、そのPWM期間において電位を変更すべき信号電極の電位を切り替える。そして、信号電極ドライバ53は、SCKが立ち上がりタイミングで、更新前のSCKカウンタ値を参照する。本実施の形態でも、信号電極ドライバ53が参照するSCKカウンタ値を用いて各PWM期間を表すことにする。例えば、SCKカウンタ値「x」を参照するPWM期間をPWM期間「x」と表す。PWM期間を示す番号は、更新されたSCKカウンタ値よりも一つ前の値である。なお、信号電極ドライバ53がSCKカウンタ値の最大値を参照するPWM期間では、SCKカウンタ値は0に初期化される。
【0173】
このようにコントローラ22の信号出力タイミングは、第一の実施の形態と同様である。従って、信号電極ドライバ53におけるSCKカウンタ値の変化も、第一の実施の形態と同様である。
【0174】
図29は、信号電極ドライバ53の構成例を示す説明図である。信号電極ドライバ53は、V配線61に接続され電圧Vが供給される第一の配線81と、V配線62に接続され電圧Vが供給される第二の配線82と、負極性用コンデンサ配線63に接続される第三の配線83と、正極性用コンデンサ配線64に接続される第四の配線84と、V配線65に接続され電圧Vが供給される第五の配線85と、V配線66に接続され電圧Vが供給される第六の配線86とを備える。各信号電極は第一の配線81から第六の配線86のいずれかに接続される。信号電極が接続される配線が切り替えられると、その信号電極の電位も切り替えられる。接続の切り替えは、各信号電極と一対一に対応するスイッチ87,88等によって行う。図29では、二つのスイッチを示すが、信号電極ドライバ53は各信号電極に対応するスイッチを備える。
【0175】
信号電極ドライバ53は、選択期間開始時のPHおよびFRに基づいて、中間調を表示すべき画素が存在する信号電極の電位を切り替える。ただし、電位V(信号電極を第五の配線85に接続させた状態)から電位V(信号電極を第六の配線86に接続させた状態)に切り替えるときには、その信号電極を第四の配線84に接続させてから切り替える。電位Vから電位Vに切り替える場合も同様である。信号電極を第四の配線84に接続すると、その信号電極は正極性用コンデンサ配線64を介して正極性用電荷蓄積コンデンサ74に接続される。すると、その信号電極の電位はVになる。従って、信号電極の電位をVからVまたはVからVに切り替える場合、その信号電極の電位は一旦VとなってからVまたはVになる。
【0176】
また、信号電極ドライバ53は、信号電極の電位を電位V(信号電極を第一の配線81に接続させた状態)から電位V(信号電極を第二の配線82に接続させた状態)に切り替えるときには、その信号電極を第三の配線83に接続させてから切り替える。電位Vから電位Vに切り替える場合も同様である。信号電極を第三の配線84に接続すると、その信号電極は負極性用コンデンサ配線63を介して負極性用電荷蓄積コンデンサ73に接続される。すると、その信号電極の電位はVになる。従って、信号電極の電位をVからVまたはVからVに切り替える場合、その信号電極の電位は一旦VとなってからVまたはVになる。
【0177】
図30〜33は、選択期間内における信号電極の電位の波形パターンを示す説明図である。ただし、DUMはローレベルであるものとする。図30〜33では、全32階調の表示を行う場合の例を示す。この場合、コントローラ22は1選択期間に31回SCKを出力し、信号電極ドライバ53のSCKカウンタ値は1選択期間に0から30までの間で変化する。
【0178】
図30は、FRとPHとがともにハイレベルである場合を示す。第0階調は最低輝度を表すので、信号電極ドライバ53は、第0階調とすべき信号電極の電位を選択期間中Vのままとする。また、第31階調は最高輝度を表すので、信号電極ドライバ53は、第31階調とすべき信号電極の電位を選択期間中Vのままとする。第1階調から第31階調までは中間調表示であり、低い階調ほど最低輝度に状態に近い表示となる。信号電極ドライバ53は、選択期間開始時に、中間調とすべき各信号電極を第六の配線86に接続し、その各信号電極の電位をVとする。そして、PWM期間「1」になると、第1階調とすべき信号電極を第四の配線84に接続する。すると、その信号電極は正極性用コンデンサ配線64を介して正極性用電荷蓄積コンデンサ74に接続され、その信号電極の電位はVからVに変化する。PWM期間「2」になると、第1階調とすべき信号電極を第五の配線85に接続する。すると、その信号電極はV配線65を介して電圧Vの出力端75に接続され、その信号電極の電位はVからVに変化する。ここでは、第1階調とすべき信号電極を例に説明したが、他の階調とすべき信号電極の電位も同様に切り替える。ただし、信号電極を第四の配線84や第五の配線85に接続するタイミングを規定するPWM期間は、階調毎に異なる。なお、第30階調とすべき信号電極の電位は、PWM期間「30」でVに変化し、その状態で選択期間Tが終了する。
【0179】
図31は、FRがハイレベルでありPHがローレベルである場合を示す。第0階調および第31階調とすべき信号電極の電位は、図30に示す場合と同様である。信号電極ドライバ53は、選択期間開始時に、中間調(ただし、第30階調は除く。)とすべき各信号電極を第五の配線85に接続し、その各信号電極の電位をVとする。また、第30階調とすべき信号電極を第四の配線84に接続し、その信号電極の電位をVとする。PWM期間「1」になると、第30階調とすべき信号電極を第六の配線86に接続する。すると、その信号電極はV配線66を介して電圧Vの出力端76に接続され、その信号電極の電位はVからVに変化する。また、PWM期間「1」になったとき、第29階調とすべき信号電極を第四の配線84に接続する。すると、その信号電極は正極性用コンデンサ配線64を介して正極性用電荷蓄積コンデンサ74に接続され、その信号電極の電位はVからVに変化する。PWM期間「2」になると、第29階調とすべき信号電極を第六の配線86に接続する。すると、その信号電極はV配線66を介して電圧Vの出力端76に接続され、その信号電極の電位はVからVに変化する。他の階調とすべき信号電極の電位も第29階調とすべき信号電極の場合と同様に切り替える。ただし、信号電極を第四の配線84や第六の配線86に接続するタイミングを規定するPWM期間は、階調毎に異なる。
【0180】
PHの切り替え周期は選択期間Tと等しい。従って、正極性駆動時において、信号電極ドライバ53は、図30,31に示す二種類の波形パターンを選択期間毎に切り替えて各信号電極の電位を設定する。そして、図30に示すPWM期間「30」のときの各設定電位は、第30階調または第31階調とすべき信号電極以外、いずれもVである。また、図31に示すPWM期間「0」のときの各設定電位は、第30階調または第31階調とすべき信号電極以外、いずれもVである。従って、PHがハイレベルである選択期間からPHがローレベルとなる選択期間への切り替えタイミングでは、多くの信号電極で電位を切り替える必要がない。PHがローレベルである選択期間からPHがハイレベルである選択期間への切り替えタイミングでも同様である。
【0181】
図32は、FRがローレベルでありPHがハイレベルである場合を示す。信号電極ドライバ53は、第0階調とすべき信号電極の電位を選択期間中Vのままとする。また、第31階調とすべき信号電極の電位を選択期間中Vのままとする。信号電極ドライバ53は、選択期間開始時に、中間調とすべき各信号電極を第一の配線81に接続し、その各信号電極の電位をVとする。そして、PWM期間「1」になると、第1階調とすべき信号電極を第三の配線83に接続する。すると、その信号電極は負極性用コンデンサ配線63を介して負極性用電荷蓄積コンデンサ73に接続され、その信号電極の電位はVからVに変化する。PWM期間「2」になると、第1階調とすべき信号電極を第二の配線82に接続する。すると、その信号電極はV配線62を介して電圧Vの出力端72に接続され、その信号電極の電位はVからVに変化する。ここでは、第1階調とすべき信号電極を例に説明したが、他の階調とすべき信号電極の電位も同様に切り替える。ただし、信号電極を第三の配線83や第二の配線82に接続するタイミングを規定するPWM期間は、階調毎に異なる。なお、第30階調とすべき信号電極の電位は、PWM期間「30」でVに変化し、その状態で選択期間Tが終了する。
【0182】
図33は、FRとPHとがともにローレベルである場合を示す。第0階調および第31階調とすべき信号電極の電位は、図32に示す場合と同様である。信号電極ドライバ53は、選択期間開始時に、中間調(ただし、第30階調は除く。)とすべき各信号電極を第二の配線82に接続し、その各信号電極の電位をVとする。また、第30階調とすべき信号電極を第三の配線83に接続し、その信号電極の電位をVとする。PWM期間「1」になると、第30階調とすべき信号電極を第一の配線81に接続する。すると、その信号電極はV配線61を介して電圧Vの出力端71に接続され、その信号電極の電位はVからVに変化する。また、PWM期間「1」になったとき、第29階調とすべき信号電極を第三の配線83に接続する。すると、その信号電極は負極性用コンデンサ配線63を介して負極性用電荷蓄積コンデンサ73に接続され、その信号電極の電位はVからVに変化する。PWM期間「2」になると、第29階調とすべき信号電極を第一の配線81に接続する。すると、その信号電極はV配線61を介して電圧Vの出力端71に接続され、その信号電極の電位はVからVに変化する。他の階調とすべき信号電極の電位も第29階調とすべき信号電極の場合と同様に切り替える。ただし、信号電極を第三の配線83や第一の配線81に接続するタイミングを規定するPWM期間は、階調毎に異なる。
【0183】
負極性駆動時において、信号電極ドライバ53は、図32,33に示す二種類の波形パターンを選択期間毎に切り替えて各信号電極の電位を設定する。そして、図32に示すPWM期間「30」のときの各設定電位は、第30階調または第31階調とすべき信号電極以外、いずれもVである。また、図33に示すPWM期間「0」のときの各設定電位は、第30階調または第31階調とすべき信号電極以外、いずれもVである。従って、PHがハイレベルである選択期間からPHがローレベルとなる選択期間への切り替えタイミングでは、多くの信号電極で電位を切り替える必要がない。PHがローレベルである選択期間からPHがハイレベルである選択期間への切り替えタイミングでも同様である。
【0184】
図30〜33に示す波形パターンで各信号電極の電位を設定した場合、1選択期間中に選択行の画素に印加される実効電圧の平均値は、階調によって異なる。表2は、1選択期間中に選択行の画素に印加される実効電圧の平均値を階調毎にまとめたものである。ただし、第3階調から第28階調については省略した。また、各信号電極には、図30,31に示す波形パターン(正極性駆動時の波形パターン)で電位を設定しているものとする。
【0185】
【表2】
Figure 0004176423
【0186】
表2に示すように、1選択期間中に選択行の画素に印加される実効電圧の平均値は、高い階調ほど上昇する。負極性駆動時の波形パターンで電位を設定した場合であっても、実効電圧の平均値は高い階調ほど上昇する。
【0187】
次に、正極性駆動時に信号電極の電位を変化させるときの電荷の移動について説明する。第五の配線85に接続されている信号電極を第四の配線84に接続すると、その信号電極の電位はVからVに変化する。このとき、信号電極は、電圧Vの出力端76に電荷を放出せず、C・(V−V)の電荷を正極性用電荷蓄積コンデンサ74に移動させる。正極性用電荷蓄積コンデンサ74はこの電荷を蓄積する。続いて、その信号電極を第六の配線86に接続すると、信号電極は、電圧Vの出力端76にC・(V−V)の電荷を放出する。そして、信号電極の電位はVとなる。このように電位Vの信号電極からC・(V−V)の電荷を放出して電位をVにすればよく、電位Vの信号電極からC・(V−V)の電荷を放出させて信号電極の電位をVにする必要はない。従って、電圧Vの出力端76に放出する電荷は少なくて済む。
【0188】
また、第六の配線86に接続されている信号電極を第四の配線84に接続すると、その信号電極の電位はVからVに変化する。このとき、電圧Vの出力端75は信号電極に電荷を供給せず、正極性用電荷蓄積コンデンサ74が信号電極にC・(V−V)の電荷を供給する。続いて、その信号電極を第五の配線85に接続すると、電圧Vの出力端75は信号電極にC・(V−V)の電荷を供給し、信号電極の電位はVからVに変化する。このように電位Vの信号電極にC・(V−V)の電荷を供給して電位をVにすればよく、電位Vの信号電極にC・(V−V)の電荷を供給して電位をVにする必要はない。従って、電圧Vの出力端75から供給すべき電荷は少なくなる。
【0189】
同様に、負極性駆動時の電荷の移動について説明する。第一の配線81に接続されている信号電極を第三の配線83に接続すると、その信号電極の電位はVからVに変化する。このとき、信号電極は、電圧Vの出力端72に電荷を放出せず、C・(V−V)の電荷を負極性用電荷蓄積コンデンサ73に移動させる。負極性用電荷蓄積コンデンサ73はこの電荷を蓄積する。続いて、その信号電極を第二の配線82に接続すると、信号電極は、電圧Vの出力端72にC・(V−V)の電荷を放出する。そして、信号電極の電位はVとなる。このように電位Vの信号電極からC・(V−V)の電荷を放出して電位をVにすればよく、電位Vの信号電極からC・(V−V)の電荷を放出させて信号電極の電位をVにする必要はない。従って、電圧Vの出力端72に放出する電荷は少なくて済む。
【0190】
また、第二の配線82に接続されている信号電極を第三の配線73に接続すると、その信号電極の電位はVからVに変化する。このとき、電圧Vの出力端71は信号電極に電荷を供給せず、負極性用電荷蓄積コンデンサ73が信号電極にC・(V−V)の電荷を供給する。続いて、その信号電極を第一の配線81に接続すると、電圧Vの出力端71は信号電極にC・(V−V)の電荷を供給し、信号電極の電位はVからVに変化する。このように電位Vの信号電極にC・(V−V)の電荷を供給して電位をVにすればよく、電位Vの信号電極にC・(V−V)の電荷を供給して電位をVにする必要はない。従って、電圧Vの出力端71から供給すべき電荷は少なくなる。
【0191】
従来の駆動方法では、信号電極の電位をVからVに変化させたり、VからVに変化させたりする場合、信号電極を電荷蓄積コンデンサに接続することはなかった。本発明のように電荷蓄積コンデンサを用いれば、従来の駆動方法に比べて、中間調表示のために電圧Vや電圧Vの出力端に放出される電荷は約1/2になる。また、中間調表示のために電圧Vや電圧Vの出力端から供給すべき電荷も約1/2になる。ただし、ここでは信号電極ドライバ3のスイッチの駆動等に必要な電力は考慮していない。
【0192】
このように、電圧の出力端72,76に放出される電荷や電圧の出力端71,76から供給すべき電荷を少なくすることができるので、消費電力は低減される。また、選択期間が切り替わるタイミングでは、多くの信号電極で電位を切り替える必要がない。従って、選択期間が切り替わるタイミングで生じる消費電力も低減することができる。
【0193】
第三の実施の形態では、選択期間内で、中間調の画素が存在する信号電極の電位を一旦VまたはVに変化させる。従って、クロストークを防止するため、第一の実施の形態と同様に、ダミー期間を設けて実効電圧不足を補う。ダミー期間中に設定すべき信号電極の電位について説明する。
【0194】
ダミー期間では、個々の信号電極毎に、所定期間(例えば、各走査電極を一回ずつ選択しながら走査する期間)に電位をV,V,V,Vのいずれにも設定することができなかった期間(すなわち、電位をVまたはVに設定した期間)だけ、その信号電極の電位をV,V,V,Vのいずれかに設定する。また、このダミー期間は、例えば1フレームの最後に設ければよい。一本の信号電極について、各走査電極を一回ずつ選択しながら走査する間にその信号電極の電位をVまたはVに設定した期間は、以下のように求められる。すなわち、各走査電極を一回ずつ選択する間に、その信号電極を第四の配線84に接続した回数と第三の配線83に接続した回数の和を求める。この和とPWM期間との積が、信号電極電位をVまたはVに設定した期間となる。なお、信号電極ドライバ53は、所定期間内に信号電極を第四の配線84や第三の配線83に接続させた回数を信号電極毎に記憶しておく。
【0195】
ダミー期間では、FRがハイレベルのときに、全ての走査電極の電位をVに設定し、FRがローレベルのときに全ての走査電極の電位をVに設定する。そして、個々の信号電極について、所定期間内に電位をVまたはVに設定した期間、電位をV,V,V,Vのいずれかに設定する。このとき、FRがハイレベルのときに信号電極の電位をVまたはVとする。この場合、信号電極の電位をVとしてもVとしてもよい。また、FRがローレベルのときに信号電極の電位をVまたはVとする。この場合、信号電極の電位をVとしてもVとしてもよい。
【0196】
また、ダミー期間内において、電位をV,V,V,Vのいずれかに設定すべき期間が経過したならば、信号電極を正極性用電荷蓄積コンデンサ74または負極性電荷蓄積コンデンサ73に接続し、信号電極の電位をVまたはVに設定する。このとき、FRがハイレベルならば信号電極を正極性用電荷蓄積コンデンサ74に接続し、FRがローレベルならば信号電極を負極性用電荷蓄積コンデンサ73に接続する。
【0197】
このようにダミー期間中、信号電極の電位をVまたはVとするのか、VまたはVとするのかはダミー期間におけるFRによって定められる。同様に、電位をV,V,V,Vのいずれかに設定すべき期間が経過した後、電位をV,Vのいずれに設定するのかについてもダミー期間におけるFRによって定められる。
【0198】
図34は、ダミー期間内での信号電極電位の例を示す説明図である。なお、FRはハイレベルに保たれているとする。図34に示す第一の信号電極の電位は、選択期間中Vに設定されていない。従って、ダミー期間では、第一の信号電極の電位をVのまま維持する。第二の信号電極の電位は、最終行を選択するまでの間にm回Vになったとする。この場合、ダミー期間では、PWM期間のm倍の期間だけ電位をVに設定する。その後、信号電極を正極性用電荷蓄積コンデンサに接続し、電位をVからVに変化させる。第三の信号電極の電位は、最終行を選択するまでの間にn回Vになったとする。この場合、ダミー期間では、PWM期間のn倍の期間だけ電位をVに設定する。その後、信号電極を正極性用電荷蓄積コンデンサ74に接続し、電位をVからVに変化させる。
【0199】
図34では、ダミー期間中に電位をVに設定する場合を示したが、ダミー期間中に信号電極に設定すべき電位はVであってもVであってもよい。この理由について説明する。一本の走査電極の選択期間中に信号電極の電位をVに設定しなければ、非選択行の走査電極とその信号電極との間の電圧の絶対値は、V−Vと表される。この電圧をAとする。なお、信号電極の電位がVであったとしても、V−V=V−Vであるので、非選択行の走査電極と信号電極との間の電圧の絶対値はAである。信号電極の電位をVに設定すると、V=Vであるので、その間、非選択行の走査電極とその信号電極との間の電圧は0Vとなる。ダミー期間では、信号電極の電位をVとした期間における実効電圧不足を補えればよい。従って、ダミー期間で信号電極の電位をV,Vのいずれにしたとしても、走査電極の電位がVであるので、その信号電極と走査電極間の電圧はAとなり、実効電圧不足が補える。従って、信号電極の電位をVとしてもVとしてもよい。ダミー期間においてFRがローレベルの場合に信号電極の電位をVとVのどちらに設定してもよい理由も同様である。
【0200】
また、第一の実施の形態と同様に、FRの切り替え周期は1フレームに限定されない。従って、各行を順次選択する期間とダミー期間とでFRのレベルが切り替えられてもよい。例えば、図34に示す例において、ダミー期間におけるFRがローレベルであったとする。この場合、ダミー期間中、第一の信号電極を負極性用電荷蓄積コンデンサ73に接続し電位をVにすればよい。また、PWM期間のm倍の期間だけ、第二の信号電極の電位をVまたはVに設定する。その期間の経過後、信号電極を負極性用電荷蓄積コンデンサに接続し、電位をVに変化させる。信号電極の電位をVまたはVにしたとしても、FRがローレベルの場合、走査電極の電位はVである。そして、V−V、V−Vは、前述の電圧Aに等しい。よって、このように電位を設定したとしても、実効電圧不足を補うことができる。
【0201】
従って、ダミー期間中の信号電極の電位は、ダミー期間におけるFRに基づいて定めればよい。各行を順次選択していく途中でFRを切り替えた場合であっても同様である。ダミー期間中に、FRのレベルを切り替える場合には、FRの切り替えに従って、各信号電極の電位も切り替えればよい。
【0202】
また、ダミー期間における信号電極および走査電極の電位をFRに依らずに定めてもよい。例えば、あるフレームのダミー期間では、走査電極の電位をVとし、信号電極の電位をVまたはVとする。そして、信号電極の電位をVまたはVとすべき期間の経過後に、その信号電極を正極性用電荷蓄積コンデンサ74に接続し、その信号電極の電位をVとする。そして、次のフレームのダミー期間では、走査電極の電位をVとし、信号電極の電位をVまたはVとする。そして、信号電極の電位をVまたはVとすべき期間の経過後に、その信号電極を負極性用電荷蓄積コンデンサ73に接続し、その信号電極をVとする。このように、1フレーム毎に、電位の設定の仕方を切り替えてもよい。
【0203】
また、ダミー期間の長さは、PWM期間に全走査電極数を乗じた期間よりも長く設定される。各行を一回ずつ選択する間に、一本の信号電極を第四の配線84(または第三の配線83)に接続する回数の最大値は全走査電極数に等しいからである。また、ダミー期間中に信号電極の電位をVやV等に設定する期間を、信号電極を第四の配線84(または第三の配線83)に接続させた回数とPWM期間との積の約1.2倍程度に定めてもよい。
【0204】
また、1フレームの最後にダミー期間を設けるのではなく、1フレーム内でダミー期間を分散させてもよい。また、複数のフレーム分のダミー期間を一つにまとめて設けてもよい。すなわち、各走査電極を1回ずつ選択する期間以外の期間を所定期間として定め、その後にダミー期間を設けるようにしてもよい。ダミー期間内において個々の信号電圧の電位をV,V,V,Vのいずれかに設定すべき期間は、その所定期間内で個々の走査電極を第四の配線64に接続した回数と第三の配線63に接続した回数との和に、PWM期間を乗じた値によって定まる。
【0205】
本実施の形態の選択期間内における信号電極の電位の波形パターンは、図30〜33に示す波形パターンに限定されない。図35〜38は、他の波形パターンの例を示す。図35は、FRとPHとがともにハイレベルである場合の波形パターンの例を示す。図35に示す波形パターンでは、中間調とすべき信号電極を第四の配線84に接続する期間(電位をVにする期間)を、図30に示す場合よりも1PWM期間分だけ早めている。図36は、FRがハイレベルでありPHがローレベルである場合の波形パターンの例を示す。図36に示す波形パターンでは、中間調とすべき信号電極を第四の配線84に接続する期間(電位をVにする期間)を、図31に示す場合よりも1PWM期間分だけ遅らせている。
【0206】
また、図37は、FRがローレベルでありPHがハイレベルである場合の波形パターンの例を示す。図37に示す波形パターンでは、中間調とすべき信号電極を第三の配線83に接続する期間(電位をVにする期間)を、図32に示す場合よりも1PWM期間分だけ早めている。図38は、FRとPHとがともにローレベルである場合の波形パターンの例を示す。図38に示す波形パターンでは、中間調とすべき信号電極を第三の配線83に接続する期間(電位をVにする期間)を、図33に示す場合よりも1PWM期間分だけ遅らせている。
【0207】
信号電極の電位の波形パターンとして、図30〜33に示す波形パターンの組み合わせのみを採用してもよい。また、図35〜38に示す波形パターン組み合わせのみを採用してもよい。あるいは、この二種類の組み合わせを交互に切り替えてもよい。例えば、ある連続する二つのフレームで図30〜33に示す波形パターンを採用し、その次の連続する二つのフレームで図35〜38に示す波形パターンを採用してもよい。また、この二種類の組み合わせを1選択期間毎に交互に切り替えてもよい。例えば、正極性駆動のフレーム内で、選択期間毎に図30に示す波形パターンと図36に示す波形パターンとを交互に採用してもよい。
【0208】
また、本実施の形態においても、個々の信号電極を電荷蓄積コンデンサに接続する期間はPWM期間と異なっていてもよい。ただし、中間調とすべき個々の信号電極を1選択期間内で第二の配線15に接続する期間は、少なくとも一本の信号電極の時定数(各信号電極の抵抗RとCとの積)の1/2以上に設定される。
【0209】
本発明の駆動方法では、信号電極に供給すべき電荷や信号電極から放出される電荷を低減させている。併せて、走査電極に供給すべき電荷や走査電極から放出される電荷も低減させて、さらに消費電力を低減させることもできる。図39は、走査電極に供給すべき電荷や走査電極から放出される電荷も低減することができる電源回路51および走査電極ドライバ52の構成を示す。ただし、図39では、電圧Vの出力端、電圧Vの出力端、正極性用電荷蓄積コンデンサおよび負極性用電荷蓄積コンデンサの図示を省略した。
【0210】
図39に示す電源回路51は、電圧Vの出力端170と、電圧Vの出力端171と、電圧Vの出力端172と、電圧Vの出力端173とを備える。各電圧の出力端170〜173には、それぞれ出力電圧を安定させるためのコンデンサ170〜173が設けられる。また、電源回路51は、電圧Vの出力端170に対応するV用スイッチ178と、電圧Vの出力端173に対応するV用スイッチ179と、SHARE用コンデンサ177とを備える。
【0211】
走査電極ドライバ52は、電圧Vが供給される第一の配線190と、電圧Vが供給される第二の配線191と、電圧Vが供給される第三の配線192と、電圧Vが供給される第四の配線193とを備える。各走査電極は第一の配線190から第四の配線193のいずれかに接続される。走査電極が接続される配線が切り替えられると、その走査電極の電位も切り替えられる。接続の切り替えは、各走査電極と一対一に対応するスイッチ181〜183等によって行う。スイッチ181〜183は、それぞれ第一行から第三行の走査電極に接続される。図39では、第一行から第三行に対応するスイッチを示すが、走査電極ドライバ52は各行に対応するスイッチを備える。
【0212】
コントローラ22は、V用スイッチ178およびV用スイッチ179の切り替えを制御する信号(以下、SHAREと記す。)を電源回路51に出力する。V用スイッチ178は、SHAREに応じて第一の配線190の接続先を電圧Vの出力端170またはSHARE用コンデンサ177に切り替える。同様に、V用スイッチ179は、SHAREに応じて第四の配線193の接続先を電圧Vの出力端173またはSHARE用コンデンサ177に切り替える。ここでは、SHAREがハイレベルのときに、第一の配線190と第四の配線193の接続先をそれぞれSHARE用コンデンサ177に切り替える場合を例に説明する。この場合、SHAREがローレベルになると、第一の配線190と第四の配線193の接続先ををそれぞれVの出力端170、Vの出力端173に切り替える。なお、第二の配線191は、電圧Vの出力端171に接続される。第三の配線192は、電圧Vの出力端172に接続される。
【0213】
コントローラ22は、選択期間Tの最初の所定期間Tと最後の所定期間TにおいてSHAREをハイレベルとし、他の期間ではSHAREをローレベルにする。この所定期間Tの長さは、少なくとも一本の走査電極の時定数(各走査電極の抵抗RとCとの積)の1/2以上に設定される。
【0214】
走査電極ドライバ52は、正極性駆動時には、選択行に対応するスイッチを第一の配線190に接続し、他の行に対応するスイッチを第三の配線192に接続する。また、ダミー期間中、全てのスイッチを第三の配線192に接続する。また、負極性駆動時には、選択行に対応するスイッチを第四の配線193に接続し、他の行に対応するスイッチを第二の配線192に接続する。ダミー期間中、全てのスイッチを第二の配線192に接続する。
【0215】
SHARE用コンデンサの静電容量(Cとする。)は、一本の走査電極と各信号電極とが形成するコンデンサの静電容量Cの10倍以上であることが好ましい。さらに好ましくは100倍以上とする。CがCよりも十分大きいならば、時間が経過すると、SHARE用コンデンサの静電容量は(V+V+V+V)/4に集束する。また、CがCよりも十分大きいと、V用スイッチ178やV用スイッチ179によって第一の配線や第四の配線の接続先が切り替えられても、収束した電位はほとんど変化しない。以下の説明では、SHARE用コンデンサのスイッチ側電極が(V+V+V+V)/4であるものとして説明する。
【0216】
次に、各走査電極の電位の変化について説明する。ここでは正極性駆動を行うものとする。コントローラ22が選択期間の開始を指示するCLを出力したとする。コントローラ22は、この選択期間Tの開始後、所定期間Tの間SHAREをハイレベルにする。走査電極ドライバ52は、CLの立ち下がりタイミングで、選択すべき走査電極を第一の配線190に接続させ、他の走査電極を第三の配線192に接続させる。また、SHAREがハイレベルの間、V用スイッチ178は、第一の配線192をSHARE用コンデンサ177に接続する。すると、選択された走査電極の電位は(V+V+V+V)/4に変化する。このとき、電圧Vの出力端170は電荷を供給しない。また、非選択行の走査電極の電位はVになる。
【0217】
所定期間Tが経過すると、V用スイッチ178は、第一の配線190を電圧Vの出力端170に接続する。すると、電圧Vの出力端170は、選択行の走査電極にC・(3・V−V−V−V)/4の電荷を供給し、選択行走査電極の電位はVに変化する。選択期間Tの最後の所定期間Tにおいて、コントローラ22は再びSHAREをハイレベルにする。すると、V用スイッチ178は、第一の配線190をSHARE用コンデンサ177に接続する。すると、選択行の走査電極からSHARE用コンデンサ177に電荷が移動し、その走査電極の電位は(V+V+V+V)/4に変化する。このとき、選択行の走査電極から電圧Vの出力端172に電荷が放出されることはない。
【0218】
さらに、走査電極ドライバ52は、次の選択期間の開始時に、それまで選択していた走査電極を第三の配線173に接続する。すると、その走査電極から電圧Vの出力端172にC・(V−3・V+V+V)/4の電荷が放出され、その走査電極の電位はVに変化する。
【0219】
電圧Vの出力端170から電位Vの走査電極に電荷を供給して、電位をVにしなければならないとすると、電圧Vの出力端170はC・(V−V)の電荷を供給しなければならない。しかし、その走査電極をSHARE用コンデンサ177に接続して電位を(V+V+V+V)/4に上昇させた後に、電圧Vの出力端170から電荷を供給すると、電圧Vの出力端170が供給すべき電荷はC・(3・V−V−V−V)/4で済む。
【0220】
また、電位Vの走査電極から電圧Vの出力端172に電荷を放出して電位をVにしなければならないとすると、電位Vの出力端172にC・(V−V)の電荷を放出しなければならない。しかし、その走査電極をSHARE用コンデンサ177に接続して電位を(V+V+V+V)/4に下降させた後に、電圧VMの出力端128に電荷を放出すると、放出する電荷はC・(V−3・V+V+V)/4で済む。
【0221】
このように、走査電極に供給すべき電荷や走査電極から放出される電荷も低減させることができる。なお、ここでは正極性駆動時の場合について説明したが、負極性駆動の場合も同様である。
【0222】
また、SHARE用コンデンサ177を用いずに、走査電極同士を短絡させることで、走査電極に供給すべき電荷や走査電極から放出される電荷も低減させることができる。走査電極を短絡させる場合、電源回路51は、SHARE用コンデンサ177を備えない。第一の配線190および第四の配線193は、それぞれ電圧Vの出力端170、電圧Vの出力端173に接続される。また、コントローラ22は、電源回路51に対してSHAREを出力しない。
【0223】
一方、走査電極ドライバ52は、図39に示す配線190〜193に加え、第五の配線(図示せず。)を備える。第五の配線は、各走査電極同士を接続させるための配線であり、電源回路51とは接続されない。そして、各走査電極に対応するスイッチは、第一の配線から第五の配線のうちのいずれかに接続される。他の構成は図39に示す場合と同様である。
【0224】
コントローラ22は、各走査電極に対応するスイッチの切り替えを指示する短絡信号を走査電極ドライバ52に出力する。コントローラ22は、選択期間の最後に短絡信号をハイレベルにする。
【0225】
正極性駆動の場合、走査電極ドライバ52は、選択行に対応するスイッチによって、選択行の走査電極を第一の配線190に接続させ、選択行の電位をVに設定する。また、負極性駆動の場合、走査電極ドライバ52は、選択行の走査電極を第四の配線193に接続させ、選択行の電位をVに設定する。選択期間の最後に短絡信号がハイレベルになると、走査電極ドライバ52は、次の選択期間でも正極性駆動あるいは負極性駆動を維持する場合に、選択している走査電極および次に選択すべき走査電極をそれぞれ第五の配線65に接続させる。次の選択期間で正極性駆動あるいは負極性駆動が維持されないならば、走査電極ドライバ52は、短絡信号がハイレベルになっても、選択している走査電極および次に選択すべき走査電極に対応するスイッチを切り替えない。
【0226】
走査電極ドライバ52は、ダミー期間中、FR信号に応じて全ての走査電極を第一の配線190または第四の配線193に接続し、各走査電極の電位をVまたはVに設定する。
【0227】
なお、走査電極ドライバ52が次の選択期間において正極性駆動になるのか負極性駆動になるのかを認識できるようにするためには、FRの切り替えタイミングを図3に示す場合よりも、1選択期間だけ早めればよい。そして、走査電極ドライバ52および信号電極ドライバ53は、選択期間開始時のFRの状態が次の選択期間における極性を示しているものと認識すればよい。
【0228】
コントローラ22が短絡信号をハイレベルにする期間は、少なくとも一本の走査電極の時定数の1/2以上に設定される。
【0229】
次に、各走査電極の電位の変化について説明する。ここでは正極性駆動を行うものとする。コントローラ22が選択期間の開始を指示するCL_COMを出力したとする。走査電極ドライバ52は、CL_COMの立ち下がりタイミングで、選択すべき走査電極を第一の配線190に接続させ、他の走査電極を第三の配線192に接続させる。すると、選択行の電位はVになり、非選択行の電位はVになる。
【0230】
コントローラ22は、選択期間Tの最後の所定期間、短絡信号をハイレベルにする。この期間中、走査電極ドライバ52は、選択している走査電極および次に選択すべき走査電極を、第五の配線に接続させる。すると、選択している走査電極は、第五の配線を介して、次に選択される走査電極に電荷を供給する。そして、選択している走査電極および次に選択すべき走査電極の電位は、ともに(V+V)/2になる。
【0231】
走査電極ドライバ52は、次の選択期間の開始時に、それまで選択していた走査電極の接続先を第五の配線から第三の配線192に切り替える。すると、その走査電極から電圧Vの出力端171に電荷が放出され、その走査電極の電位は(V+V)/2からVに変化する。また、新たに選択する走査電極の接続先を第五の配線から第一の配線190に切り替える。すると、電圧Vの出力端170は、新たに選択する走査電極に電荷を供給し、その走査電極の電位は(V+V)/2からVに変化する。従って、電圧Vの出力端170が供給すべき電荷は、電位VをVに上昇させる場合よりも少なくて済む。また、電圧Vの出力端173に放出される電荷は、電位VをVに下降させる場合よりも少なくて済む。なお、ここでは正極性駆動の場合を例に示したが、負極性駆動の場合も同様である。
【0232】
また、選択している走査電極と次に選択すべき走査電極を接続する際に、第五の配線を用いるのではなく、次に選択すべき走査電極を第一の配線190や第四の配線193に接続させてもよい。この場合、第一の配線や第四の配線にスイッチを設け、短絡信号がハイレベルになっている間、第一の配線や第四の配線と電源回路51との接続状態を断つようにすればよい。
【0233】
また、走査電極同士を接続させるのは、選択期間の最後でなくてもよい。例えば、選択期間の最初に、選択する走査電極と、直前に選択していた走査電極とを接続させるようにしてもよい。
【0234】
本発明による駆動方法は、特に携帯機器の液晶表示装置の駆動に適する。例えば、携帯電話機やPDAの液晶表示装置を駆動する場合、本発明の駆動方法の適用が好ましい。
【0235】
また、上記の各実施の形態では、液晶セル1がノーマリブラックである場合を例に説明したが、液晶セル1は、いわゆるノーマリホワイトの液晶表示装置(電圧が高くなるほど透過率が低くなる液晶表示装置)であってもよい。
【0236】
【発明の効果】
本発明によれば、信号電極の電位を切り替えるときに供給すべき電荷や放出される電荷を減少させることができる。従って、電荷の再利用効率を高め、消費電力をより低減できる。
【図面の簡単な説明】
【図1】 第一の実施の形態の駆動装置の例を示すブロック図。
【図2】 電源回路の例を示す説明図。
【図3】 信号出力タイミングの例を示す説明図。
【図4】 信号電極ドライバの構成例を示す説明図。
【図5】 信号電極の電位の波形パターンを示す説明図。
【図6】 信号電極の電位の波形パターンを示す説明図。
【図7】 信号電極の電位の波形パターンを示す説明図。
【図8】 信号電極の電位の波形パターンを示す説明図。
【図9】 ダミー期間の必要性を示す説明図。
【図10】 ダミー期間での信号電極電位の例を示す説明図。
【図11】 信号電極の電位の波形パターンを示す説明図。
【図12】 信号電極の電位の波形パターンを示す説明図。
【図13】 信号電極の電位の波形パターンを示す説明図。
【図14】 信号電極の電位の波形パターンを示す説明図。
【図15】 複数のカウンタ値を用いる場合の例を示す説明図。
【図16】 電源回路および走査電極ドライバの構成例を示す説明図。
【図17】 第二の実施の形態の駆動装置の例を示すブロック図。
【図18】 選択行列の例を示す説明図。
【図19】 電位設定タイミングの説明図。
【図20】 信号出力タイミングの例を示す説明図。
【図21】 MLA演算の説明図。
【図22】 信号電極の電位の波形パターンを示す説明図。
【図23】 信号電極の電位の波形パターンを示す説明図。
【図24】 サブグループ内での輝度差の発生の説明図。
【図25】 信号電極の電位の波形パターンを示す説明図。
【図26】 信号電極の電位の波形パターンを示す説明図。
【図27】 第一の実施の形態の駆動装置の例を示すブロック図。
【図28】 電源回路の例を示す説明図。
【図29】 信号電極ドライバ53の構成例を示す説明図。
【図30】 信号電極の電位の波形パターンを示す説明図。
【図31】 信号電極の電位の波形パターンを示す説明図。
【図32】 信号電極の電位の波形パターンを示す説明図。
【図33】 信号電極の電位の波形パターンを示す説明図。
【図34】 ダミー期間内での信号電極電位の例を示す説明図
【図35】 信号電極の電位の波形パターンを示す説明図。
【図36】 信号電極の電位の波形パターンを示す説明図。
【図37】 信号電極の電位の波形パターンを示す説明図。
【図38】 信号電極の電位の波形パターンを示す説明図。
【図39】 電源回路および走査電極ドライバの構成例を示す説明図。
【図40】 従来の駆動波形の例を示す説明図。
【図41】 従来の駆動波形の例を示す説明図。
【符号の説明】
1 液晶セル
2 走査電極ドライバ
3 信号電極ドライバ
23 電源回路
27 電圧Vの出力端
28 電荷蓄積用コンデンサ
29 電圧−Vの出力端

Claims (6)

  1. 複数の走査電極と複数の信号電極との間に液晶を挟持する液晶表示装置の駆動方法であって、
    走査電極を選択しながら走査電極を走査する走査期間を設け、
    走査期間内で、走査電極の選択を複数回行い、
    走査期間の後に、全ての走査電極の電位を非選択時電位に設定するダミー期間を設け、
    走査期間では、走査電極を選択する各選択期間内で、オン表示とすべき画素が存在する信号電極の電位を所定のオン表示電位に維持し、オフ表示とすべき画素が存在する信号電極の電位を所定のオフ表示電位に維持し、オフ表示とオン表示との間の中間調とすべき画素が存在する信号電極の電位を選択期間の途中で切り替え、
    選択期間の途中で信号電極の電位をオン表示電位またはオフ表示電位に切り替える場合には、前記信号電極を一旦所定のコンデンサに所定の接続時間だけ接続してからオン表示電位またはオフ表示電位に設定し、
    ダミー期間では、個々の信号電極毎に、走査期間内で信号電極を前記コンデンサに接続した回数と前記接続時間との積に応じた期間だけ信号電極をオン表示電位またはオフ表示電位に設定し、残りのダミー期間の間、信号電極を前記コンデンサに接続する
    ことを特徴とする液晶表示装置の駆動方法。
  2. 走査期間では、走査電極を一本ずつ選択し、
    選択した走査電極を第一の選択時電位または第二の選択時電位に設定し、
    選択した走査電極を第一の選択時電位に設定する走査期間と、選択した走査電極を第二の選択時電位に設定する走査期間とで、非選択時電位を共通の電位とし、
    選択した走査電極を第一の選択時電位に設定する走査期間と、選択した走査電極を第二の選択時電位に設定する走査期間とで、信号電極を接続する所定のコンデンサを共通のコンデンサとする
    請求項1に記載の液晶表示装置の駆動方法。
  3. 走査電極を一本ずつ選択し、
    選択した走査電極を第一の選択時電位または第二の選択時電位に設定し、
    走査期間中に、選択した走査電極を第一の選択時電位に設定する場合には、非選択行の走査電極の電位を第一の非選択時電位に設定し、中間調とすべき画素が存在する信号電極を第一の所定のコンデンサに接続してから第一のオン表示電位または第一のオフ表示電位に設定し、
    選択した走査電極を第二の選択時電位に設定する場合には、非選択行の走査電極の電位を第二の非選択時電位に設定し、中間調とすべき画素が存在する信号電極を第二の所定のコンデンサに接続してから第二のオン表示電位または第二のオフ表示電位に設定し、
    前記走査期間後のダミー期間では、個々の信号電極毎に、前記走査期間内で信号電極を第一の所定のコンデンサに接続した回数および第二の所定のコンデンサに接続した回数の和と所定の接続時間との積に応じた期間だけ信号電極を第一のオン表示電位、第一のオフ表示電位、第二のオン表示電位または第二のオフ表示電位のいずれかの電位に設定し、残りのダミー期間の間、信号電極を第一の所定のコンデンサまたは第二の所定のコンデンサに接続する
    請求項1に記載の液晶表示装置の駆動方法。
  4. 複数の走査電極と複数の信号電極との間に液晶を挟持する液晶表示装置の駆動方法であって、
    走査電極を選択しながら走査電極を走査する走査期間を設け、
    走査期間内で、三本の走査電極の選択を複数回行い、
    走査期間の後に、全ての走査電極の電位を非選択時電位に設定するダミー期間を設け、
    走査期間では、同時の三本の走査電極を選択し、選択した走査電極を第一の選択時電位または第二の選択時電位に設定し、各選択期間内で、オン表示またはオフ表示とすべき画素が存在する信号電極の電位を第一の信号電極電位または第二の信号電極電位に維持し、オフ表示とオン表示との間の中間調とすべき画素が存在する信号電極の電位を選択期間の途中で切り替え、
    選択期間の途中で信号電極の電位を第一の信号電極電位または第二の信号電極電位に切り替える場合には、前記信号電極を一旦所定のコンデンサに所定の接続時間だけ接続してから第一の信号電極電位または第二の信号電極電位に設定し、
    ダミー期間では、個々の信号電極毎に、走査期間内で信号電極を前記コンデンサに接続した回数と前記接続時間との積に応じた期間だけ信号電極を第一の信号電極電位または第二の信号電極電位に設定し、残りのダミー期間の間、信号電極を前記コンデンサに接続する
    ことを特徴とする液晶表示装置の駆動方法。
  5. 階調を示す三行分の表示データから、1選択期間を分割したそれぞれの分割期間に対応する要素データを求め、
    各分割期間に対応する三行分の要素データと所定の選択行列の列成分とを用いて信号電極の電位を各分割期間毎に算出し、
    信号電極の電位を第一の信号電極電位または第二の信号電極電位とすべき分割期間の数に応じて、選択期間の途中で信号電極の電位を第一の信号電極電位または第二の信号電極電位に切り替えるタイミングを決定する
    請求項4に記載の液晶表示装置の駆動方法。
  6. 携帯機器に用いられる液晶表示装置を駆動する請求項1,2,3,4または5に記載の液晶表示装置の駆動方法。
JP2002255564A 2002-08-30 2002-08-30 液晶表示装置の駆動方法 Expired - Fee Related JP4176423B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255564A JP4176423B2 (ja) 2002-08-30 2002-08-30 液晶表示装置の駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255564A JP4176423B2 (ja) 2002-08-30 2002-08-30 液晶表示装置の駆動方法

Publications (2)

Publication Number Publication Date
JP2004093951A JP2004093951A (ja) 2004-03-25
JP4176423B2 true JP4176423B2 (ja) 2008-11-05

Family

ID=32061059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255564A Expired - Fee Related JP4176423B2 (ja) 2002-08-30 2002-08-30 液晶表示装置の駆動方法

Country Status (1)

Country Link
JP (1) JP4176423B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006075768A1 (ja) 2005-01-11 2008-06-12 ローム株式会社 容量負荷駆動方法、容量負荷駆動装置、および液晶表示装置

Also Published As

Publication number Publication date
JP2004093951A (ja) 2004-03-25

Similar Documents

Publication Publication Date Title
TWI410913B (zh) A matrix driving method and a circuit, and a display device using the same
JP4739343B2 (ja) 表示装置、表示方法、表示モニターおよびテレビジョン受像機
JP4566459B2 (ja) 表示装置
CN111883079B (zh) 显示面板的驱动方法、电路及显示装置
JP2005196133A (ja) 表示用駆動回路
CN100405141C (zh) 液晶显示器及其驱动方法
JP2003248465A (ja) 画像表示装置の駆動方法および画像表示装置の駆動装置
WO2009101877A1 (ja) 表示装置およびその駆動方法
US11398202B2 (en) Display apparatus, data driver and display controller
US8659528B2 (en) Electro-optical device driven by polarity reversal during each sub-field and electronic apparatus having the same
CN1682146A (zh) 液晶显示器
US6677937B1 (en) Driving method for display and a liquid crystal display using such a method
JPH08292744A (ja) 液晶表示装置
JP3473748B2 (ja) 液晶表示装置
JP4176423B2 (ja) 液晶表示装置の駆動方法
JP4608864B2 (ja) 電気光学装置、その駆動回路および電子機器
US20030085861A1 (en) Gray scale driving method of liquid crystal display panel
JP2004326047A (ja) 液晶表示装置の駆動方法
US20040085332A1 (en) Display driving method and display device
JP4003665B2 (ja) 電気光学装置、電気光学装置の駆動方法および電子機器
JP2005208259A (ja) 有機elディスプレイ装置の駆動装置および駆動方法
JP3973526B2 (ja) 有機elディスプレイ装置の駆動方法
JP2004054202A (ja) 液晶表示装置の駆動方法
JP2004061972A (ja) 液晶表示装置の駆動方法
JPH08136892A (ja) 液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4176423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees