JP4170088B2 - 読取位置評価システムおよび評価方法 - Google Patents

読取位置評価システムおよび評価方法 Download PDF

Info

Publication number
JP4170088B2
JP4170088B2 JP2002365112A JP2002365112A JP4170088B2 JP 4170088 B2 JP4170088 B2 JP 4170088B2 JP 2002365112 A JP2002365112 A JP 2002365112A JP 2002365112 A JP2002365112 A JP 2002365112A JP 4170088 B2 JP4170088 B2 JP 4170088B2
Authority
JP
Japan
Prior art keywords
reflecting
traveling body
reflected light
reflecting member
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002365112A
Other languages
English (en)
Other versions
JP2004198604A (ja
Inventor
武 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002365112A priority Critical patent/JP4170088B2/ja
Publication of JP2004198604A publication Critical patent/JP2004198604A/ja
Application granted granted Critical
Publication of JP4170088B2 publication Critical patent/JP4170088B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Systems Of Projection Type Copiers (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、画像読取装置の設計試作段階において、画像読取位置の性能評価に好適な読取位置評価システムおよび評価方法に関するものである。
【0002】
【従来の技術】
一般にフラットベッドスキャナ等の画像読取装置は、原稿が載置されるコンタクトガラスと、所定方向に移動しつつコンタクトガラス上の原稿に光を照射する照明光学系と、照明光学系の移動に合わせて所定方向に移動するとともに原稿からの反射光を順次反射する複数の反射ミラーと、反射ミラーからの反射光を受光して原稿画像を撮像する撮像素子とを備えている。
【0003】
このような画像読取装置を設計する場合、原稿画像に対して予め目標とする取得画像を決定し、取得画像品質を達成するために画像読取装置を構成する各要素(反射ミラー等)に対して設計仕様を算出することが理想的である。しかし、各構成要素ごとの設計値は取得画像品質に直結した値ではなく、統一された目標に対する設計仕様の設定は困難である。例えば、走査によって、本来、出力されるべき画像位置から機械的な要因(振動など)によって画像の出力位置がずれるといった画像のゆらぎが存在する。
【0004】
画像のゆらぎを解消する方法として、光線追跡手法を用いて結像画像の計算を行うことが考えられる。例えば、電子写真装置の開発段階において、光学系の特性を示すパラメータをコンピュータに入力し、光線追跡手法によりコンピュータ上でシミュレーションを行うことにより、撮像素子に結像される画像を得るようにした電子写真装置のシミュレーション方法が提案されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平9−6827号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来の技術では、光線追跡手法を用いてコンピュータ上でシミュレーションすることが示されているだけで、画像処理装置を実際に試作した際に、反射ミラー等の可動部材のずれをコンピュータによって評価することはできなかった。
【0007】
設計試作段階では設計と試作が平行して進行することが多く、画像読取装置を試作しても全体としてはまだ未完成であるから、反射ミラーからの反射光を実際に画像素子上に結像させて評価を行うことは難しかった。しかし、反射ミラー等の可動部材の挙動を実測により正確に把握して、画像読取位置の性能を高精度に評価することは必須の事項である。
【0008】
また、画像読取装置は長期間使用していると、反射ミラー等の可動部分に狂いが生じ、可動部分の調整が必要である。
【0009】
本発明の課題は、可動部材の挙動を実測により把握して、画像読取位置の性能を高精度に評価することのできる読取位置評価システムおよび評価方法を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載の発明は、所定方向に移動しつつ被写体に光を照射する照明光学系と、前記照明光学系の移動に合わせて所定方向に移動するとともに、前記被写体からの反射光を順次反射する複数の反射部材と、前記反射部材からの反射光を受光して前記被写体を撮像する撮像素子とを有する画像読取装置と、前記反射部材に取り付けられた少なくとも2つの反射治具と、前記反射部材の移動時に前記反射治具に向けて光を照射するとともに、反射治具からの反射光を受光して、前記反射部材の移動速度を計測する速度計測手段と、前記速度計測手段での計測結果から前記反射部材の位置と傾きを算出し、その算出結果から、前記撮像素子上における前記反射部材からの反射光の結像位置を予測する演算処理手段と、前記演算処理手段での予測結果を表示する表示手段とを備え、前記反射部材は3つ設けられ、そのうちの1つが前記照明光学系とともに第1走行体に、残りの2つが前記第1走行体の移動に合わせて同方向に移動する第2走行体にそれぞれ設置され、前記反射治具は前記3つの反射部材のいずれかに取り付けられることを特徴としている。
【0011】
請求項2に記載の発明は、所定方向に移動しつつ被写体に光を照射する照明光学系と、前記照明光学系の移動に合わせて所定方向に移動するとともに、前記被写体からの反射光を順次反射する複数の反射部材と、前記反射部材からの反射光を受光して前記被写体を撮像する撮像素子とを有する画像読取装置と、前記反射部材を収納するケースに取り付けられた少なくとも2つの反射治具と、前記反射部材の移動時に反射治具に向けて光を照射するとともに、反射治具からの反射光を受光して、前記反射部材の移動速度を計測する速度計測手段と、前記速度計測手段での計測結果から前記反射部材の位置と傾きを算出し、その算出結果から、前記撮像素子上における前記反射部材からの反射光の結像位置を予測する演算処理手段と、前記演算処理手段での予測結果を表示する表示手段とを備え、前記反射部材は3つ設けられ、そのうちの1つが前記照明光学系とともに第1走行体に、残りの2つが前記第1走行体の移動に合わせて同方向に移動する第2走行体にそれぞれ設置され、前記反射治具は前記第1走行体の側面または前記第2走行体の側面に取り付けられることを特徴としている。
【0012】
請求項1の構成によれば、設計試作段階の画像読取装置に対して反射治具を取り付けるとともに、その画像読取装置を速度計測手段にセットして、速度計測手段から反射治具に光を照射することにより、反射部材の移動速度を計測し、その計測結果から反射部材の位置と傾きを算出することができる。そして、その算出結果を用いて撮像素子上における反射部材からの反射光の結像位置を高精度に予測することが可能となる。
また、3つの反射部材のすべてについて、画像読取装置の試作段階で読取位置の評価を行うことができる。
さらに、請求項2の構成によれば、上記請求項1の場合の作用効果に加えて、反射治具を容易に取り付けることが可能となる。
【0021】
請求項3及び4は読取位置評価方法についての発明である。すなわち、請求項に記載の発明は、所定方向に移動しつつ被写体に光を照射する照明光学系と、前記照明光学系の移動に合わせて所定方向に移動するとともに、前記被写体からの反射光を順次反射する複数の反射部材と、前記反射部材からの反射光を受光して前記被写体を撮像する撮像素子とを有する画像読取装置を試作する際に、前記反射部材に少なくとも2つの反射治具を取り付けて、前記反射部材の移動時に前記反射治具に向けて光を照射するとともに反射治具からの反射光を受光して、前記反射部材の移動速度を計測し、前記計測結果から前記反射部材の位置と傾きを算出し、その算出結果から、前記撮像素子上における前記反射部材からの反射光の結像位置を予測する一方、前記反射部材は3つ設けられ、そのうちの1つが前記照明光学系とともに第1走行体に、残りの2つが前記第1走行体の移動に合わせて同方向に移動する第2走行体にそれぞれ設置されている場合、前記反射治具を前記3つの反射部材のいずれかに取り付けることを特徴としている。
【0022】
請求項に記載の発明は、所定方向に移動しつつ被写体に光を照射する照明光学系と、前記照明光学系の移動に合わせて所定方向に移動するとともに、前記被写体からの反射光を順次反射する複数の反射部材と、前記反射部材からの反射光を受光して前記被写体を撮像する撮像素子とを有する画像読取装置を試作する際に、前記反射部材を収納したケースに少なくとも2つの反射治具を取り付けて、前記反射部材の移動時に前記反射治具に向けて光を照射するとともに反射治具からの反射光を受光して、前記反射部材の移動速度を計測し、前記計測結果から前記反射部材の位置と傾きを算出し、その算出結果から、前記撮像素子上における前記反射部材からの反射光の結像位置を予測する一方、前記反射部材は3つ設けられ、そのうちの1つが前記照明光学系とともに第1走行体に、残りの2つが前記第1走行体の移動に合わせて同方向に移動する第2走行体にそれぞれ設置されている場合、前記反射治具を前記第1走行体の側面または前記第2走行体の側面に取り付けることを特徴としている。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従って説明する。
先ず、本発明の読取位置評価システムの一例として、画像読取装置が2次元原稿を1次元撮像素子によって読み取る場合について説明する。
【0028】
図1は画像読取装置(フラットベッドスキャナ)1の構成を示している。図1に示すように、画像読取装置1は、原稿(被写体)が載置されるコンタクトガラス2と、コンタクトガラス2を装置本体3の内側から照明する照明部(照明光学系)4と、照明部4を含みコンタクトガラス2に沿って副走査方向に往復移動する第1走行体5と、同じくコンタクトガラス2に沿って副走査方向に往復移動する第2走行体6と、第1走行体5および第2走行体6を駆動するためのモータ7と、モータ7の駆動力を第1走行体5および第2走行体6に伝達するベルト等の駆動力伝達手段8とを備えている。なお、走行体5,6の走行する方向を副走査方向、それと垂直で走行体5,6の長手方向を主走査方向という。
【0029】
装置本体3内部にはレンズ9が設けられ、このレンズ9は、コンタクトガラス2に載置された原稿の画像を1次元撮像素子10に結像する。そして、走行体5,6が、原稿が載置されたコンタクトガラス2を1次元ずつ走査しながら移動することで、原稿の画像は線順次に読み取られ2次元画像が構成される。1次元撮像素子10で得られた画像信号は画像信号出力ポート11から出力される。
【0030】
図2は装置本体3の要部断面図である。図2に示すように、コンタクトガラス2の上面には原稿12が載置される。第1走行体5の照明部4は、ランプ13と反射部材であるリフレクタ14A,14Bとからなっている。また、第1走行体5には、照明部4の下方に第1反射ミラー15が設けられている。第2走行体6には、第2反射ミラー16と、その下方に第3反射ミラー17とが設けられている。これら反射ミラー15,16,17は反射部材を構成している。
【0031】
ランプ13からの光はリフレクタ14A,14Bで反射・集光され、原稿12の撮影領域18に照射される。この照射により照らされた原稿12の画像は第1反射ミラー15、第2反射ミラー16、第3反射ミラー17の順に反射され、レンズ9を通過した後、1次元撮像素子10上で結像されて、光電変換されて画像信号として取り込まれる。さらに、走行体5,6が副走査方向に移動することによって、原稿12の全面が読み取られ原稿12の2次元画像が生成される。
【0032】
通常、1次元撮像素子10としては1次元CCDが用いられ、レンズ9はコンタクトガラス2上に原稿12を縮小して1次元撮像素子10に結像する(縮小光学系)。つまり、CCDの画像解像度と、画像読取装置1自身の持つ画像解像度とは一致していない。通常、画像読取装置1の画像解像度はDPI(ドット/inch)で表され、300〜800DPI程度である。
【0033】
(実施の形態1)
図3は、画像読取装置1の読取位置を評価するために、画像読取装置1を速度計測装置(速度計測手段)20に設置した様子を示す図である。図3に示すように、第2反射ミラー16の背面には反射治具21A,21Bが取り付けられている。これら反射治具21A,21Bはなるべく第2反射ミラー16に直接取り付けたほうがよいが、本実施の形態では、図4に示すように、第2反射ミラー16背面に支持部材22を介して固定された受け部23上に取り付けられている。また反射治具21A,21Bは第2反射ミラー16の両端付近に配置されている。このように第2反射ミラー16の両端付近に配置して反射治具21A,21B間の間隔を大きくすれば、第2反射ミラー16の微小な傾きを測定することが可能となる。
【0034】
なお、反射治具21A,21Bは図4に示すように第3反射ミラー17の背面に設けてもよい。また図示してないが反射治具21A,21Bを第1反射ミラー15に設けてもよい。
【0035】
第2反射ミラー16および第3反射ミラー17は、図4に二点鎖線で示したように第2走行体6を形成する枠体又はケースに収納され、一体となって副走査方向に移動可能である。第2反射ミラー16および第3反射ミラー17がケースに収納されている場合は、そのケースには、後述する非接触速度計24からの測定光が反射治具21に当たるよう開口部を形成しておく必要がある。
【0036】
画像読取装置1の横方には、図3に示すように、非接触速度計24A,24Bと、非接触速度計24A,24Bにそれぞれ電気的に接続された制御装置25A,25Bと、からなる速度計測装置20が設置されている。非接触速度計24A,24Bは反射治具21A,21Bの反射面にそれぞれ対向して配置され、反射治具21A,21Bに向かって測定光を照射するとともに、その測定光の反射治具21A,21Bでの反射光を受光する。このような非接触速度計24A,24Bとしてはレーザドップラ振動計などを用いることができる。また、加速度ピックアップで加速度を測定するもしくは、レーザ測長機を用いて変位を測定してもよい。
【0037】
なお、反射ミラー16に反射治具を3つ以上取り付けるとともに、非接触速度計も反射治具に対応させて3つ以上設置することにより、反射ミラー16の傾きをより精密に測定することができる。
【0038】
図5は、本実施の形態による読取位置評価システムの構成を示している。図3に示した速度計測装置20はネットワーク26に接続されている。またネットワーク26には、画像読取装置1、演算処理装置(演算処理手段)27および表示装置(表示手段)28が接続されている。
【0039】
画像読取装置1はトリガ信号によって走査が可能な機能を持っている。また速度計測装置20は画像読取装置1の第1走行体5および第2走行体6の速度を計測する装置であり、その内の制御装置25A,25Bがネットワーク26に接続され、ネットワーク26経由で制御され、またデータの取得が可能となっている。
【0040】
演算処理装置27はコンピュータで構成され、ネットワーク26を介して速度計測装置20にデータ取得指令を出力するとともに、計測された速度データを受け取って記憶する。また演算処理装置27は受け取った速度データを元に演算を行い、原稿12の画像の読取位置を計算する。計算結果は表示装置28に表示される。なお、ネットワーク26としては、イントラネット、インターネットのいずれの形態でもよい。
【0041】
次に、上記評価システムにより画像読取装置1の読取位置を評価する際の動作フローについて、図6および図7を用いて説明する。
【0042】
先ず、演算処理装置27は画像読取装置1にスキャナ駆動指令を出力する(ステップS1)。同時に、演算処理装置27は速度計測装置20に対してデータ取得指令を出力する(ステップS2)。これにより、画像読取装置1は走査を開始し、速度計測装置20が第2反射ミラー16の速度計測を開始する。
【0043】
演算処理装置27の走査の順番は列カウンタによって数えられ、この列カウンタと速度計測装置20から転送された速度データとをペアにして演算処理装置27内の記憶手段に記憶する(ステップS3〜S6)。画像読取装置1が全領域を走査したら、計測を終了する(ステップS7)。
【0044】
次に演算処理装置27内に記憶された速度データを積分し、変位データに変換する。加速度を測定した場合は2階積分して変位データに変換する。変位データを測定した場合はそのままである。変位データと反射治具21A,21B間の距離から反射ミラー16の傾き量が計算される(ステップS8〜S10)。
【0045】
第1走行体5および第2走行体6は同一のワイヤあるいはベルトによって駆動されており、第1走行体5の移動速度は第2走行体6の移動速度の2倍となるよう設定されている。このため、例えば第2反射ミラー16で計測された変位に対して、第1反射ミラー15は2倍変位していることになる。
【0046】
撮像位置は反射ミラーの位置によって決まる。したがって、撮像位置は走査速度と経過時間で算出することができる。このようにして得られた反射ミラー間距離と傾きを元に座標変換および幾何光学的な演算を行うことで、結像位置を計算する(ステップS11)。計算の詳細については後述する。
【0047】
反射ミラーが傾いていない理想的な結像位置を計算し、その位置と反射ミラーが傾いたときとの結像位置の差を計算する。この値とレンズの結像倍率から画像読取位置、つまり原稿面での読取位置の変化が計算される(ステップS12)。
【0048】
そして、列カウンタの値を元に計測データの最後まで順次、この計算を行う(ステップS13)。
【0049】
以上の計算は演算処理装置内に組み込まれたソフトウェアによって行われる。また、演算処理装置27内に記憶された列カウンタおよび速度計測装置20によって得られた速度データを演算処理装置27内の記憶装置に保存しておき、後から演算処理装置27を用いて原稿面での読取位置の変化を計算することもできる。
【0050】
反射ミラーの位置と反射ミラー傾きによる結像位置変化は光線追跡手法によって計算されることが多い。しかし、光線追跡ソフトウェアは汎用のものが多く、他の計測システムと組み合わせて使用することは困難であった。
【0051】
そこで、反射ミラーの位置と反射ミラー傾きによる入射光束と反射ミラー面での反射光束の関係を幾何光学的な一般式にすることによって、光線追跡を行うようにした。
【0052】
図8は反射ミラーの座標変換の概念図を示している。原点Oと、原点Oを含む原点平面31を考え、それぞれの直交座標系を図のように決める。ここで、原点平面31は原稿面に等しいと考える。第1反射面32(=第1反射ミラー15)と考えると、画像読取装置を構成する反射面はZ軸周りにβ回転し、Y軸方向にK2、X軸方向にK1平行移動したものと考えることができる。このとき、反射面は反射ミラーの傾きによりY軸周りに微小回転する。またX軸周りの回転も考慮する。
【0053】
これらは3次元のアフィン変換と考えることができる。原点平面31上のある点[x,y,z,1]を4次の同次座標系として表現し、変換後の座標を[xR,yR,zR,1]とすると、
【数1】
Figure 0004170088
が成り立つ。ここで[ C ]は回転および並進行列であり、以下のように表現される。
【0054】
【数2】
Figure 0004170088
【0055】
次に、図9のように原点平面31上のある点P(xs,ys、zs)から出射した出射光束ベクトルが第1反射面32のどこに当たるかを考える。出射光束ベクトルは単位ベクトルQ方向に進行し、点K(xp,yp,zp)で反射して、反射光束ベクトルQ’方向に反射すると考える。PK=tとすると、以下の連立方程式が成り立つ。
【0056】
【数3】
Figure 0004170088
【0057】
【数4】
Figure 0004170088
【0058】
【数5】
Figure 0004170088
【0059】
【数6】
Figure 0004170088
【0060】
ここで、(6)式は第1反射面32の方程式であり、E,F,G,Hは定数である。(6)式に(3)〜(5)式を代入し、整理すると以下の式が得られる。
【0061】
【数7】
Figure 0004170088
【0062】
(7)式で求めたtを(3)〜(5)式に代入することで点Kの座標を求めることができる。
【0063】
一方、反射法線単位ベクトルE’は出射面の法線ベクトルEを用いて以下のように表すことができる。
【0064】
【数8】
Figure 0004170088
【0065】
出射光束ベクトルの単位ベクトル[Qx,Qy,Qz]を用いると反射方向を示す反射光束ベクトル[Q'x,Q'y,Q'z]は反射行列を用いて、以下のように表すことができる。
【0066】
【数9】
Figure 0004170088
【0067】
次に、図10に示すように、反射面32上の点Kから出射した出射光束単位ベクトルQ’が第2反射面33(=第2反射ミラー16)のM点に当たって反射光束ベクトルQ”の方向に反射する。これは上記の(1)〜(9)式の計算を行うことで反射光束ベクトルQ”の位置および方向を求めることができる。
【0068】
以上のような一連の計算を順次各反射面に対して行っていく。その実行例を図11に示す。原点平面31上の点Pから出射した光束は、第1反射面32上の点Kに当たり反射され、第2反射面33上の点Mに当たってQ”の方向に反射される。さらに第3反射面34(=第3反射ミラー17)上の点Nに当たってQ'''方向に反射され、結像レンズ35(=レンズ9)を透過して結像面36(=1次元撮像素子10)に結像される。
【0069】
結像レンズによる屈折作用は光線追跡手法によって計算されることが多い。しかし、光線追跡ソフトウェアは汎用のものが多く、他の計測システムと組み合わせて使用することは困難であった。また従来のソフトウェアは屈折界面での屈折の組み合わせで記述されており、レンズという部品単位での計算はできなかった。
【0070】
そこで、結像レンズ毎での屈折を幾何学的な一般式にすることで結像レンズを通過する光束の光線追跡を行って、結像位置を求める。
【0071】
結像レンズの傾き・並進は結像レンズ自身の組付け精度と画像読取装置への組付け精度によって決まる。結像レンズ自身の持つ反射偏心あるいは透過偏心はレンズ偏心測定機等で測定可能で、画像読取装置への組付けは組付け治具の精度で決まる。実際には結像レンズ自身の傾き・並進公差と画像読取装置への組付け公差の積上げ公差を考慮して計算を行い、最終的な読取り位置の誤差を見積もった方がよい。
【0072】
次に、レンズ面での計算手法について説明する。図12に示すように、反射面40(=第3反射面34)上の点V(Vx,Vy,Vz)から反射した出射光単位ベクトルS(=Q''')はレンズ面41上の交点K(Xk,Yk,Zk)上で屈折する。このときのKの座標と屈折方向を求める。
【0073】
レンズ面41は元座標系に対して回転もしくは並進された状態を考える。これはレンズの取り付け誤差を考慮するためである。この場合は図13のように座標系をレンズ面41の回転もしくは並進に合わせた座標変換を行う。
【0074】
元座標系のままでレンズ面の回転もしくは並進を考える方法もあるが、レンズ面が非球面である場合を考えると、変換座標系に変換して計算を実行する方が計算式は簡単になる。
【0075】
元座標系をXYZとして、それぞれの軸回りの回転をγ,α,β、並進をUx,Uy,Uzとする。図12、図13は、回転角がβ、並進量がUy の状態を示している。
【0076】
並進および回転成分を加えると座標変換後の点V’(V'x,V'y,V'z)および出射光ベクトルS’(S'x,S'y,S'z)は以下のように表現される。
【0077】
【数10】
Figure 0004170088
【0078】
【数11】
Figure 0004170088
【0079】
ここで[R]は回転行列であり、以下のように表現される。
【0080】
【数12】
Figure 0004170088
【0081】
出射光ベクトルS’は並進の影響は受けないので回転行列のみを作用させる。
【0082】
次に変換座標系での出射光とレンズ面1との交点K’(X'k,Y'k,Z'k)を求める。V'K'=mとすると以下の連立方程式が成り立つ。
【0083】
【数13】
Figure 0004170088
【0084】
【数14】
Figure 0004170088
【0085】
【数15】
Figure 0004170088
【0086】
【数16】
Figure 0004170088
【0087】
ここで(16)式は非球面曲面の方程式である。CnはConic定数であり、Cnの値により曲面の形が変化する(Cn>0:楕円、 Cn=0:放物面、Cn<0:双曲面Cn=1:球面)。rはレンズ面1の曲率半径である。
【0088】
(13)〜(16)式を解いてmを求め、(13)〜(15)式に代入することでK’の座標を求めることができる。
【0089】
次にレンズ面1での屈折方向を計算する。図14に示すように、出射光ベクトルV’は屈折率Nの媒質中を伝播し、屈折率N’のレンズ面41で屈折して屈折光ベクトルT’(T'x,T'y,T'z)の方向に屈折する。
【0090】
図15のように交点K’におけるレンズ面41上の法線ベクトルE’(E'x,E'y,E'z)を考える。このときレンズ面41への入射角をi、屈折光ベクトルと法線ベクトルの成す角をi’とする。(16)式をX'kについて変形すると次式を得る。
【0091】
【数17】
Figure 0004170088
【0092】
法線ベクトルの各成分は勾配を取ることで計算できる。
【0093】
【数18】
Figure 0004170088
すると以下のようになる。
【0094】
【数19】
Figure 0004170088
【0095】
【数20】
Figure 0004170088
【0096】
【数21】
Figure 0004170088
【0097】
E'・S'=cos iおよびE'・T'=cos i’ なる関係を用いてスネルの法則
【数22】
Figure 0004170088
を変形すると、屈折光ベクトルT’(T'x,T'y,T'z)は以下のように求まる。
【0098】
【数23】
Figure 0004170088
【0099】
ここで cos i’ は以下のように計算できる。
【0100】
【数24】
Figure 0004170088
【0101】
sign(cos i)はcos iの正負によって+1もしくは−1の値を取る関数である。
以上(10)〜(24)式を用いてレンズ面1での交点K’および屈折光ベクトルT’が求まる。
【0102】
これら一連の計算を次の面に対しても同様に行う。
【0103】
図16に示すように、レンズ面41の後方にレンズ面42を考える。すなわち、レンズ面41およびレンズ面42を備えたレンズ35(=レンズ9)が存在する場合は、前記で求まった交点K’を出射点座標、屈折光ベクトルT’を出射光ベクトルと考えて同様の計算を行うことでレンズの屈折計算を行う。
【0104】
このようにして最終的にレンズ面42上の交点K’1(X'k1,Y'k1,Z'k1)、およびレンズ35から出射する屈折光ベクトルT’1(T'x1,T'y1,T'z1)が求まる。
【0105】
次に、図17に示すように、座標系X’Y’Z’を元座標系XYZに戻す。回転行列を[R]とすればレンズの傾きのみを元の座標系に戻すと以下のようになる。
【0106】
【数25】
Figure 0004170088
【0107】
このとき[R]-1は以下のように与えられる。
【0108】
【数26】
Figure 0004170088
【0109】
並進成分を元に戻せば交点K1は以下のようになる。
【0110】
【数27】
Figure 0004170088
【0111】
また、屈折光ベクトルT1は以下のように元の座標系に戻すことができる。
【0112】
【数28】
Figure 0004170088
【0113】
屈折光ベクトルT1は並進の影響を受けないので回転行列のみを作用させる。
【0114】
このようにして、レンズでの屈折を計算することができる。レンズが複数ある場合も(10)〜(28)式の計算を繰り返し実行することで計算することができる。
【0115】
次に結像位置の座標を求める。
結像面36での結像位置Pi[Xi,Yi,Zi]は、K1Pi=nとすると以下の連立方程式が成り立つ。
【0116】
【数29】
Figure 0004170088
【0117】
【数30】
Figure 0004170088
【0118】
【数31】
Figure 0004170088
【0119】
【数32】
Figure 0004170088
ただし、E2,F2,G2,H2は定数である。
【0120】
(32)式に(29)式〜(31)式を代入し整理し、nを求める。そして、求められたnを(29)式〜(31)式に代入することで、結像位置Pi[Xi,Yi,Zi]の座標を求めることができる。
【0121】
このようにして最終的に結像面での座標が計算できる。結像面での座標をレンズの結像倍率で除することで画像読取位置が計算される。
【0122】
一方、ミラーおよびレンズが傾いていない理想的な結像位置を計算し、その座標をレンズの結像倍率で除することで理想状態の画像読取位置が計算される。また、この位置とミラーおよびレンズが傾いたときの画像読取位置の差を計算することで、原稿面での読取位置の変化が計算される。
【0123】
(実施の形態2)
図18は、実施の形態2を示している。本実施の形態では、第2走行体6のケース51の側面に反射治具52A,52Bが取り付けられている。他の構成は実施の形態1の場合と同様である。
【0124】
ミラーの挙動を計測するためには、反射ミラー16に反射治具52A,52Bを直接取り付けるのが良いのであるが、実際には、非接触速度計24A,24Bからの測定光を反射治具52A,52Bに直接当てるには、ケース51の側面に開口部を形成しなければならず、手間が掛かる。
【0125】
上記欠点を解消するために本実施の形態では、上述したように、第2走行体6のケース51の側面に反射治具52A,52Bが取り付けられている。そして、非接触速度計24A,24Bから測定光を反射治具52A,52Bに照射するとともに、反射治具52A,52Bでの反射光が非接触速度計24A,24Bに再び戻るようにしている。
【0126】
反射ミラー16,17はケース51に固定されており、ケース51は剛体と考えてよいので、反射ミラー16,17はケース51と同じ動きをすると考えることができる。すなわち、反射ミラー16,17は同位相でケース51と同じ動きをすると考えてもよい。したがって、非接触速度計24A,24Bの計測数値を積分して変位データに変換し、この変位データと非接触速度計24A,24B間の距離からケース51の傾きを計算すれば、その傾き量がミラー16,17の傾き量とみなすことができる。
【0127】
加速度を測定した場合は2階積分を行って変位データに変換し、変位を測定した場合にはそのままを用いる。また、走行体単体での固有モードを測定あるいは計算し、反射ミラー16,17の取り付け部分の挙動および位相から反射ミラー16,17の動きを推定することもできる。この場合は最も振幅の大きい1次モードなどを用いれば反射ミラー16,17の相対的な挙動をつかむ事が可能になる。固有モードの挙動は有限要素解析やモーダル解析の手法を用いて捉えることができる。以降の計算フローおよび計算方法は、実施の形態1の場合と同様である。
【0128】
【実施例】
次に、本発明に係る読み取り位置評価システムを用いた実施例について説明する。
【0129】
第1反射ミラー15の両端に反射治具を取り付け、レーザドップラ振動計を用いて第1反射ミラー15両端の速度変動を測定した。A3原稿全面分の走査を行い、得られた速度変動データを積分して第1反射ミラー15両端2点の変位を計算し、その結果から第1反射ミラー15の傾きを計算した。第2反射ミラー16も第1反射ミラー15と同様の傾きを持っていると考え、また第3反射ミラー17は第1反射ミラー15と同様の手法で傾きを計算した。
【0130】
ここまでの一連の測定で得られたミラー傾きを元に各反射ミラー15,16,17およびレンズ9を伝播する光線追跡を行い、最終的な画像読取位置を求めた。
【0131】
以上の一連の測定および計算をA3原稿全面分の走査範囲にわたって実行し、主走査および副走査方向に関して読取り位置の変化をプロットしたものが図19である。
【0132】
図19の左表は、副走査位置での第1反射ミラー15の傾き量を示している。第1反射ミラー15に傾きがなければ長方形状の結果が得られるが、第1反射ミラー15の傾きが走査とともに変動するため、読取り位置が変化し、画像ゆらぎが発生していることが分かる。ただし、この図の画像ゆらぎ量は主走査および副走査方向に対して拡大表示されている。
【0133】
本実施の形態によれば、測定光が通過するための開口部を第2走行体6の側面に設ける必要がないので、画像読取装置1の読取位置についての性能を簡単に評価することができる。
【0134】
なお、本実施の形態においても、第2走行体6の側面に反射治具を3つ以上取り付けるとともに、非接触速度計も反射治具に対応させて3つ以上設置することができる。
【0135】
【発明の効果】
以上説明したように、請求項1または請求項3に記載の発明によれば、画像読取装置の設計試作段階において、反射部材の挙動を実測により把握できるので、画像読取位置の性能を高精度に且つ短時間に評価することができる。
また、3つの反射部材のすべてについて、画像読取装置の試作段階で評価を行うことができる。
【0136】
請求項または請求項に記載の発明によれば、請求項1または請求項3に記載の発明と同様、画像読取装置の設計試作段階において、反射部材の挙動を実測により把握できるので、画像読取位置の性能を高精度に且つ短時間に評価することができる。
また、反射治具を容易に取り付けることができる。
【図面の簡単な説明】
【図1】画像読取装置の全体構成図である。
【図2】画像読取装置の要部断面図である。
【図3】実施の形態1による読取位置評価システムによって、画像読取装置の読取位置評価を行っている様子を示す図である。
【図4】第2走行体に取り付けられた反射ミラーの構成図である。
【図5】読取位置評価システムの構成図である。
【図6】読取位置評価システムの動作を説明するフローチャートである。
【図7】図6の続きを示すフローチャートである。
【図8】反射面での計算手法を説明する図である。
【図9】図8の続きであり、反射面での計算手法を説明する図である。
【図10】図9の続きであり、反射面での計算手法を説明する図である。
【図11】図10の続きであり、反射面での計算手法を説明する図である。
【図12】レンズ面での計算手法を説明する図である。
【図13】図12の続きであり、レンズ面での計算手法を説明する図である。
【図14】図13の続きであり、レンズ面での計算手法を説明する図である。
【図15】図14の続きであり、レンズ面での計算手法を説明する図である。
【図16】図15の続きであり、レンズ面での計算手法を説明する図である。
【図17】図16の続きであり、レンズ面での計算手法を説明する図である。
【図18】実施の形態2による読取位置評価システムによって、画像読取装置の読取位置評価を行っている様子を示す図である。
【図19】画像読取装置に対して読取位置の測定を行ったときの実験結果を示す図である。
【符号の説明】
1 画像読取装置
2 コンタクトガラス
4 照明部
5 第1走行体
6 第2走行体
9 レンズ
10 1次元撮像素子
12 原稿
13 ランプ
14A,14B リフレクタ
15 第1反射ミラー
16 第2反射ミラー
17 第3反射ミラー
18 撮影領域
20 速度計測装置
21A,21B 反射治具
24A,24B 非接触速度計
25A,25B 制御装置
26 ネットワーク
27 演算処理装置
28 表示装置
51 ケース
52A,52B 反射治具

Claims (4)

  1. 所定方向に移動しつつ被写体に光を照射する照明光学系と、前記照明光学系の移動に合わせて所定方向に移動するとともに、前記被写体からの反射光を順次反射する複数の反射部材と、前記反射部材からの反射光を受光して前記被写体を撮像する撮像素子とを有する画像読取装置と、
    前記反射部材に取り付けられた少なくとも2つの反射治具と、
    前記反射部材の移動時に前記反射治具に向けて光を照射するとともに、反射治具からの反射光を受光して、前記反射部材の移動速度を計測する速度計測手段と、
    前記速度計測手段での計測結果から前記反射部材の位置と傾きを算出し、その算出結果から、前記撮像素子上における前記反射部材からの反射光の結像位置を予測する演算処理手段と、
    前記演算処理手段での予測結果を表示する表示手段とを備え
    前記反射部材は3つ設けられ、そのうちの1つが前記照明光学系とともに第1走行体に、残りの2つが前記第1走行体の移動に合わせて同方向に移動する第2走行体にそれぞれ設置され、
    前記反射治具は前記3つの反射部材のいずれかに取り付けられることを特徴とする読取位置評価システム。
  2. 所定方向に移動しつつ被写体に光を照射する照明光学系と、前記照明光学系の移動に合わせて所定方向に移動するとともに、前記被写体からの反射光を順次反射する複数の反射部材と、前記反射部材からの反射光を受光して前記被写体を撮像する撮像素子とを有する画像読取装置と、
    前記反射部材を収納するケースに取り付けられた少なくとも2つの反射治具と、
    前記反射部材の移動時に反射治具に向けて光を照射するとともに、反射治具からの反射光を受光して、前記反射部材の移動速度を計測する速度計測手段と、
    前記速度計測手段での計測結果から前記反射部材の位置と傾きを算出し、その算出結果から、前記撮像素子上における前記反射部材からの反射光の結像位置を予測する演算処理手段と、
    前記演算処理手段での予測結果を表示する表示手段とを備え
    前記反射部材は3つ設けられ、そのうちの1つが前記照明光学系とともに第1走行体に、残りの2つが前記第1走行体の移動に合わせて同方向に移動する第2走行体にそれぞれ設置され、
    前記反射治具は前記第1走行体の側面または前記第2走行体の側面に取り付けられることを特徴とする読取位置評価システム。
  3. 所定方向に移動しつつ被写体に光を照射する照明光学系と、前記照明光学系の移動に合わせて所定方向に移動するとともに、前記被写体からの反射光を順次反射する複数の反射部材と、前記反射部材からの反射光を受光して前記被写体を撮像する撮像素子とを有する画像読取装置を試作する際に、
    前記反射部材に少なくとも2つの反射治具を取り付けて、前記反射部材の移動時に前記反射治具に向けて光を照射するとともに反射治具からの反射光を受光して、前記反射部材の移動速度を計測し、
    前記計測結果から前記反射部材の位置と傾きを算出し、その算出結果から、前記撮像素子上における前記反射部材からの反射光の結像位置を予測する一方、
    前記反射部材は3つ設けられ、そのうちの1つが前記照明光学系とともに第1走行体に、残りの2つが前記第1走行体の移動に合わせて同方向に移動する第2走行体にそれぞれ設置されている場合、
    前記反射治具を前記3つの反射部材のいずれかに取り付けることを特徴とする読取位置評価方法。
  4. 所定方向に移動しつつ被写体に光を照射する照明光学系と、前記照明光学系の移動に合わせて所定方向に移動するとともに、前記被写体からの反射光を順次反射する複数の反射部材と、前記反射部材からの反射光を受光して前記被写体を撮像する撮像素子とを有する画像読取装置を試作する際に、
    前記反射部材を収納したケースに少なくとも2つの反射治具を取り付けて、前記反射部材の移動時に前記反射治具に向けて光を照射するとともに反射治具からの反射光を受光して、前記反射部材の移動速度を計測し、
    前記計測結果から前記反射部材の位置と傾きを算出し、その算出結果から、前記撮像素子上における前記反射部材からの反射光の結像位置を予測する一方、
    前記反射部材は3つ設けられ、そのうちの1つが前記照明光学系とともに第1走行体に、残りの2つが前記第1走行体の移動に合わせて同方向に移動する第2走行体にそれぞれ設置されている場合、
    前記反射治具を前記第1走行体の側面または前記第2走行体の側面に取り付けることを特徴とする読取位置評価方法。
JP2002365112A 2002-12-17 2002-12-17 読取位置評価システムおよび評価方法 Expired - Fee Related JP4170088B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365112A JP4170088B2 (ja) 2002-12-17 2002-12-17 読取位置評価システムおよび評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365112A JP4170088B2 (ja) 2002-12-17 2002-12-17 読取位置評価システムおよび評価方法

Publications (2)

Publication Number Publication Date
JP2004198604A JP2004198604A (ja) 2004-07-15
JP4170088B2 true JP4170088B2 (ja) 2008-10-22

Family

ID=32762761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365112A Expired - Fee Related JP4170088B2 (ja) 2002-12-17 2002-12-17 読取位置評価システムおよび評価方法

Country Status (1)

Country Link
JP (1) JP4170088B2 (ja)

Also Published As

Publication number Publication date
JP2004198604A (ja) 2004-07-15

Similar Documents

Publication Publication Date Title
US10048064B2 (en) Optical three dimensional scanners and methods of use thereof
US7443513B2 (en) Apparatus for optical measurement of an object
US20190191141A1 (en) Motion blur compensation
JP2779242B2 (ja) 光電子工学式角度測定システム
US20040125381A1 (en) Miniature three-dimensional contour scanner
US5822486A (en) Scanned remote imaging method and system and method of determining optimum design characteristics of a filter for use therein
JP5226480B2 (ja) 3次元形状測定装置
JP2004085565A (ja) レーザ三次元デジタル化センサのキャリブレーション法およびキャリブレーション装置
JP2005121370A (ja) 表面形状測定装置および表面形状測定方法
JP4170088B2 (ja) 読取位置評価システムおよび評価方法
JPH06249624A (ja) 3次元表面形状測定装置
JP5606039B2 (ja) ステージ装置及び波面収差測定装置
JP2005140673A (ja) 非球面偏心測定装置及び非球面偏心測定方法
JP2020165658A (ja) 三次元計測方法、三次元計測装置およびロボットシステム
JP4043900B2 (ja) 画像読取装置の読取位置評価システム
JP4282350B2 (ja) 画像読取装置
JP2007218931A (ja) 光学面の形状測定方法および装置および記録媒体
JP2014219328A (ja) 変位測定装置および変位測定方法
JP5430473B2 (ja) 面形状計測装置
WO2024004166A1 (ja) 距離測定装置
JP7279469B2 (ja) 三次元計測装置およびロボットシステム
JPH10253319A (ja) 位置計測装置
JP2012247361A (ja) 面形状計測装置
JP2022071666A (ja) 光学装置、計測装置、ロボット、電子機器および造形装置
JP2023143276A (ja) 表面形状測定装置及び表面形状測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees