JP4169978B2 - Low dielectric adhesive and film-like joining member comprising the same - Google Patents

Low dielectric adhesive and film-like joining member comprising the same Download PDF

Info

Publication number
JP4169978B2
JP4169978B2 JP2002000946A JP2002000946A JP4169978B2 JP 4169978 B2 JP4169978 B2 JP 4169978B2 JP 2002000946 A JP2002000946 A JP 2002000946A JP 2002000946 A JP2002000946 A JP 2002000946A JP 4169978 B2 JP4169978 B2 JP 4169978B2
Authority
JP
Japan
Prior art keywords
film
polyimide
joining member
minutes
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002000946A
Other languages
Japanese (ja)
Other versions
JP2003201461A (en
Inventor
剛 菊池
宏之 辻
浩行 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2002000946A priority Critical patent/JP4169978B2/en
Publication of JP2003201461A publication Critical patent/JP2003201461A/en
Application granted granted Critical
Publication of JP4169978B2 publication Critical patent/JP4169978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低誘電率で、加工性、耐熱性に優れた接着剤並びにフィルム状接合部材に関する。本発明の接着剤並びにフィルム状接合部材は、フレキシブル印刷回路基板、複合リードフレーム、積層材料等の低誘電性、加工性、耐熱性が要求される材料において有用である。
【0002】
【従来の技術】
近年、電子機器の高機能化、高性能化、小型化が進んでおり、それらに伴って用いられる電子部品に対する小型化、軽量化が求められてきている。そのため、電子部品ならびに実装基板においてパターンの微細化や高密度化が図られ、COL及びLOCパッケージ、MCM(Multi Chip Module)や多層FPC等の高密度実装法が用いられるようになっている。これら微細配線基板においては、配線の電気的信頼性を保ち、回路の信号伝達速度を高速化するために、低誘電率、低誘電正接の回路積層材料が必要とされる。
従来のフレキシブル回路基板としては、絶縁性に優れた高分子フィルム、例えば、ポリイミドフィルムの片面もしくは両面に接着剤を介して銅箔等の導電体層を積層し、回路を形成したものが一般的である。しかしながら、ここで一般に用いられる接着剤は誘電率が比較的大きいエポキシ樹脂系の材料であるため、誘電率の低いポリイミドフィルムを基板として用いても、接着剤層の誘電率が高いために、基板全体としての誘電率が上がってしまうという問題があった。
【0003】
誘電特性に優れた接着材料としては、ポリイミド系の接着材料が挙げられる。しかし、ポリイミド系接着材料は接着するために300℃前後の高温と高圧力を要し、加工性の面で汎用の熱硬化性樹脂に大きく劣る。熱可塑性ポリイミドとエポキシ樹脂をブレンドすることにより、加工性を向上させるという手法もあるが(例えば、特開2000−109645)、前述のようにエポキシ樹脂は誘電率が比較的高いため、エポキシ樹脂の比率がある程度高くなると、接着材料自体の誘電率が上がる結果となる。従って、接着層の低誘電率化という用途では、上記公報の技術は不十分である。また、今後は配線の微細化、信号速度の高速化が今以上に進むことが予想され、ポリイミドよりも更に誘電率の低い材料が求められるようになると考えられる。
【0004】
ポリイミド系材料よりも低誘電の材料としては、ベンゾシクロブテン(BCB)が挙げられる。BCBはポリイミドよりも誘電率が低いだけでなく(ポリイミド:ε=約3.3、BCB:ε=約2.7)、低吸湿性で耐熱性にも優れているため、回路の高速化に対応できる絶縁層材料として注目されている。このBCBを接着剤層に用いることで、従来のエポキシ樹脂系、ポリイミド系接着材料よりも誘電特性を向上させることが可能となる。しかし、BCBは硬化後の柔軟性がポリイミド系材料と比較して劣るため、単独成分でフィルム状接合部材として用いる際に、用途によっては問題となることがあった。
【0005】
【発明が解決しようとする課題】
そこで本発明者らは、上記課題を解決し、誘電特性に優れ、加工性、耐熱性、柔軟性に優れたフィルム状接合部材、積層部材を提供することを目的とし、鋭意研究を行った結果、本発明を完成するに至った。
【0006】
【課題を解決するための手段】
本発明の要旨とするところは、有機溶媒に熱可塑性ポリイミド、及びBCBを溶解させた接着剤、並びに、その接着剤をポリエチレンテレフタレート(PET)フィルム等、支持体となる高分子フィルム上に塗布乾燥させた後に剥離することによって得られるフィルム状接合部材に関する。
【0007】
ポリイミドは一般的に有機溶媒に対する溶解性が極端に低く、BCBなどの熱硬化樹脂と混合することは困難であるが、エステル酸二無水物とジアミンから成る熱可塑性ポリイミドは、従来のポリイミドよりも溶解性に優れる。特に、一般式(
【化3】
で表される酸二無水物と一般式(
【化4】
で表されるジアミンから成る熱可塑性ポリイミドは、良好な溶解性を示す。これにより、熱硬化性樹脂との混合が可能となり、双方の物性を併せ持つ接着部材を得ることが可能となる。また、選択できる溶媒の幅も広がり、加工性の面で優れる。
【0008】
本発明の接着剤には、熱硬化成分としてBCBが添加されているため、従来のエポキシ樹脂系接着剤、ポリイミド系接着剤、ポリイミド・エポキシ樹脂混合系接着剤に比べて、得られるフィルム状接合部材の誘電率ならびに誘電正接を低くすることが可能となる。また、柔軟性に劣るという欠点についても、溶媒可溶性の熱可塑性ポリイミドと混合することによって克服でき、BCBの耐熱性、誘電特性と熱可塑性ポリイミドの耐熱性、柔軟性を兼ね備えたフィルム状接合部剤を得ることが可能となる。
【0009】
以上の点から、本発明の接着剤、及びそれを用いて得られるフィルム状接合部材は、加工性、耐熱性、柔軟性、誘電特性に優れる。
【0010】
【発明の実施の形態】
本発明の接着剤に用いられている熱可塑性ポリイミドは、一般式(1)(式中、Xは−(CH2k−、もしくは芳香環を含む二価の有機基を示す。kは1以上10以下の整数である。)で表されるエステル酸二無水物を構成成分として含む。本発明に用いられるエステル酸二無水物の好ましい例としては、2,2−ビス(4−ヒドロキシフェニル)プロパンジベンゾエート−3,3’,4,4’−テトラカルボン酸二無水物、p−フェニレンビス(トリメリット酸モノエステル無水物)、3,3’,4,4’−エチレングリコールベンゾエートテトラカルボン酸二無水物、4,4’−ビフェニレンビス(トリメリット酸モノエステル無水物)、1,4−ナフタレンビス(トリメリット酸モノエステル無水物)、1,2−エチレンビス(トリメリット酸モノエステル無水物)、1,3−トリメチレンビス(トリメリット酸モノエステル無水物)、1,4−テトラメチレンビス(トリメリット酸モノエステル無水物)、1,5−ペンタメチレンビス(トリメリット酸モノエステル無水物)、1,6−ヘキサメチレンビス(トリメリット酸モノエステル無水物)等が挙げられる。
【0011】
一般式(2)で表されるジアミンの好ましい例としては、式中Yが−C(=O)−、−SO2−、−O−、−S−、−(CH2m−、−NHCO−、−C(CH32−、−C(CF32−、−C(=O)O−、または結合であり、m及びnは1以上10以下の整数であるような化合物が挙げられる。
【0012】
また、一般式(2)において、複数個のYは同一または2種以上の置換基であり得る。また、各ベンゼン環の水素は、当業者の考え得る範囲内で、種々の置換基で適宜置換され得る。例えば、メチル基、エチル基等の炭化水素基やBr、Cl等のハロゲン基を挙げることができるが、これらの置換基に限定されない。
【0013】
さらに、一般式(2)で表されるジアミンと類似した構造を持つものとして、アミノ基がメタ位以外のオルト位、パラ位に結合しているものも存在しうるが、一般式(2)で表されるように、メタ位についているのが好ましい。メタ位にアミノ基があることにより、生成されるポリイミドの有機溶媒への溶解性がより良好となり、加工性に優れた接着剤が得られる。
一般式(2)で表されるジアミンは、1種または2種以上混合して用いうる。
【0014】
本発明にかかる接着剤に含まれるポリイミド樹脂は、その前駆体であるポリアミド酸重合体を脱水閉環して得られる。このポリアミド酸溶液は、上記一般式(1)で表されるエステル酸二無水物とその他の酸二無水物、及び上記一般式(2)で表される1種以上のジアミンとその他のジアミンをエステル酸二無水物と全ジアミンとが実質的に等モルになるように使用し、有機極性溶媒中で重合して得られる。
【0015】
このポリアミド酸またはポリイミドは、まず、アルゴン、窒素などの不活性雰囲気中において、上記一般式(1)で表されるエステル酸二無水物とその他の酸二無水物、及び上記一般式(2)で表される1種以上のジアミンとその他のジアミンを有機極性溶媒中に溶解または拡散させて得られるポリアミド酸重合体より得られる。
【0016】
各モノマーの添加順序は特に限定されず、酸二無水物を有機極性溶媒中に先に加えておき、ジアミン成分を添加し、ポリアミド酸重合体の溶液としても良いし、ジアミン成分を有機極性溶媒中に先に適量加えて、次に酸二無水物を加え、最後に残りのジアミン成分を加えて、ポリアミド酸重合体の溶液としても良い。この他にも、当業者に公知の様々な添加方法がある。
【0017】
ポリアミド酸溶液の生成反応に用いられる有機極性溶媒としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶媒、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド等のホルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド等のアセトアミド系溶媒、N−メチル−2−ピロリドン等のピロリドン系溶媒、フェノール、o−,m−またはp−クレゾール、キシノール、ハロゲン化フェノール、カテコール等のフェノール系溶媒、あるいはヘキサメチルホスホルアミド、γ−ブチロラクトン等を挙げることができる。更に必要に応じて、これらの有機極性溶媒とキシレンあるいはトルエン等の芳香族炭化水素とを組み合わせて用いることもできる。
【0018】
上記で得られたポリアミド酸重合体を、熱的または化学的方法により、脱水閉環し、ポリイミド樹脂を得る。イミド化の方法としては、ポリアミド酸溶液を加熱処理して脱水する熱的方法、脱水剤を用いて脱水する化学的方法のいずれも用いられる。
化学的方法による脱水剤としては、例えば、無水酢酸等の脂肪族酸無水物、及び芳香族酸無水物が挙げられる。また、触媒としては、トリエチルアミン等の脂肪族第3級アミン類、ジメチルアニリン等の芳香族第3級アミン類、ピリジン、イソキノリン等の複素環第3級アミン類等が挙げられる。
上記のようにして得られた熱可塑性ポリイミドはそのまま溶液として用いることができる。あるいはポリアミド酸の重合に用いた、溶媒を良く溶かすが、ポリイミドが溶解しにくい貧溶媒中に、ポリイミド溶液を投入して、ポリイミド樹脂を析出させて未反応モノマーを取り除いて精製し、乾燥させ固形のポリイミド樹脂としてから、適宜、本発明の接着剤に用いることもできる。
【0019】
貧溶媒としては、アセトン、メタノール、エタノール、イソプロパノール、ベンゼン、メチルセロソルブ、メチルエチルケトン等が例として挙げられるが、これに限定されない。
【0020】
熱的方法としては、例えば、ポリアミド酸を重合した後に真空オーブン中に投入し、減圧下で加熱することによってイミド化及び溶媒除去を行い、固形のポリイミド樹脂として取り出す手法が挙げられる。
【0021】
本発明にかかる接着剤は、BCBを成分中に含んでいるため、従来のエポキシ樹脂系接着剤、ポリイミド系接着剤、ポリイミド・エポキシ樹脂混合系接着剤と比較して、優れた低誘電性が付与されたフィルム状接合部材を得ることが可能となる。BCBは、ダウケミカル社などから購入が可能である。
【0022】
熱可塑性ポリイミドとBCBの混合割合は、重量比で95:5〜50:50の範囲内で用いる。少なすぎると、得られるフィルム状接合部材の硬化後の低誘電特性が十分に発現されない。即ち、誘電率が3.0未満、誘電正接が0.01以下とならない。多すぎると、得られるフィルム状接合部材が柔軟性に劣るものとなる。
【0023】
本発明の接着剤は、有機溶媒に上記熱可塑性ポリイミド樹脂及びBCBを溶解させることによって得られる。有機溶媒としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶媒、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド等のホルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド等のアセトアミド系溶媒等が挙げられる。組み合わせる溶媒の種類、数、混合する順番は特に限定されない。また、工程上の問題から、塗布後の乾燥温度を低く設定したい場合、低沸点のエーテル系溶媒を用いることも可能である。エーテル系溶媒としては、テトラヒドロフラン(THF)、1,4−ジオキサン、ジオキソラン等が挙げられる。これらエーテル系溶媒を用いる場合、乾燥温度を下げるためには、全溶媒量に対して、上記エーテル系溶媒を少なくとも30重量%以上含んでいることを前提とする。これらの溶媒に上記熱可塑性ポリイミド樹脂及びBCBを溶解させることにより、接着剤を得る。この時、熱可塑性ポリイミドを溶媒に溶解させた後、BCBを添加し、接着剤として用いても良いし、各成分をそれぞれ溶媒に溶解させた後、それらの溶液を混合して用いても良い。熱可塑性ポリイミド樹脂を溶解させる際に溶解しにくいようであれば、必要に応じて加熱を行う。ただし、エーテル系溶媒を用いる場合、沸点が低く揮発しやすいため、加熱温度、加熱時間は必要最低限に留める。
【0024】
本発明のフィルム状接合部材は、ポリエチレンテレフタレート(PET)フィルム等、支持体となる高分子フィルム上に上記接着剤を塗布乾燥させた後に剥離することにより得られる。接着層の厚みとしては、10〜50μm程度が好ましい。上記のようにして得られる本発明にかかるフィルム状接合部材は、フレキシブル印刷回路基板、複合リードフレーム、積層材料等に好適に用いられ得る特性を有する。具体的には、低誘電性を示し、且つ耐熱性にも優れている。また、約250℃以下の温度で接着可能であり、加工性にも優れる。
【0025】
本発明のフィルム状積層部材は、上記フィルム状接合部材に金属箔や別のフィルム、印刷回路基板等を加熱加圧して接着することで得られる。金属箔としては、例えば銅箔・アルミ箔・42合金等が挙げられる。フィルムの種類は特に限定されず、例えばポリイミドフィルム及びポリエステルフィルム等が挙げられる。従来のポリイミド系接着剤は、銅箔等の金属及びポリイミド等の樹脂フィルムに対して接着性を発現するためには高温高圧が必要とされていた。また、エポキシ樹脂との混合による加工性の向上は、その難溶性により困難であった。可溶性ポリイミド樹脂を用いることでエポキシ樹脂との混合を可能にした接着剤においても、誘電率が高くなり、ポリイミド系接着剤の長所を損なう結果となっていた。本発明にかかるフィルム状接合部材は、銅箔等の金属箔やポリイミドフィルムと比較的低温での接着が可能であり、使用に際し加工性に優れる。この場合の接着条件としては、接着硬化するために必要十分である接着条件で有れば良く、具体的には加熱温度150〜250℃、圧力0.1〜10MPaで加熱時間5〜20分程度の条件で加熱加圧する事が好ましい。また、BCB成分の硬化反応を十分に進行させるため、接着後に加熱温度150〜250℃、加熱時間1〜3時間程度の条件で加熱処理を行うことが好ましい。
【0026】
【実施例】
(実施例1)容量1000mlのガラス製フラスコにジメチルホルムアミド(以下、DMFという)263g、3,3’−ビス(アミノフェノキシフェニル)スルフォン(以下、BAPS−Mという)0.112molを加え、窒素雰囲気下で攪拌しながら、2,2−ビス(4−ヒドロキシフェニル)プロパンジベンゾエート−3,3’,4,4’−テトラカルボン酸二無水物(以下、ESDAという)0.112molを徐々に添加した。氷浴下で30分間攪拌し、粘度が1500poiseに達したところで攪拌をやめ、ポリアミド酸溶液を得た。
【0027】
このポリアミド酸溶液300gを、テフロン(R)コートしたバットに移し、真空オーブンで200℃×3時間、5mmHg(約0.007気圧)の圧力で減圧加熱した。真空オーブンより取り出し、84gの熱可塑性ポリイミドを得た。このポリイミド粉末30gを70gのDMFに加えて撹拌、溶解させ、ポリイミド溶液を得た(SC=30%)。
【0028】
上記で得たポリイミド溶液70gとBCB(ダウケミカル社製、SC63%メシチレン溶液)14gを混合、撹拌し、接着剤を得た(SC=36%)。得られた溶液を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、180℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後も、十分な柔軟性を有していた。
【0029】
(実施例2)容量1000mlのガラス製フラスコにDMFを263g、1,3−ビス(3−アミノフェノキシ)ベンゼン(以下、APBという)を0.112mol加え、窒素雰囲気下で攪拌しながら、ESDAを0.112mol徐々に添加した。氷浴下で30分間攪拌し、粘度が1500poiseに達したところで攪拌をやめ、ポリアミド酸溶液を得た。
【0030】
このポリアミド酸溶液300gを、テフロン(R)コートしたバットに移し、真空オーブンで200℃×3時間、5mmHg(約0.007気圧)の圧力で減圧加熱した。真空オーブンより取り出し、82gの熱可塑性ポリイミドを得た。このポリイミド粉末30gを70gのDMFに加えて撹拌、溶解させ、ポリイミド溶液を得た(SC=30%)。
【0031】
上記で得たポリイミド溶液70gとBCB(ダウケミカル社製、SC63%メシチレン溶液)14gを混合、撹拌し、接着剤を得た(SC=36%)。得られた溶液を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、180℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後も、十分な柔軟性を有していた。
【0032】
(実施例3)容量1000mlのガラス製フラスコにDMFを263g、BAPS−Mを0.112mol加え、窒素雰囲気下で攪拌しながら、3,3’,4,4’−エチレングリコールベンゾエートテトラカルボン酸二無水物(以下、TMEGという)を0.112mol徐々に添加した。氷浴下で30分間攪拌し、粘度が1500poiseに達したところで攪拌をやめ、ポリアミド酸溶液を得た。
【0033】
このポリアミド酸溶液300gを、テフロン(R)コートしたバットに移し、真空オーブンで200℃×3時間、5mmHg(約0.007気圧)の圧力で減圧加熱した。真空オーブンより取り出し、82gの熱可塑性ポリイミドを得た。このポリイミド粉末30gを70gのDMFに加えて撹拌、溶解させ、ポリイミド溶液を得た(SC=30%)。
【0034】
上記で得たポリイミド溶液70gとBCB(ダウケミカル社製、SC63%メシチレン溶液)14gを混合、撹拌し、接着剤を得た(SC=36%)。得られた溶液を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、180℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後も、十分な柔軟性を有していた。
【0035】
(実施例4)容量1000mlのガラス製フラスコにDMFを263g、APBを0.112mol加え、窒素雰囲気下で攪拌しながら、TMEGを0.112mol徐々に添加した。氷浴下で30分間攪拌し、粘度が1500poiseに達したところで攪拌をやめ、ポリアミド酸溶液を得た。
【0036】
このポリアミド酸溶液300gを、テフロン(R)コートしたバットに移し、真空オーブンで200℃×3時間、5mmHg(約0.007気圧)の圧力で減圧加熱した。真空オーブンより取り出し、83gの熱可塑性ポリイミドを得た。このポリイミド粉末30gを70gのDMFに加えて撹拌、溶解させ、ポリイミド溶液を得た(SC=30%)。
【0037】
上記で得たポリイミド溶液70gとBCB(ダウケミカル社製、SC63%メシチレン溶液)14gを混合、撹拌し、接着剤を得た(SC=36%)。得られた溶液を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、180℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後も、十分な柔軟性を有していた。
【0038】
(実施例5)実施例1と同様にして得たポリイミド粉末を30g、DMF35g、1,4−ジオキソラン35gの混合溶媒に添加し、撹拌を行って溶解させ、ポリイミド溶液を得た(SC=30%)。
上記で得たポリイミド溶液70gとBCB(ダウケミカル社製、SC63%メシチレン溶液)14gを混合、撹拌し、接着剤を得た(SC=36%)。得られた溶液を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、160℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後も、十分な柔軟性を有していた。
【0039】
(比較例1)実施例1と同様にして得たポリイミド粉末を35g、エピコート1032H60(油化シェル社製)を15g、4,4’−ジアミノジフェニルスルフォンを4.5g、127gのDMFに添加し、攪拌を行って溶解させ、ワニスを得た(SC=30%)。
得られた溶液を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、180℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後も、十分な柔軟性を有していた。
【0040】
(比較例2)実施例3と同様にして得たポリイミド粉末を35g、エピコート1032H60(油化シェル社製)を15g、4,4’−ジアミノジフェニルスルフォンを4.5g、127gのDMFに添加し、攪拌を行って溶解させ、ワニスを得た(SC=30%)。
得られた溶液を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、180℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後も、十分な柔軟性を有していた。
【0041】
(比較例3)実施例4と同様にして得たポリイミド粉末を35g、エピコート1032H60(油化シェル社製)を15g、4,4’−ジアミノジフェニルスルフォンを4.5g、127gのDMFに添加し、攪拌を行って溶解させ、ワニスを得た(SC=30%)。
得られた溶液を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、180℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後も、十分な柔軟性を有していた。
【0042】
(比較例4)実施例4と同様にして得たポリイミド粉末を35g、エピコート1032H60(油化シェル社製)を15g、4,4’−ジアミノジフェニルスルフォンを4.5g、127gのDMFに添加し、攪拌を行って溶解させ、ワニスを得た(SC=30%)。
得られた溶液を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、180℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後も、十分な柔軟性を有していた。
【0043】
(比較例5)実施例1と同様にして得たポリイミド粉末を60g、140gのDMFに添加し、攪拌を行って溶解させ、ワニスを得た(SC=30%)。
得られた溶液を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、180℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後も、十分な柔軟性を有していた。
【0044】
(比較例6)実施例2と同様にして得たポリイミド粉末を60g、140gのDMFに添加し、攪拌を行って溶解させ、ワニスを得た(SC=30%)。
得られた溶液を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、180℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後も、十分な柔軟性を有していた。
【0045】
(比較例7)実施例3と同様にして得たポリイミド粉末を60g、140gのDMFに添加し、攪拌を行って溶解させ、ワニスを得た(SC=30%)。
得られた溶液を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、180℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後も、十分な柔軟性を有していた。
【0046】
(比較例8)実施例4と同様にして得たポリイミド粉末を60g、140gのDMFに添加し、攪拌を行って溶解させ、ワニスを得た(SC=30%)。
得られた溶液を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、180℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後も、十分な柔軟性を有していた。
【0047】
(比較例9)BCB(ダウケミカル社製、SC63%メシチレン溶液)を25μm厚のPETフィルム(セラピールHP、東洋メタライジング社製)上に流延し、60℃で10分間乾燥後、さらに120℃で10分間、180℃で10分間乾燥し、厚み20μmの単層フィルム状接合部材を得た。このフィルム状接合部材は、220℃で3時間加熱処理を行った後は脆く、柔軟性が不十分であった。
【0048】
(フィルム状積層部材の特性評価)
各実施例及び比較例で得られたフィルム状接合部材を、220℃で3時間加熱処理を行った後、誘電率を評価した。
・測定装置:KSシステムズ MOA−2012A型分子配向計
・測定周波数:12GHz
・測定角度:0,45,90度
実施例及び比較例のフィルム状接合部材の特性評価結果を表1に示す。
【0049】
【表1】
【0050】
【発明の効果】
本発明の接着剤は熱可塑性ポリイミドとBCBを用いているため、それから得られるフィルム状接合部材は耐熱性と誘電特性に優れる。従来のポリイミド系接着部材は、接着性発現に高温高圧を必要とするため加工性に劣り、一方、BCB接着部材は、硬化後の柔軟性が不十分であった。本発明の接着剤は、両成分を組み合わせることにより、柔軟性を保ちつつ、従来のポリイミド系よりも更に優れた低誘電性を有するフィルム状接合部剤を得ることが可能となった。
【0051】
また、本発明の接着剤に用いる熱可塑性ポリイミドは従来のものよりもガラス転移温度が比較的低温であるため、より低温で接着することが可能となり、加工性に優れる。ポリイミドとBCBを用いていることにより、耐熱性にも優れる。以上の点から、本発明の接着剤、及びその接着剤を用いたフィルム状接合部材は、優れた耐熱性、加工性、誘電特性を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adhesive and a film-like bonding member having a low dielectric constant and excellent workability and heat resistance. The adhesive and the film-like joining member of the present invention are useful in materials that require low dielectric properties, workability, and heat resistance, such as flexible printed circuit boards, composite lead frames, and laminated materials.
[0002]
[Prior art]
In recent years, electronic devices have been improved in function, performance, and size, and accordingly, electronic components used are required to be reduced in size and weight. Therefore, miniaturization and high density of patterns are achieved in electronic components and mounting boards, and high-density mounting methods such as COL and LOC packages, MCM (Multi Chip Module), and multilayer FPC are used. In these fine wiring boards, a circuit laminate material having a low dielectric constant and a low dielectric loss tangent is required in order to maintain the electrical reliability of the wiring and increase the signal transmission speed of the circuit.
As a conventional flexible circuit board, a polymer film having excellent insulating properties, for example, a film in which a conductor layer such as a copper foil is laminated on one or both sides of a polyimide film via an adhesive is generally formed. It is. However, since the adhesive generally used here is an epoxy resin-based material having a relatively large dielectric constant, even if a polyimide film having a low dielectric constant is used as the substrate, the adhesive layer has a high dielectric constant. There was a problem that the dielectric constant as a whole increased.
[0003]
Examples of the adhesive material having excellent dielectric properties include polyimide-based adhesive materials. However, a polyimide-based adhesive material requires a high temperature of about 300 ° C. and a high pressure for bonding, and is greatly inferior to a general-purpose thermosetting resin in terms of workability. There is also a method of improving processability by blending thermoplastic polyimide and epoxy resin (for example, JP-A-2000-109645), but as described above, epoxy resin has a relatively high dielectric constant. Increasing the ratio to some extent results in an increase in the dielectric constant of the adhesive material itself. Therefore, the technique described in the above publication is insufficient for use in reducing the dielectric constant of the adhesive layer. Further, in the future, it is expected that the miniaturization of wiring and the increase in signal speed will be further advanced, and it is considered that a material having a dielectric constant lower than that of polyimide will be required.
[0004]
An example of a material having a dielectric constant lower than that of the polyimide material is benzocyclobutene (BCB). BCB not only has a lower dielectric constant than polyimide (polyimide: ε = approximately 3.3, BCB: ε = approximately 2.7), but also has low hygroscopicity and excellent heat resistance. It is attracting attention as an insulating layer material that can be used. By using this BCB for the adhesive layer, it is possible to improve the dielectric characteristics as compared with conventional epoxy resin-based and polyimide-based adhesive materials. However, since BCB is inferior in flexibility after curing as compared with a polyimide-based material, it may cause a problem depending on the application when it is used as a film-like joining member with a single component.
[0005]
[Problems to be solved by the invention]
Therefore, the present inventors have solved the above-mentioned problems, and have conducted intensive research aimed at providing a film-like joining member and laminated member having excellent dielectric properties, excellent workability, heat resistance, and flexibility. The present invention has been completed.
[0006]
[Means for Solving the Problems]
The gist of the present invention is that an adhesive in which thermoplastic polyimide and BCB are dissolved in an organic solvent, and the adhesive are applied and dried on a polymer film as a support, such as a polyethylene terephthalate (PET) film. It is related with the film-like joining member obtained by making it peel after peeling.
[0007]
Polyimide generally has extremely low solubility in organic solvents, and thermosetting such as BCB. sex Although it is difficult to mix with a resin, thermoplastic polyimide composed of ester dianhydride and diamine is superior in solubility to conventional polyimide. In particular, the general formula ( 1 )
[Chemical 3]
An acid dianhydride represented by the general formula ( 2 )
[Formula 4]
The thermoplastic polyimide which consists of diamine represented by these shows favorable solubility. Thereby, mixing with a thermosetting resin is attained and it becomes possible to obtain the adhesive member which has both physical properties. In addition, the range of solvents that can be selected is widened, and the processability is excellent.
[0008]
Since BCB is added as a thermosetting component to the adhesive of the present invention, it is a film-like joint obtained as compared with conventional epoxy resin adhesives, polyimide adhesives, and polyimide / epoxy resin mixed adhesives. The dielectric constant and dielectric loss tangent of the member can be lowered. In addition, the disadvantage of poor flexibility can be overcome by mixing with solvent-soluble thermoplastic polyimide, and it is a film-like bonding agent that combines heat resistance of BCB, dielectric properties and heat resistance of thermoplastic polyimide, and flexibility. Can be obtained.
[0009]
From the above points, the adhesive of the present invention and the film-like joining member obtained using the same are excellent in processability, heat resistance, flexibility and dielectric properties.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The thermoplastic polyimide used in the adhesive of the present invention has the general formula (1) (wherein X is — (CH 2 ) k -Or a divalent organic group containing an aromatic ring. k is an integer from 1 to 10. The ester dianhydride represented by this is included as a structural component. Preferred examples of the ester dianhydride used in the present invention include 2,2-bis (4-hydroxyphenyl) propanedibenzoate-3,3 ′, 4,4′-tetracarboxylic dianhydride, p- Phenylenebis (trimellitic acid monoester anhydride), 3,3 ′, 4,4′-ethylene glycol benzoate tetracarboxylic dianhydride, 4,4′-biphenylenebis (trimellitic acid monoester anhydride), 1 , 4-Naphthalenebis (trimellitic acid monoester anhydride), 1,2-ethylenebis (trimellitic acid monoester anhydride), 1,3-trimethylenebis (trimellitic acid monoester anhydride), 1, 4-tetramethylenebis (trimellitic acid monoester anhydride), 1,5-pentamethylenebis (trimellitic acid monoester anhydride), 1 6- hexamethylene bis (trimellitic acid monoester anhydride), and the like.
[0011]
Preferable examples of the diamine represented by the general formula (2) include those in which Y is —C (═O) —, —SO 2 —, —O—, —S—, — (CH 2 ) m -, -NHCO-, -C (CH Three ) 2 -, -C (CF Three ) 2 Examples of the compound include-, -C (= O) O-, or a bond, and m and n are integers of 1 or more and 10 or less.
[0012]
Moreover, in General formula (2), several Y may be the same or 2 or more types of substituents. In addition, the hydrogen of each benzene ring can be appropriately substituted with various substituents within the range conceivable by those skilled in the art. For example, hydrocarbon groups such as a methyl group and an ethyl group and halogen groups such as Br and Cl can be given, but the substituent is not limited thereto.
[0013]
Further, as a compound having a structure similar to that of the diamine represented by the general formula (2), there may be one in which an amino group is bonded to an ortho position or a para position other than the meta position. It is preferable that it is attached to the meta position as represented by Due to the presence of the amino group at the meta position, the solubility of the produced polyimide in an organic solvent becomes better, and an adhesive excellent in processability can be obtained.
The diamine represented by the general formula (2) can be used alone or in combination.
[0014]
The polyimide resin contained in the adhesive according to the present invention is obtained by dehydrating and ring-closing the polyamic acid polymer that is a precursor thereof. The polyamic acid solution comprises an ester dianhydride represented by the general formula (1) and other acid dianhydrides, and one or more diamines represented by the general formula (2) and other diamines. The ester dianhydride and the total diamine are used so as to be substantially equimolar and polymerized in an organic polar solvent.
[0015]
The polyamic acid or polyimide is prepared by first, in an inert atmosphere such as argon or nitrogen, the ester dianhydride represented by the general formula (1) and other acid dianhydrides, and the general formula (2). It is obtained from a polyamic acid polymer obtained by dissolving or diffusing one or more diamines represented by the formula (II) and other diamines in an organic polar solvent.
[0016]
The order of addition of each monomer is not particularly limited, and acid dianhydride is added in advance to an organic polar solvent, and a diamine component is added to form a polyamic acid polymer solution. An appropriate amount is added first, then acid dianhydride is added, and finally the remaining diamine component is added to form a polyamic acid polymer solution. There are various other addition methods known to those skilled in the art.
[0017]
Examples of the organic polar solvent used for the reaction for forming the polyamic acid solution include sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide, and N, N. -Acetamide solvents such as dimethylacetamide, N, N-diethylacetamide, pyrrolidone solvents such as N-methyl-2-pyrrolidone, phenol, o-, m- or p-cresol, xinol, halogenated phenol, catechol, etc. Phenol solvents, hexamethylphosphoramide, γ-butyrolactone and the like can be mentioned. Further, if necessary, these organic polar solvents can be used in combination with an aromatic hydrocarbon such as xylene or toluene.
[0018]
The polyamic acid polymer obtained above is dehydrated and closed by a thermal or chemical method to obtain a polyimide resin. As the imidization method, any one of a thermal method in which a polyamic acid solution is heat-treated and dehydrated, and a chemical method in which a dehydrating agent is used for dehydration are used.
Examples of the dehydrating agent by the chemical method include aliphatic acid anhydrides such as acetic anhydride, and aromatic acid anhydrides. Examples of the catalyst include aliphatic tertiary amines such as triethylamine, aromatic tertiary amines such as dimethylaniline, and heterocyclic tertiary amines such as pyridine and isoquinoline.
The thermoplastic polyimide obtained as described above can be used as a solution as it is. Alternatively, the solvent used in the polymerization of the polyamic acid dissolves well, but the polyimide solution is poured into a poor solvent in which the polyimide is difficult to dissolve, and the polyimide resin is precipitated and the unreacted monomer is removed and purified, dried and solid The polyimide resin can be used as appropriate for the adhesive of the present invention.
[0019]
Examples of the poor solvent include, but are not limited to, acetone, methanol, ethanol, isopropanol, benzene, methyl cellosolve, methyl ethyl ketone, and the like.
[0020]
As a thermal method, for example, after polyamic acid is polymerized, it is put into a vacuum oven, heated under reduced pressure, imidized and solvent removed, and taken out as a solid polyimide resin.
[0021]
Since the adhesive according to the present invention contains BCB in its components, it has an excellent low dielectric property compared to conventional epoxy resin adhesives, polyimide adhesives, and polyimide / epoxy resin mixed adhesives. It is possible to obtain the applied film-like joining member. BCB can be purchased from Dow Chemical Company.
[0022]
The mixing ratio of thermoplastic polyimide and BCB is used within a range of 95: 5 to 50:50 by weight. When the amount is too small, low dielectric properties after curing of the obtained film-like joining member are not sufficiently exhibited. That is, the dielectric constant is less than 3.0 and the dielectric loss tangent is not less than 0.01. If the amount is too large, the resulting film-like joining member is inferior in flexibility.
[0023]
The adhesive of the present invention is obtained by dissolving the thermoplastic polyimide resin and BCB in an organic solvent. Examples of the organic solvent include sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide, N, N-dimethylacetamide, and N, N-diethylacetamide. And acetamide solvents such as The kind of solvent to be combined, the number, and the order of mixing are not particularly limited. Moreover, when it is desired to set the drying temperature after coating low due to problems in the process, it is also possible to use a low boiling ether solvent. Examples of ether solvents include tetrahydrofuran (THF), 1,4-dioxane, dioxolane and the like. When these ether solvents are used, in order to lower the drying temperature, it is assumed that the ether solvent is contained at least 30% by weight or more based on the total amount of the solvent. An adhesive is obtained by dissolving the thermoplastic polyimide resin and BCB in these solvents. At this time, after dissolving the thermoplastic polyimide in the solvent, BCB may be added and used as an adhesive, or each component may be dissolved in the solvent and then the solutions may be mixed and used. . If it is difficult to dissolve the thermoplastic polyimide resin, heating is performed as necessary. However, when an ether solvent is used, the boiling point is low and it is likely to volatilize.
[0024]
The film-like joining member of the present invention is obtained by applying and drying the above adhesive on a polymer film serving as a support, such as a polyethylene terephthalate (PET) film, and then peeling it off. The thickness of the adhesive layer is preferably about 10 to 50 μm. The film-like joining member according to the present invention obtained as described above has characteristics that can be suitably used for flexible printed circuit boards, composite lead frames, laminated materials and the like. Specifically, it exhibits low dielectric properties and excellent heat resistance. Further, it can be bonded at a temperature of about 250 ° C. or less, and is excellent in workability.
[0025]
The film-like laminated member of the present invention can be obtained by heating and pressing a metal foil, another film, a printed circuit board, or the like to the film-like joining member. Examples of the metal foil include copper foil, aluminum foil, 42 alloy and the like. The kind of film is not specifically limited, For example, a polyimide film, a polyester film, etc. are mentioned. Conventional polyimide adhesives require high temperature and pressure in order to develop adhesion to metals such as copper foil and resin films such as polyimide. Moreover, improvement of workability by mixing with an epoxy resin has been difficult due to its poor solubility. Even in an adhesive that can be mixed with an epoxy resin by using a soluble polyimide resin, the dielectric constant is increased, and the advantages of the polyimide-based adhesive are impaired. The film-like joining member according to the present invention can be bonded to a metal foil such as a copper foil or a polyimide film at a relatively low temperature, and is excellent in workability when used. The bonding conditions in this case may be the bonding conditions that are necessary and sufficient for adhesive curing. Specifically, the heating temperature is 150 to 250 ° C., the pressure is 0.1 to 10 MPa, and the heating time is about 5 to 20 minutes. It is preferable to heat and press under these conditions. Moreover, in order to fully advance the hardening reaction of a BCB component, it is preferable to perform heat processing on the conditions of heating temperature 150-250 degreeC and heating time about 1-3 hours after adhesion | attachment.
[0026]
【Example】
(Example 1) 263 g of dimethylformamide (hereinafter referred to as DMF) and 0.112 mol of 3,3′-bis (aminophenoxyphenyl) sulfone (hereinafter referred to as BAPS-M) were added to a glass flask having a capacity of 1000 ml and a nitrogen atmosphere. While stirring under, 0.112 mol of 2,2-bis (4-hydroxyphenyl) propanedibenzoate-3,3 ′, 4,4′-tetracarboxylic dianhydride (hereinafter referred to as ESDA) was gradually added. did. The mixture was stirred for 30 minutes in an ice bath, and when the viscosity reached 1500 poise, the stirring was stopped to obtain a polyamic acid solution.
[0027]
300 g of this polyamic acid solution was transferred to a Teflon (R) -coated vat and heated under reduced pressure in a vacuum oven at 200 ° C. for 3 hours at a pressure of 5 mmHg (about 0.007 atm). Taking out from the vacuum oven, 84 g of thermoplastic polyimide was obtained. 30 g of this polyimide powder was added to 70 g of DMF and stirred and dissolved to obtain a polyimide solution (SC = 30%).
[0028]
70 g of the polyimide solution obtained above and 14 g of BCB (manufactured by Dow Chemical Co., SC 63% mesitylene solution) were mixed and stirred to obtain an adhesive (SC = 36%). The obtained solution was cast on a 25 μm-thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, further dried at 120 ° C. for 10 minutes and 180 ° C. for 10 minutes. A 20 μm single-layer film-like joining member was obtained. This film-like joining member had sufficient flexibility even after heat treatment at 220 ° C. for 3 hours.
[0029]
(Example 2) 263 g of DMF and 0.112 mol of 1,3-bis (3-aminophenoxy) benzene (hereinafter referred to as APB) were added to a glass flask having a capacity of 1000 ml, and ESDA was stirred while stirring in a nitrogen atmosphere. 0.112 mol was gradually added. The mixture was stirred for 30 minutes in an ice bath, and when the viscosity reached 1500 poise, the stirring was stopped to obtain a polyamic acid solution.
[0030]
300 g of this polyamic acid solution was transferred to a Teflon (R) -coated vat and heated under reduced pressure in a vacuum oven at 200 ° C. for 3 hours at a pressure of 5 mmHg (about 0.007 atm). Taking out from the vacuum oven, 82 g of thermoplastic polyimide was obtained. 30 g of this polyimide powder was added to 70 g of DMF and stirred and dissolved to obtain a polyimide solution (SC = 30%).
[0031]
70 g of the polyimide solution obtained above and 14 g of BCB (manufactured by Dow Chemical Co., SC 63% mesitylene solution) were mixed and stirred to obtain an adhesive (SC = 36%). The obtained solution was cast on a 25 μm-thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, further dried at 120 ° C. for 10 minutes and 180 ° C. for 10 minutes. A 20 μm single-layer film-like joining member was obtained. This film-like joining member had sufficient flexibility even after heat treatment at 220 ° C. for 3 hours.
[0032]
(Example 3) 263 g of DMF and 0.112 mol of BAPS-M were added to a glass flask having a capacity of 1000 ml, and while stirring under a nitrogen atmosphere, 3,3 ′, 4,4′-ethylene glycol benzoate tetracarboxylate Anhydrous anhydride (hereinafter referred to as TMEG) was gradually added in an amount of 0.112 mol. The mixture was stirred for 30 minutes in an ice bath, and when the viscosity reached 1500 poise, the stirring was stopped to obtain a polyamic acid solution.
[0033]
300 g of this polyamic acid solution was transferred to a Teflon (R) -coated vat and heated under reduced pressure in a vacuum oven at 200 ° C. for 3 hours at a pressure of 5 mmHg (about 0.007 atm). Taking out from the vacuum oven, 82 g of thermoplastic polyimide was obtained. 30 g of this polyimide powder was added to 70 g of DMF and stirred and dissolved to obtain a polyimide solution (SC = 30%).
[0034]
70 g of the polyimide solution obtained above and 14 g of BCB (manufactured by Dow Chemical Co., SC 63% mesitylene solution) were mixed and stirred to obtain an adhesive (SC = 36%). The obtained solution was cast on a 25 μm-thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, further dried at 120 ° C. for 10 minutes and 180 ° C. for 10 minutes. A 20 μm single-layer film-like joining member was obtained. This film-like joining member had sufficient flexibility even after heat treatment at 220 ° C. for 3 hours.
[0035]
Example 4 To a glass flask having a capacity of 1000 ml, 263 g of DMF and 0.112 mol of APB were added, and 0.112 mol of TMEG was gradually added while stirring in a nitrogen atmosphere. The mixture was stirred for 30 minutes in an ice bath, and when the viscosity reached 1500 poise, the stirring was stopped to obtain a polyamic acid solution.
[0036]
300 g of this polyamic acid solution was transferred to a Teflon (R) -coated vat and heated under reduced pressure in a vacuum oven at 200 ° C. for 3 hours at a pressure of 5 mmHg (about 0.007 atm). Taking out from the vacuum oven, 83 g of thermoplastic polyimide was obtained. 30 g of this polyimide powder was added to 70 g of DMF and stirred and dissolved to obtain a polyimide solution (SC = 30%).
[0037]
70 g of the polyimide solution obtained above and 14 g of BCB (manufactured by Dow Chemical Co., SC 63% mesitylene solution) were mixed and stirred to obtain an adhesive (SC = 36%). The obtained solution was cast on a 25 μm-thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, further dried at 120 ° C. for 10 minutes and 180 ° C. for 10 minutes. A 20 μm single-layer film-like joining member was obtained. This film-like joining member had sufficient flexibility even after heat treatment at 220 ° C. for 3 hours.
[0038]
(Example 5) A polyimide powder obtained in the same manner as in Example 1 was added to a mixed solvent of 30 g, 35 g of DMF and 35 g of 1,4-dioxolane, and dissolved by stirring to obtain a polyimide solution (SC = 30). %).
70 g of the polyimide solution obtained above and 14 g of BCB (manufactured by Dow Chemical Co., SC 63% mesitylene solution) were mixed and stirred to obtain an adhesive (SC = 36%). The obtained solution was cast on a 25 μm thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, further dried at 120 ° C. for 10 minutes, and then at 160 ° C. for 10 minutes to obtain a thickness. A 20 μm single-layer film-like joining member was obtained. This film-like joining member had sufficient flexibility even after heat treatment at 220 ° C. for 3 hours.
[0039]
(Comparative Example 1) 35 g of polyimide powder obtained in the same manner as in Example 1, 15 g of Epicoat 1032H60 (manufactured by Yuka Shell), 4.5 g of 4,4′-diaminodiphenyl sulfone, and 127 g of DMF were added. The mixture was stirred and dissolved to obtain a varnish (SC = 30%).
The obtained solution was cast on a 25 μm-thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, further dried at 120 ° C. for 10 minutes and 180 ° C. for 10 minutes. A 20 μm single-layer film-like joining member was obtained. This film-like joining member had sufficient flexibility even after heat treatment at 220 ° C. for 3 hours.
[0040]
(Comparative Example 2) 35 g of polyimide powder obtained in the same manner as in Example 3, 15 g of Epicoat 1032H60 (manufactured by Yuka Shell), 4.5 g of 4,4′-diaminodiphenylsulfone, and 127 g of DMF were added. The mixture was stirred and dissolved to obtain a varnish (SC = 30%).
The obtained solution was cast on a 25 μm-thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, further dried at 120 ° C. for 10 minutes and 180 ° C. for 10 minutes. A 20 μm single-layer film-like joining member was obtained. This film-like joining member had sufficient flexibility even after heat treatment at 220 ° C. for 3 hours.
[0041]
(Comparative Example 3) 35 g of polyimide powder obtained in the same manner as in Example 4, 15 g of Epicoat 1032H60 (manufactured by Yuka Shell), 4.5 g of 4,4′-diaminodiphenyl sulfone, and 127 g of DMF were added. The mixture was stirred and dissolved to obtain a varnish (SC = 30%).
The obtained solution was cast on a 25 μm-thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, further dried at 120 ° C. for 10 minutes and 180 ° C. for 10 minutes. A 20 μm single-layer film-like joining member was obtained. This film-like joining member had sufficient flexibility even after heat treatment at 220 ° C. for 3 hours.
[0042]
(Comparative Example 4) 35 g of polyimide powder obtained in the same manner as in Example 4, 15 g of Epicoat 1032H60 (manufactured by Yuka Shell), 4.5 g of 4,4′-diaminodiphenyl sulfone, and 127 g of DMF were added. The mixture was stirred and dissolved to obtain a varnish (SC = 30%).
The obtained solution was cast on a 25 μm-thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, further dried at 120 ° C. for 10 minutes and 180 ° C. for 10 minutes. A 20 μm single-layer film-like joining member was obtained. This film-like joining member had sufficient flexibility even after heat treatment at 220 ° C. for 3 hours.
[0043]
(Comparative Example 5) The polyimide powder obtained in the same manner as in Example 1 was added to 60 g and 140 g of DMF, and dissolved by stirring to obtain a varnish (SC = 30%).
The obtained solution was cast on a 25 μm-thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, further dried at 120 ° C. for 10 minutes and 180 ° C. for 10 minutes. A 20 μm single-layer film-like joining member was obtained. This film-like joining member had sufficient flexibility even after heat treatment at 220 ° C. for 3 hours.
[0044]
Comparative Example 6 The polyimide powder obtained in the same manner as in Example 2 was added to 60 g and 140 g of DMF, and the mixture was stirred and dissolved to obtain a varnish (SC = 30%).
The obtained solution was cast on a 25 μm-thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, further dried at 120 ° C. for 10 minutes and 180 ° C. for 10 minutes. A 20 μm single-layer film-like joining member was obtained. This film-like joining member had sufficient flexibility even after heat treatment at 220 ° C. for 3 hours.
[0045]
Comparative Example 7 The polyimide powder obtained in the same manner as in Example 3 was added to 60 g and 140 g of DMF, and the mixture was stirred and dissolved to obtain a varnish (SC = 30%).
The obtained solution was cast on a 25 μm-thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, further dried at 120 ° C. for 10 minutes and 180 ° C. for 10 minutes. A 20 μm single-layer film-like joining member was obtained. This film-like joining member had sufficient flexibility even after heat treatment at 220 ° C. for 3 hours.
[0046]
Comparative Example 8 The polyimide powder obtained in the same manner as in Example 4 was added to 60 g and 140 g of DMF, and dissolved by stirring to obtain a varnish (SC = 30%).
The obtained solution was cast on a 25 μm-thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, further dried at 120 ° C. for 10 minutes and 180 ° C. for 10 minutes. A 20 μm single-layer film-like joining member was obtained. This film-like joining member had sufficient flexibility even after heat treatment at 220 ° C. for 3 hours.
[0047]
(Comparative Example 9) BCB (manufactured by Dow Chemical Co., SC 63% mesitylene solution) was cast on a 25 μm thick PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.), dried at 60 ° C. for 10 minutes, and further 120 ° C. For 10 minutes and at 180 ° C. for 10 minutes to obtain a single-layer film-like joining member having a thickness of 20 μm. This film-like joining member was brittle after heat treatment at 220 ° C. for 3 hours and was insufficient in flexibility.
[0048]
(Characteristic evaluation of film-like laminated member)
The film-like joining members obtained in each Example and Comparative Example were subjected to heat treatment at 220 ° C. for 3 hours, and then the dielectric constant was evaluated.
・ Measurement device: KS Systems MOA-2012A type molecular orientation meter
・ Measurement frequency: 12 GHz
・ Measurement angle: 0, 45, 90 degrees
Table 1 shows the evaluation results of the characteristics of the film-like joining members of Examples and Comparative Examples.
[0049]
[Table 1]
[0050]
【The invention's effect】
Since the adhesive of the present invention uses thermoplastic polyimide and BCB, the film-like joining member obtained therefrom is excellent in heat resistance and dielectric properties. Conventional polyimide-based adhesive members require high temperature and high pressure to develop adhesiveness, and thus have poor workability. On the other hand, BCB adhesive members have insufficient flexibility after curing. By combining both components, the adhesive of the present invention can obtain a film-like bonding agent having a lower dielectric property than that of a conventional polyimide system while maintaining flexibility.
[0051]
Moreover, since the thermoplastic polyimide used for the adhesive of the present invention has a glass transition temperature lower than that of the conventional one, it can be bonded at a lower temperature and has excellent workability. By using polyimide and BCB, heat resistance is also excellent. From the above points, the adhesive of the present invention and the film-like joining member using the adhesive exhibit excellent heat resistance, workability, and dielectric properties.

Claims (6)

有機溶媒に、一般式(1)化1
(式中、Xは−(CH2k−、もしくは芳香環を含む二価の有機基を示す。kは1以上10以下の整数である。)で表されるエステル酸二無水物と、一般式()化2
(式中、Yは−C(=O)−、−SO2−、−O−、−S−、−(CH2m−、−NHCO−、−C(CH32−、−C(CF32−、−C(=O)O−、または結合を示す。m及びnは1以上5以下の整数である。)で表されるジアミンを少なくとも用いて得られる熱可塑性ポリイミド、ならびにベンゾシクロブテン(BCB)を溶解させて得られ、熱可塑性ポリイミドとベンゾシクロブテンの重量比が95:5〜50:50であることを特徴とする、低誘電接着剤。
In an organic solvent, general formula (1)
(Wherein, X represents — (CH 2 ) k — or a divalent organic group containing an aromatic ring, k is an integer of 1 or more and 10 or less), General formula ( 2 )
(In the formula, Y represents —C (═O) —, —SO 2 —, —O—, —S—, — (CH 2 ) m —, —NHCO—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —C (═O) O—, or a bond. M and n are integers of 1 or more and 5 or less.) A low dielectric adhesive obtained by dissolving benzocyclobutene (BCB) and having a weight ratio of thermoplastic polyimide to benzocyclobutene of 95: 5 to 50:50.
上記熱可塑性ポリイミドが、上記一般式(1)で表されるエステル酸二無水物と、上記一般式(2)で表されるジアミンをそれぞれ各成分の50モル%以上用いて得られるものであることを特徴とする、請求項1記載の低誘電接着剤。The thermoplastic polyimide is obtained by using 50 mol% or more of each component of the ester dianhydride represented by the general formula (1) and the diamine represented by the general formula (2). The low dielectric adhesive according to claim 1, wherein: 有機溶媒としてスルホキシド系溶媒、ホルムアミド系溶媒、及びアセトアミド系溶媒のうち少なくとも1種が用いられることを特徴とする請求項1もしくは請求項2に記載の低誘電接着剤。The low dielectric adhesive according to claim 1 or 2, wherein at least one of a sulfoxide solvent, a formamide solvent, and an acetamide solvent is used as the organic solvent. 有機溶媒としてテトラヒドロフラン(THF)、1,4−ジオキサン、ジオキソランから選ばれるエーテル系溶媒を少なくとも全溶媒量の30重量%以上含む請求項1もしくは請求項2に記載の低誘電接着剤。The low dielectric adhesive according to claim 1 or 2, comprising at least 30% by weight or more of an ether solvent selected from tetrahydrofuran (THF ), 1,4-dioxane, and dioxolane as the organic solvent. 請求項1〜4に記載の低誘電接着剤を、支持体となる高分子フィルム上に塗布乾燥させた後に剥離することによって得られるフィルム状接合部材。Film-like bonding member obtained by peeling the low dielectric adhesive according to claim 1, in after coating and drying on a polymer film serving as a supporting bearing member. 硬化物の誘電特性が、周波数12GHzで誘電率が3.0未満、誘電正接が0.01以下であることを特徴とする、請求項5に記載のフィルム状接合部材。6. The film-like bonding member according to claim 5, wherein the cured product has dielectric properties of a frequency of 12 GHz, a dielectric constant of less than 3.0, and a dielectric loss tangent of 0.01 or less.
JP2002000946A 2002-01-07 2002-01-07 Low dielectric adhesive and film-like joining member comprising the same Expired - Fee Related JP4169978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002000946A JP4169978B2 (en) 2002-01-07 2002-01-07 Low dielectric adhesive and film-like joining member comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002000946A JP4169978B2 (en) 2002-01-07 2002-01-07 Low dielectric adhesive and film-like joining member comprising the same

Publications (2)

Publication Number Publication Date
JP2003201461A JP2003201461A (en) 2003-07-18
JP4169978B2 true JP4169978B2 (en) 2008-10-22

Family

ID=27641185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000946A Expired - Fee Related JP4169978B2 (en) 2002-01-07 2002-01-07 Low dielectric adhesive and film-like joining member comprising the same

Country Status (1)

Country Link
JP (1) JP4169978B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778848A (en) * 2016-04-28 2016-07-20 中山新高电子材料股份有限公司 Low-dielectric-constant adhesive for flexible printed circuit boards and application method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759249B2 (en) * 2004-11-12 2011-08-31 株式会社カネカ Method for producing polyimide laminate having excellent surface properties
CN103173141B (en) * 2011-12-21 2016-01-20 深圳市宏商材料科技股份有限公司 A kind of stress adhesive tape and complete processing thereof
KR102485692B1 (en) * 2015-12-28 2023-01-05 아라까와 가가꾸 고교 가부시끼가이샤 Polyimide-based adhesive
CN113563825A (en) * 2021-07-30 2021-10-29 中国航空工业集团公司济南特种结构研究所 Hot-melting preparation method of modified benzocyclobutene resin-based adhesive film
CN113652178A (en) * 2021-07-30 2021-11-16 中国航空工业集团公司济南特种结构研究所 Preparation method of modified benzocyclobutene resin-based adhesive film solvent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778848A (en) * 2016-04-28 2016-07-20 中山新高电子材料股份有限公司 Low-dielectric-constant adhesive for flexible printed circuit boards and application method thereof

Also Published As

Publication number Publication date
JP2003201461A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
KR100960174B1 (en) Thermo-setting resin composition and lamination body and circuit board using the composition
JP4875794B2 (en) Resin composition
JP4169978B2 (en) Low dielectric adhesive and film-like joining member comprising the same
JP4109500B2 (en) Thermosetting resin composition, thermosetting resin solution, and thermosetting resin sheet
JP2003027014A (en) Adhesive film
JP4017029B2 (en) Coverlay adhesive and coverlay film
JP2001329246A (en) Curable resin composition for adhesive improved in moisture resistance, cured item obtained therefrom, and production method thereof
JP2009001793A (en) Adhesive
JP4071958B2 (en) Polyimide resin composition
JP2002060620A (en) Polyimide solution excellent in storage stability, polyimide-based adhesive solution and film-like laminated member obtained using the same
JP4620834B2 (en) Bonding sheet
JP3493363B2 (en) Novel copolymer and its production method
JP4077621B2 (en) Low dielectric adhesive, film-like bonding material, and adhesive laminate
JP3531082B2 (en) Flexible copper clad laminate
JP3356584B2 (en) Flexible copper clad laminate
JP2002069420A (en) Adhesive film for fpc reinforcing sheet
JP4180292B2 (en) Film adhesive and laminated member in which the adhesive is laminated
JP2000143981A (en) Resin composition
JP2004285103A (en) Thermoplastic polyimide and adhesive comprising the same
JP2004155911A (en) Thermoplastic polyimide resin, resin composition, electrical insulation adhesive sheet and printed wiring board
JP3531080B2 (en) Flexible copper clad laminate
JP3463111B2 (en) Novel copolymer and its production method
JP2003011308A (en) Film-shaped laminated member
JPH0748555A (en) Adhesive for cover lay, and cover lay film
JP2002114848A (en) New thermoplastic polyimide resin and flexible metal foil-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4169978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees