JP4169638B2 - 冷凍システム - Google Patents

冷凍システム Download PDF

Info

Publication number
JP4169638B2
JP4169638B2 JP2003159489A JP2003159489A JP4169638B2 JP 4169638 B2 JP4169638 B2 JP 4169638B2 JP 2003159489 A JP2003159489 A JP 2003159489A JP 2003159489 A JP2003159489 A JP 2003159489A JP 4169638 B2 JP4169638 B2 JP 4169638B2
Authority
JP
Japan
Prior art keywords
refrigerant circuit
refrigerant
heat exchanger
storage facility
cooling storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003159489A
Other languages
English (en)
Other versions
JP2004360999A (ja
Inventor
一彦 三原
聡 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003159489A priority Critical patent/JP4169638B2/ja
Publication of JP2004360999A publication Critical patent/JP2004360999A/ja
Application granted granted Critical
Publication of JP4169638B2 publication Critical patent/JP4169638B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば店舗等において室内空調や冷却貯蔵設備の庫内冷却を行うための冷凍システムに関するものである。
【0002】
【従来の技術】
従来よりコンビニエンスストア等の店舗の店内(室内)は、空気調和機によって冷暖房空調されている。また、店内には商品を陳列販売する冷蔵或いは冷凍用のオープンショーケースや扉付きのショーケース(冷却貯蔵設備)が設置されており、これらは冷凍機によって庫内冷却が行われている。
【0003】
【発明が解決しようとする課題】
ところで、従来これら空気調和機や冷凍機の冷媒回路は、それぞれ独立して構成され、独自に運転が行われていた。そのため、空調と冷却貯蔵設備の運転を総合した省エネを図ることが困難な状況であった。一方で、店舗の空調と冷蔵設備の冷媒回路を一つの回路として構成したものも提案されている(特許文献1参照)。
【0004】
【特許文献1】
特開2002−174470号公報
【0005】
本発明は、係る従来の技術的課題を解決するために成されたものであり、室内空調や冷却貯蔵設備の庫内冷却が行われる店舗等において、冷凍システムの効率的且つ安定的な運転を可能とするものである。
【0006】
【課題を解決するための手段】
本発明の冷凍システムは、圧縮機、熱源側熱交換器及び利用側熱交換器等から構成され、この利用側熱交換器により室内空調を行う空調用冷媒回路と、圧縮機、凝縮器及び蒸発器等から構成され、この蒸発器により冷却貯蔵設備の庫内冷却を行う冷却貯蔵設備用冷媒回路と、空調用冷媒回路の低圧側と冷却貯蔵設備用冷媒回路の高圧側とを熱交換させるカスケード熱交換器とを備え、空調用冷媒回路の冷房運転時に、冷却貯蔵設備用冷媒回路の高圧側の冷媒を、凝縮器を介してカスケード熱交換器に流すと共に、空調用冷媒回路の暖房運転時には、冷却貯蔵設備用冷媒回路の高圧側の冷媒を、カスケード熱交換器に流した後、凝縮器に流すものである。
【0007】
本発明によれば、圧縮機、熱源側熱交換器及び利用側熱交換器等から構成され、この利用側熱交換器により室内空調を行う空調用冷媒回路と、圧縮機、凝縮器及び蒸発器等から構成され、この蒸発器により冷却貯蔵設備の庫内冷却を行う冷却貯蔵設備用冷媒回路と、空調用冷媒回路の低圧側と冷却貯蔵設備用冷媒回路の高圧側とを熱交換させるカスケード熱交換器とを備えているので、空調用冷媒回路の低圧側冷媒によって冷却貯蔵設備用冷媒回路の高圧側冷媒の過冷却を図り、冷却貯蔵設備用冷媒回路の運転効率と能力改善を図ることが可能となる。
【0008】
また、空調用冷媒回路の冷房運転時には、利用側熱交換器での冷媒の過冷却により能力が向上し、それにより空調用冷媒回路のCOPの向上を図ることができると共に、空調用冷媒回路の暖房運転時には、カスケード熱交換器で冷却貯蔵設備用冷媒回路の高圧側冷媒の廃熱を回収し、空調用冷媒回路の利用側熱交換器に搬送することができるので、暖房能力の改善も図ることができるようになる。総じて、室内空調と冷却貯蔵設備の庫内冷却を行う冷凍システムの効率改善を図り、省エネ化を図ることが可能となる。
【0009】
更に、空調用冷媒回路の暖房運転時には、冷却貯蔵設備用冷媒回路の高圧側の冷媒を、凝縮器より先にカスケード熱交換器に流すので、冷却貯蔵設備用冷媒回路の高圧側冷媒からの廃熱回収を効率的に行い、空調用冷媒回路の利用側熱交換器における暖房能力をより一層向上させることができるようになる。特に、この場合、高圧側の冷媒をカスケード熱交換器に流した後、凝縮器に流すので、空調用冷媒回路の暖房運転時に、冷却貯蔵設備用冷媒回路のカスケード熱交換器における冷媒の放熱量が過剰となる場合に、凝縮器にて当該過剰な熱量を放出させることができるようになり、安定した廃熱回収運転を実現することができるようになるものである。
【0010】
請求項2の発明の冷凍システムは、上記において空調用冷媒回路の冷房運転時と暖房運転時において、冷却貯蔵設備用冷媒回路の凝縮器に流れる冷媒の方向を同一とする流路制御手段を設けたものである。
【0011】
請求項3の発明の冷凍システムは、上記において流路制御手段を、二個の四方弁にて構成したことを特徴とする。
【0012】
請求項4の発明の冷凍システムは、上記各発明において冷却貯蔵設備用冷媒回路の凝縮器の下流側にレシーバータンクを設けたことを特徴とする。
【0013】
請求項2の発明によれば、上記に加えて空調用冷媒回路の冷房運転時と暖房運転時において、冷却貯蔵設備用冷媒回路の凝縮器に流れる冷媒の方向を同一とする流路制御手段を設けたので、冷却貯蔵設備用冷媒回路内を流れる冷媒の圧力損失の発生を防止若しくは抑制して効率的な運転が可能となる。特に、請求項3の如く前記流路制御手段を二個の四方弁にて構成すれば、冷媒回路の構成を簡素化することができるようになる。更に、請求項4の発明の如く冷却貯蔵設備用冷媒回路の凝縮器の下流側にレシーバータンクを設ければ、過冷却時の熱損失を無くし、且つ、冷媒量の調整も行えるようになる。
【0014】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態を詳述する。図1は本発明を適用した実施例の冷凍システム1(冷凍サイクル装置)の冷媒回路を含むシステム構成を説明する図である。実施例の冷凍システム1は、例えばコンビニエンスストアの室内2(店内)の空調と、そこに設置されている冷却貯蔵設備としての冷蔵ケース3、3や冷凍ケース4の庫内冷却を実現するものである。
【0015】
尚、これら冷蔵ケース3、3,冷凍ケース4は前面や上面が開口するオープンショーケースの他、透明ガラス扉にて開口が開閉自在に閉塞されたショーケースであり、冷蔵ケース3の庫内は冷蔵温度(+3℃〜+10℃)に冷却され、飲料やサンドイッチなどの冷蔵食品が陳列されると共に、冷凍ケース4の庫内は冷凍温度(−10℃〜ー20℃)に冷却され、冷凍食品やアイスクリームなどの冷菓が陳列されるものである。
【0016】
この図において、6は空調用冷媒回路7を備える空気調和機(空調系統)であり、8は前記冷蔵ケース3、3や冷凍ケース4の庫内を冷却するための冷却貯蔵設備用冷媒回路9を備えた冷却装置(冷却貯蔵設備系統)である。空気調和機6は、室内2の天井などに設置された室内機11、11と、店外に設置された室外ユニット12とから構成され、これらの間に渡って空調用冷媒回路7が配管構成されている。
【0017】
この空調用冷媒回路7は、室外ユニット12の外装ケース内に設置された二台の圧縮機(ロータリコンプレッサ)13A(インバータによる周波数制御運転)、13B(定速運転)と、逆止弁5A、5Bと、オイルセパレータ10と、四方弁14と、熱源側熱交換器16と、膨張弁(電動膨張弁から成る減圧手段)17、18、19と、カスケード熱交換器21と、逆止弁22、アキュムレータ23等と、室内機11側に設置された利用側熱交換器27、27から系統構成されている(空調系統)。
【0018】
26は温度や圧力に基づいて空気調和機6の室外ユニット12側の機器を制御するための室外機コントローラ(空調系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータにて構成される)であり、室外ユニット12に設けられている。また、24は熱源側熱交換器16に外気を通風するための送風機であり、室外ユニット12内の熱源側熱交換器16に対応する位置に設けられている。28は温度や圧力に基づいて空気調和機6の室内機11側の機器を制御するための室内機コントローラ(空調系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータで構成される)であり、室内機11にそれぞれ設けられている(一方は図示せず)。また、15、15は利用側熱交換器27、27に室内2(店内)空気を通風するための送風機であり、室内機11内の利用側熱交換器27、27にそれぞれ対応する位置に設けられている。
【0019】
圧縮機13A及び13Bは相互に並列接続されており、各圧縮機13A、13Bの吐出側は逆止弁5A、5Bをそれぞれ介して合流され、四方弁14の一方の入口に接続されている(各逆止弁5A、5Bは四方弁14方向が順方向とされている)。また、四方弁14の一方の出口は熱源側熱交換器16の入口に接続されている。この熱源側熱交換器16は多数の並列配管から成る流路抵抗の比較的小さい入口側16Aとこれらが少数の並列配管若しくは単数の配管に集約される出口側16Bとで構成されている。そして、この熱源側熱交換器16の出口側16Bの出口は膨張弁17を介して膨張弁18の入口に接続され、膨張弁18の出口は室内機11に渡って分流し、各利用側熱交換器27、27の入口に接続されている。
【0020】
各利用側熱交換器27、27の出口は合流した後、室外ユニット12に渡り、四方弁14の他方の入口に接続され、四方弁14の他方の出口は逆止弁22を介してアキュムレータ23に接続されている。そして、このアキュムレータ23の出口が圧縮機13A、13Bの吸込側に接続されている。尚、逆止弁22はアキュムレータ23側が順方向とされている。
【0021】
また、膨張弁17と18の間の配管は膨張弁19の入口に接続され、膨張弁19の出口はカスケード熱交換器21の空調側通路21Aの入口に接続されている。このカスケード熱交換器21の空調側通路21Aの出口はアキュムレータ23を介して圧縮機13A、13Bの吸込側に接続されている。
【0022】
一方、冷却装置8は前記室外ユニット12と室内2(店内)に設置された冷蔵ケース3、3及び冷凍ケース4との間に渡って冷却貯蔵設備用冷媒回路9が配管構成されている。この冷却貯蔵設備用冷媒回路9は、室外ユニット12の外装ケース内に設置された第1の圧縮機(スクロールコンプレッサ)37と、凝縮器(熱交換器)38と、二つの四方弁39、41(この二つの四方弁により流路制御手段が構成される)と、逆止弁42と、オイルセパレータ31と、レシーバータンク36等と、冷蔵ケース3、3に設置されて冷蔵ケース3、3の庫内をそれぞれ冷却する冷蔵用蒸発器43、43、膨張弁(電動膨張弁)44、44、電磁弁46、46、47、逆止弁48(冷却貯蔵設備系統の一部を構成する冷蔵系統)と、冷凍ケース4に設置されて冷凍ケース4の庫内を冷却する冷凍用蒸発器49、膨張弁(電動膨張弁)51、電磁弁52、53、第2の圧縮機(ロータリコンプレッサ)54、逆止弁30、及び、オイルセパレータ45(冷却貯蔵設備系統の一部を構成する冷凍系統)等から構成されている。
【0023】
32は温度や圧力に基づいて冷却装置8の室外ユニット12側の機器を制御する冷凍機コントローラ(冷却貯蔵設備系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータで構成される)であり、室外ユニット12に設けられている。また、35は凝縮器38に外気を通風するための送風機であり、室外ユニット12の凝縮器38に対応する位置に設けられている。また、50は温度や圧力に基づいて冷蔵ケース3、3側の機器を制御する冷蔵ケースコントローラ(冷却貯蔵設備系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータで構成される)であり、冷蔵ケース3、3にそれぞれ設けられている(一方は図示せず)。更に、55は温度や圧力に基づいて冷凍ケース4側の機器を制御する冷凍ケースコントローラ(冷却貯蔵設備系統制御手段を構成するコントローラであり、汎用のマイクロコンピュータで構成される)であり、冷凍ケース4に設けられている。
【0024】
また、20、20は冷蔵用蒸発器43、43に各冷蔵ケース3、3の庫内冷気を通風するための送風機であり、冷蔵ケース3、3内の各冷蔵用蒸発器43、43にそれぞれ対応する位置に設けられている。25は冷凍用蒸発器49に冷凍ケース4の庫内冷気を通風するための送風機であり、冷凍ケース4内の冷凍用蒸発器49に対応する位置に設けられている。
【0025】
圧縮機37の吐出側はオイルセパレータ31を介して四方弁39の一方の入口に接続され、この四方弁39の一方の出口が凝縮器38の入口に接続されている。この凝縮器38は多数の並列配管から成る流路抵抗の比較的小さい入口側38Aとこれらが少数の並列配管若しくは単数の配管に集約される出口側38Bとで構成されている。そして、この凝縮器38の出口側38Bの出口はレシーバータンク36の入口に接続され、このレシーバータンク36の出口が四方弁41の一方の入口に接続されている。即ち、レシーバータンク36は凝縮器38の冷媒下流側に接続されている。
【0026】
そして、四方弁41の一方の出口はカスケード熱交換器21のケース側通路21Bの入口に接続されている。尚、カスケード熱交換器21は、内部に構成された空調側通路21Aとケース側通路21Bをそれぞれ通過する冷媒を相互に熱交換させるものであり、これによって空調用冷媒回路7の低圧側と冷却貯蔵設備用冷媒回路9の高圧側とは熱的に結合される。
【0027】
カスケード熱交換器21のケース側通路21Bの出口は、四方弁39の他方の入口に接続されており、この四方弁39の他方の出口は四方弁41の他方の入口に接続されている。そして、この四方弁41の他方の出口は室外ユニット12から出て室内2(店内)に入り分岐する。分岐した一方の配管は更に分岐し、その分岐した一方は電磁弁47、46を順次介して膨張弁44の入口に接続され、膨張弁44の出口は一方の冷蔵用蒸発器43の入口に接続されている。他方は電磁弁46を介して膨張弁44の入口に接続され、膨張弁44の出口は他方の冷蔵用蒸発器43の入口に接続されている。
【0028】
室内2(店内)に入って分岐した他方の配管は、電磁弁52を介して膨張弁51の入口に接続され、膨張弁51の出口は冷凍用蒸発器49の入口に接続されている。尚、電磁弁53は電磁弁52と膨張弁51の直列回路に並列に接続されている。
【0029】
冷凍用蒸発器49の出口は、逆止弁30を介して圧縮機54の吸込側に接続されている(逆止弁30は圧縮機54側が順方向)。この圧縮機54は圧縮機37よりも出力の小さい圧縮機であり、その吐出側はオイルセパレータ45を介して圧縮機37の吸込側に接続されている。即ち、圧縮機37と圧縮機54は冷媒回路上直列に接続される。尚、冷蔵用蒸発器43、43の出口は合流した後、圧縮機54の吐出側のオイルセパレータ45の出口側に接続されている。また、逆止弁48は圧縮機54の逆止弁30手前と電磁弁46、47間に接続され、電磁弁46、47方向が順方向とされている。更に、逆止弁42は圧縮機37の吸込側とオイルセパレータ31を出た配管の間に接続され、オイルセパレータ31方向が順方向とされている。そして、冷媒回路7、9内には例えばR−410、R−404A等の冷媒が所定量封入される。
【0030】
以上の構成で本発明の冷凍システム1の動作を説明する。尚、前記圧縮機37と13Aはインバータ制御され、圧縮機13Bと圧縮機54は定速で運転されるものとする。また、冷凍システム1全体の動作は汎用マイクロコンピュータから構成された主コントローラ(主制御手段)56により制御される。
【0031】
ここで、主コントローラ56は前記室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55とデータ通信可能に接続されており、各コントローラから現在の運転状態に関するデータを受信して収集する。そして、受信データに基づき、後述するその時点での最適な運転パターンを決定し、この最適運転パターンに関するデータ及び各機器の運転データを室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55に送信する。室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55は主コントローラ56から受信した最適運転パターンに関するデータ及び各機器の運転データに基づいて後述する制御動作を実行する。
【0032】
(1)最適運転パターン1:空気調和機の冷房運転(図1)
先ず、夏場等に主コントローラ56が空気調和機6の冷房運転が最適であると判断した場合、最適運転パターン1に関するデータが室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55に送信される。
【0033】
受信データに基づき、室外機コントローラ26は四方弁14の前記一方の入口を一方の出口に、他方の入口を他方の出口に連通させる。また、膨張弁17を全開とする。そして、圧縮機13A、13Bを運転する。尚、室外機コントローラ26は圧縮機13Aの運転周波数を調整して能力制御するものとする。
【0034】
圧縮機13A、13Bが運転されると、圧縮機13A、13Bの吐出側から吐出された高温高圧のガス冷媒は、四方弁14を経て熱源側熱交換器16の入口側16Aに入る。この熱源側熱交換器16には送風機24により外気が通風されており、冷媒はここで放熱し、凝縮液化する。即ち、この場合熱源側熱交換器16は凝縮器として機能する。この液冷媒は熱源側熱交換器16の入口側16Aから出口側16Bを経て当該出口側16Bから出る。そして、膨張弁17を通過した後、分岐する。分岐した一方は膨張弁18に至り、そこで絞られて低圧とされた後(減圧)、各利用側熱交換器27、27に分岐して流入し、そこで蒸発する。
【0035】
この利用側熱交換器27、27には送風機15、15により室内2(店内)の空気が通風されており、冷媒の蒸発による吸熱作用で室内2の空気は冷却される。これにより、室内2(店内)の冷房が行われる。利用側熱交換器27、27を出た低温のガス冷媒は合流した後、四方弁14の他方の入口から他方の出口へと通過し、逆止弁22、アキュムレータ23を順次経て圧縮機13A、13Bの吸込側に吸い込まれる循環を繰り返す。室内機コントローラ28は利用側熱交換器27、27の温度やそこに吸い込まれる空気温度に基づき、室内2(店内)の温度を設定温度とするよう利用側熱交換器27、27に通風する送風機15、15を制御する。室内機コントローラ28からの情報は主コントローラ56に送信されており、室外機コントローラ26はこの情報に基づいて圧縮機13A、13Bの運転を制御する。
【0036】
膨張弁17を通過して分岐した冷媒の他方は膨張弁19に至り、そこで絞られて低圧とされた後(減圧)、カスケード熱交換器21の空調側通路21Aに流入し、そこで蒸発する。係る空調用冷媒回路7の冷媒の蒸発による吸熱作用でカスケード熱交換器21は冷却され、低温となる。カスケード熱交換器21を出た低温のガス冷媒はアキュムレータ23を経て圧縮機13A、13Bの吸込側に吸い込まれる循環を繰り返す。
【0037】
室外機コントローラ26は利用側熱交換器27、27の出入口の冷媒温度、或いは、利用側熱交換器27、27の温度と、カスケード熱交換器21の出入口の冷媒温度、或いは、カスケード熱交換器21の温度に基づいて適正な過熱度となるように膨張弁18及び19の弁開度を調整する。
【0038】
一方、冷凍機コントローラ32は冷却装置8の冷却貯蔵設備用冷媒回路9の四方弁39の前記一方の入口を一方の出口に連通させ、他方の入口を他方の出口に連通させる。また、四方弁41の前記一方の入口を一方の出口に連通させ、他方の入口を他方の出口に連通させる。そして、圧縮機37及び圧縮機54を運転する。圧縮機37から吐出された高温高圧のガス冷媒は、オイルセパレータ31にてオイルを分離された後、四方弁39を経て凝縮器38の入口側38Aに入る。この凝縮器38にも送風機35により外気が通風されており、凝縮器38に流入した冷媒はそこで放熱し、凝縮していく。
【0039】
この凝縮器38の入口側38Aを通過した冷媒は出口側38Bに至り、そこから出ていく。凝縮器38から出た冷媒はレシーバータンク36の入口側から当該レシーバータンク36内に入り、そこに一旦貯留されて気/液が分離される。分離された液冷媒はレシーバータンク36の出口から出て四方弁41を通過した後、カスケード熱交換器21のケース側通路21Bに入る。このケース側通路21Bに入った冷却貯蔵設備用冷媒回路9の冷媒は、前述の如き空調用冷媒回路7の冷媒の蒸発によって低温となっているカスケード熱交換器21によって冷却され、更に過冷却状態が増す。尚、前述の如く凝縮器38の直後にレシーバータンク36を配置しているので、過冷却時の熱損失を無くすことができるようになると共に、冷媒量の調整も行えるようになる。
【0040】
このカスケード熱交換器21にて過冷却された冷媒は四方弁39、四方弁41を順次通過した後に分岐し、一方は更に分岐して一方は電磁弁47、46を順次通過して膨張弁44に至り、そこで絞られた後(減圧)、一方の冷蔵用蒸発器43に流入し、そこで蒸発する。また、分岐した他方は電磁弁46を通過して膨張弁44に至り、そこで絞られた後(減圧)、他方の冷蔵用蒸発器43に流入し、そこで蒸発する。各冷蔵用蒸発器43、43には送風機20、20により冷蔵ケース3、3の庫内空気がそれぞれ通風・循環されており、冷媒の蒸発による吸熱作用で各庫内空気は冷却される。これにより、冷蔵ケース3、3の庫内冷却が行われる。冷蔵用蒸発器43、43を出た低温のガス冷媒は合流した後、圧縮機54のオイルセパレータ45の出口側に至る。
【0041】
カスケード熱交換器21を出て分岐した冷媒の他方は電磁弁52を通過して膨張弁51に至り、そこで絞られた後(減圧)、冷凍用蒸発器49に流入し、そこで蒸発する。この冷凍用蒸発器49にも送風機25により冷凍ケース4の庫内空気が通風・循環されており、冷媒の蒸発による吸熱作用で庫内空気は冷却される。これにより、冷凍ケース4の庫内冷却が行われる。
【0042】
冷凍用蒸発器49を出た低温のガス冷媒は逆止弁30を経て圧縮機54に至り、そこで、圧縮されて冷蔵用蒸発器43、43の出口側の圧力(冷蔵系統の低圧側圧力)まで昇圧された後、圧縮機54から吐出され、オイルセパレータ45でオイルを分離された後、冷蔵用蒸発器43、43からの冷媒と合流する。この合流した冷媒は圧縮機37の吸込側に吸い込まれる循環を繰り返す。
【0043】
冷蔵ケースコントローラ50は冷蔵ケース3、3の庫内温度若しくは冷蔵用蒸発器43、43を経た吐出冷気温度或いは冷蔵用蒸発器43、43への吸込冷気温度と、冷蔵ケースコントローラ50は冷蔵用蒸発器43の出口側の冷媒温度、或いは、冷蔵用蒸発器43の温度とに基づいて各膨張弁44、44の弁開度をそれぞれ制御する。これにより、冷蔵ケース3、3の庫内を前述した冷蔵温度に冷却維持しながら、適正な過熱度(過熱度一定)とする。
【0044】
また、冷凍ケースコントローラ55は冷凍ケース4の庫内温度若しくは冷凍用蒸発器49を経た吐出冷気温度或いは冷凍用蒸発器49への吸込冷気温度と、冷凍ケースコントローラ55は冷凍用蒸発器49の出口側の冷媒温度、或いは、冷凍用蒸発器49の温度とに基づいて膨張弁51の弁開度を制御する。これにより、冷凍ケース4の庫内を前述した冷凍温度に冷却維持しながら、適正な過熱度(過熱度一定)とする。
【0045】
圧縮機37の運転周波数は吸込側の圧力(冷却貯蔵設備用冷媒回路9の低圧圧力)に基づいて制御される。そして、各膨張弁44、44、51の全てが全閉となった場合には停止されると共に、何れかが開放されているときは運転される。
【0046】
このように、カスケード熱交換器21の空調側通路21Aを流れる空調用冷媒回路7の低圧側冷媒によって冷却貯蔵設備用冷媒回路9の高圧側冷媒を過冷却することができるので、冷蔵ケース3、3や冷凍ケース4の蒸発器43、43、49における冷却能力と冷却貯蔵設備用冷媒回路9の運転効率が改善される。また、空気調和機6の空調用冷媒回路7の利用側熱交換器27での冷媒の過冷却により能力が向上し、その結果空調用冷媒回路7のCOPの向上も図ることができる。尚、この場合、冷却貯蔵設備用冷媒回路9の高圧側の冷媒は、凝縮器38を介してカスケード熱交換器21のケース側通路21Bに流すので、空調用冷媒回路7の過熱度も適正範囲に維持できる。
【0047】
また、冷却貯蔵設備用冷媒回路9の冷凍用蒸発器49から出た冷媒の圧力は、その蒸発温度が低くなることから冷蔵用蒸発器43、43を出た冷媒より低くなるが、冷蔵用蒸発器43、43から出た冷媒と合流させる以前に圧縮機54により圧縮されて昇圧されるので、冷蔵ケース3、3と冷凍ケース4の庫内を各蒸発器43、43、49によりそれぞれ円滑に冷却しながら、冷却貯蔵設備用冷媒回路9の圧縮機37に吸い込まれる冷媒の圧力を調整して支障無く運転を行うことができるようになる。
【0048】
(2)最適運転パターン2:空気調和機の暖房運転(図2)
次に、冬場等の空気調和機6の暖房運転について図2を用いて説明する。主コントローラ56が空気調和機6の暖房運転が最適であると判断した場合、最適運転パターン2に関するデータが室外機コントローラ26、室内機コントローラ28、冷凍機コントローラ32、冷蔵ケースコントローラ50、及び、冷凍ケースコントローラ55に送信される。
【0049】
受信データに基づき、室外機コントローラ26は四方弁14の一方の入口を他方の出口に、他方の入口を一方の出口に連通させるように切り換える。また、膨張弁17は全閉、膨張弁18は全開とされる。そして、圧縮機13A、13Bを運転する。圧縮機13A、13Bが運転されると、圧縮機13A、13Bの吐出側から吐出された高温高圧のガス冷媒は、オイルセパレータ10から四方弁14を経て利用側熱交換器27、27に入る。この利用側熱交換器27、27には前述の如く送風機15、15により室内2(店内)の空気が通風されており、冷媒はここで放熱し、室内2の空気を加熱する一方自らは凝縮液化する。これにより、室内2(店内)の暖房が行われる。
【0050】
利用側熱交換器27、27で液化した冷媒は利用側熱交換器27、27から出て膨張弁18を通り、膨張弁19に至り、そこで絞られて低圧とされた後(減圧)、カスケード熱交換器21の空調側通路21Aに流入し、そこで蒸発して吸熱した後、アキュムレータ23を経て圧縮機13A、13Bの吸込側に吸い込まれる循環を繰り返す。
【0051】
室外機コントローラ26は、カスケード熱交換器21の出入口の冷媒温度、或いは、カスケード熱交換器21の温度に基づいて適正な過熱度となるように膨張弁19の弁開度を調整する。また、室内機コントローラ28は利用側熱交換器27の温度やそこに吸い込まれる空気温度に基づき、室内2(店内)の温度を設定温度とするよう利用側熱交換器27、27に通風する送風機15、15を制御する。また、前述同様に室外機コントローラ26により圧縮機13A、13Bの運転が制御される。
【0052】
一方、冷凍機コントローラ32は冷却装置8の冷却貯蔵設備用冷媒回路9の四方弁39の前記一方の入口を他方の出口に、他方の入口を一方の出口に連通させるように切り換えると共に、四方弁41の前記一方の入口を他方の出口に、他方の入口を一方の出口に連通させるように切り換える。尚、他の電磁弁等は前述した冷房運転時と同様である。即ち、電磁弁46、46、47、52を開き、圧縮機37及び54を運転する。
【0053】
これにより、圧縮機37から吐出された高温高圧のガス冷媒は、四方弁39、41を順次通過して先ずカスケード熱交換器21のケース側通路21Bに入る。即ち、圧縮機37から吐出された高温高圧のガス冷媒は凝縮器38に行く前に、直接カスケード熱交換器21のケース側通路21Bに供給される。このケース側通路21Bに入った冷却貯蔵設備用冷媒回路9の冷媒は、カスケード熱交換器21において放熱するので、前述の如く空調側通路21Aで蒸発する空調用冷媒回路7の冷媒によって冷却され、熱量を受け渡す。これにより、空調用冷媒回路7の冷媒は冷却貯蔵設備用冷媒回路9の冷媒の廃熱を汲み上げることになる。
【0054】
このカスケード熱交換器21のケース側通路21Bを通過した冷媒は、次に四方弁39を経て凝縮器38の入口側38Aに入る。この凝縮器38にも送風機35により外気が通風されており、凝縮器38に流入した冷媒はそこで放熱し、凝縮していく。
【0055】
この凝縮器38の入口側38Aを通過した冷媒は出口側38Bに至り、そこから出ていく。凝縮器38から出た冷媒はレシーバータンク36の入口側から当該レシーバータンク36内に入り、そこに一旦貯留されて気/液が分離される。分離された液冷媒はレシーバータンク36の出口から出て四方弁41を通過した後に分岐し、前述同様に電磁弁46、47、52に向かうことになる。
【0056】
このような運転により、空気調和機6の空調用冷媒回路7の暖房運転時には、カスケード熱交換器21で冷却貯蔵設備用冷媒回路9の高圧側冷媒の廃熱を回収して空調用冷媒回路7の利用側熱交換器27、27に搬送することができるようになる。これにより、空気調和機6の暖房能力の改善を図ることができるようになり、総じて、室内空調と冷蔵ケース3、3、冷凍ケース4の庫内冷却を行う冷凍システム1の効率改善を図り、省エネ化を図ることが可能となる。
【0057】
特にこの場合、冷却貯蔵設備用冷媒回路9の高圧側の冷媒を、凝縮器38より先にカスケード熱交換器21に流すので、冷却貯蔵設備用冷媒回路9の高圧側冷媒からの廃熱回収を効率的に行い、空調用冷媒回路7の利用側熱交換器27、27における暖房能力をより一層向上させることができるようになる。
【0058】
ここで、店内2が比較的暖かいなど空気調和機6が軽負荷となると、室外機コントローラ26は膨張弁19の弁開度を絞って冷媒流量を低減させていくようになるので、カスケード熱交換器21における冷却貯蔵設備用冷媒回路9の冷媒の放熱量が過剰となってくるが、本発明では冷却貯蔵設備用冷媒回路9の高圧側の冷媒をカスケード熱交換器21に流した後、凝縮器38に流すようにしているので、空調用冷媒回路7の暖房運転時において冷却貯蔵設備用冷媒回路9のカスケード熱交換器21における冷媒の放熱量が過剰となった場合には、凝縮器38にて当該過剰な熱量が放出される。これにより、安定した廃熱回収運転を実現することができるようになる。
【0059】
また、上述した如く四方弁39及び41を用いて流路を切り換え、空調用冷媒回路7の冷房運転時と暖房運転時において、冷却貯蔵設備用冷媒回路9の凝縮器38及びその出口に接続されたレシーバータンク36に流れる冷媒の流通方向を同一としている。これにより、冷房運転時と暖房運転時とで凝縮器38やレシーバータンク36内の冷媒の流れが反対となる場合に比して冷却貯蔵設備用冷媒回路9内を流れる冷媒の圧力損失の発生を防止若しくは抑制することができるようになり、効率的な運転が可能となる。特に、二個の四方弁39、41にて流路を切り換えているので冷却貯蔵設備用冷媒回路9の構成を簡素化することができるようになる。
【0060】
(3)最適運転パターン3:空気調和機の暖房運転時の冷却装置のカスケード熱交換器における放熱を殆ど必要としない時の制御(図3)
ここで、上述の如き空気調和機6の暖房運転時に、室内(店内)空気の負荷が一層小さくなり、暖房能力が過大となると、室外機コントローラ26は室内温度の情報に基づいて圧縮機13Bの運転周波数を低下させ、暖房能力を低下させていく。一方、このような制御を行い、且つ、上述のように凝縮器38にて過剰な熱量が放出されたとしても、冷却装置8の冷却貯蔵設備用冷媒回路9のカスケード熱交換器21における放熱が殆ど必要とされない状況となると、図2の回路のままでは空気調和機6の暖房能力が過剰となる。
【0061】
係る場合には、冷凍機コントローラ32は図2から図3の状態に各四方弁39、41を切り換える。即ち、この場合冷凍機コントローラ32は四方弁39の前記一方の入口を一方の出口に、他方の入口を他方の出口に連通させるように切り換える。また、四方弁41の前記一方の入口を一方の出口に、他方の入口を他方の出口に連通させるように切り換える。
【0062】
これにより、圧縮機37から吐出された高温高圧の冷媒は、図1の場合と同様に凝縮器38を通過して放熱してからカスケード熱交換器21に流れるようになるので、空調用冷媒回路7の冷媒がカスケード熱交換器21にて過剰に加熱される不都合を回避することができるようになる。
【0063】
尚、実施例ではコンビニエンスストアを例にあげて本発明を説明したが、それに限らず、室内の空調と冷却貯蔵設備の冷却を行う種々の冷凍システムに本発明は有効である。更に、実施例で示した各設定値や配管構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
【0064】
【発明の効果】
以上詳述した如く本発明によれば、圧縮機、熱源側熱交換器及び利用側熱交換器等から構成され、この利用側熱交換器により室内空調を行う空調用冷媒回路と、圧縮機、凝縮器及び蒸発器等から構成され、この蒸発器により冷却貯蔵設備の庫内冷却を行う冷却貯蔵設備用冷媒回路と、空調用冷媒回路の低圧側と冷却貯蔵設備用冷媒回路の高圧側とを熱交換させるカスケード熱交換器とを備えているので、空調用冷媒回路の低圧側冷媒によって冷却貯蔵設備用冷媒回路の高圧側冷媒の過冷却を図り、冷却貯蔵設備用冷媒回路の運転効率と能力改善を図ることが可能となる。
【0065】
また、空調用冷媒回路の冷房運転時には、利用側熱交換器での冷媒の過冷却により能力が向上し、それにより空調用冷媒回路のCOPの向上を図ることができると共に、空調用冷媒回路の暖房運転時には、カスケード熱交換器で冷却貯蔵設備用冷媒回路の高圧側冷媒の廃熱を回収し、空調用冷媒回路の利用側熱交換器に搬送することができるので、暖房能力の改善も図ることができるようになる。総じて、室内空調と冷却貯蔵設備の庫内冷却を行う冷凍システムの効率改善を図り、省エネ化を図ることが可能となる。
【0066】
更に、空調用冷媒回路の暖房運転時には、冷却貯蔵設備用冷媒回路の高圧側の冷媒を、凝縮器より先にカスケード熱交換器に流すので、冷却貯蔵設備用冷媒回路の高圧側冷媒からの廃熱回収を効率的に行い、空調用冷媒回路の利用側熱交換器における暖房能力をより一層向上させることができるようになる。特に、この場合、高圧側の冷媒をカスケード熱交換器に流した後、凝縮器に流すので、空調用冷媒回路の暖房運転時に、冷却貯蔵設備用冷媒回路のカスケード熱交換器における冷媒の放熱量が過剰となる場合に、凝縮器にて当該過剰な熱量を放出させることができるようになり、安定した廃熱回収運転を実現することができるようになるものである。
【0067】
請求項2の発明によれば、上記に加えて空調用冷媒回路の冷房運転時と暖房運転時において、冷却貯蔵設備用冷媒回路の凝縮器に流れる冷媒の方向を同一とする流路制御手段を設けたので、冷却貯蔵設備用冷媒回路内を流れる冷媒の圧力損失の発生を防止若しくは抑制して効率的な運転が可能となる。特に、請求項3の如く前記流路制御手段を二個の四方弁にて構成すれば、冷媒回路の構成を簡素化することができるようになる。更に、請求項4の発明の如く冷却貯蔵設備用冷媒回路の凝縮器の下流側にレシーバータンクを設ければ、過冷却時の熱損失を無くし、且つ、冷媒量の調整も行えるようになる。
【図面の簡単な説明】
【図1】本発明を適用した実施例の冷凍システムの冷媒回路を含むシステム構成を説明する図である(空気調和機の冷房運転時)。
【図2】本発明を適用した実施例の冷凍システムの空気調和機の暖房運転を説明する図である。
【図3】本発明を適用した実施例の冷凍システムの空気調和機の暖房運転時の冷却装置のカスケード熱交換器における放熱を殆ど必要としない場合の運転を説明する図である。
【符号の説明】
1 冷凍システム
3 冷蔵ケース
4 冷凍ケース
6 空気調和機
7 空調用冷媒回路
8 冷却装置
9 冷却貯蔵設備用冷媒回路
13A、13B、37、54 圧縮機
14 四方弁
16 熱源側熱交換器
21 カスケード熱交換器
28 利用側熱交換器
38 凝縮器
39、41 四方弁(流路制御手段)
43 冷蔵用蒸発器
49 冷凍用蒸発器

Claims (4)

  1. 圧縮機、熱源側熱交換器及び利用側熱交換器等から構成され、該利用側熱交換器により室内空調を行う空調用冷媒回路と、
    圧縮機、凝縮器及び蒸発器等から構成され、該蒸発器により冷却貯蔵設備の庫内冷却を行う冷却貯蔵設備用冷媒回路と、前記空調用冷媒回路の低圧側と前記冷却貯蔵設備用冷媒回路の高圧側とを熱交換させるカスケード熱交換器とを備え、前記空調用冷媒回路の冷房運転時に、前記冷却貯蔵設備用冷媒回路の高圧側の冷媒を、前記凝縮器を介して前記カスケード熱交換器に流すと共に、前記空調用冷媒回路の暖房運転時には、前記冷却貯蔵設備用冷媒回路の高圧側の冷媒を、前記カスケード熱交換器に流した後、前記凝縮器に流すことを特徴とする冷凍システム。
  2. 前記空調用冷媒回路の冷房運転時と暖房運転時において、前記冷却貯蔵設備用冷媒回路の凝縮器に流れる冷媒の方向を同一とする流路制御手段を設けたことを特徴とする請求項1の冷凍システム。
  3. 前記流路制御手段を、二個の四方弁にて構成したことを特徴とする請求項2の冷凍システム。
  4. 前記冷却貯蔵設備用冷媒回路の凝縮器の下流側にレシーバータンクを設けたことを特徴とする請求項1、請求項2又は請求項3の冷凍システム。
JP2003159489A 2003-06-04 2003-06-04 冷凍システム Expired - Lifetime JP4169638B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159489A JP4169638B2 (ja) 2003-06-04 2003-06-04 冷凍システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159489A JP4169638B2 (ja) 2003-06-04 2003-06-04 冷凍システム

Publications (2)

Publication Number Publication Date
JP2004360999A JP2004360999A (ja) 2004-12-24
JP4169638B2 true JP4169638B2 (ja) 2008-10-22

Family

ID=34052534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159489A Expired - Lifetime JP4169638B2 (ja) 2003-06-04 2003-06-04 冷凍システム

Country Status (1)

Country Link
JP (1) JP4169638B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100987A (ja) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd 冷凍システム
JP4660334B2 (ja) * 2005-09-30 2011-03-30 三洋電機株式会社 冷凍システム
JP5033337B2 (ja) * 2006-03-07 2012-09-26 三洋電機株式会社 冷凍システム及びその制御方法
KR101151529B1 (ko) 2009-11-20 2012-05-30 엘지전자 주식회사 냉매시스템
KR101639814B1 (ko) 2009-11-20 2016-07-22 엘지전자 주식회사 냉장 및 냉동 복합 공조시스템

Also Published As

Publication number Publication date
JP2004360999A (ja) 2004-12-24

Similar Documents

Publication Publication Date Title
US6393858B1 (en) Refrigeration system
JP4624223B2 (ja) 冷凍システム
JP2004170001A (ja) 冷凍システム
JP4123257B2 (ja) 冷凍装置
JP2007100987A (ja) 冷凍システム
JP4169638B2 (ja) 冷凍システム
JP5033337B2 (ja) 冷凍システム及びその制御方法
JP4614642B2 (ja) 冷凍システム
JP4660334B2 (ja) 冷凍システム
JP4108003B2 (ja) 冷凍システム
JP4104519B2 (ja) 冷凍システム
JP4353838B2 (ja) 空調冷凍装置
JP2005049064A (ja) 空調冷凍装置
JP2004271123A (ja) 熱交換器温度制御装置
JP2007085720A (ja) 冷凍システム
JP4618313B2 (ja) 冷凍装置
WO2006028147A1 (ja) 冷凍装置
JP4434806B2 (ja) 空調冷凍装置の室外ユニット
JP4169667B2 (ja) 冷凍システム
JP2004271125A (ja) 冷凍システム
JP4488767B2 (ja) 空調冷凍装置
JP2005300012A (ja) 空調冷凍装置
JP4073375B2 (ja) 冷凍システム及び冷凍システムの制御方法
JP4393211B2 (ja) 空調冷凍装置及び空調冷凍装置の制御方法
JP2009156491A (ja) 冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4169638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

EXPY Cancellation because of completion of term