JP4169570B2 - Tire mold and pneumatic tire - Google Patents

Tire mold and pneumatic tire Download PDF

Info

Publication number
JP4169570B2
JP4169570B2 JP2002305622A JP2002305622A JP4169570B2 JP 4169570 B2 JP4169570 B2 JP 4169570B2 JP 2002305622 A JP2002305622 A JP 2002305622A JP 2002305622 A JP2002305622 A JP 2002305622A JP 4169570 B2 JP4169570 B2 JP 4169570B2
Authority
JP
Japan
Prior art keywords
groove
tire
protrusion
width
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002305622A
Other languages
Japanese (ja)
Other versions
JP2004136616A (en
Inventor
登起雄 菅沼
一八 廣川
純一 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2002305622A priority Critical patent/JP4169570B2/en
Publication of JP2004136616A publication Critical patent/JP2004136616A/en
Application granted granted Critical
Publication of JP4169570B2 publication Critical patent/JP4169570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • B29D2030/0607Constructional features of the moulds
    • B29D2030/0617Venting devices, e.g. vent plugs or inserts

Description

【0001】
【発明の属する技術分野】
本発明は、タイヤ金型及び空気入りタイヤに関し、更に詳しくは、ベントホールなどの気体抜き通路の数を減らして、スピューの発生を低減するようにしたタイヤ金型及び該金型を用いて成形した空気入りタイヤに関する。
【0002】
【従来の技術】
タイヤ金型には、タイヤ加硫時に金型内に残留するエアや、その際に発生するガスなどの気体を金型外に排出するため、ベントホールなどの気体抜き通路が多数が設けられている。それに起因して、加硫後のタイヤにおいて、気体抜き通路内に押し出されたゴムがスピュー(髭状の突起)となってタイヤ表面に多数残存する。
【0003】
そのため、加硫終了後にスピューを切断除去する作業が行われるが、スピューの切断跡がタイヤ表面に多数残るため、外観が悪化せざるを得ない。また、スピューが多い分だけ切断除去に要する時間がかかり、作業効率が悪い。しかも、除去したスピューは産業廃棄物として廃棄処理されるため、材料が無駄になり、かつスピューが多い分だけ産業廃棄物の増加につながる。
【0004】
そこで、近年、上記対策として、タイヤ金型のサイド成形面に周方向に沿って気体抜き用の環状溝を形成し、その溝に集めたエア等を気体抜き通路を介して外部に排出するようにした金型が提案されている(例えば、特許文献1参照)。このような気体抜き用の溝を設けることで、気体抜き通路の数を大きく低減して、スピューの発生を大幅に減らすようにしている。
【0005】
【特許文献1】
特開2002−166424号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記提案の金型では、環状溝に集まったエア等を効果的に外部に排出させるには、同じ溝に8本以上の気体抜き通路を連通させる必要があり、更なる改善の余地があった。
【0007】
本発明の目的は、ベントホールなどの気体抜き通路の数を更に減らして、スピューの発生をより低減することが可能なタイヤ金型及び空気入りタイヤを提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成する本発明のタイヤ金型は、タイヤのサイドウォール部を成形するサイド成形面に金型周方向に沿って延在する溝を設け、該溝を溝深さが順次深くなるように構成し、前記溝の最深部に気体抜き通路を連通したことを特徴とする。
【0009】
本発明の他のタイヤ金型は、タイヤのサイドウォール部を成形するサイド成形面に金型周方向に沿って延在する溝を設け、該溝を溝幅が順次狭くなるように構成し、前記溝の最狭部に気体抜き通路を連通したことを特徴とする。
【0010】
また、本発明の空気入りタイヤは、サイドウォール部の外面にタイヤ周方向に沿って延在する、幅0.2〜5.0mm、高さ0.1〜5.0mmの突起部を有し、該突起部を突起高さが最も高い最高部に向けて突起高さが順次高くなるように形成し、該最高部の表面にスピューを除去した切断跡があることを特徴とする。
【0011】
本発明の他の空気入りタイヤは、サイドウォール部の外面にタイヤ周方向に沿って延在する、幅0.2〜5.0mm、高さ0.1〜5.0mmの突起部を有し、該突起部を突起幅が最も狭くなる最狭部に向けて突起幅が順次狭くなるように形成し、該最狭部の表面にスピューを除去した切断跡があることを特徴とする。
【0012】
上述した本発明によれば、タイヤ加硫時に、溝に流れ込んだ粘弾性を有する未加硫ゴムが、溝内に集まって残留するエアや発生したガスなどの気体を最深部あるいは最狭部に追いやってそこに集め、それを気体抜き通路を介して外部に排出することができるため、気体抜き通路の数を従来より更に減らして、スピューの発生を低減することができる。そのため、スピューの切断跡が減り、外観を向上することができ、また、スピューの切断除去時間が減り、作業効率を改善することができ、更に、除去するスピューの量が減るので、材料の無駄及び産業廃棄物の発生を低減することができる。
【0013】
【発明の実施の形態】
以下、本発明の構成について添付の図面を参照しながら詳細に説明する。
【0014】
図1は、本発明のタイヤ金型の一例であるセクショナル型の金型を示し、タイヤの一方のサイドウォール部を成形する環状の上型1と、他方のサイドウォール部を成形する環状の下型2、及びトレッド部を成形する複数のセクター3からなる環状の側型4とを備えている。
【0015】
上型1は下面側に、下型2は上面側に、サイドウォール部を成形するサイド成形面5,6を有している。側型4は、内周面側にトレッド部を成形するトレッド成形面7を具備している。
【0016】
サイド成形面5,6には、図1,2に示すように、それぞれ金型周方向Fに沿って延在する環状の溝8,9が設けられている。溝8,9は、タイヤ加硫時に残留するエアや発生するガスなどの気体を集めて外部に排出するために設けたものであり、図2,3に示すように、その溝深さが一方側部8a,9aが最も浅く、他方側部8b,9bが最も深い最深部になっており、その間の溝深さは一方側部8a,9aから他方側部8b,9bに向けて連続的に変化し、次第に深くなっている。溝8,9の溝幅は一定である。
【0017】
溝8,9の最深部である他方側部8b,9bにそれぞれ1つのベントホール(気体抜き通路)10,11の一端が連通している。ベントホール10,11は上型1、下型2を貫通し、他端が外部に開口しており、溝8,9の最深部に集まった気体をベントホール10,11から外部に排出できるようになっている。なお、図1では、理解を容易にするため、溝8,9及びベントホール10,11を実際より拡大した状態で示し、見やすくしている。
【0018】
図4に上述した溝8,9を備えたタイヤ金型を用いて加硫成形したスピュー除去後の空気入りタイヤの例を示す。このタイヤT1は、サイドウォール部31の外面31aにタイヤ周方向Cに沿って延在する環状の突起部32を有している。突起部32は、その一方側部32aから他方側部32bにかけて突起高さを連続的に変化させながら次第に高くした構成になっている。即ち、突起部32は他方側部32bに突起高さが最も高い最高部を有し、その最高部に向けて一方側部32aから突起高さが連続的に高くなっている。突起部32の突起幅は一定である。他方側部32bの表面には、加硫直後に形成されたスピューを除去した切断跡33が1つだけ残る。突起部32は溝8,9により形成されるため、その幅と高さは、後述する溝8,9の溝幅と溝深さと同じになる。
【0019】
なお、周知のため図示せぬが、上記空気入りタイヤは、タイヤ内側には左右のビード部34間にカーカス層が装架され、その両端部がビード部34に埋設されたビードコアの周りにタイヤ内側から外側に折り返されている。トレッド部35のカーカス層外周側にはベルト層が設けられている。以下の図9に示す空気入りタイヤも同様である。
【0020】
上述した溝8,9は、図では各1本設けた例を示しているが、金型のサイズ、即ちタイヤのサイズに応じて通常2〜4(複数)本設けられ、上記と同様に各溝の最深部に1つのベントホールが連通される。
【0021】
上述した本発明のタイヤ金型によれば、タイヤ加硫時のゴム流れにより、残留するエアや発生するガスなどの気体が溝8,9内に集まり、その溝8,9内に未加硫ゴムが入り込み、その際粘弾性を有する未加硫ゴムが溝8,9の溝深さが最も浅い一方側部8a,9aから次第に最も深い他方側部8b,9bに向けて溝底に達するようにして溝8,9を埋めるので、溝8,9内の気体を溝8,9の最深部に集め、ベントホール10,11を介して外部に効果的に排出することができる。そのため、各溝8,9に対して1つのベントホール10,11を設けるだけでよいため、ベントホールの数を従来提案の金型より更に大きく減らして、スピューの発生を大幅に低減することができる。
【0022】
その結果、スピューの切断跡が減り、外観を向上することができる。また、スピューの切断除去時間が減り、作業効率を改善することができ、しかも、除去したスピューの量が減るので、材料の無駄を軽減し、かつ産業廃棄物を削減することができる。
【0023】
図5は、上述した気体排出用の溝8,9の他の例を示す。タイヤのサイドウォール部上に形成されるデザインなどにより、気体が溜まり易い箇所が異なり、またそのデザインにより気体排出用の溝を環状に配置できない場合がある。そのような場合に設ける溝であって、サイド成形面5,6に周方向に沿って部分的に延在する円弧状の溝14を形成したものである。なお、図5では、下型2のサイド成形面6を模式的に示すが、上型1のサイド成形面5も同様の構成であるため、図は省略し、図5に括弧を付けて番号を付している。後述する図6も同様である。
【0024】
溝14は、溝深さが一端部(一方側部)14aが最も浅く、他端部(他方側部)14bが最も深い最深部に形成され、一端部14aから他端部14bに向けて上記と同様に次第に深くなっている。溝14の溝幅は一定である。
【0025】
溝14の最深部である他端部14bに1つのベントホール15が連通し、溝14の最深部に集まった気体をベントホール15から外部に排出できるようになっている。このように金型の周方向に沿って部分的に延在する溝14であっても、溝14内に集まった気体を溝14の最深部に集め、ベントホール15を介して外部に効果的に排出することができ、それによりベントホールの数を減らして、スピューの発生を低減することができる。
【0026】
図6は、上述した溝14の他の例を示し、この図6の溝16は、溝深さが両端部16a,16bで最も浅く、中央部16cが最も深い最深部になっており、その間の溝深さは最も浅い両端部16a,16bから最も深い中央部16cに向けて連続的に変化しながら、次第に深くなっている。溝16の溝幅は一定である。
【0027】
溝16の最深部である中央部16cに1つのベントホール17が連通し、溝16に最深部に集まった気体をベントホール17から外部に排出できるようにしたものである。このような構成であっても上記と同様の効果を得ることができる。
【0028】
上述した実施形態において、溝8,9,14,16の溝深さとしては、金型のサイズ、即ち成形されるタイヤのサイズにより適宜選択されるが、実質的に0.1〜5.0mmにすることができ、この範囲内で変化させるのがよい。溝深さが0.1mmより浅いと、タイヤ加硫時に未加硫ゴムが溝内に円滑に流れ込むことが困難になるため、溝内の気体をベントホールを介して外部に効果的に排出することが難しくなる。5.0mmを超えると、外観の点から好ましくない。
【0029】
溝8,9,14,16の溝幅も、成形されるタイヤのサイズにより適宜選択され、0.2〜5.0mmの範囲内で一定にするのがよいが、デザイン的な面からエアの流れを変化させない程度に溝幅を変えることも可能である。
【0030】
溝8,9,14,16の形状としては、図示(図1参照)する断面四角形状に限定されず、例えば、図7に示すように、断面三角形状あるいは断面半円状などにすることができ、特に限定されない。後述する図8に示す溝18も同様である。
【0031】
溝8,9,14,16は、上記のように溝深さを連続的に変化させるようにするのが好ましいが、残留するエア等の気体を最浅部から最深部に向けて集めることができるように溝深さを順次変化させたものであればよく、例えば段階的に変化させたものであってもよい。そのように順次溝深さが深くなる溝を有する金型で成形された空気入りタイヤでは、サイドウォール部31の外面31aに形成された突起部32は、それに対応して突起高さが順次高くなるようになる。
【0032】
図8は、気体排出用の溝の更に他の例を示し、上述した溝深さを変化させた環状の溝8,9に代えて、溝幅を変化させた環状の溝18の例を示すものである。
【0033】
溝18は溝幅が一方側部18aが最も広く、他方側部18bが最も狭い最狭部になっており、その間の溝幅は一方側部18aから他方側部18bに向けて連続的に変化し、次第に狭くなっている。溝18の溝深さは一定である。溝18の最狭部である他方側部18bに1つのベントホール19の一端が連通し、溝18の最狭部に集まった気体をベントホール19から外部に排出できるようにしたものである。
【0034】
このように溝幅を狭くした溝18であっても、タイヤ加硫時に粘弾性を有する未加硫ゴムが、溝幅が最も広い一方側部18aから最も狭い他方側部18bに向けて溝18を埋めるようにして流れ込み、溝18内の気体を最狭部に集め、ベントホール19を介して外部に効果的に排出することができるため、ベントホールの数を大幅に減らして、スピューの発生を大きく低減することができる。
【0035】
図9に上述した溝18を備えたタイヤ金型を用いて加硫成形したスピュー除去後の空気入りタイヤの例を示す。このタイヤT2は、サイドウォール部31の外面31aにタイヤ周方向Cに沿って延在する環状の突起部42が、その一方側部42aから他方側部42bにかけて突起幅を連続的に変化させながら次第に狭くした構成になっている。即ち、突起部42は他方側部42bに突起幅が最も狭くなる最狭部を有し、その最狭部に向けて一方側部42aから突起幅が連続的に狭くなっている。突起部42の突起幅は一定である。他方側部42bの表面には、加硫直後に形成されたスピューを除去した切断跡43が1つだけ残る。突起部42は溝18により形成されるため、その幅と高さは、後述する溝18の溝幅と溝深さと同じになる。
【0036】
図5,6に示す溝14,16も、溝深さに代えて、溝幅を上記のように変化させるようにすることができる。
【0037】
上述した溝18の溝幅としては、上記同様に金型のサイズ、即ち成形されるタイヤのサイズにより適宜選択されるが、実質的に0.2〜5.0mmにすることができ、その範囲内で変化させるのがよい。溝幅が0.2mmより浅いと、タイヤ加硫時に未加硫ゴムが溝内に円滑に流れ込むことが困難になり、逆に5.0mmを超えると、外観の点から好ましくない。
【0038】
溝18の溝深さも、成形されるタイヤのサイズにより適宜選択されるが、その溝深さとしては0.1〜5.0mmの範囲内で一定にするのがよい。
【0039】
溝18も、上記のように溝幅を連続的に変化させるようにするのが好ましいが、残留するエア等の気体を最広部から最狭部に向けて集めることができるように溝幅を順次変化させたものであればよく、例えば段階的に変化させたものであってもよい。このように順次溝幅さが狭くなる溝を有するタイヤ金型で成形された空気入りタイヤでは、サイドウォール部31の外面31aに形成された突起部42は、それに対応して突起高さが順次高くなる。
【0040】
本発明において、上記実施形態では、セクショナル型のタイヤ金型の例を示したが、本発明は、上型と下型とからなる2分割型のタイヤ金型などであってもよく、タイヤのサイドウォール部を成形するサイド成形面を有する金型であれば、いずれにも適用することができる。
【0041】
また、上記実施形態では、上述した気体排出用の溝は、その溝深さまたは溝幅の一方を変化させたが、その両者を共に変化させた溝であってもよい。
【0042】
【発明の効果】
上述したように本発明は、タイヤのサイドウォール部を成形するサイド成形面に周方向に沿って延在する溝を設け、その溝を溝深さが順次深くなる、あるいは溝幅が順次狭くなるように構成し、その溝の最深部、あるいは最狭部に気体抜き通路を連通したので、従来提案のタイヤ金型よりベントホールの数を更に減らして、スピューの発生をより低減することができる。そのため、外観を向上し、スピューを切断除する作業効率を高め、かつ材料の無駄を低減し、更に産業廃棄物を削減することができる。
【図面の簡単な説明】
【図1】本発明のタイヤ金型の一例を示す半断面図である。
【図2】(a)は下側から見た上型を模式的に示す説明図、(b)は上側から見た下型を模式的に示す説明図である。
【図3】図2の溝をその幅方向中心に沿って切断した断面を展開して示し、(a)は上型の溝を示す拡大図、(b)は下型の溝を示す拡大図である。
【図4】(a)は図1のタイヤ金型を用いて成形した空気入りタイヤの例を示す概略側面図、(b)は突起部に沿って切断した断面を展開して示す拡大図である。
【図5】溝の他の例を示し、(a)は上側から見た下型を模式的に示す説明図、(b)はその下型に形成された溝を拡大して示す図3に相当する図である。
【図6】図5の溝の他の例を示す図5(b)に相当する図である。
【図7】(a), (b)は、それぞれ溝の他の形状を示す拡大断面図である。
【図8】溝の更に他の例を示し、開口側から見た環状の溝を1周にわたって直線上に展開した状態で示す説明図である。
【図9】 (a)は図の溝を有するタイヤ金型を用いて成形した空気入りタイヤの例を示す概略側面図、(b)は突起部を展開して示す拡大図である。
【符号の説明】
1 上型 2 下型
5,6 サイド成形面 8,9 溝
8b,9b 他方側部(最深部)
10,11 ベントホール(気体抜き通路)
14 溝 14 b 他端部( 最深部)
15 ベントホール(気体抜き通路)16 溝
16c 中央部(最深部) 17 ベントホール(気体抜き通路)
18 溝 18b 他方側部(最狭部)
19 ベントホール(気体抜き通路)31 サイドウォール部
31a 外面 32,42 突起部
33,43 切断跡 C タイヤ周方向
F 金型周方向 T1,T2 空気入りタイヤ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tire mold and a pneumatic tire. More specifically, the present invention relates to a tire mold in which the number of gas vent passages such as vent holes is reduced to reduce the generation of spew and molding using the mold. Related to pneumatic tires.
[0002]
[Prior art]
The tire mold is provided with a number of venting passages such as vent holes for discharging the air remaining in the mold during tire vulcanization and the gas generated at that time to the outside of the mold. Yes. As a result, in the tire after vulcanization, a large amount of the rubber extruded into the gas vent passage becomes spew (a ridge-like protrusion) and remains on the tire surface.
[0003]
For this reason, an operation of cutting and removing spews is performed after the vulcanization is completed. However, since many spew cut traces remain on the tire surface, the appearance must be deteriorated. In addition, it takes time to cut and remove as much as there are spews, resulting in poor work efficiency. In addition, since the removed spew is disposed of as industrial waste, the material is wasted and the amount of spew is increased, leading to an increase in industrial waste.
[0004]
Therefore, in recent years, as a countermeasure, an annular groove for venting gas is formed along the circumferential direction on the side molding surface of the tire mold, and the air collected in the groove is discharged to the outside through the venting passage. There has been proposed a metal mold (for example, see Patent Document 1). By providing such a venting groove, the number of venting passages is greatly reduced, and the generation of spew is greatly reduced.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-166424 [0006]
[Problems to be solved by the invention]
However, in the above proposed mold, in order to effectively discharge the air collected in the annular groove to the outside, it is necessary to connect eight or more gas vent passages to the same groove, and there is room for further improvement. there were.
[0007]
An object of the present invention is to provide a tire mold and a pneumatic tire that can further reduce the generation of spew by further reducing the number of vent holes such as vent holes.
[0008]
[Means for Solving the Problems]
In the tire mold of the present invention that achieves the above object, a groove extending along the circumferential direction of the mold is provided on a side molding surface for molding the sidewall portion of the tire, and the groove depth is gradually increased. The gas vent passage is communicated with the deepest part of the groove.
[0009]
Another tire mold of the present invention is provided with a groove extending along the circumferential direction of the mold on the side molding surface for molding the sidewall portion of the tire, and the groove is configured such that the groove width becomes narrower sequentially, A gas vent passage is communicated with the narrowest portion of the groove.
[0010]
The pneumatic tire of the present invention has a protrusion having a width of 0.2 to 5.0 mm and a height of 0.1 to 5.0 mm extending along the tire circumferential direction on the outer surface of the sidewall portion. The protrusions are formed such that the protrusion heights are sequentially increased toward the highest part having the highest protrusion height, and a cut trace from which spew has been removed is present on the surface of the highest part .
[0011]
Another pneumatic tire of the present invention has a protrusion having a width of 0.2 to 5.0 mm and a height of 0.1 to 5.0 mm extending along the tire circumferential direction on the outer surface of the sidewall portion. The protrusions are formed such that the protrusion widths are gradually narrowed toward the narrowest part where the protrusion width is the narrowest, and there is a cutting trace on which the spew is removed on the surface of the narrowest part .
[0012]
According to the present invention described above, unvulcanized rubber having viscoelasticity that has flowed into the groove during tire vulcanization gathers the gas remaining in the groove and gas such as generated gas to the deepest part or the narrowest part. Since it can be gathered there and discharged to the outside through the gas vent passage, the number of gas vent passages can be further reduced as compared with the prior art to reduce the occurrence of spew. Therefore, the number of spew cuts can be reduced, the appearance can be improved, the spew cutting removal time can be reduced, the work efficiency can be improved, and the amount of spew to be removed can be reduced. In addition, the generation of industrial waste can be reduced.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
[0014]
FIG. 1 shows a sectional mold as an example of a tire mold according to the present invention. An annular upper mold 1 for molding one sidewall portion of a tire and an annular lower mold for molding the other sidewall portion. A mold 2 and an annular side mold 4 including a plurality of sectors 3 for forming a tread portion are provided.
[0015]
The upper mold 1 has side molding surfaces 5 and 6 for molding the sidewall portions on the lower surface side and the lower mold 2 on the upper surface side. The side mold 4 includes a tread molding surface 7 that molds a tread portion on the inner peripheral surface side.
[0016]
As shown in FIGS. 1 and 2, the side molding surfaces 5 and 6 are provided with annular grooves 8 and 9 extending along the mold circumferential direction F, respectively. Grooves 8 and 9 are provided for collecting and discharging gas remaining, such as air remaining during tire vulcanization and generated gas, to the outside. As shown in FIGS. The side portions 8a and 9a are the shallowest and the other side portions 8b and 9b are the deepest deepest portions, and the groove depth between them is continuously from the one side portions 8a and 9a toward the other side portions 8b and 9b. It is changing and getting deeper. The groove width of the grooves 8 and 9 is constant.
[0017]
One end of one vent hole (gas vent passage) 10, 11 communicates with the other side portions 8b, 9b which are the deepest portions of the grooves 8, 9. The vent holes 10 and 11 penetrate the upper mold 1 and the lower mold 2, and the other end is opened to the outside so that the gas collected at the deepest part of the grooves 8 and 9 can be discharged from the vent holes 10 and 11 to the outside. It has become. In FIG. 1, for easy understanding, the grooves 8 and 9 and the vent holes 10 and 11 are shown in an enlarged state for the sake of easy viewing.
[0018]
FIG. 4 shows an example of a pneumatic tire after removal of spew that has been vulcanized and molded using a tire mold having the grooves 8 and 9 described above. The tire T <b> 1 has an annular protrusion 32 that extends along the tire circumferential direction C on the outer surface 31 a of the sidewall portion 31. The protrusion 32 has a configuration in which the protrusion height is gradually increased while continuously changing the protrusion height from the one side 32a to the other side 32b. That is, the protrusion 32 has the highest portion having the highest protrusion height on the other side portion 32b, and the protrusion height continuously increases from the one side portion 32a toward the highest portion. The protrusion width of the protrusion 32 is constant. Only one cut mark 33 is left on the surface of the other side portion 32b from which the spew formed immediately after vulcanization is removed. Since the protrusion 32 is formed by the grooves 8 and 9, the width and height thereof are the same as the groove width and groove depth of the grooves 8 and 9 described later.
[0019]
Although not shown for the purpose of well-known, the pneumatic tire has a carcass layer mounted between the left and right bead portions 34 on the inner side of the tire, and tires around the bead cores whose both end portions are embedded in the bead portions 34. It is folded from the inside to the outside. A belt layer is provided on the outer peripheral side of the carcass layer of the tread portion 35. The same applies to the pneumatic tire shown in FIG. 9 below.
[0020]
The above-described grooves 8 and 9 show an example in which one groove is provided in each drawing, but usually 2 to 4 (plural) grooves are provided according to the size of the mold, that is, the tire size. One vent hole communicates with the deepest part of the groove.
[0021]
According to the tire mold of the present invention described above, gas such as residual air and generated gas gathers in the grooves 8 and 9 due to the rubber flow at the time of tire vulcanization, and is unvulcanized in the grooves 8 and 9. The rubber enters, and the unvulcanized rubber having viscoelasticity reaches the groove bottom from the one side 8a, 9a having the shallowest groove depth toward the other side 8b, 9b. Thus, since the grooves 8 and 9 are filled, the gas in the grooves 8 and 9 can be collected at the deepest portion of the grooves 8 and 9 and effectively discharged to the outside through the vent holes 10 and 11. Therefore, since it is only necessary to provide one vent hole 10 and 11 for each groove 8 and 9, the number of vent holes can be further reduced as compared with the conventionally proposed mold to greatly reduce the occurrence of spew. it can.
[0022]
As a result, spew cutting traces are reduced and the appearance can be improved. Further, the spew cutting and removing time can be reduced, work efficiency can be improved, and the amount of spew removed can be reduced, so that waste of materials can be reduced and industrial waste can be reduced.
[0023]
FIG. 5 shows another example of the gas discharge grooves 8 and 9 described above. Depending on the design formed on the sidewall portion of the tire, etc., the location where the gas tends to accumulate differs, and the gas exhaust groove may not be arranged in an annular shape depending on the design. It is a groove | channel provided in such a case, Comprising: The circular-arc-shaped groove | channel 14 partially extended along the circumferential direction is formed in the side molding surfaces 5 and 6. FIG. In FIG. 5, the side molding surface 6 of the lower mold 2 is schematically shown, but the side molding surface 5 of the upper mold 1 has the same configuration, so the figure is omitted, and numbers in parentheses are added to FIG. Is attached. The same applies to FIG. 6 described later.
[0024]
The groove 14 is formed so that the groove depth is the shallowest at one end (one side) 14a and the other end (the other side) 14b is the deepest deepest, and the above described from the one end 14a to the other end 14b. It is getting deeper as well. The groove width of the groove 14 is constant.
[0025]
One vent hole 15 communicates with the other end portion 14 b which is the deepest portion of the groove 14, and the gas collected at the deepest portion of the groove 14 can be discharged from the vent hole 15 to the outside. In this way, even in the groove 14 partially extending along the circumferential direction of the mold, the gas collected in the groove 14 is collected at the deepest portion of the groove 14, and is effective to the outside through the vent hole 15. Can be discharged, thereby reducing the number of vent holes and reducing spewing.
[0026]
FIG. 6 shows another example of the groove 14 described above. The groove 16 of FIG. 6 has the groove depth that is the shallowest at both ends 16a and 16b, and the central portion 16c is the deepest deepest portion. The depth of the groove gradually increases from the shallowest ends 16a, 16b to the deepest central portion 16c while continuously changing. The groove width of the groove 16 is constant.
[0027]
One vent hole 17 communicates with the central portion 16c, which is the deepest portion of the groove 16, so that the gas collected at the deepest portion of the groove 16 can be discharged from the vent hole 17 to the outside. Even if it is such a structure, the effect similar to the above can be acquired.
[0028]
In the embodiment described above, the groove depths of the grooves 8, 9, 14, and 16 are appropriately selected depending on the size of the mold, that is, the size of the tire to be molded, but are substantially 0.1 to 5.0 mm. It is better to change within this range. If the groove depth is less than 0.1 mm, it will be difficult for the unvulcanized rubber to smoothly flow into the groove during tire vulcanization, so the gas in the groove is effectively discharged to the outside through the vent hole. It becomes difficult. If it exceeds 5.0 mm, it is not preferable from the viewpoint of appearance.
[0029]
The groove widths of the grooves 8, 9, 14, and 16 are also appropriately selected depending on the size of the tire to be molded, and should be constant within a range of 0.2 to 5.0 mm. It is also possible to change the groove width to such an extent that the flow is not changed.
[0030]
The shape of the grooves 8, 9, 14, and 16 is not limited to the quadrangular cross section shown in the figure (see FIG. 1). For example, as shown in FIG. Yes, it is not particularly limited. The same applies to a groove 18 shown in FIG.
[0031]
The grooves 8, 9, 14, and 16 are preferably configured to continuously change the groove depth as described above, but the remaining gas such as air is collected from the shallowest part toward the deepest part. As long as the groove depth is changed sequentially so that it can be performed, for example, it may be changed stepwise. In the pneumatic tire formed with the mold having the grooves with the groove depths increasing in depth, the protrusions 32 formed on the outer surface 31a of the sidewall part 31 have the protrusion heights correspondingly higher. Become.
[0032]
FIG. 8 shows still another example of the gas discharge groove, and shows an example of the annular groove 18 with the groove width changed instead of the annular grooves 8 and 9 with the groove depth changed as described above. Is.
[0033]
The groove 18 has the narrowest groove width at one side 18a and the narrowest part at the other side 18b, and the groove width between them continuously changes from one side 18a to the other side 18b. However, it is getting narrower. The groove depth of the groove 18 is constant. One end of one vent hole 19 communicates with the other side portion 18b which is the narrowest portion of the groove 18 so that the gas collected in the narrowest portion of the groove 18 can be discharged to the outside from the vent hole 19.
[0034]
Even if the groove 18 has such a narrow groove width, the unvulcanized rubber having viscoelasticity at the time of vulcanization of the tire has the groove 18 from the one side portion 18a having the largest groove width toward the other side portion 18b having the smallest groove width. Since the gas in the groove 18 is collected in the narrowest part and can be effectively discharged to the outside through the vent hole 19, the number of vent holes is greatly reduced, and spew is generated. Can be greatly reduced.
[0035]
FIG. 9 shows an example of a pneumatic tire after removal of spew that has been vulcanized and formed using a tire mold having the groove 18 described above. The tire T2 has an annular protrusion 42 extending along the tire circumferential direction C on the outer surface 31a of the sidewall portion 31, while continuously changing the protrusion width from one side 42a to the other side 42b. The structure is gradually narrowed. That is, the protrusion 42 has the narrowest part where the protrusion width is the narrowest on the other side part 42b, and the protrusion width is continuously narrowed from the one side part 42a toward the narrowest part. The protrusion width of the protrusion 42 is constant. On the surface of the other side portion 42b, only one cut mark 43 is left after removing the spew formed immediately after vulcanization. Since the protrusion 42 is formed by the groove 18, the width and height thereof are the same as the groove width and groove depth of the groove 18 described later.
[0036]
The grooves 14 and 16 shown in FIGS. 5 and 6 can also have the groove width changed as described above, instead of the groove depth.
[0037]
As described above, the groove width of the groove 18 is appropriately selected according to the size of the mold, that is, the size of the tire to be molded, but can be substantially 0.2 to 5.0 mm, and its range. It is better to change within. If the groove width is shallower than 0.2 mm, it becomes difficult for the unvulcanized rubber to smoothly flow into the groove during tire vulcanization. Conversely, if it exceeds 5.0 mm, it is not preferable from the viewpoint of appearance.
[0038]
The groove depth of the groove 18 is also appropriately selected according to the size of the tire to be molded, but the groove depth is preferably constant within a range of 0.1 to 5.0 mm.
[0039]
It is preferable that the groove width of the groove 18 is continuously changed as described above, but the groove width is set so that the remaining gas such as air can be collected from the widest portion toward the narrowest portion. Any one may be used as long as it is changed sequentially. For example, it may be changed stepwise. Thus, in the pneumatic tire formed by the tire mold having the grooves whose groove widths are gradually reduced, the protrusions 42 formed on the outer surface 31a of the sidewall part 31 have protrusion heights corresponding to the corresponding protrusions. Get higher.
[0040]
In the present invention, in the above-described embodiment, an example of a sectional type tire mold is shown. However, the present invention may be a two-part type tire mold including an upper mold and a lower mold. Any mold having a side molding surface for molding the sidewall portion can be applied.
[0041]
Moreover, in the said embodiment, although the groove | channel for gas exhaustion mentioned above changed either the groove depth or the groove width, the groove | channel which changed both of them may be sufficient.
[0042]
【The invention's effect】
As described above, according to the present invention, a groove extending along the circumferential direction is provided on a side molding surface for molding a sidewall portion of a tire, and the groove depth is sequentially increased or the groove width is sequentially reduced. Since the gas vent passage is communicated with the deepest part or the narrowest part of the groove, the number of vent holes can be further reduced as compared with the conventionally proposed tire mold, and the generation of spew can be further reduced. . Therefore, it is possible to improve the appearance, increase the work efficiency of cutting and removing spew, reduce the waste of materials, and further reduce industrial waste.
[Brief description of the drawings]
FIG. 1 is a half sectional view showing an example of a tire mold according to the present invention.
2A is an explanatory diagram schematically showing an upper mold viewed from the lower side, and FIG. 2B is an explanatory diagram schematically showing the lower mold viewed from the upper side.
FIGS. 3A and 3B are expanded views showing a cross section of the groove in FIG. 2 cut along the center in the width direction, wherein FIG. 3A is an enlarged view showing an upper mold groove, and FIG. 3B is an enlarged view showing a lower mold groove; It is.
4 (a) is a schematic side view showing an example of a pneumatic tire molded using the tire mold of FIG. 1, and FIG. 4 (b) is an enlarged view showing a developed section cut along a protrusion. is there.
5A and 5B show another example of the groove, wherein FIG. 5A is an explanatory view schematically showing the lower mold viewed from above, and FIG. 5B is an enlarged view of the groove formed in the lower mold. It is an equivalent figure.
6 is a view corresponding to FIG. 5B showing another example of the groove in FIG. 5;
7A and 7B are enlarged cross-sectional views showing other shapes of grooves, respectively.
FIG. 8 is an explanatory view showing still another example of the groove, in a state where the annular groove viewed from the opening side is developed on a straight line over one circumference.
9A is a schematic side view showing an example of a pneumatic tire molded using a tire mold having a groove of FIG. 8 , and FIG. 9B is an enlarged view showing a protrusion.
[Explanation of symbols]
1 Upper mold 2 Lower mold 5, 6 Side molding surface 8, 9 Groove 8b, 9b The other side (deepest part)
10,11 Vent hole (gas vent passage)
14 Groove 14 b Other end (deepest part)
15 Vent hole (gas vent passage) 16 Groove 16c Center part (deepest part) 17 Vent hole (gas vent passage)
18 groove 18b other side (narrowest part)
19 Vent hole (gas vent passage) 31 Side wall 31a Outer surface 32, 42 Protrusion 33, 43 Cut trace C Tire circumferential direction F Mold circumferential direction T1, T2 Pneumatic tire

Claims (16)

タイヤのサイドウォール部を成形するサイド成形面に金型周方向に沿って延在する溝を設け、該溝を溝深さが順次深くなるように構成し、前記溝の最深部に気体抜き通路を連通したタイヤ金型。A groove that extends along the circumferential direction of the mold is provided on a side molding surface that molds the sidewall portion of the tire, and the groove is configured so that the groove depth becomes deeper in order, and a gas vent passage is formed at the deepest portion of the groove. Tire molds that communicate with each other. タイヤのサイドウォール部を成形するサイド成形面を備えた環状の上下の金型を有し、該上下の金型のサイド成形面に前記溝を設けた請求項1に記載のタイヤ金型。2. The tire mold according to claim 1, comprising annular upper and lower molds each having a side molding surface for molding a sidewall portion of the tire, wherein the groove is provided on a side molding surface of the upper and lower molds. 前記溝深さを連続的に変化させながら次第に深くした請求項1または2に記載のタイヤ金型。The tire mold according to claim 1 or 2, wherein the groove depth is gradually deepened while continuously changing the groove depth. 前記溝深さを一方側部から他方側部に向けて深くし、該他方側部を前記最深部にした請求項1,2または3に記載のタイヤ金型。4. The tire mold according to claim 1, wherein the groove depth is deepened from one side portion toward the other side portion, and the other side portion is the deepest portion. 前記溝深さが0.1〜5.0mmである請求項1,2,3または4に記載のタイヤ金型。The tire mold according to claim 1, 2, 3, or 4, wherein the groove depth is 0.1 to 5.0 mm. 前記溝が金型周方向に沿って延在する環状溝である請求項1,2,3,4または5に記載のタイヤ金型。The tire mold according to claim 1, 2, 3, 4, or 5, wherein the groove is an annular groove extending along a circumferential direction of the mold. タイヤのサイドウォール部を成形するサイド成形面に金型周方向に沿って延在する溝を設け、該溝を溝幅が順次狭くなるように構成し、前記溝の最狭部に気体抜き通路を連通したタイヤ金型。A groove extending along the circumferential direction of the mold is provided on a side molding surface for molding the sidewall portion of the tire, and the groove is configured so that the groove width becomes narrower in order, and a gas vent passage is formed in the narrowest portion of the groove. Tire molds that communicate with each other. タイヤのサイドウォール部を成形するサイド成形面を備えた環状の上下の金型を有し、該上下の金型のサイド成形面に前記溝を設けた請求項7に記載のタイヤ金型。The tire mold according to claim 7, comprising annular upper and lower molds each having a side molding surface for molding a sidewall portion of the tire, wherein the groove is provided on a side molding surface of the upper and lower molds. 前記溝幅を連続的に変化させながら次第に狭くした請求項7または8に記載のタイヤ金型。The tire mold according to claim 7 or 8, wherein the groove width is gradually narrowed while continuously changing the groove width. 前記溝幅を一方側部から他方側部に向けて狭くし、該他方側部を前記最狭部にした請求項7,8または9に記載のタイヤ金型。The tire mold according to claim 7, 8 or 9, wherein the groove width is narrowed from one side portion toward the other side portion, and the other side portion is the narrowest portion. 前記溝幅が0.2〜5.0mmである請求項7,8,9または10に記載のタイヤ金型。The tire mold according to claim 7, 8, 9, or 10, wherein the groove width is 0.2 to 5.0 mm. 前記溝が周方向に沿って延在する環状溝である請求項7,8,9,10または11に記載のタイヤ金型。The tire mold according to claim 7, 8, 9, 10, or 11, wherein the groove is an annular groove extending along a circumferential direction. サイドウォール部の外面にタイヤ周方向に沿って延在する、幅0.2〜5.0mm、高さ0.1〜5.0mmの突起部を有し、該突起部を突起高さが最も高い最高部に向けて突起高さが順次高くなるように形成し、該最高部の表面にスピューを除去した切断跡がある空気入りタイヤ。Extending along the outer surface of the sidewall portion in the tire circumferential direction, a width 0.2 to 5.0 mm, has a protrusion height 0.1 to 5.0 mm, the protrusion portion protruding height is most A pneumatic tire which is formed so that the height of the protrusions is gradually increased toward the highest highest portion, and the surface of the highest portion has a cut mark obtained by removing spew . 前記突起高さを連続的に変化させながら次第に高くした請求項13に記載の空気入りタイヤ。The pneumatic tire according to claim 13, wherein the height of the protrusion is gradually increased while continuously changing. サイドウォール部の外面にタイヤ周方向に沿って延在する、幅0.2〜5.0mm、高さ0.1〜5.0mmの突起部を有し、該突起部を突起幅が最も狭くなる最狭部に向けて突起幅が順次狭くなるように形成し、該最狭部の表面にスピューを除去した切断跡がある空気入りタイヤ。 A protrusion having a width of 0.2 to 5.0 mm and a height of 0.1 to 5.0 mm extending along the tire circumferential direction on the outer surface of the sidewall portion, the protrusion having the smallest protrusion width A pneumatic tire formed so that the protrusion width gradually becomes narrower toward the narrowest part, and the surface of the narrowest part has a cut mark obtained by removing spew . 前記突起幅を連続的に変化させながら次第に狭くした請求項15に記載の空気入りタイヤ。The pneumatic tire according to claim 15, wherein the width of the protrusion is gradually narrowed while being continuously changed.
JP2002305622A 2002-10-21 2002-10-21 Tire mold and pneumatic tire Expired - Fee Related JP4169570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305622A JP4169570B2 (en) 2002-10-21 2002-10-21 Tire mold and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305622A JP4169570B2 (en) 2002-10-21 2002-10-21 Tire mold and pneumatic tire

Publications (2)

Publication Number Publication Date
JP2004136616A JP2004136616A (en) 2004-05-13
JP4169570B2 true JP4169570B2 (en) 2008-10-22

Family

ID=32452673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305622A Expired - Fee Related JP4169570B2 (en) 2002-10-21 2002-10-21 Tire mold and pneumatic tire

Country Status (1)

Country Link
JP (1) JP4169570B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237821B2 (en) 2017-04-27 2023-03-13 住友化学株式会社 Method and equipment for producing methionine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501421B2 (en) * 2003-12-03 2010-07-14 横浜ゴム株式会社 Tire mold
JP4862684B2 (en) * 2006-05-30 2012-01-25 横浜ゴム株式会社 Molding mold for tire vulcanization
JP5632233B2 (en) * 2010-08-23 2014-11-26 株式会社ブリヂストン Pneumatic tires for motorcycles
JP6878907B2 (en) * 2017-01-20 2021-06-02 横浜ゴム株式会社 Tire mold
JP6878904B2 (en) * 2017-01-20 2021-06-02 横浜ゴム株式会社 Tire mold
JP6878906B2 (en) * 2017-01-20 2021-06-02 横浜ゴム株式会社 Tire mold
JP7081165B2 (en) * 2018-01-19 2022-06-07 横浜ゴム株式会社 Pneumatic tires and tire molds
JP7083700B2 (en) * 2018-05-31 2022-06-13 Toyo Tire株式会社 Manufacturing method of tire vulcanization mold and pneumatic tire

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313715A (en) * 1986-07-04 1988-01-21 Toyo Tire & Rubber Co Ltd Mold for vulcanization and molding of tire
JPS6311209U (en) * 1986-07-08 1988-01-25
JPH0288310A (en) * 1988-09-26 1990-03-28 Yokohama Rubber Co Ltd:The Pneumatic tire and its forming mold
JP3789952B2 (en) * 1994-09-07 2006-06-28 株式会社ブリヂストン Pneumatic tire
JP2000118208A (en) * 1998-10-09 2000-04-25 Bridgestone Corp Pneumatic tire provided with many rectangular decorative bodies
JP3391756B2 (en) * 1999-12-07 2003-03-31 住友ゴム工業株式会社 Pneumatic tire
JP4417507B2 (en) * 2000-01-24 2010-02-17 東洋ゴム工業株式会社 Pneumatic radial tire
JP3337453B2 (en) * 2000-02-15 2002-10-21 住友ゴム工業株式会社 Pneumatic tire
JP2002166424A (en) * 2000-11-29 2002-06-11 Bridgestone Corp Method for vulcanizing pneumatic tire and mold used for the method
JP2003025813A (en) * 2001-07-10 2003-01-29 Sumitomo Rubber Ind Ltd Pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237821B2 (en) 2017-04-27 2023-03-13 住友化学株式会社 Method and equipment for producing methionine

Also Published As

Publication number Publication date
JP2004136616A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP4921790B2 (en) Method and apparatus for providing vents in mold
JP4862684B2 (en) Molding mold for tire vulcanization
JP4169571B2 (en) Tire mold and pneumatic tire
JP6826432B2 (en) Tire vulcanization mold and pneumatic tire
JP4145337B2 (en) Pneumatic tire
JP4980613B2 (en) Pneumatic tire with improved tie bar, tire manufacturing method, and mold
JP5115299B2 (en) Pneumatic tire and tire mold
JP4589563B2 (en) How to remove air intervening between raw tire and vulcanizing mold
JPH0976710A (en) Pneumatic tire, manufacture thereof, and tire molding metal mold used therefor
JP3568321B2 (en) Pneumatic tire and mold for molding the tire
JP4169570B2 (en) Tire mold and pneumatic tire
JP2003154527A (en) Tire vulcanizing mold and tire manufactured by using the same
JP2019123469A (en) Pneumatic tire and tire mold
JP2005533685A (en) Split tire mold to reduce flash
JP2014073647A (en) Mold for tire vulcanization and pneumatic tire
JP4236527B2 (en) Tire molding die and tire molded using the tire molding die
JP3878719B2 (en) Tire molding mold and pneumatic tire
JP4471272B2 (en) Pneumatic tire
JP4236524B2 (en) Tire molding die and tire manufactured using the tire molding die
JP7210942B2 (en) Tire vulcanization mold and tire
JP7415128B2 (en) Vulcanization mold for tire manufacturing and method for manufacturing pneumatic tires using the same
JP4052386B2 (en) Tire mold and method of manufacturing pneumatic tire using the same
JP6996280B2 (en) Tire vulcanization mold and tire manufacturing method
JPH09226321A (en) Pneumatic tire
JP2001206014A (en) Pneumatic tire and vulcanization die therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees