JP6996280B2 - Tire vulcanization mold and tire manufacturing method - Google Patents

Tire vulcanization mold and tire manufacturing method Download PDF

Info

Publication number
JP6996280B2
JP6996280B2 JP2017245419A JP2017245419A JP6996280B2 JP 6996280 B2 JP6996280 B2 JP 6996280B2 JP 2017245419 A JP2017245419 A JP 2017245419A JP 2017245419 A JP2017245419 A JP 2017245419A JP 6996280 B2 JP6996280 B2 JP 6996280B2
Authority
JP
Japan
Prior art keywords
tire
sidewall
vulcanization
mold
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017245419A
Other languages
Japanese (ja)
Other versions
JP2019111682A (en
Inventor
尚 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017245419A priority Critical patent/JP6996280B2/en
Publication of JP2019111682A publication Critical patent/JP2019111682A/en
Application granted granted Critical
Publication of JP6996280B2 publication Critical patent/JP6996280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Tyre Moulding (AREA)

Description

本発明は、サイドウォール部におけるベアの発生を抑えるタイヤの加硫金型及びタイヤの製造方法に関する。 The present invention relates to a vulcanization die for a tire and a method for manufacturing the tire, which suppresses the generation of bears in the sidewall portion.

タイヤを加硫成形する際、加硫金型とタイヤとの間に空気溜まりが発生し、タイヤの外面にベア(凹み部分)が生じることが知られている。特に、タイヤのサイドウォール部は、文字、記号などである標章が凹凸状に形成されているため、空気が溜まりやすくベアが発生しやすい。 It is known that when a tire is vulcanized and molded, an air pool is generated between the vulcanization die and the tire, and a bear (recessed portion) is formed on the outer surface of the tire. In particular, since marks such as letters and symbols are formed in an uneven shape on the sidewall portion of the tire, air is likely to collect and bears are likely to occur.

このようなベアの発生を防ぐため、加硫金型のサイドウォール成形面に多数の排気用のベントホールを設けることが知られている。しかしベントホールを多数配置すると、それに応じてスピューと呼ばれるゴム突起の本数が増大し、タイヤの美観を損ねるという問題がある。 In order to prevent the occurrence of such a bear, it is known to provide a large number of vent holes for exhaust on the sidewall forming surface of the vulcanization die. However, if a large number of vent holes are arranged, the number of rubber protrusions called spews increases accordingly, which causes a problem that the aesthetic appearance of the tire is spoiled.

近年においては、サイドウォール成形面に半径方向にのびる細溝状のソーカットを設け、これを空気の通路として使用し排気効率を高めることも提案されている(例えば特許文献1参照)。 In recent years, it has been proposed to provide a narrow groove-shaped saw cut extending in the radial direction on the sidewall molded surface and use this as an air passage to improve the exhaust efficiency (see, for example, Patent Document 1).

しかし、ソーカットの場合、その形成位置は、標章の配置や大きさなどのデザイン上の制約を受ける。そのため、ソーカットを半径方向に連続して設けることができなかったり、又ソーカット自体を配置できない場所が生じるなど、設計の自由度を損ねたり、又ベアの発生を十分に抑制できない場合も起こりうる。 However, in the case of saw cut, the formation position is subject to design restrictions such as the arrangement and size of the mark. Therefore, it may not be possible to continuously provide the saw cuts in the radial direction, or there may be places where the saw cuts themselves cannot be arranged, which impairs the degree of freedom in design and may not sufficiently suppress the generation of bears.

特開2014-76575号公報Japanese Unexamined Patent Publication No. 2014-76575

本発明は、標章等のデザイン上の制約を受けることなくベアの発生を抑制しうるタイヤの加硫金型及びタイヤの製造方法を提供することを主たる目的としている。 An object of the present invention is to provide a vulcanization die for a tire and a method for manufacturing the tire, which can suppress the generation of bears without being restricted by a design such as a mark.

本願の第1発明は、タイヤのサイドウォール部を成形するためのサイドウォール成形面を有するサイドモールドを含むタイヤの加硫金型であって、
前記サイドウォール成形面は、その輪郭形状がタイヤ周方向に変化し、
かつ前記輪郭形状は、タイヤ子午断面における輪郭線のうちで、タイヤ軸方向最外側を通る第1の輪郭線を有する谷部と、タイヤ軸方向最内側を通る第2の輪郭線を有する頂部とがタイヤ周方向に交互に繰り返される凹凸面状をなす。
The first invention of the present application is a vulcanization die for a tire including a side mold having a sidewall molding surface for molding the sidewall portion of the tire.
The contour shape of the sidewall molded surface changes in the tire circumferential direction,
Further, the contour shape includes a valley portion having a first contour line passing through the outermost side in the tire axial direction and a top having a second contour line passing through the innermost side in the tire axial direction among the contour lines in the tire meridional cross section. Form an uneven surface that is repeated alternately in the tire circumferential direction.

本発明に係るタイヤの加硫金型では、前記第1の輪郭線と前記第2の輪郭線との間タイヤ軸方向の距離の最大値Dmax は、0.2~2.0mmであるのが好ましい。 In the tire vulcanization die according to the present invention, the maximum value Dmax of the distance between the first contour line and the second contour line in the tire axial direction is 0.2 to 2.0 mm. preferable.

本発明に係るタイヤの加硫金型では、前記谷部と頂部との間のタイヤ軸心を中心とした角度θは10~45度であるのが好ましい。 In the tire vulcanization die according to the present invention, the angle θ between the valley portion and the top portion about the tire axis is preferably 10 to 45 degrees.

本発明に係るタイヤの加硫金型では、前記谷部と頂部とはタイヤ周方向に等間隔で繰り返されるのが好ましい。 In the tire vulcanization die according to the present invention, it is preferable that the valley portion and the top portion are repeated at equal intervals in the tire circumferential direction.

本願の第2発明は、タイヤの製造方法であって、第1発明のタイヤの加硫金型により生タイヤを加硫する加硫工程を含む。 The second invention of the present invention is a method for manufacturing a tire, and includes a vulcanization step of vulcanizing a raw tire by the vulcanization mold of the tire of the first invention.

本発明において、サイドウォール成形面の輪郭形状は、タイヤ子午断面における輪郭線のうちで、タイヤ軸方向最外側を通る第1の輪郭線を有する谷部と、タイヤ軸方向最内側を通る第2の輪郭線を有する頂部とがタイヤ周方向に交互に繰り返される凹凸面状をなす。 In the present invention, the contour shape of the sidewall molded surface is a valley portion having a first contour line passing through the outermost side in the tire axial direction and a second contour line passing through the innermost side in the tire axial direction among the contour lines in the tire meridional cross section. The top having the contour line of is formed into an uneven surface shape that is alternately repeated in the tire circumferential direction.

そのため、加硫成形時、タイヤとサイドウォール成形面との間には、前記谷部を頂点とした断面略三角形状のスペースが形成される。このスペースは、半径方向内外に連続してのびる。従って、このスペースが排気路として機能し、タイヤとサイドウォール成形面との間の空気を外部に排気することができる。 Therefore, during vulcanization molding, a space having a substantially triangular cross section with the valley as the apex is formed between the tire and the sidewall molding surface. This space extends continuously in and out of the radial direction. Therefore, this space functions as an exhaust passage, and the air between the tire and the sidewall molded surface can be exhausted to the outside.

このような輪郭形状は、標章等のデザイン上の制約を受けない、或いは前記デザインに制約を与えない。そのため、設計の自由度を広く確保しながら、ベアの発生を抑制することができる。 Such a contour shape is not subject to design restrictions such as marks, or does not impose restrictions on the design. Therefore, it is possible to suppress the occurrence of bears while ensuring a wide degree of freedom in design.

本発明のタイヤの加硫金型の一実施形態を示す子午断面図である。It is a meridional cross-sectional view which shows one Embodiment of the vulcanization die of the tire of this invention. サイドモールドの斜視図である。It is a perspective view of a side mold. サイドウォール成形面をタイヤ軸方向内側から見た側面図である。It is a side view which looked at the sidewall molded surface from the inside in the tire axial direction. (A)はサイドウォール成形面のタイヤ周方向断面を平面に展開して示す部分展開図、(B)は本発明の作用効果を示す図面である(A) is a partially developed view showing a tire circumferential cross section of a sidewall molded surface developed in a plane, and (B) is a drawing showing the action and effect of the present invention. (A)は本発明の加硫金型によって形成されたタイヤの子午断面図、(B)は部分斜視図である。(A) is a meridional cross-sectional view of a tire formed by the vulcanization die of the present invention, and (B) is a partial perspective view.

以下、本発明の実施の形態について、詳細に説明する。
図1に示すように、本実施形態のタイヤの加硫金型1は、タイヤ軸方向両側に配されるサイドウォール形成用の一対のサイドモールド2と、トレッド形成用のトレッドモールド4と、各サイドモールド2のタイヤ半径方向内端部に配されるビード形成用のビードリング5とを具える。便宜上、図1には、タイヤ赤道面Coのタイヤ軸方向一方側のみが描かれている。
Hereinafter, embodiments of the present invention will be described in detail.
As shown in FIG. 1, the vulcanization die 1 of the tire of the present embodiment has a pair of side molds 2 for forming sidewalls and a tread mold 4 for forming treads arranged on both sides in the tire axial direction. A bead ring 5 for forming a bead is provided at the inner end of the side mold 2 in the radial direction of the tire. For convenience, FIG. 1 shows only one side of the tire equatorial plane Co in the tire axial direction.

加硫金型1は、サイドモールド2の半径方向外端側の突き合わせ面S1と、トレッドモールド4のタイヤ軸方向両側かつ半径方向内端側の突き合わせ面S2とが互いに突き合わされ、かつサイドモールド2の半径方向内端側の突き合わせ面S3と、ビードリング5の半径方向外端側の突き合わせ面S4とが互いに突き合わされる金型閉状態YにてタイヤTの加硫成形が行われる。 In the vulcanization die 1, the butt surface S1 on the radial outer end side of the side mold 2 and the butt surface S2 on both sides of the tread mold 4 in the tire axial direction and on the radial inner end side are abutted against each other, and the side mold 2 The tire T is vulcanized in a mold closed state Y in which the butt surface S3 on the inner end side in the radial direction and the butt surface S4 on the outer end side in the radial direction of the bead ring 5 are butted against each other.

サイドモールド2は、タイヤTのサイドウォール部を成形するためのサイドウォール成形面2sを具える。トレッドモールド4は、タイヤTのトレッド部を成形するためのトレッド成形面4sを具える。ビードリング5は、タイヤTのビード部を成形するためのビード成形面5sを具える。 The side mold 2 includes a sidewall forming surface 2s for forming the sidewall portion of the tire T. The tread mold 4 includes a tread molding surface 4s for molding the tread portion of the tire T. The bead ring 5 includes a bead forming surface 5s for forming the bead portion of the tire T.

トレッドモールド4及びビードリング5として従来と同様の構造が採用しうる。又サイドモールド2として、前記サイドウォール成形面2s以外、従来と同様の構造が採用しうる。従って、以下に、サイドウォール成形面2sを中心に説明する。 The same structure as the conventional one can be adopted as the tread mold 4 and the bead ring 5. Further, as the side mold 2, the same structure as the conventional one can be adopted except for the sidewall molded surface 2s. Therefore, the sidewall molded surface 2s will be mainly described below.

図2に示すように、サイドウォール成形面2sは、その輪郭形状Kがタイヤ周方向に繰り返して変化する。具体的には、輪郭形状Kは、谷部10と、頂部11とがタイヤ周方向に交互に繰り返される凹凸面状をなす。タイヤ子午断面における輪郭線Jのうち、谷部10は、タイヤ軸方向最外側を通る第1の輪郭線Jaを有する。又頂部11は、輪郭線Jのうち、タイヤ軸方向最内側を通る第2の輪郭線Jbを有する。なお谷部10と頂部11との間では、輪郭線Jは滑らかに変化している。 As shown in FIG. 2, the contour shape K of the sidewall molded surface 2s repeatedly changes in the tire circumferential direction. Specifically, the contour shape K has an uneven surface shape in which the valley portion 10 and the top portion 11 are alternately repeated in the tire circumferential direction. Of the contour lines J in the tire meridional cross section, the valley portion 10 has a first contour line Ja passing through the outermost side in the tire axial direction. Further, the top portion 11 has a second contour line Jb that passes through the innermost side in the tire axial direction among the contour lines J. The contour line J changes smoothly between the valley portion 10 and the top portion 11.

前記「輪郭形状K」には、サイドウォール成形面2sに一般に形成される文字、記号、図形などである標章、及びリッジ等の装飾模様などからなる部分的な微少な凹凸は含まれない。 The "contour shape K" does not include partial fine irregularities composed of characters, symbols, figures and other marks generally formed on the sidewall molding surface 2s, and decorative patterns such as ridges.

図1に示すように、第1の輪郭線Jaと第2の輪郭線Jbとの間のタイヤ軸方向の距離Dの最大値Dmax は、0.2~2.0mmであるのが好ましい。本例では、前記最大値Dmax は、タイヤ最大巾位置Pmにおける距離Dとして表れる。 As shown in FIG. 1, the maximum value Dmax of the distance D in the tire axial direction between the first contour line Ja and the second contour line Jb is preferably 0.2 to 2.0 mm. In this example, the maximum value Dmax appears as a distance D at the tire maximum width position Pm.

図3に示すように、谷部10と頂部11との間のタイヤ軸心iを中心とした角度θは10~45度であるのが好ましい。特には、谷部10と頂部11とがタイヤ周方向に等間隔で繰り返されるのが好ましい。なお等間隔でない場合、前記角度θの最大値及び最小値が前記10~45度の範囲に入るのが好ましい。 As shown in FIG. 3, the angle θ between the valley portion 10 and the top portion 11 about the tire axis i is preferably 10 to 45 degrees. In particular, it is preferable that the valley portion 10 and the top portion 11 are repeated at equal intervals in the tire circumferential direction. When the intervals are not equal, it is preferable that the maximum value and the minimum value of the angle θ are in the range of 10 to 45 degrees.

図4(A)は、サイドウォール成形面2sのタイヤ周方向断面を平面に展開して示す部分展開図である。同図に示すように、本例では、谷部10、10間が、サイドウォール成形面2sよりもタイヤ軸方向外側に中心を有しかつ頂部11を通る円弧状曲線15によって形成される。この場合、サイドウォール成形面2sは、谷部10ではエッジ状をなし、頂部11では滑らかな円弧状をなす。なお前記展開図において、サイドウォール成形面2sを、谷部10、10間が波の一周期となる正弦曲線等の波状曲線で形成されても良い。これにより、谷部10及び頂部11を滑らかな曲線とすることができる。 FIG. 4A is a partially developed view showing a cross section of the sidewall molded surface 2s in the tire circumferential direction developed in a plane. As shown in the figure, in this example, the valley portions 10 and 10 are formed by an arcuate curve 15 having a center on the outer side in the tire axial direction from the sidewall forming surface 2s and passing through the top portion 11. In this case, the sidewall forming surface 2s has an edge shape at the valley portion 10 and a smooth arc shape at the top portion 11. In the developed view, the sidewall forming surface 2s may be formed by a wavy curve such as a sine and cosine curve in which the valleys 10 and 10 form one cycle of the wave. As a result, the valley portion 10 and the top portion 11 can be made into a smooth curve.

このようなサイドモールド2では、図4(B)に示すように、加硫成形時、タイヤTとサイドウォール成形面2sとの間には、谷部10を頂点とした断面略三角形状のスペースHが形成される。このスペースHは、半径方向内外に連続しのびる。従って、加硫中のゴム流動によりスペースHがゴムGで埋まるまでの間、スペースHが排気路として機能し、タイヤTとサイドウォール成形面2sとの間の空気を、半径方向内外に逃がすことができる。逃げた空気は、本例では、図1に示すように、サイドモールド2とトレッドモールド4との突き合わせ部20、及びサイドモールド2とビードリング5との突き合わせ部21を通って金型外に排気させることができる。 In such a side mold 2, as shown in FIG. 4B, a space having a substantially triangular cross section with a valley portion 10 as an apex is provided between the tire T and the sidewall forming surface 2s during vulcanization molding. H is formed. This space H extends continuously in and out in the radial direction. Therefore, until the space H is filled with the rubber G due to the rubber flow during vulcanization, the space H functions as an exhaust passage, and the air between the tire T and the sidewall forming surface 2s is released in and out in the radial direction. Can be done. In this example, the escaped air is exhausted to the outside of the mold through the butt portion 20 between the side mold 2 and the tread mold 4 and the butt portion 21 between the side mold 2 and the bead ring 5, as shown in FIG. Can be made to.

要求により、前記谷部10の位置に、ベントホールを形成することもできる。この場合にも、空気がスペースHに集合するため、ベントホールの形成数を大幅に減じることができる。このような輪郭形状Kを有するサイドウォール成形面2sは、標章等のデザイン上の制約を受けない、或いは前記デザインに制約を与えない。そのため、設計の自由度を広く確保しながら、ベアの発生を抑制することができる。 If required, a vent hole can be formed at the position of the valley portion 10. Also in this case, since the air collects in the space H, the number of bent holes formed can be significantly reduced. The sidewall molded surface 2s having such a contour shape K is not subject to design restrictions such as marks, or is not restricted to the design. Therefore, it is possible to suppress the occurrence of bears while ensuring a wide degree of freedom in design.

ここで、第1、第2の輪郭線Ja、Jb間のタイヤ軸方向の距離Dの最大値Dmax (図1に示す)が0.2mmを下回ると、前記スペースHが過小となって排気路として十分に機能しなくなる。逆に最大値Dmax が2.0mmを越えると、サイドウォール部におけるゲージ厚さがタイヤ周方向に不均一化する、その結果、ラテラル・ランアウト(LRO)の悪化を招く。このような観点から最大値Dmax の下限は0.5mm以上が好ましく、上限は1.5mm以下が好ましい。 Here, when the maximum value Dmax (shown in FIG. 1) of the distance D in the tire axial direction between the first and second contour lines Ja and Jb is less than 0.2 mm, the space H becomes too small and the exhaust passage. Will not work as well. On the contrary, when the maximum value Dmax exceeds 2.0 mm, the gauge thickness in the sidewall portion becomes non-uniform in the tire circumferential direction, and as a result, the lateral runout (LRO) deteriorates. From this point of view, the lower limit of the maximum value Dmax is preferably 0.5 mm or more, and the upper limit is preferably 1.5 mm or less.

又谷部10と頂部11との間の前記角度θ(図3に示す)が10度を下回ると、タイヤ周方向に凹凸が頻繁に現れるため、タイヤの外観性能の悪化を招く。逆に角度θが45度を越えると、スペースH(排気路)の間隔が大となり、排気が不充分となってベア発生の抑制効果が低下する。このような観点から角度θの下限は15度以上が好ましく、上限は30度以下が好ましい。 Further, when the angle θ (shown in FIG. 3) between the valley portion 10 and the top portion 11 is less than 10 degrees, unevenness frequently appears in the tire circumferential direction, which causes deterioration of the appearance performance of the tire. On the contrary, when the angle θ exceeds 45 degrees, the space H (exhaust passage) interval becomes large, the exhaust becomes insufficient, and the effect of suppressing the occurrence of bears decreases. From this point of view, the lower limit of the angle θ is preferably 15 degrees or more, and the upper limit is preferably 30 degrees or less.

図5(A)、(B)に、タイヤの製造方法によって形成された空気入りタイヤTが示される。このタイヤの製造方法は、前記加硫金型1によって生タイヤを加硫する加硫工程を含む。 5 (A) and 5 (B) show the pneumatic tire T formed by the tire manufacturing method. This method for manufacturing a tire includes a vulcanization step of vulcanizing a raw tire with the vulcanization die 1.

図5(A)、(B)には、空気入りタイヤTの内部構造が省略されて描かれているが、従来と同様のタイヤ内部構造が採用しうる。即ち、例えば、タイヤの骨格をなすカーカス、カーカスの半径方向外側かつトレッド部T1に配されるベルト層、ベルト層の半径方向外側に配されるバンド層、ビード部T2に配されるビードコアなどの周知の構成部材を具えることができる。 Although the internal structure of the pneumatic tire T is omitted in FIGS. 5A and 5B, the same tire internal structure as the conventional one can be adopted. That is, for example, the carcass forming the skeleton of the tire, the belt layer arranged on the radial outside of the carcass and on the tread portion T1, the band layer arranged on the radial outside of the belt layer, the bead core arranged on the bead portion T2, and the like. It can be equipped with well-known components.

空気入りタイヤTでは、前記加硫金型1によって加硫成形されることにより、サイドウォール部T3の外面のタイヤ輪郭形状Mは、タイヤ周方向に繰り返して変化する。具体的には、タイヤ輪郭形状Mは、タイヤ子午断面における輪郭線Rがタイヤ軸方向最内側を通る谷部31と、輪郭線Rがタイヤ軸方向最外側を通る頂部32とがタイヤ周方向に交互に繰り返される凹凸面状をなす。谷部31における輪郭線と頂部32における輪郭線との間タイヤ軸方向の距離Lの最大値Lmax は、加硫金型1における前記距離Dの最大値Dmax と等しい。 In the pneumatic tire T, the tire contour shape M on the outer surface of the sidewall portion T3 is repeatedly changed in the tire circumferential direction by being vulcanized and molded by the vulcanization die 1. Specifically, in the tire contour shape M, the valley portion 31 in which the contour line R in the tire meridional cross section passes through the innermost side in the tire axial direction and the top portion 32 in which the contour line R passes through the outermost side in the tire axial direction are in the tire circumferential direction. It forms an uneven surface that is repeated alternately. The maximum value Lmax of the distance L in the tire axial direction between the contour line in the valley portion 31 and the contour line in the top portion 32 is equal to the maximum value Dmax of the distance D in the vulcanization die 1.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。 Although the particularly preferred embodiment of the present invention has been described in detail above, the present invention is not limited to the illustrated embodiment and can be modified into various embodiments.

タイヤサイズ235/55R19の乗用車用タイヤを、表1に記載の仕様を有する加硫金型を用いて加硫成形した。その時の、ベアの発生状況、タイヤのラテラル・ランアウト(LRO)を比較した。 Passenger car tires with a tire size of 235 / 55R19 were vulcanized and molded using a vulcanization die having the specifications shown in Table 1. At that time, the bear occurrence situation and the tire lateral runout (LRO) were compared.

比較例では、サイドウォール成形面に、半径方向にのびる細溝状のソーカット(溝巾0.5~1.0mm、溝深さ0.5~1.0mm)をタイヤ周方向に18箇所形成した。ソーカットを等間隔を有して18箇所形成した場合、ソーカットが文字デザイン(標章)と干渉する部分が複数箇所発生する。従って比較例では、干渉する部分において、ソーカットの位置をずらしたり、ソーカットの一部を削除することで、対応している。 In the comparative example, 18 narrow groove-shaped saw cuts (groove width 0.5 to 1.0 mm, groove depth 0.5 to 1.0 mm) extending in the radial direction were formed on the sidewall molded surface in the tire circumferential direction. .. When the saw cuts are formed at 18 places at equal intervals, there are a plurality of places where the saw cuts interfere with the character design (mark). Therefore, in the comparative example, the position of the saw cut is shifted or a part of the saw cut is deleted in the interfering portion.

(1)ベアの発生状況:
1000本のタイヤを製造し、サイドウォール部の外観を目視検査した。そして空気溜まりに原因するベアが発生するタイヤの発生率(%)を、ベア発生率として求めた。数値が小さいほどベアの発生が少なく、外観品質に優れている。
(1) Bear occurrence status:
1000 tires were manufactured and the appearance of the sidewall was visually inspected. Then, the generation rate (%) of the tire in which the bear caused by the air pool is generated was obtained as the bear generation rate. The smaller the value, the less the occurrence of bears, and the better the appearance quality.

(2)ラテラル・ランアウト(LRO):
ユニフォミティ試験機を用い、1000本のタイヤについてラテラル・ランアウト(LRO)を測定するとともに、その平均値を比較した。数値が小さいほどラテラル・ランアウト(LRO)が小さく、ユニフォミティに優れている。
(2) Lateral Runout (LRO):
Lateral runout (LRO) was measured for 1000 tires using a uniformity tester, and the average values were compared. The smaller the value, the smaller the lateral runout (LRO), and the better the uniformity.

Figure 0006996280000001
Figure 0006996280000001

表に示すように、実施例は、設計の自由度を広く確保しながら、ベアの発生を抑制しうるのが確認できる。 As shown in the table, it can be confirmed that the examples can suppress the occurrence of bears while ensuring a wide degree of freedom in design.

1 タイヤの加硫金型
2 サイドモールド
2s サイドウォール成形面
10 谷部
11 頂部
i タイヤ軸心
J、Ja、Jb 輪郭線
K 輪郭形状
T タイヤ
T3 サイドウォール部
1 Tire vulcanization die 2 Side mold 2s Side wall forming surface 10 Tani part 11 Top i Tire axis center J, Ja, Jb Contour line K Contour shape T Tire T3 Side wall part

Claims (6)

タイヤのサイドウォール部を成形するためのサイドウォール成形面を有するサイドモールドを含むタイヤの加硫金型であって、
前記サイドウォール成形面は、その輪郭形状がタイヤ周方向に変化し、
かつ前記輪郭形状は、タイヤ子午断面における輪郭線のうちで、タイヤ軸方向最外側を通る第1の輪郭線を有する谷部と、タイヤ軸方向最内側を通る第2の輪郭線を有する頂部とがタイヤ周方向に交互に繰り返される凹凸面状をなし、
前記タイヤの加硫金型は、前記サイドモールドのタイヤ半径方向内端部に配されるビード形成用のビードリングを具え、
加硫成形時、前記サイドモールドは、前記タイヤとの間で前記谷部を頂点としたスペースが形成され、
前記スペースは、半径方向内外に連続してのび、かつ、前記サイドモールドと前記ビードリングとの突き合わせ部まで延びているタイヤの加硫金型。
A vulcanization die for a tire that includes a side mold having a sidewall molding surface for molding the sidewall portion of the tire.
The contour shape of the sidewall molded surface changes in the tire circumferential direction,
Further, the contour shape includes a valley portion having a first contour line passing through the outermost side in the tire axial direction and a top having a second contour line passing through the innermost side in the tire axial direction among the contour lines in the tire meridional cross section. Form an uneven surface that repeats alternately in the tire circumferential direction ,
The vulcanization die of the tire includes a bead ring for forming a bead arranged at the inner end portion of the side mold in the radial direction of the tire.
At the time of vulcanization molding, the side mold is formed with a space having the valley as the apex between the side mold and the tire.
The space is a vulcanization die for a tire that extends continuously in and out in the radial direction and extends to a butt portion between the side mold and the bead ring.
前記加硫金型は、トレッド形成用のトレッドモールドを含み、
前記スペースは、前記サイドモールドと前記トレッドモールドとの突き合わせ部まで延びている請求項1記載のタイヤの加硫金型。
The vulcanization die includes a tread mold for forming a tread.
The vulcanization die for a tire according to claim 1 , wherein the space extends to a butt portion between the side mold and the tread mold .
タイヤのサイドウォール部を成形するためのサイドウォール成形面を有するサイドモールドを含むタイヤの加硫金型であって、
前記サイドウォール成形面は、その輪郭形状がタイヤ周方向に変化し、
かつ前記輪郭形状は、タイヤ子午断面における輪郭線のうちで、タイヤ軸方向最外側を通る第1の輪郭線を有する谷部と、タイヤ軸方向最内側を通る第2の輪郭線を有する頂部とがタイヤ周方向に交互に繰り返される凹凸面状をなし、
前記谷部と頂部との間のタイヤ軸心を中心とした角度θは10~45度であるタイヤの加硫金型。
A vulcanization die for a tire that includes a side mold having a sidewall molding surface for molding the sidewall portion of the tire.
The contour shape of the sidewall molded surface changes in the tire circumferential direction,
Further, the contour shape includes a valley portion having a first contour line passing through the outermost side in the tire axial direction and a top having a second contour line passing through the innermost side in the tire axial direction among the contour lines in the tire meridional cross section. Form an uneven surface that repeats alternately in the tire circumferential direction,
A tire vulcanization die having an angle θ between the valley and the top centered on the tire axis of 10 to 45 degrees .
前記第1の輪郭線と前記第2の輪郭線との間タイヤ軸方向の距離の最大値Dmax は、0.2~2.0mmである請求項1~3の何れかに記載のタイヤの加硫金型。The addition of the tire according to any one of claims 1 to 3, wherein the maximum value Dmax of the distance in the tire axial direction between the first contour line and the second contour line is 0.2 to 2.0 mm. Sulfur mold. 前記谷部と頂部とはタイヤ周方向に等間隔で繰り返される請求項1~4の何れかに記載のタイヤの加硫金型。The vulcanization die for a tire according to any one of claims 1 to 4, wherein the valley portion and the top portion are repeated at equal intervals in the tire circumferential direction. 請求項1~5の何れかに記載のタイヤの加硫金型により生タイヤを加硫する加硫工程を含むタイヤの製造方法。A method for manufacturing a tire, which comprises a vulcanization step of vulcanizing a raw tire using the tire vulcanization die according to any one of claims 1 to 5.
JP2017245419A 2017-12-21 2017-12-21 Tire vulcanization mold and tire manufacturing method Active JP6996280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017245419A JP6996280B2 (en) 2017-12-21 2017-12-21 Tire vulcanization mold and tire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017245419A JP6996280B2 (en) 2017-12-21 2017-12-21 Tire vulcanization mold and tire manufacturing method

Publications (2)

Publication Number Publication Date
JP2019111682A JP2019111682A (en) 2019-07-11
JP6996280B2 true JP6996280B2 (en) 2022-01-17

Family

ID=67221050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017245419A Active JP6996280B2 (en) 2017-12-21 2017-12-21 Tire vulcanization mold and tire manufacturing method

Country Status (1)

Country Link
JP (1) JP6996280B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506266A (en) 2002-11-18 2006-02-23 ソシエテ ド テクノロジー ミシュラン Extended running tire with corrugated side walls
JP2008265453A (en) 2007-04-18 2008-11-06 Toyo Tire & Rubber Co Ltd Pneumatic tire
WO2010095688A1 (en) 2009-02-18 2010-08-26 株式会社ブリヂストン Tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506266A (en) 2002-11-18 2006-02-23 ソシエテ ド テクノロジー ミシュラン Extended running tire with corrugated side walls
JP2008265453A (en) 2007-04-18 2008-11-06 Toyo Tire & Rubber Co Ltd Pneumatic tire
WO2010095688A1 (en) 2009-02-18 2010-08-26 株式会社ブリヂストン Tire

Also Published As

Publication number Publication date
JP2019111682A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
JP4904378B2 (en) Pneumatic tire
JP5835413B1 (en) Pneumatic tire
JP5115299B2 (en) Pneumatic tire and tire mold
JP7081165B2 (en) Pneumatic tires and tire molds
JP5322610B2 (en) Pneumatic tire and method for manufacturing pneumatic tire
JPH0976710A (en) Pneumatic tire, manufacture thereof, and tire molding metal mold used therefor
JP6111792B2 (en) Pneumatic tire
JP4438881B2 (en) PNEUMATIC TIRE, MANUFACTURING METHOD THEREOF, AND TIRE VULCANIZATION MOLD
WO2014178187A1 (en) Mold for molding tire, and tire
JP2002326227A (en) Mold for vulcanizing tire, method fr manufacturing tire, and tire
JP2011005946A (en) Pneumatic tire
JP2008273084A (en) Tire vulcanization mold and pneumatic tire vulcanized by the same
JP2016203420A (en) Method for producing pneumatic tire
US11565554B2 (en) Pneumatic tire with specified rim protector
JP2006088585A (en) Pneumatic tire, manufacturing process of pneumatic tire, and die for vulcanization molding of pneumatic tire
JP6996280B2 (en) Tire vulcanization mold and tire manufacturing method
JP2019026143A (en) Pneumatic tire
JP2018001798A (en) Pneumatic tire and tire molding metal mold
JP4471272B2 (en) Pneumatic tire
JP2006341832A (en) Pneumatic tire
JP2017222242A (en) Pneumatic tire, tire vulcanization forming metal mold and tire manufacturing method
JP2016113057A (en) Tire, tire molding mold and tire production method
JP4270374B2 (en) Pneumatic tire and tire mold
US20190039340A1 (en) Pneumatic tire
JP2020199820A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R150 Certificate of patent or registration of utility model

Ref document number: 6996280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150