JP4166404B2 - Gas sensor element and gas sensor including the same - Google Patents

Gas sensor element and gas sensor including the same Download PDF

Info

Publication number
JP4166404B2
JP4166404B2 JP2000055025A JP2000055025A JP4166404B2 JP 4166404 B2 JP4166404 B2 JP 4166404B2 JP 2000055025 A JP2000055025 A JP 2000055025A JP 2000055025 A JP2000055025 A JP 2000055025A JP 4166404 B2 JP4166404 B2 JP 4166404B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
gas sensor
sensor element
electrolyte body
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000055025A
Other languages
Japanese (ja)
Other versions
JP2001242125A (en
Inventor
義昭 黒木
芳朗 野田
邦夫 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2000055025A priority Critical patent/JP4166404B2/en
Publication of JP2001242125A publication Critical patent/JP2001242125A/en
Application granted granted Critical
Publication of JP4166404B2 publication Critical patent/JP4166404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等の内燃機関から排出される排気ガスに含まれる酸素及びNOx等を検出でき、小型で安価なガスセンサ素子及びこれを用いたガスセンサに関する。
【0002】
【従来の技術】
従来より、筒型の固体電解質体、又は、板型の固体電解質体を用いるガスセンサ素子(以下、単に「素子」ともいう)が知られている。このうち、板型の固体電解質体を備える素子として、アルミナ基体に接して積層される板型の固体電解質体を備えるものが特開平7−55758号公報等に開示されている。
しかし、アルミナ基体と固体電解質体との間には大きな熱膨張差があるため、アルミナ基体に接して積層される固体電解質体を備えるガスセンサ素子では焼成後にこれらの界面に応力を生じ、クラック等を発生することが有った。
この問題に対して特開平9−304321号公報では、固体電解質体の外縁部の厚みが徐々に薄くなる応力緩和部を設けることで、クラック等の発生を抑制する技術が開示されている。しかし、未だ十分にクラックを防止するには至っていない。
【0003】
【発明が解決しようとする課題】
本発明は、上記問題を解決するものであり、アルミナ基体等のように、異材質からなる基体に接して積層される固体電解質体を備えるガスセンサ素子において、その界面におけるクラックの発生を防止しすることを目的とする。
【0004】
【課題を解決するための手段】
本発明は絶縁性を有する基体上に配設される固体電解質体の周辺部を薄く形成し、且つ周部上の少なくとも一部には抑圧層を設けることによりクラックの発生を大幅に防止できるという知見に基づき完成された。
【0005】
本第1発明の素子は、長手方向に延び、絶縁性を有する板状の基体と、該基体上に配設され、参照電極及び検出電極が形成されている層状の固体電解質体とを有し、長手方向前方側に形成される検知部であって、上記参照電極の参照電極部と上記検出電極の検出電極部とによって上記固体電解質体を挟んで構成される検知部を備えるガスセンサ素子において、該固体電解質体は、上記参照電極部及び上記検出電極部に挟まれてなる本体部と、該本体部よりも長手方向後方側に配置され、該本体部よりも厚さく、該本体部につながると共に、該本体部と階段状の境界で分けられた周辺部とを備え、上記固体電解質体の該周辺部の少なくとも一部に上接する抑圧層を備えることを特徴とする。
また、本第2発明の素子は、長手方向に延び、絶縁性を有する板状の基体と、該基体上に配設され、参照電極及び検出電極が形成されている層状の固体電解質体とを有し、長手方向前方側に形成される検知部であって、上記参照電極の参照電極部と上記検出電極の検出電極部とによって上記固体電解質体を挟んで構成される検知部を備えるガスセンサ素子において、該固体電解質体は、上記参照電極部及び上記検出電極部に挟まれてなる本体部と、該本体部よりも長手方向後方側に配置され、該本体部よりも厚さく、該本体部につながると共に、該本体部と階段状の境界で分けられた周辺部とを備え、上記固体電解質体の該周辺部の少なくとも一部に下接する介装層を備えることを特徴とする。
【0006】
上記「基体」は、温度900℃において固体電解質体と比較して100倍以上の絶縁性を有することが好ましい。上記「固体電解質体」は酸素イオン伝導性を有すればよく、例えば、酸素イオン伝導性を有するジルコニア系焼結体、LaGaO3系焼結体等を使用することができる。固体電解質層が備える上記「周辺部」は、上記「本体部」の厚さの30〜70%であることが好ましく、40〜60%であることがより好ましい。また、本体部の厚さは20〜150μm(より好ましくは30〜100μm)とするのが好ましい。特に、本体部の厚さを150μm以下とすることによりクラックを十分に防止できる。尚、本体部及び周辺部の組成は同一であっても異なっていてもよい。更に、焼成前に一体であっても別体であってもよい。
【0007】
この周辺部は、本体部との境界において階段状に厚さが薄くなるように形成される。階段状に形成する場合、異なる厚さの未焼成シートを積層することにより形成することができる。更に、ペーストを重ねて印刷することで階段状に厚さ変化させることができる。このように階段状に固体電解質体を形成することは簡便であり、製造における効率がよい。
【0008】
上記「抑圧層」は、通常、絶縁層の一部により構成され、周辺部の少なくとも一部を抑圧するように周辺部上に形成される。この抑圧層は通常、周辺部よりも高い絶縁性を有する。更に、周辺部は基体に直接接することなく、第発明のように介挿層を介して設けることができる。これにより、固体電解質体と組成の異なる基体とが接する面積を減少させることができ、応力分散されクラックの発生を防止できる。この介挿層は、通常、絶縁層の一部により構成される。従って、抑圧層及び介挿層は一体であってもよい。尚、抑圧層及び介挿層は各々直接固体電解質体の周辺と接するため、固体電解質体に対して十分な絶縁性を有すれば、固体電解質体の組成と近いことが好ましい。これにより熱膨張差を小さくできる。具体的は、抑圧層及び介挿層は、固体電解質体を構成する成分を15質量%未満(より好ましくは10質量%未満)含有させることができる。
【0009】
また、介挿層を備えない場合、周辺部及び抑圧層の合計厚さは本体部の厚さに等しいことが好ましい。更に、介挿層を備える場合は、第4発明のように、周辺部、抑圧層及び介挿層の合計厚さは、本体部の厚さに等しいことが好ましい。但し、各々等しいとは、全く同一であるだけでなく、−60〜60%(より好ましくは−40〜40%)程度の差を生じていてもよい。このように、周辺部と、抑圧層及び/又は介挿層との合計厚さを本体部の厚さと等しくすることにより応力バランスが最適化され、クラックの発生を効果的に防止することができる。
【0010】
更に、基体は板状であ、且つ、固体電解質体は基体の一面の少なくとも一部に接して層状に形成される。前記のように固体電解質体の製造においては、未焼成シートの積層又はペーストの積層印刷を行うことが好ましい。この場合、これらを積層することとなる基体は一体の板状であり、これにより特に、製造時の取扱いが容易となる。
【0011】
本第1発明〜第6発明のガスセンサ素子は、第7発明のように、固体電解質体は、基体を構成する成分を10〜80質量%(より好ましくは40〜60質量%)含有することが好ましい。基体を構成する成分の含有量が80質量%を超えると固体電解質体としての特性が十分に得られ難く好ましくない。一方、10質量%未満では熱膨張率差を十分に緩和でき難い。これにより熱膨張率差による不具合を一層改善できる。特に、第8発明のように固体電解質体はジルコニア及びアルミナを主成分とし、基体はアルミナを主成分とすることが好ましい。このようなアルミナを多く含有する固体電解質体を備えるガスセンサ素子は、安価で高い耐久性を備える。
【0012】
上記のように基準酸素源を形成し、これを十分に保持することによりガス検出能を発揮するガスセンサ素子においては、本体部はこの基準酸素源を保持するための気密性を必要とする。このため、この気密性を確保できる程度の厚みを必要とする。しかし、ガス検出に供されない固体電解質体の周辺部は、気密性を確保する必要は無いためその厚さを薄くできる。このように固体電解質体を主にガス検知能を発揮する本体部と、ガス検知能を発揮する必要のない周辺部とに分け、周辺部の厚さを薄くすることにより固体電解質体の応力集中を分散させることができる。
【0013】
更に、周辺部上に抑圧層を積層することにより、周辺部の熱膨張による変形を抑圧することができる。抑圧層を有さないガスセンサ素子では、固体電解質体と基体との熱膨張率差による変形に伴う力はそれらが剥離するように働く。このため界面においては剥離の引っ張り応力に耐える必要が有ったが、材質の異なる基体の引っ張り力に対する耐久性は十分ではなく、クラックが生じるものと考えられる。本第1発明〜第発明のガスセンサ素子では、固体電解質体の剥離方向とは反対側に抑圧層を備えることにより、基体と固体電解質体の界面に働く引っ張り力を低減してクラックの発生を大幅に防止できるものと考えられる。
【0014】
本第発明のガスセンサは、第1発明乃至第発明のうちのいずれかに記載のガスセンサを備えることを特徴とする。
このガスセンサは、安価で高い耐久性を備える。このガスセンサ2の形態は特に限定されないが、例えば、主体金具21内に、素子1を配設し、前方側に配置される検知部を排気管内等に突出するように、主体金具21の外表面に形成された取付ねじ部42により螺設し、被測定ガス(排気ガス)に曝して使用することができる。(図6参照)
【0015】
【発明の実施の形態】
以下、実施例により本発明を更に詳しく説明する。
尚、以下では焼成前及び焼成後の各部を便宜上同じ符号で示す。
[1]周辺部を備え、且つ周辺部上に抑圧層を備える素子の製造
図1を用いて、素子の製造方法を説明する。
(1)未焼成アルミナシートの作製
アルミナ粉末(純度99.99%以上、平均粒径0.3μm)100質量部(以下単に「部」という。)と、ブチラール樹脂14部とジブチルフタレート7部を配合し、トルエン及びメチルエチルケトンとからなる混合溶媒を用いて混合し、スラリーとした後、ドクターブレード法により厚みと大きさの異なる4種類のグリーンシートを作製した。第1グリーンシート11aは厚さ0.4mm、長さ5cmであり、第2グリーンシート11bは厚さ0.25mm、長さ5cmであり、第3グリーンシート18aは厚さ0.25mm、長さ4cmであり、第4グリーンシート18bは厚さ0.4mm、長さ3.5cmである。尚、焼成後第1グリーンシートは第1基体11a、第2グリーンシートは第2基体11bとなり、第3グリーンシートは補強層18a、第4グリーンシートは補強層18bとなる。
【0016】
(2)ヒータパターンの形成
アルミナ粉末(純度99.99%以上、平均粒径0.3μm)4部と白金粉末100部を配合した導電層用ペーストを、第1グリーンシート11a(焼成後基体の下半分となる)の一方の面に発熱部パターン121を印刷・乾燥させ、その後、ヒータリードパターン122を印刷・乾燥させ、ヒータパターン12を形成した(焼成後発熱抵抗体12となる)。第1グリーンシート11aの基端付近に発熱抵抗体の導通を取るためのスルーホール111aを形成し、裏面のスルーホール111aに対応する位置にヒータパッドパターン19aを印刷・乾燥させた(焼成後に端子を接続するための電極パッドとなる)。ヒータパターン12上から第2グリーンシート11b(焼成後基体の上半分となる)を積層し、圧着接合した。
【0017】
(3)緩衝層パターンの形成
(2)で作製したセラミック積層体の第2グリーンシート11b上に、アルミナ80部、ジルコニア20部を配合した緩衝層用ペーストを用いて、緩衝層パターン13(焼成後緩衝層となる)を40±10μの厚さに印刷・乾燥させた。
(4)参照電極パターンの形成
(3)で形成した緩衝層パターン上に、(2)で用いた導電層用ペーストを用いて、電極部パターン141a(焼成後参照電極部となる)及び電極リード部142a(焼成後参照電極のリード部となる)からなる参照電極パターン14a(焼成後参照電極となる)を20μm±10の厚さに印刷・乾燥させた。
【0018】
(5)第1固体電解質層パターンの形成
ジルコニア粉末(純度99.9%以上、平均粒径0.3μm)50部とアルミナ粉末(純度99.99%以上、平均粒径0.3mm)50部、ブチルカルビトール33.3部、ジブチルフタレート0.8部、分散剤0.5部及びバインダ20部に所要量のアセトンを加えて、4時間混合した後、アセトンを蒸発させて、固体電解質層用ペーストを調合した。
この固体電解質用ペーストを参照電極パターン14aの電極部パターン141aを覆うように第1グリーンシート(及び第2グリーンシート)の長さ方向に13mm、厚さ25±10μmに印刷・乾燥させ、第1固体電解質層パターン15a(焼成後固体電解質体の本体部の一部及び周辺部となる)を形成した。
【0019】
(6)第1絶縁層パターンの形成
(1)で作製したグリーンシートにブチルカルビトール50部に所要量のアセトンを加えて、4時間混合した後、アセトンを蒸発させて、絶縁層用ペーストを調整した。この絶縁層用ペーストを緩衝層パターン13上であり、第1固体電解質層パターン15aが印刷されていない部分に25±10μmの厚さで印刷・乾燥させ、第1絶縁層パターン16aを形成した。焼成後、絶縁層の一部となる。
【0020】
(7)第2固体電解質層パターンの形成
(5)と同じ固体電解質用ペーストを第1固体電解質パターン15aの上から先端位置を揃えて長さ8mm、25±10μmの厚さに印刷・乾燥させ、第2固体電解質層パターン15b(焼成後固体電解質体の一部となる)を形成した。
即ち、焼成後本体部となる厚さ50μmの部分と焼成後周部となる厚さ25μmの部分とを備える。
【0021】
(8)第2絶縁層パターンの形成
(6)と同じ絶縁層用ペーストを第2固体電解質層パターンが形成されていない第1絶縁層パターン16a上に厚さ25±10μmに印刷・乾燥させ、第2絶縁層パターン16b(焼成後絶縁層の一部となり、特に、第1固体電解質パターン上部分は焼成後に抑圧層162となる)を形成した。
【0022】
(9)検出電極パターンの形成
(7)〜(8)で形成した第2固体電解質層パターン15bと第2絶縁層パターン16bの上に、(2)で調整した導電層用ペーストを用いて、焼成後に検出電極となる電極部パターン141b(焼成後検出電極部となる)及び電極リード部パターン142b(焼成後検出電極リード部となる)からなる検出電極パターン14bを20±10μmの厚さに印刷・乾燥させた。
(10)保護層パターンの形成
(6)と同じ絶縁層用ペーストに、平均粒径50μmの樹脂粉末を混合し、保護層用ペーストを調整し、第2固体電解質層パターン15b上に長さ10mm、厚さ50±20μmに印刷・乾燥させ、保護層パターン17(焼成後保護層となる)を形成した。
(11)第3及び第4グリーンシートの積層
(10)で形成した保護層パターンを除く部分を覆うように、第3グリーンシート18a、第4グリーンシート18b(焼成後各々補強層の一部となる)を積層した。
【0023】
(12)脱脂及び焼成
(1)〜(11)で得られた積層体を、大気雰囲気において、室温から420℃まで昇温速度10℃/時間で昇温させ、2時間保持し、有機バインダーの脱脂処理を行った。その後、大気雰囲気において、1100℃まで昇温速度100℃/時間で昇温させ、更に、1520℃まで昇温速度60℃/時間で昇温させ、1時間保持し焼成を行い、図2に示すような固体電解質体が本体部及び周辺部を備え、且つ抑圧層により固体電解質体と検出電極リード部が離間されたガスセンサ素子300個を得た。
【0024】
[2]抑圧層及び介挿層を備える素子の製造
[1]の(7)、(8)の工程に準じて、第1固体電解質パターン15aを形成・乾燥後、第1絶縁層パターン16a(一部が介挿層163となる)を形成・乾燥させた。次いで、第1固体電解質パターン15aよりも面積の広い第2固体電解質層パターン15b(一部が周辺部152となる)を、第1固体電解質パターン上に形成・乾燥させ、更に、第2絶縁層パターン16bを形成・乾燥させた。その後、更に、図1には図示しない第2固体電解質パターンよりも面積の狭い第3固体電解質パターンを形成・乾燥させ、更に、第3絶縁層パターン(一部が抑圧層162となる)を形成・乾燥させた。その他は、[1]と同様にして、素子を300個得た。(図3参照)
【0025】
[3]介挿層のみを備える素子(図4に示す第2発明の素子)の製造
[1]の(7)、(8)の工程に準じて、第1固体電解質パターン15aを形成・乾燥後、第1絶縁層パターン16a(一部が介挿層163となる)を形成・乾燥させた。次いで、第1固体電解質パターン15aよりも面積の広い第2固体電解質層パターン15b(一部が周辺部152となる)を、第1固体電解質パターン上に形成・乾燥させ、更に、第2絶縁層パターン16bを形成・乾燥させた。その他は、[1]と同様にして、素子を300個得た。(図4参照)
【0026】
[4]周辺部を備えない素子の製造
[1]の(7)、(8)の工程で、第2固体電解質層パターン15bの大きさを第1固体電解質パターン15aにそろえ、第2絶縁層パターン16bの大きさを第1絶縁層パターン16aにそろえた他は、[1]と同様にして、素子を300個得た。(図5参照)
【0027】
[5]焼成によるクラック等の発生率の評価
[1]〜[4]で得られた素子1200個を、少なくとも固体電解質体部分が完全に浸漬される様に水中に沈め、参照電極と水の間の抵抗値を測定してクラックの有無を評価した。この結果、[4]で得られた周辺部を備えない素子では固体電解質体と絶縁層との間(図5のTの位置)でクラックを生じているものが183個見出された。即ち、クラックの発生率は60%であった。一方、[1]〜[3]で得られた素子ではクラックは全く発生せず、クラックの発生率は0%であった。
【0028】
[6]冷熱サイクル耐久試験
[1]〜[4]で得られた素子で、[5]の試験でクラックの発生していないと評価された素子を用いて、抵抗発熱体に16Vの電圧を印加し、固体電解質体の温度が約1000℃に達するまで加熱し、その後、電圧の印加を停止し、固体電解質体の温度が室温になるまで放置するという熱サイクル試験を10サイクル繰り返した。その後、[5]と同様の試験により、クラックの発生を評価した。その結果、[4]で得られた素子は29%の素子にクラックが発生しており、一方、[1]〜[3]で得られた素子はクラックの発生率が0%であった。
この結果より、本発明の素子は焼成時にクラックが発生せず、焼成後の熱サイクル試験でもクラックを発生しない高い耐久性を備える素子であることが分かる。
【図面の簡単な説明】
【図1】 本発明のガスセンサ素子の製造工程を説明する解説図である。
【図2】 本発明のガスセンサ素子の一例の横断面図である。
【図3】 本発明のガスセンサ素子の他例の横断面図である。
【図4】 本発明のガスセンサ素子の他例の横断面図である。
【図5】 本発明の範囲外のガスセンサ素子の一例の横断面図である。
【図6】 本発明のガスセンサの断面図である。
【符号の説明】
1;ガスセンサ素子、11a;第1基体、11b;第2基体、111;スルーホール、12;発熱抵抗体、121;発熱部、122;ヒータリード部、13;緩衝層、14a;参照電極、14b;検出電極、15;固体電解質層、151;本体部、152;周辺部、16a;第1絶縁層、16b;第2絶縁層、162;抑圧層、163;介挿層、17;保護層、18;第1補強層、18b第2補強層、2;ガスセンサ、21:主体金具、211;主体金具ねじ部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a small and inexpensive gas sensor element that can detect oxygen and NOx contained in exhaust gas discharged from an internal combustion engine such as an automobile, and a gas sensor using the same.
[0002]
[Prior art]
Conventionally, gas sensor elements (hereinafter also simply referred to as “elements”) using a cylindrical solid electrolyte body or a plate-type solid electrolyte body are known. Among these, as an element provided with a plate-type solid electrolyte body, an element provided with a plate-type solid electrolyte body laminated in contact with an alumina substrate is disclosed in JP-A-7-55758.
However, since there is a large difference in thermal expansion between the alumina substrate and the solid electrolyte body, a gas sensor element having a solid electrolyte body laminated in contact with the alumina substrate generates stress at these interfaces after firing, causing cracks and the like. It may occur.
In order to solve this problem, Japanese Patent Application Laid-Open No. 9-304321 discloses a technique for suppressing the occurrence of cracks and the like by providing a stress relaxation portion in which the thickness of the outer edge portion of the solid electrolyte body is gradually reduced. However, it has not yet been sufficiently prevented from cracking.
[0003]
[Problems to be solved by the invention]
The present invention solves the above-described problem, and prevents the occurrence of cracks at the interface in a gas sensor element including a solid electrolyte body laminated in contact with a base made of a different material such as an alumina base. For the purpose.
[0004]
[Means for Solving the Problems]
The present invention forms thin peripheral portion of the solid electrolyte body which is disposed on a substrate having an insulating property can be significantly prevent the occurrence of cracks by and on at least a part of the peripheral portion is provided with a suppression layer It was completed based on this knowledge.
[0005]
The element of the first invention has a plate-like substrate extending in the longitudinal direction and having an insulating property, and a layered solid electrolyte body disposed on the substrate and having a reference electrode and a detection electrode formed thereon. In the gas sensor element comprising a detection unit formed on the front side in the longitudinal direction , the detection unit configured to sandwich the solid electrolyte body between the reference electrode unit of the reference electrode and the detection electrode unit of the detection electrode , solid electrolyte body, a main body portion formed by being sandwiched between the reference electrode portion and the detection electrode, than the body portion is disposed longitudinally rearward, rather a thin thickness than the body portion, said body And a peripheral portion divided by a step-like boundary, and a suppression layer that is in contact with at least a part of the peripheral portion of the solid electrolyte body .
The element of the second invention comprises a plate-like substrate extending in the longitudinal direction and having an insulating property, and a layered solid electrolyte body disposed on the substrate and having a reference electrode and a detection electrode formed thereon. A gas sensor element comprising a detection unit formed on the front side in the longitudinal direction , the detection unit being configured to sandwich the solid electrolyte body between the reference electrode unit of the reference electrode and the detection electrode unit of the detection electrode in, solid electrolyte body, a main body portion formed by being sandwiched between the reference electrode portion and the detection electrode, than the body portion is disposed longitudinally rearward, rather a thin thickness than the body portion, It is connected to the main body part, and includes a peripheral part separated from the main body part by a step-like boundary, and further includes an interposed layer that is in contact with at least a part of the peripheral part of the solid electrolyte body. .
[0006]
The “substrate” preferably has an insulation property of 100 times or more compared with the solid electrolyte body at a temperature of 900 ° C. The “solid electrolyte body” only needs to have oxygen ion conductivity. For example, a zirconia-based sintered body or LaGaO 3 -based sintered body having oxygen ion conductivity can be used. The “peripheral part” included in the solid electrolyte layer is preferably 30 to 70%, more preferably 40 to 60% of the thickness of the “main body part”. The thickness of the main body is preferably 20 to 150 μm (more preferably 30 to 100 μm). In particular, cracks can be sufficiently prevented by setting the thickness of the main body to 150 μm or less. The composition of the main body part and the peripheral part may be the same or different. Furthermore, it may be integral or separate before firing.
[0007]
The peripheral portion is formed to be thin in a stepped manner at the boundary with the main body portion. When forming in a staircase shape, it can be formed by laminating unfired sheets of different thicknesses. Further, the thickness can be changed stepwise by printing the paste in layers. Thus, it is simple to form the solid electrolyte body in a stepped manner, and the efficiency in production is good.
[0008]
The “suppression layer” is usually constituted by a part of the insulating layer, and is formed on the peripheral part so as to suppress at least a part of the peripheral part. This suppression layer usually has a higher insulating property than the peripheral part. Further, the peripheral portion can be provided via the insertion layer as in the second invention without directly contacting the base. As a result, the area where the solid electrolyte body and the substrate having a different composition are in contact with each other can be reduced, and the stress can be dispersed to prevent the occurrence of cracks. This intervening layer is usually constituted by a part of the insulating layer. Therefore, the suppression layer and the insertion layer may be integrated. In addition, since the suppression layer and the intervening layer are in direct contact with the peripheral portion of the solid electrolyte body, it is preferably close to the composition of the solid electrolyte body as long as it has sufficient insulation with respect to the solid electrolyte body. Thereby, a thermal expansion difference can be made small. Specifically, the suppression layer and the intervening layer can contain less than 15% by mass (more preferably less than 10% by mass) of components constituting the solid electrolyte body.
[0009]
Further, when no intervening layer is provided, the total thickness of the peripheral portion and the suppression layer is preferably equal to the thickness of the main body portion. Furthermore, when the insertion layer is provided, the total thickness of the peripheral portion, the suppression layer, and the insertion layer is preferably equal to the thickness of the main body portion as in the fourth invention. However, being equal to each other is not only completely the same, but may have a difference of about −60 to 60% (more preferably −40 to 40%). Thus, by making the total thickness of the peripheral portion and the suppression layer and / or the intervening layer equal to the thickness of the main body portion, the stress balance is optimized, and the occurrence of cracks can be effectively prevented. .
[0010]
Furthermore, the substrate Ri plate der and the solid electrolyte body is formed in a layer in contact with at least a portion of one surface of the substrate. As described above, in the production of the solid electrolyte body, it is preferable to perform lamination of unfired sheets or lamination printing of paste. In this case, substrate so that the laminating these Ri integral plate der, thereby becomes particularly easy to handle during manufacture.
[0011]
In the gas sensor elements of the first to sixth inventions, as in the seventh invention, the solid electrolyte body contains 10 to 80% by mass (more preferably 40 to 60% by mass) of components constituting the substrate. preferable. If the content of the component constituting the substrate exceeds 80% by mass, it is not preferable because the characteristics as a solid electrolyte body cannot be sufficiently obtained. On the other hand, if it is less than 10% by mass, it is difficult to sufficiently relax the difference in thermal expansion coefficient. Thereby, the malfunction by a thermal expansion coefficient difference can be improved further. In particular, as in the eighth invention, it is preferable that the solid electrolyte body is mainly composed of zirconia and alumina, and the substrate is mainly composed of alumina. A gas sensor element including such a solid electrolyte body containing a large amount of alumina is inexpensive and has high durability.
[0012]
In the gas sensor element that exhibits the gas detection ability by forming the reference oxygen source as described above and holding it sufficiently, the main body portion needs to be airtight for holding the reference oxygen source. For this reason, the thickness which can ensure this airtightness is required. However, since it is not necessary to ensure airtightness, the thickness of the peripheral part of the solid electrolyte body not subjected to gas detection can be reduced. In this way, the solid electrolyte body is divided into a main body part that mainly exhibits gas detection ability and a peripheral part that does not need to exhibit gas detection ability, and the stress concentration of the solid electrolyte body is reduced by reducing the thickness of the peripheral part. Can be dispersed.
[0013]
Furthermore, by laminating the suppression layer on the peripheral part, deformation due to thermal expansion of the peripheral part can be suppressed. In a gas sensor element that does not have a suppression layer, the force accompanying deformation due to the difference in thermal expansion coefficient between the solid electrolyte body and the substrate acts so that they are peeled off. For this reason, it was necessary to withstand the tensile stress of peeling at the interface. However, the durability of the substrates of different materials with respect to the tensile force is not sufficient, and it is considered that cracks occur. In the gas sensor elements according to the first to sixth inventions, by providing a suppression layer on the side opposite to the peeling direction of the solid electrolyte body, the tensile force acting on the interface between the substrate and the solid electrolyte body is reduced, thereby generating cracks. It can be greatly prevented.
[0014]
A gas sensor according to a seventh aspect of the invention includes the gas sensor according to any one of the first to sixth aspects of the invention.
This gas sensor is inexpensive and has high durability. The form of the gas sensor 2 is not particularly limited. For example, the outer surface of the metal shell 21 is arranged such that the element 1 is disposed in the metal shell 21 and the detection unit disposed on the front side protrudes into the exhaust pipe or the like. Can be used by being exposed to a gas to be measured (exhaust gas). (See Figure 6)
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to examples.
In addition, below, each part before baking and after baking is shown with the same code | symbol for convenience.
[1] Manufacture of an element including a peripheral portion and a suppression layer on the peripheral portion A method of manufacturing an element will be described with reference to FIG.
(1) Production of unsintered alumina sheet 100 parts by mass (hereinafter referred to simply as “parts”) of alumina powder (purity 99.99% or more, average particle size 0.3 μm), 14 parts of butyral resin and 7 parts of dibutyl phthalate After mixing and mixing using a mixed solvent composed of toluene and methyl ethyl ketone to form a slurry, four types of green sheets having different thicknesses and sizes were prepared by a doctor blade method. The first green sheet 11a has a thickness of 0.4 mm and a length of 5 cm, the second green sheet 11b has a thickness of 0.25 mm and a length of 5 cm, and the third green sheet 18a has a thickness of 0.25 mm and a length. The fourth green sheet 18b has a thickness of 0.4 mm and a length of 3.5 cm. After firing, the first green sheet becomes the first base 11a, the second green sheet becomes the second base 11b, the third green sheet becomes the reinforcing layer 18a, and the fourth green sheet becomes the reinforcing layer 18b.
[0016]
(2) Formation of heater pattern Conductive layer paste containing 4 parts of alumina powder (purity 99.99% or more, average particle size 0.3 μm) and 100 parts of platinum powder was used as the first green sheet 11a (after firing) The heating part pattern 121 was printed and dried on one surface of the lower half), and then the heater lead pattern 122 was printed and dried to form the heater pattern 12 (to become the heating resistor 12 after firing). A through hole 111a for conducting the heating resistor is formed near the base end of the first green sheet 11a, and the heater pad pattern 19a is printed and dried at a position corresponding to the through hole 111a on the back surface (terminal after firing). It becomes an electrode pad for connecting. A second green sheet 11b (which becomes the upper half of the base after firing) was laminated on the heater pattern 12 and bonded by pressure bonding.
[0017]
(3) Formation of buffer layer pattern Buffer layer pattern 13 (fired) was formed on the second green sheet 11b of the ceramic laminate produced in (2) using a buffer layer paste containing 80 parts of alumina and 20 parts of zirconia. The post-buffer layer) was printed and dried to a thickness of 40 ± 10 μm.
(4) Formation of reference electrode pattern On the buffer layer pattern formed in (3), using the conductive layer paste used in (2), electrode portion pattern 141a (becomes a reference electrode portion after firing) and electrode lead A reference electrode pattern 14a (being a reference electrode after firing) composed of a portion 142a (being a lead portion of the reference electrode after firing) was printed and dried to a thickness of 20 μm ± 10.
[0018]
(5) Formation of first solid electrolyte layer pattern 50 parts of zirconia powder (purity 99.9% or more, average particle size 0.3 μm) and alumina powder (purity 99.99% or more, average particle size 0.3 mm) Then, 33.3 parts of butyl carbitol, 0.8 part of dibutyl phthalate, 0.5 part of a dispersant and 20 parts of a binder were added with a required amount of acetone, mixed for 4 hours, and then evaporated to obtain a solid electrolyte layer. A paste was prepared.
This solid electrolyte paste is printed and dried to a length of 13 mm and a thickness of 25 ± 10 μm in the length direction of the first green sheet (and the second green sheet) so as to cover the electrode part pattern 141a of the reference electrode pattern 14a. The solid electrolyte layer pattern 15a (becomes part of the main body portion and the peripheral portion of the solid electrolyte body after firing) was formed.
[0019]
(6) Formation of first insulating layer pattern The required amount of acetone is added to 50 parts of butyl carbitol to the green sheet produced in (1) and mixed for 4 hours, and then acetone is evaporated to obtain an insulating layer paste. It was adjusted. This insulating layer paste was printed and dried at a thickness of 25 ± 10 μm on the buffer layer pattern 13 where the first solid electrolyte layer pattern 15a was not printed, thereby forming the first insulating layer pattern 16a. After firing, it becomes part of the insulating layer.
[0020]
(7) Formation of second solid electrolyte layer pattern The same solid electrolyte paste as in (5) is printed and dried to a length of 8 mm and a thickness of 25 ± 10 μm with the tip position aligned from above the first solid electrolyte pattern 15a. The second solid electrolyte layer pattern 15b (becomes a part of the solid electrolyte body after firing) was formed.
That, and a thickness 25μm of the portion that becomes the portion after firing peripheral portion of the thickness of 50μm made after firing body portion.
[0021]
(8) Formation of second insulating layer pattern The same insulating layer paste as in (6) is printed and dried to a thickness of 25 ± 10 μm on the first insulating layer pattern 16a where the second solid electrolyte layer pattern is not formed, The second insulating layer pattern 16b (becomes part of the insulating layer after firing, and in particular, the upper part of the first solid electrolyte pattern becomes the suppression layer 162 after firing) was formed.
[0022]
(9) Formation of detection electrode pattern On the second solid electrolyte layer pattern 15b and the second insulating layer pattern 16b formed in (7) to (8), using the conductive layer paste adjusted in (2), print detection electrode pattern 14b made of baking after the detection electrodes become the electrode part pattern 141b (comprising after firing detection electrode) and the electrode lead portion pattern 142b (the firing after the detection electrode lead portion) to a thickness of 20 ± 10 [mu] m -Dried.
(10) Formation of protective layer pattern The same insulating layer paste as in (6) is mixed with resin powder having an average particle size of 50 μm to prepare a protective layer paste, and a length of 10 mm is formed on the second solid electrolyte layer pattern 15b. Then, it was printed and dried to a thickness of 50 ± 20 μm to form a protective layer pattern 17 (which becomes a protective layer after firing).
(11) Lamination of third and fourth green sheets Third green sheet 18a and fourth green sheet 18b (a part of the reinforcing layer after firing and a portion of each of the reinforcing layers so as to cover the portion excluding the protective layer pattern formed in (10)) Layered).
[0023]
(12) Degreasing and firing The laminate obtained in (1) to (11) is heated from room temperature to 420 ° C. at a heating rate of 10 ° C./hour in an air atmosphere and held for 2 hours. Degreasing treatment was performed. Thereafter, the temperature is raised to 1100 ° C. at a temperature rising rate of 100 ° C./hour, and further heated to 1520 ° C. at a temperature rising rate of 60 ° C./hour, held for 1 hour and fired, as shown in FIG. 300 gas sensor elements in which such a solid electrolyte body was provided with a main body portion and a peripheral portion, and the solid electrolyte body and the detection electrode lead portion were separated by the suppression layer were obtained.
[0024]
[2] Manufacture of device including suppression layer and intervening layer According to the steps (7) and (8) of [1], after the first solid electrolyte pattern 15a is formed and dried, the first insulating layer pattern 16a ( Part of the intervening layer 163 is formed and dried. Next, a second solid electrolyte layer pattern 15b (part of which becomes the peripheral portion 152 ) having a larger area than the first solid electrolyte pattern 15a is formed and dried on the first solid electrolyte pattern, and further, the second insulating layer The pattern 16b was formed and dried. Thereafter, a third solid electrolyte pattern having a smaller area than the second solid electrolyte pattern (not shown in FIG. 1) is formed and dried, and further a third insulating layer pattern (part of which becomes the suppression layer 162) is formed. -Dried. Otherwise, 300 elements were obtained in the same manner as [1]. (See Figure 3)
[0025]
[3] Manufacture of an element having only an insertion layer ( element of the second invention shown in FIG. 4 ) According to the steps (7) and (8) of [1], the first solid electrolyte pattern 15a is formed and dried. Thereafter, the first insulating layer pattern 16a (a part of which becomes the insertion layer 163) was formed and dried. Next, a second solid electrolyte layer pattern 15b (part of which becomes the peripheral portion 152 ) having a larger area than the first solid electrolyte pattern 15a is formed and dried on the first solid electrolyte pattern, and further, the second insulating layer The pattern 16b was formed and dried. Otherwise, 300 elements were obtained in the same manner as [1]. (See Figure 4)
[0026]
[4] Manufacture of device having no peripheral portion In the steps (7) and (8) of [1], the size of the second solid electrolyte layer pattern 15b is aligned with the first solid electrolyte pattern 15a, and the second insulating layer 300 elements were obtained in the same manner as in [1] except that the size of the pattern 16b was matched to that of the first insulating layer pattern 16a. (See Figure 5)
[0027]
[5] Evaluation of occurrence rate of cracks and the like due to firing 1200 elements obtained in [1] to [4] are submerged in water so that at least the solid electrolyte body portion is completely immersed, and the reference electrode and water The resistance value between them was measured to evaluate the presence or absence of cracks. As a result, 183 elements having cracks were found between the solid electrolyte body and the insulating layer (position T in FIG. 5) in the element having no peripheral part obtained in [4]. That is, the crack generation rate was 60%. On the other hand, no cracks were generated in the devices obtained in [1] to [3], and the crack generation rate was 0%.
[0028]
[6] Using the element obtained in the thermal cycle durability test [1] to [4], which was evaluated as not cracked in the test [5], a voltage of 16 V was applied to the resistance heating element. The thermal cycle test was repeated for 10 cycles by applying and heating the solid electrolyte body until the temperature of the solid electrolyte body reached about 1000 ° C., then stopping the application of voltage, and allowing the solid electrolyte body to stand at room temperature. Thereafter, the occurrence of cracks was evaluated by the same test as in [5]. As a result, in the device obtained in [4], cracks occurred in 29% of the devices, whereas in the devices obtained in [1] to [3], the crack occurrence rate was 0%.
From this result, it can be seen that the element of the present invention does not generate cracks during firing, and has high durability that does not generate cracks even in a thermal cycle test after firing.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram for explaining a manufacturing process of a gas sensor element of the present invention.
FIG. 2 is a cross-sectional view of an example of a gas sensor element of the present invention.
FIG. 3 is a cross-sectional view of another example of the gas sensor element of the present invention.
FIG. 4 is a cross-sectional view of another example of the gas sensor element of the present invention.
FIG. 5 is a cross-sectional view of an example of a gas sensor element outside the scope of the present invention.
FIG. 6 is a cross-sectional view of the gas sensor of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1; Gas sensor element, 11a; 1st base | substrate, 11b; 2nd base | substrate, 111; Through-hole, 12; Heat generating resistor, 121; Heat generating part, 122: Heater lead part, 13: Buffer layer, 14a; Reference electrode, 14b Detection electrode, 15; solid electrolyte layer, 151; body portion, 152; peripheral portion, 16a; first insulating layer, 16b; second insulating layer, 162; suppression layer, 163; 18; 1st reinforcement layer, 18b 2nd reinforcement layer, 2; Gas sensor, 21: Main metal fitting, 211; Main metal fitting screw part.

Claims (7)

長手方向に延び、絶縁性を有する板状の基体と、該基体上に配設され、参照電極及び検出電極が形成されている層状の固体電解質体とを有し、長手方向前方側に形成される検知部であって、上記参照電極の参照電極部と上記検出電極の検出電極部とによって上記固体電解質体を挟んで構成される検知部を備えるガスセンサ素子において、
該固体電解質体は、上記参照電極部及び上記検出電極部に挟まれてなる本体部と、該本体部よりも長手方向後方側に配置され、該本体部よりも厚さく、該本体部につながると共に、該本体部と階段状の境界で分けられた周辺部とを備え、
上記固体電解質体の該周辺部の少なくとも一部に上接する抑圧層を備えることを特徴とするガスセンサ素子。
A plate-like substrate extending in the longitudinal direction and having an insulating property, and a layered solid electrolyte body disposed on the substrate and having a reference electrode and a detection electrode formed thereon, are formed on the front side in the longitudinal direction. In the gas sensor element comprising a detection unit configured to sandwich the solid electrolyte body between the reference electrode unit of the reference electrode and the detection electrode unit of the detection electrode ,
Solid electrolyte body, a main body portion formed by being sandwiched between the reference electrode portion and the detection electrode, than the body portion is disposed longitudinally rearward, rather a thin thickness than the body portion, said body And a peripheral part separated by a step-like boundary with the main body part ,
A gas sensor element comprising a suppression layer that is in contact with at least a part of the peripheral portion of the solid electrolyte body .
長手方向に延び、絶縁性を有する板状の基体と、該基体上に配設され、参照電極及び検出電極が形成されている層状の固体電解質体とを有し、長手方向前方側に形成される検知部であって、上記参照電極の参照電極部と上記検出電極の検出電極部とによって上記固体電解質体を挟んで構成される検知部を備えるガスセンサ素子において、
該固体電解質体は、上記参照電極部及び上記検出電極部に挟まれてなる本体部と、該本体部よりも長手方向後方側に配置され、該本体部よりも厚さく、該本体部につながると共に、該本体部と階段状の境界で分けられた周辺部とを備え、
上記固体電解質体の該周辺部の少なくとも一部に下接する介装層を備えることを特徴とするガスセンサ素子。
A plate-like substrate extending in the longitudinal direction and having an insulating property, and a layered solid electrolyte body disposed on the substrate and having a reference electrode and a detection electrode formed thereon, are formed on the front side in the longitudinal direction. In the gas sensor element comprising a detection unit configured to sandwich the solid electrolyte body between the reference electrode unit of the reference electrode and the detection electrode unit of the detection electrode ,
Solid electrolyte body, a main body portion formed by being sandwiched between the reference electrode portion and the detection electrode, than the body portion is disposed longitudinally rearward, rather a thin thickness than the body portion, said body And a peripheral part separated by a step-like boundary with the main body part ,
A gas sensor element comprising an intervening layer that is in contact with at least a part of the peripheral portion of the solid electrolyte body .
上記周辺部に下接する介挿層を備える請求項1記載のガスセンサ素子。  The gas sensor element according to claim 1, further comprising an insertion layer that is in contact with the peripheral portion. 上記周辺部と、上記抑圧層と、上記介挿層の合計厚さが、上記本体部の厚さに等しい請求項3記載のガスセンサ素子。  The gas sensor element according to claim 3, wherein a total thickness of the peripheral portion, the suppression layer, and the insertion layer is equal to a thickness of the main body portion. 上記固体電解質体は、上記基体を構成する成分を10〜80質量%含有する請求項1乃至のうちのいずれか1項に記載のガスセンサ素子。The gas sensor element according to any one of claims 1 to 4 , wherein the solid electrolyte body contains 10 to 80 mass% of a component constituting the substrate. 上記固体電解質体はジルコニア及びアルミナを主成分とし、上記基体はアルミナを主成分とする請求項記載のガスセンサ素子。6. The gas sensor element according to claim 5, wherein the solid electrolyte body has zirconia and alumina as main components, and the base body has alumina as main components. 請求項1乃至のうちのいずれか1項に記載のガスセンサ素子を備えることを特徴とするガスセンサ。The gas sensor characterized in that it comprises a gas sensor element according to any one of claims 1 to 6.
JP2000055025A 2000-02-29 2000-02-29 Gas sensor element and gas sensor including the same Expired - Fee Related JP4166404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000055025A JP4166404B2 (en) 2000-02-29 2000-02-29 Gas sensor element and gas sensor including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000055025A JP4166404B2 (en) 2000-02-29 2000-02-29 Gas sensor element and gas sensor including the same

Publications (2)

Publication Number Publication Date
JP2001242125A JP2001242125A (en) 2001-09-07
JP4166404B2 true JP4166404B2 (en) 2008-10-15

Family

ID=18576211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055025A Expired - Fee Related JP4166404B2 (en) 2000-02-29 2000-02-29 Gas sensor element and gas sensor including the same

Country Status (1)

Country Link
JP (1) JP4166404B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4050593B2 (en) 2002-11-01 2008-02-20 日本特殊陶業株式会社 Gas sensor element and gas sensor using the same
JP6382768B2 (en) * 2015-04-30 2018-08-29 日本特殊陶業株式会社 Gas sensor element, gas sensor, and method of manufacturing gas sensor element

Also Published As

Publication number Publication date
JP2001242125A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
JP2007114216A (en) Oxygen sensor element
US6746586B2 (en) Multi-layer gas sensor element and gas sensor comprising the same
JP4125849B2 (en) Oxygen sensor element
JP4189260B2 (en) Manufacturing method of ceramic heater structure and ceramic heater structure
JP4093784B2 (en) Multilayer gas sensor element, manufacturing method thereof, and gas sensor
JP3874690B2 (en) Multilayer gas sensor element, method for manufacturing the same, and gas sensor
JP4166404B2 (en) Gas sensor element and gas sensor including the same
JP4583187B2 (en) Ceramic heater element and detection element using the same
JP2002286680A (en) Lamination type gas sensor element and its manufacturing method
JP4166403B2 (en) Gas sensor element and gas sensor including the same
JP4473471B2 (en) Laminated gas sensor element and gas sensor including the same
JP2004061323A (en) Oxygen sensor element
JP2003270202A (en) Oxygen sensor element
JP3814549B2 (en) Oxygen sensor element
JP2002365258A (en) Gas sensor element, its manufacturing method and gas sensor
JP4416427B2 (en) Ceramic heater and manufacturing method thereof
JP3677480B2 (en) Oxygen sensor element
JP4113479B2 (en) Oxygen sensor element
JP4163840B2 (en) Gas sensor
JP4426065B2 (en) Gas sensor element and gas sensor including the same
JP3850286B2 (en) Oxygen sensor
JP4262764B2 (en) Multilayer gas sensor element
JP3935754B2 (en) Oxygen sensor element
JP2005005057A (en) Ceramic heater and ceramic heater structural body
JP2005049115A (en) Oxygen sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees