JP2001242125A - Gas sensor element and gas sensor equipped therewith - Google Patents

Gas sensor element and gas sensor equipped therewith

Info

Publication number
JP2001242125A
JP2001242125A JP2000055025A JP2000055025A JP2001242125A JP 2001242125 A JP2001242125 A JP 2001242125A JP 2000055025 A JP2000055025 A JP 2000055025A JP 2000055025 A JP2000055025 A JP 2000055025A JP 2001242125 A JP2001242125 A JP 2001242125A
Authority
JP
Japan
Prior art keywords
solid electrolyte
gas sensor
layer
sensor element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000055025A
Other languages
Japanese (ja)
Other versions
JP4166404B2 (en
Inventor
Yoshiaki Kuroki
義昭 黒木
Yoshiro Noda
芳朗 野田
Kunio Yanagi
邦夫 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2000055025A priority Critical patent/JP4166404B2/en
Publication of JP2001242125A publication Critical patent/JP2001242125A/en
Application granted granted Critical
Publication of JP4166404B2 publication Critical patent/JP4166404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas sensor element, capable of effectively preventing generation of cracks not only in the baking of a manufacturing process but also in a cooling/heating cycle at use, and a gas sensor using the same. SOLUTION: A solid electrolyte element is divided into a body part 151 mainly developing gas detection capacity and a peripheral part 152 where there is no need for developing gas detection capacity and the peripheral part 152 is made thin to disperse the stress concentration of the solid electrolyte element. Furthermore, an pressing layer 162 is provided on the peripheral layer, on the surface opposite to the release direction of the solid electrolyte element, no only to suppress deformation of the peripheral part through thermal expansion but also to reduce the tensile force acting on the interface of a substrate and the solid electrolyte element to prevent generation of cracks.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車等の内燃機
関から排出される排気ガスに含まれる酸素及びNOx等
を検出でき、小型で安価なガスセンサ素子及びこれを用
いたガスセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small and inexpensive gas sensor element capable of detecting oxygen, NOx and the like contained in exhaust gas discharged from an internal combustion engine of an automobile or the like, and a gas sensor using the same.

【0002】[0002]

【従来の技術】従来より、筒型の固体電解質体、又は、
板型の固体電解質体を用いるガスセンサ素子(以下、単
に「素子」ともいう)が知られている。このうち、板型
の固体電解質体を備える素子として、アルミナ基体に接
して積層される板型の固体電解質体を備えるものが特開
平7−55758号公報等に開示されている。しかし、
アルミナ基体と固体電解質体との間には大きな熱膨張差
があるため、アルミナ基体に接して積層される固体電解
質体を備えるガスセンサ素子では焼成後にこれらの界面
に応力を生じ、クラック等を発生することが有った。こ
の問題に対して特開平9−304321号公報では、固
体電解質体の外縁部の厚みが徐々に薄くなる応力緩和部
を設けることで、クラック等の発生を抑制する技術が開
示されている。しかし、未だ十分にクラックを防止する
には至っていない。
2. Description of the Related Art Conventionally, a cylindrical solid electrolyte body, or
2. Description of the Related Art A gas sensor element (hereinafter, simply referred to as an “element”) using a plate-shaped solid electrolyte body is known. Among them, Japanese Patent Application Laid-Open No. 7-55758 discloses an element having a plate-shaped solid electrolyte body as an element having a plate-shaped solid electrolyte body, the element having a plate-shaped solid electrolyte body laminated in contact with an alumina substrate. But,
Since there is a large difference in thermal expansion between the alumina substrate and the solid electrolyte body, in a gas sensor element having a solid electrolyte body laminated in contact with the alumina substrate, stress is generated at these interfaces after firing and cracks are generated. There was a thing. To solve this problem, Japanese Patent Application Laid-Open No. 9-304321 discloses a technique for suppressing the occurrence of cracks or the like by providing a stress relaxation portion in which the thickness of the outer edge of the solid electrolyte body is gradually reduced. However, cracks have not yet been sufficiently prevented.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記問題を
解決するものであり、アルミナ基体等のように、異材質
からなる基体に接して積層される固体電解質体を備える
ガスセンサ素子において、その界面におけるクラックの
発生を防止しすることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and it is an object of the present invention to provide a gas sensor element having a solid electrolyte body laminated in contact with a substrate made of a different material such as an alumina substrate. An object is to prevent generation of cracks at an interface.

【0004】[0004]

【課題を解決するための手段】本発明は絶縁性を有する
基体上に配設される固体電解質体の周辺部を薄く形成
し、且つ周縁部上の少なくとも一部には抑圧層を設ける
ことによりクラックの発生を大幅に防止できるという知
見に基づき完成された。
According to the present invention, the peripheral portion of a solid electrolyte body provided on an insulating substrate is formed thin and a suppression layer is provided on at least a part of the peripheral portion. It was completed based on the finding that cracks can be significantly prevented.

【0005】本第1発明の素子は、絶縁性を有する基体
と、該基体上に配設される固体電解質体とを備えるガス
センサ素子において、該固体電解質体は、本体部と、該
本体部よりも厚さの薄い周辺部とを備え、且つ該周辺部
の少なくとも一部に上接する抑圧層を備えることを特徴
とする。
According to a first aspect of the present invention, there is provided a gas sensor element including an insulating base and a solid electrolyte disposed on the base, wherein the solid electrolyte comprises a main body, and a solid electrolyte. And a peripheral portion having a small thickness, and a suppression layer overlying at least a part of the peripheral portion.

【0006】上記「基体」は、温度900℃において固
体電解質体と比較して100倍以上の絶縁性を有するこ
とが好ましい。上記「固体電解質体」は酸素イオン伝導
性を有すればよく、例えば、酸素イオン伝導性を有する
ジルコニア系焼結体、LaGaO3系焼結体等を使用す
ることができる。固体電解質層が備える上記「周辺部」
は、上記「本体部」の厚さの30〜70%であることが
好ましく、40〜60%であることがより好ましい。ま
た、本体部の厚さは20〜150μm(より好ましくは
30〜100μm)とするのが好ましい。特に、本体部
の厚さを150μm以下とすることによりクラックを十
分に防止できる。尚、本体部及び周辺部の組成は同一で
あっても異なっていてもよい。更に、焼成前に一体であ
っても別体であってもよい。
[0006] It is preferable that the "substrate" has an insulating property at a temperature of 900 ° C which is 100 times or more that of a solid electrolyte. The “solid electrolyte body” only needs to have oxygen ion conductivity, and for example, a zirconia-based sintered body, LaGaO 3 -based sintered body, or the like having oxygen ion conductivity can be used. The above "peripheral part" provided in the solid electrolyte layer
Is preferably 30 to 70%, more preferably 40 to 60% of the thickness of the “body”. Further, the thickness of the main body is preferably 20 to 150 μm (more preferably 30 to 100 μm). In particular, cracks can be sufficiently prevented by setting the thickness of the main body to 150 μm or less. The compositions of the main body and the peripheral portion may be the same or different. Further, they may be integrated or separate before firing.

【0007】この周縁部は、本体部から周辺部にかけて
徐々に薄くなるように形成してもよいが、第2発明のよ
うに本体部との境界において階段状に厚さが薄くなるよ
うに形成することができる。階段状に形成する場合は、
異なる厚さの未焼成シートを積層することにより形成す
ることができる。更に、ペーストを重ねて印刷すること
で階段状に厚さ変化させることができる。このように階
段状に固体電解質体を形成することは簡便であり、製造
における効率がよい。
The peripheral portion may be formed so as to become gradually thinner from the main body portion to the peripheral portion. However, as in the second invention, the peripheral portion is formed so as to become thinner stepwise at the boundary with the main body portion. can do. When forming in a step shape,
It can be formed by laminating unsintered sheets of different thicknesses. Further, the thickness can be changed stepwise by printing the paste in a superimposed manner. Forming the solid electrolyte body stepwise in this manner is simple and efficient in production.

【0008】上記「抑圧層」は、通常、絶縁層の一部に
より構成され、周辺部の少なくとも一部を抑圧するよう
に周辺部上に形成される。この抑圧層は通常、周辺部よ
りも高い絶縁性を有する。更に、周辺部は基体に直接接
することなく、第3発明のように介挿層を介して設ける
ことができる。これにより、固体電解質体と組成の異な
る基体とが接する面積を減少させることができ、応力を
分散されクラックの発生を防止できる。この介挿層は、
通常、絶縁層の一部により構成される。従って、抑圧層
及び介挿層は一体であってもよい。尚、抑圧層及び介挿
層は各々直接固体電解質体の周辺層と接するため、固体
電解質体に対して十分な絶縁性を有すれば、固体電解質
体の組成と近いことが好ましい。これにより熱膨張差を
小さくできる。具体的は、抑圧層及び介挿層は、固体電
解質体を構成する成分を15質量%未満(より好ましく
は10質量%未満)含有させることができる。
The "suppression layer" is usually constituted by a part of the insulating layer, and is formed on the peripheral part so as to suppress at least a part of the peripheral part. This suppression layer usually has higher insulating properties than the peripheral part. Further, the peripheral portion can be provided via an interposition layer as in the third invention without directly contacting the base. Thereby, the area where the solid electrolyte body and the substrate having a different composition are in contact with each other can be reduced, and the stress can be dispersed and the occurrence of cracks can be prevented. This intercalation layer
Usually, it is constituted by a part of the insulating layer. Therefore, the suppression layer and the insertion layer may be integrated. Since the suppression layer and the interposed layer each directly contact the peripheral layer of the solid electrolyte body, it is preferable that the composition is close to the composition of the solid electrolyte body as long as it has sufficient insulating properties with respect to the solid electrolyte body. Thereby, the difference in thermal expansion can be reduced. Specifically, the suppression layer and the interposed layer can contain less than 15% by mass (more preferably, less than 10% by mass) of a component constituting the solid electrolyte body.

【0009】また、介挿層を備えない場合、周辺部及び
抑圧層の合計厚さは本体部の厚さに等しいことが好まし
い。更に、介挿層を備える場合は、第4発明のように、
周辺部、抑圧層及び介挿層の合計厚さは、本体部の厚さ
に等しいことが好ましい。但し、各々等しいとは、全く
同一であるだけでなく、−60〜60%(より好ましく
は−40〜40%)程度の差を生じていてもよい。この
ように、周辺部と、抑圧層及び/又は介挿層との合計厚
さを本体部の厚さと等しくすることにより応力バランス
が最適化され、クラックの発生を効果的に防止すること
ができる。
When no intervening layer is provided, the total thickness of the peripheral portion and the suppression layer is preferably equal to the thickness of the main body. Further, when an interposing layer is provided, as in the fourth invention,
It is preferable that the total thickness of the peripheral portion, the suppression layer, and the insertion layer is equal to the thickness of the main body portion. However, being equal to each other may not only mean exactly the same, but also cause a difference of about −60 to 60% (more preferably −40 to 40%). As described above, by making the total thickness of the peripheral portion and the suppression layer and / or the interposed layer equal to the thickness of the main body portion, the stress balance is optimized, and the occurrence of cracks can be effectively prevented. .

【0010】更に、基体は、第5発明のように板状であ
ることが好ましく、且つ、固体電解質体は基体の一面の
少なくとも一部に接して層状に形成されることが好まし
い。前記のように固体電解質体の製造においては、未焼
成シートの積層又はペーストの積層印刷を行うことが好
ましい。この場合、これらを積層することとなる基体は
一体の板状であることが好ましい。これにより特に、製
造時の取扱いが容易となる。この固体電解質体には、第
6発明のように固体電解質体の基体側の面に接して参照
電極が形成され、且つ他面に接して検出電極が形成され
ていることが好ましい。
Further, the base is preferably plate-shaped as in the fifth invention, and the solid electrolyte body is preferably formed in a layered form in contact with at least a part of one surface of the base. As described above, in the production of the solid electrolyte body, it is preferable to perform lamination printing of unfired sheets or lamination printing of paste. In this case, the substrate on which these are laminated is preferably in the form of an integral plate. This particularly facilitates handling during manufacture. It is preferable that a reference electrode is formed on the solid electrolyte body in contact with the substrate-side surface of the solid electrolyte body and a detection electrode is formed on the other surface, as in the sixth invention.

【0011】本第1発明〜第6発明のガスセンサ素子
は、第7発明のように、固体電解質体は、基体を構成す
る成分を10〜80質量%(より好ましくは40〜60
質量%)含有することが好ましい。基体を構成する成分
の含有量が80質量%を超えると固体電解質体としての
特性が十分に得られ難く好ましくない。一方、10質量
%以下では熱膨張率差を十分に緩和でき難い。これによ
り熱膨張率差による不具合を一層改善できる。特に、第
8発明のように固体電解質体はジルコニア及びアルミナ
を主成分とし、基体はアルミナを主成分とすることが好
ましい。このようなアルミナを多く含有する固体電解質
体を備えるガスセンサ素子は、安価で高い耐久性を備え
る。
In the gas sensor element according to the first to sixth aspects of the present invention, as in the seventh aspect, the solid electrolyte body contains 10 to 80% by mass (more preferably 40 to 60% by mass)
% By mass). If the content of the component constituting the base exceeds 80% by mass, it is difficult to obtain sufficient characteristics as a solid electrolyte body, which is not preferable. On the other hand, if it is 10% by mass or less, it is difficult to sufficiently reduce the difference in thermal expansion coefficient. This can further improve the problem caused by the difference in the coefficient of thermal expansion. In particular, as in the eighth invention, the solid electrolyte body preferably contains zirconia and alumina as main components, and the substrate preferably contains alumina as a main component. A gas sensor element provided with such a solid electrolyte body containing a large amount of alumina has low cost and high durability.

【0012】上記のように基準酸素源を形成し、これを
十分に保持することによりガス検出能を発揮するガスセ
ンサ素子においては、本体部はこの基準酸素源を保持す
るための気密性を必要とする。このため、この気密性を
確保できる程度の厚みを必要とする。しかし、ガス検出
に供されない固体電解質体の周辺部は、気密性を確保す
る必要は無いためその厚さを薄くできる。このように固
体電解質体を主にガス検知能を発揮する本体部と、ガス
検知能を発揮する必要のない周辺部とに分け、周辺部の
厚さを薄くすることにより固体電解質体の応力集中を分
散させることができる。
In the gas sensor element which exhibits the gas detecting ability by forming the reference oxygen source as described above and sufficiently holding the reference oxygen source, the main body needs to be airtight to hold the reference oxygen source. I do. For this reason, it is necessary to have a thickness that can secure this airtightness. However, the peripheral portion of the solid electrolyte body that is not used for gas detection can be made thinner because it is not necessary to ensure airtightness. In this way, the solid electrolyte body is divided into a main body part that mainly exhibits gas detection ability and a peripheral part that does not need to exhibit gas detection ability, and the thickness of the peripheral part is reduced, so that the stress concentration of the solid electrolyte body is reduced. Can be dispersed.

【0013】更に、周辺部上に抑圧層を積層することに
より、周辺部の熱膨張による変形を抑圧することができ
る。抑圧層を有さないガスセンサ素子では、固体電解質
体と基体との熱膨張率差による変形に伴う力はそれらが
剥離するように働く。このため界面においては剥離の引
っ張り応力に耐える必要が有ったが、材質の異なる基体
の引っ張り力に対する耐久性は十分ではなく、クラック
が生じるものと考えられる。本第1発明〜第8発明のガ
スセンサ素子では、固体電解質体の剥離方向とは反対側
に抑圧層を備えることにより、基体と固体電解質体の界
面に働く引っ張り力を低減してクラックの発生を大幅に
防止できるものと考えられる。
Furthermore, by laminating the suppression layer on the peripheral portion, deformation of the peripheral portion due to thermal expansion can be suppressed. In a gas sensor element having no suppression layer, a force accompanying deformation due to a difference in thermal expansion coefficient between the solid electrolyte body and the base acts to separate them. For this reason, it was necessary to endure the tensile stress of peeling at the interface, but the durability of the substrate made of a different material with respect to the tensile force was not sufficient, and it is considered that cracks would occur. In the gas sensor element according to the first to eighth aspects of the present invention, the suppression layer is provided on the side opposite to the direction in which the solid electrolyte body is separated, so that the tensile force acting on the interface between the substrate and the solid electrolyte body is reduced, and the generation of cracks is reduced. It is thought that it can be largely prevented.

【0014】本第9発明のガスセンサは、第1発明乃至
第8発明のうちのいずれかに記載のガスセンサを備える
ことを特徴とする。このガスセンサは、安価で高い耐久
性を備える。このガスセンサ2の形態は特に限定されな
いが、例えば、主体金具21内に、素子1を配設し、前
方側に配置される検知部を排気管内等に突出するよう
に、主体金具21の外表面に形成された取付ねじ部42
により螺設し、被測定ガス(排気ガス)に曝して使用す
ることができる。(図6参照)
According to a ninth aspect of the present invention, there is provided a gas sensor including the gas sensor according to any one of the first to eighth aspects. This gas sensor is inexpensive and has high durability. The form of the gas sensor 2 is not particularly limited. For example, the element 1 is disposed in the metal shell 21, and the outer surface of the metal shell 21 is arranged so that the detection unit disposed on the front side projects into the exhaust pipe or the like. Mounting screw part 42 formed in
And can be used after being exposed to the gas to be measured (exhaust gas). (See Fig. 6)

【0015】[0015]

【発明の実施の形態】以下、実施例により本発明を更に
詳しく説明する。尚、以下では焼成前及び焼成後の各部
を便宜上同じ符号で示す。 [1]周辺部を備え、且つ周辺部上に抑圧層を備える素
子の製造 図1を用いて、素子の製造方法を説明する。 (1)未焼成アルミナシートの作製 アルミナ粉末(純度99.99%以上、平均粒径0.3
μm)100質量部(以下単に「部」という。)と、ブ
チラール樹脂14部とジブチルフタレート7部を配合
し、トルエン及びメチルエチルケトンとからなる混合溶
媒を用いて混合し、スラリーとした後、ドクターブレー
ド法により厚みと大きさの異なる4種類のグリーンシー
トを作製した。第1グリーンシート11aは厚さ0.4
mm、長さ5cmであり、第2グリーンシート11bは
厚さ0.25mm、長さ5cmであり、第3グリーンシ
ート18aは厚さ0.25mm、長さ4cmであり、第
4グリーンシート18bは厚さ0.4mm、長さ3.5
cmである。尚、焼成後第1グリーンシートは第1基体
11a、第2グリーンシートは第2基体11bとなり、
第3グリーンシートは補強層18a、第4グリーンシー
トは補強層18bとなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples. In the following, each part before and after firing is indicated by the same reference numeral for convenience. [1] Manufacturing of Device Having Peripheral Part and Suppressing Layer on Peripheral Part A method of manufacturing the device will be described with reference to FIG. (1) Preparation of unsintered alumina sheet Alumina powder (purity 99.99% or more, average particle size 0.3
μm) 100 parts by mass (hereinafter simply referred to as “parts”), 14 parts of butyral resin and 7 parts of dibutyl phthalate were blended and mixed using a mixed solvent consisting of toluene and methyl ethyl ketone to form a slurry. Four types of green sheets having different thicknesses and sizes were produced by the method. The first green sheet 11a has a thickness of 0.4
mm, 5 cm in length, the second green sheet 11b is 0.25 mm in thickness, 5 cm in length, the third green sheet 18a is 0.25 mm in thickness, 4 cm in length, and the fourth green sheet 18b is 0.4mm thick, 3.5 length
cm. After firing, the first green sheet becomes the first base 11a, the second green sheet becomes the second base 11b,
The third green sheet becomes the reinforcing layer 18a, and the fourth green sheet becomes the reinforcing layer 18b.

【0016】(2)ヒータパターンの形成 アルミナ粉末(純度99.99%以上、平均粒径0.3
μm)4部と白金粉末100部を配合した導電層用ペー
ストを、第1グリーンシート11a(焼成後基体の下半
分となる)の一方の面に発熱部パターン12aを印刷・
乾燥させ、その後、ヒータリードパターン12bを印刷
・乾燥させ、ヒータパターン12を形成した(焼成後発
熱抵抗体22となる)。第1グリーンシート11aの基
端付近に発熱抵抗体の導通を取るためのスルーホール1
11aを形成し、裏面のスルーホール111aに対応す
る位置にヒータパッドパターン19aを印刷・乾燥させ
た(焼成後に端子を接続するための電極パッドとな
る)。ヒータパターン12上から第2グリーンシート1
1b(焼成後基体の上半分となる)を積層し、圧着接合
した。
(2) Formation of heater pattern Alumina powder (purity 99.99% or more, average particle size 0.3
μm) A conductive layer paste containing 4 parts of platinum powder and 100 parts of platinum powder is printed on one surface of a first green sheet 11a (which becomes the lower half of the base after firing) to form a heating portion pattern 12a.
After drying, the heater lead pattern 12b was printed and dried to form the heater pattern 12 (to become the heating resistor 22 after firing). A through hole 1 near the base end of the first green sheet 11a for conducting the heating resistor.
11a was formed, and a heater pad pattern 19a was printed and dried at a position corresponding to the through-hole 111a on the back surface (after firing, it becomes an electrode pad for connecting terminals). Second green sheet 1 from above heater pattern 12
1b (the upper half of the substrate after firing) was laminated and pressure bonded.

【0017】(3)緩衝層パターンの形成 (2)で作製したセラミック積層体の第2グリーンシー
ト11b上に、アルミナ80部、ジルコニア20部を配
合した緩衝層用ペーストを用いて、緩衝層パターン13
(焼成後緩衝層となる)を40±10μの厚さに印刷・
乾燥させた。 (4)基準電極パターンの形成 (3)で形成した緩衝層パターン上に、(2)で用いた
導電層用ペーストを用いて、電極部パターン141a
(焼成後参照電極部となる)及び電極リード部141b
(焼成後参照電極のリード部となる)からなる参照電極
パターン14a(焼成後参照電極となる)を20μm±
10の厚さに印刷・乾燥させた。
(3) Formation of Buffer Layer Pattern A buffer layer pattern is formed on the second green sheet 11b of the ceramic laminate prepared in (2) using a buffer layer paste containing 80 parts of alumina and 20 parts of zirconia. 13
(To become a buffer layer after firing) to a thickness of 40 ± 10μ
Let dry. (4) Formation of Reference Electrode Pattern On the buffer layer pattern formed in (3), using the conductive layer paste used in (2), the electrode portion pattern 141a
(To become a reference electrode after firing) and electrode lead 141b
The reference electrode pattern 14a (which becomes a reference electrode after firing) becomes 20 μm ±
Printed and dried to a thickness of 10.

【0018】(5)第1固体電解質層パターンの形成 ジルコニア粉末(純度99.9%以上、平均粒径0.3
μm)50部とアルミナ粉末(純度99.99%以上、
平均粒径0.3mm)50部、ブチルカルビトール3
3.3部、ジブチルフタレート0.8部、分散剤0.5
部及びバインダ20部に所要量のアセトンを加えて、4
時間混合した後、アセトンを蒸発させて、固体電解質層
用ペーストを調合した。この固体電解質用ペーストを参
照電極パターン14aの電極部141aを覆うように第
1グリーンシート(及び第2グリーンシート)の長さ方
向に13mm、厚さ25±10μmに印刷・乾燥させ、
第1固体電解質層パターン15a(焼成後固体電解質体
の本体部の一部及び周辺部となる)を形成した。
(5) Formation of First Solid Electrolyte Layer Pattern Zirconia powder (purity 99.9% or more, average particle diameter 0.3
μm) 50 parts and alumina powder (purity 99.99% or more,
50 parts, average particle size 0.3 mm), butyl carbitol 3
3.3 parts, dibutyl phthalate 0.8 part, dispersant 0.5
Parts and 20 parts of binder, add the required amount of acetone,
After mixing for a time, acetone was evaporated to prepare a solid electrolyte layer paste. This paste for solid electrolyte is printed and dried to a thickness of 13 mm and a thickness of 25 ± 10 μm in the length direction of the first green sheet (and the second green sheet) so as to cover the electrode portion 141a of the reference electrode pattern 14a,
The first solid electrolyte layer pattern 15a (which becomes a part of the main body portion and the peripheral portion of the solid electrolyte body after firing) was formed.

【0019】(6)第1絶縁層パターンの形成 (1)で作製したグリーンシートにブチルカルビトール
50部に所要量のアセトンを加えて、4時間混合した
後、アセトンを蒸発させて、絶縁層用ペーストを調整し
た。この絶縁層用ペーストを緩衝層パターン13上であ
り、第1固体電解質層パターン15aが印刷されていな
い部分に25±10μmの厚さで印刷・乾燥させ、第1
絶縁層パターン16aを形成した。焼成後、絶縁層の一
部となる。
(6) Formation of first insulating layer pattern A necessary amount of acetone was added to 50 parts of butyl carbitol to the green sheet prepared in (1) and mixed for 4 hours. Paste was prepared. This insulating layer paste is printed and dried at a thickness of 25 ± 10 μm on a portion of the buffer layer pattern 13 where the first solid electrolyte layer pattern 15a is not printed.
An insulating layer pattern 16a was formed. After firing, it becomes a part of the insulating layer.

【0020】(7)第2固体電解質層パターンの形成 (5)と同じ固体電解質用ペーストを第1固体電解質パ
ターン15aの上から先端位置を揃えて長さ8mm、2
5±10μmの厚さに印刷・乾燥させ、第2固体電解質
層パターン15b(焼成後固体電解質体の一部となる)
を形成した。即ち、焼成後本体部となる厚さ50μmの
部分と焼成後周縁部となる厚さ25μmの部分とを備え
る。
(7) Formation of Second Solid Electrolyte Layer Pattern The same solid electrolyte paste as in (5) is formed with a length of 8 mm,
Printing and drying to a thickness of 5 ± 10 μm, the second solid electrolyte layer pattern 15b (becomes a part of the solid electrolyte body after firing)
Was formed. That is, it has a 50 μm-thick portion serving as a main body after firing and a 25 μm-thick portion serving as a peripheral portion after firing.

【0021】(8)第2絶縁層パターンの形成 (6)と同じ絶縁層用ペーストを第2固体電解質層パタ
ーンが形成されていない第1絶縁層パターン16a上に
厚さ25±10μmに印刷・乾燥させ、第2絶縁層パタ
ーン16b(焼成後絶縁層の一部となり、特に、第1固
体電解質パターン上部分は焼成後に抑圧層162とな
る)を形成した。
(8) Formation of Second Insulating Layer Pattern The same insulating layer paste as in (6) is printed to a thickness of 25 ± 10 μm on the first insulating layer pattern 16a on which the second solid electrolyte layer pattern is not formed. After drying, a second insulating layer pattern 16b (a part of the insulating layer after firing, and in particular, a part on the first solid electrolyte pattern becomes the suppression layer 162 after firing) was formed.

【0022】(9)検知電極パターンの形成 (7)〜(8)で形成した第2固体電解質層パターン1
5bと第2絶縁層パターン16bの上に、(2)で調整
した導電層用ペーストを用いて、焼成後に検知電極とな
る電極部パターン141a(焼成後検知電極部となる)
及び電極リード部パターン142b(焼成後検知電極リ
ード部となる)からなる検知電極パターン14bを20
±10μmの厚さに印刷・乾燥させた。 (10)保護層パターンの形成 (6)と同じ絶縁層用ペーストに、平均粒径50μmの
樹脂粉末を混合し、保護層用ペーストを調整し、第2固
体電解質層パターン17b上に長さ10mm、厚さ50
±20μmに印刷・乾燥させ、保護層パターン17(焼
成後保護層となる)を形成した。 (11)第3及び第4グリーンシートの積層 (10)で形成した保護層パターンを除く部分を覆うよ
うに、第3グリーンシート118a、第4グリーンシー
ト18b(焼成後各々補強層の一部となる)を積層し
た。
(9) Formation of detection electrode pattern Second solid electrolyte layer pattern 1 formed in (7) to (8)
5b and the second insulating layer pattern 16b, using the conductive layer paste adjusted in (2), an electrode portion pattern 141a to be a detection electrode after firing (to be a detection electrode portion after firing).
And the electrode lead portion pattern 142b (which becomes the detection electrode lead portion after firing) is
Printing and drying were performed to a thickness of ± 10 μm. (10) Formation of protective layer pattern A resin powder having an average particle size of 50 μm was mixed with the same insulating layer paste as in (6) to prepare a protective layer paste, and a 10 mm length was formed on the second solid electrolyte layer pattern 17b. , Thickness 50
Printing and drying were performed at ± 20 μm to form a protective layer pattern 17 (which becomes a protective layer after firing). (11) Lamination of Third and Fourth Green Sheets The third green sheet 118a and the fourth green sheet 18b (each of a part of the reinforcing layer after firing are formed so as to cover portions except for the protective layer pattern formed in (10)). ) Were laminated.

【0023】(12)脱脂及び焼成 (1)〜(11)で得られた積層体を、大気雰囲気にお
いて、室温から420℃まで昇温速度10℃/時間で昇
温させ、2時間保持し、有機バインダーの脱脂処理を行
った。その後、大気雰囲気において、1100℃まで昇
温速度100℃/時間で昇温させ、更に、1520℃ま
で昇温速度60℃/時間で昇温させ、1時間保持し焼成
を行い、図2に示すような固体電解質体が本体部及び周
辺部を備え、且つ抑圧層により固体電解質体と検知電極
リード部が離間されたガスセンサ素子300個を得た。
(12) Degreasing and firing The laminate obtained in (1) to (11) is heated from room temperature to 420 ° C. at a rate of 10 ° C./hour in an air atmosphere, and held for 2 hours. The organic binder was degreased. Thereafter, in an air atmosphere, the temperature is increased to 1100 ° C. at a rate of 100 ° C./hour, and further increased to 1520 ° C. at a rate of 60 ° C./hour, held for 1 hour, and baked. There were obtained 300 gas sensor elements in which such a solid electrolyte body was provided with a main body part and a peripheral part, and the solid electrolyte body and the sensing electrode lead were separated by the suppression layer.

【0024】[2]抑圧層及び介挿層を備える素子の製
造 [1]の(7)、(8)の工程に準じて、第1固体電解
質パターン15aを形成・乾燥後、第1絶縁層パターン
16a(一部が介挿層163となる)を形成・乾燥させ
た。次いで、第1固体電解質パターン15aよりも面積
の広い第2固体電解質層パターン15b(一部が周辺層
162となる)を、第1固体電解質パターン上に形成・
乾燥させ、更に、第2絶縁層パターン16bを形成・乾
燥させた。その後、更に、図1には図示しない第2固体
電解質パターンよりも面積の狭い第3固体電解質パター
ンを形成・乾燥させ、更に、第3絶縁層パターン(一部
が抑圧層162となる)を形成・乾燥させた。その他
は、[1]と同様にして、素子を300個得た。(図3
参照)
[2] Manufacture of a device having a suppression layer and an interposed layer According to the steps (7) and (8) of [1], after forming and drying the first solid electrolyte pattern 15a, the first insulating layer is formed. The pattern 16a (a part of which becomes the insertion layer 163) was formed and dried. Next, a second solid electrolyte layer pattern 15b (a part of which becomes the peripheral layer 162) having a larger area than the first solid electrolyte pattern 15a is formed on the first solid electrolyte pattern.
After drying, the second insulating layer pattern 16b was formed and dried. Thereafter, a third solid electrolyte pattern having a smaller area than the second solid electrolyte pattern not shown in FIG. 1 is further formed and dried, and a third insulating layer pattern (a part of which becomes the suppression layer 162) is formed. -It was dried. Otherwise, in the same manner as in [1], 300 devices were obtained. (FIG. 3
reference)

【0025】[3]介挿層のみを備える素子の製造 [1]の(7)、(8)の工程に準じて、第1固体電解
質パターン15aを形成・乾燥後、第1絶縁層パターン
16a(一部が介挿層163となる)を形成・乾燥させ
た。次いで、第1固体電解質パターン15aよりも面積
の広い第2固体電解質層パターン15b(一部が周辺層
162となる)を、第1固体電解質パターン上に形成・
乾燥させ、更に、第2絶縁層パターン16bを形成・乾
燥させた。その他は、[1]と同様にして、素子を30
0個得た。(図4参照)
[3] Manufacture of Element Having Only Interposed Layer According to the steps (7) and (8) of [1], after forming and drying the first solid electrolyte pattern 15a, the first insulating layer pattern 16a is formed. (Partially becoming the insertion layer 163) was formed and dried. Next, a second solid electrolyte layer pattern 15b (a part of which becomes the peripheral layer 162) having a larger area than the first solid electrolyte pattern 15a is formed on the first solid electrolyte pattern.
After drying, the second insulating layer pattern 16b was formed and dried. In other respects, the device was changed to 30 in the same manner as in [1].
0 were obtained. (See Fig. 4)

【0026】[4]周辺部を備えない素子の製造 [1]の(7)、(8)の工程で、第2固体電解質層パ
ターン15bの大きさを第1固体電解質パターン15a
にそろえ、第2絶縁層パターン16bの大きさを第1絶
縁層パターン16aにそろえた他は、[1]と同様にし
て、素子を300個得た。(図5参照)
[4] Manufacture of Element without Peripheral Part In the steps (7) and (8) of [1], the size of the second solid electrolyte layer pattern 15b is changed to the first solid electrolyte pattern 15a.
Then, 300 elements were obtained in the same manner as in [1] except that the size of the second insulating layer pattern 16b was adjusted to the size of the first insulating layer pattern 16a. (See Fig. 5)

【0027】[5]焼成によるクラック等の発生率の評
価 [1]〜[4]で得られた素子1200個を、少なくと
も固体電解質体部分が完全に浸漬される様に水中に沈
め、参照電極と水の間の抵抗値を測定してクラックの有
無を評価した。この結果、[4]で得られた周辺部を備
えない素子では固体電解質体と絶縁層との間(図5のT
の位置)でクラックを生じているものが183個見出さ
れた。即ち、クラックの発生率は60%であった。一
方、[1]〜[3]で得られた素子ではクラックは全く
発生せず、クラックの発生率は0%であった。
[5] Evaluation of the rate of occurrence of cracks and the like due to firing 1200 elements obtained in [1] to [4] are submerged in water so that at least the solid electrolyte portion is completely immersed, and the reference electrode The resistance value between water and water was measured to evaluate the presence or absence of cracks. As a result, in the element having no peripheral portion obtained in [4], the distance between the solid electrolyte body and the insulating layer (T
At position), 183 cracks were found. That is, the crack occurrence rate was 60%. On the other hand, in the devices obtained in [1] to [3], no crack was generated, and the crack generation rate was 0%.

【0028】[6]冷熱サイクル耐久試験 [1]〜[4]で得られた素子で、[5]の試験でクラ
ックの発生していないと評価された素子を用いて、抵抗
発熱体に16Vの電圧を印加し、固体電解質体の温度が
約1000℃に達するまで加熱し、その後、電圧の印加
を停止し、固体電解質体の温度が室温になるまで放置す
るという熱サイクル試験を10サイクル繰り返した。そ
の後、[5]と同様の試験により、クラックの発生を評
価した。その結果、[4]で得られた素子は29%の素
子にクラックが発生しており、一方、[1]〜[3]で
得られた素子はクラックの発生率が0%であった。この
結果より、本発明の素子は焼成時にクラックが発生せ
ず、焼成後の熱サイクル試験でもクラックを発生しない
高い耐久性を備える素子であることが分かる。
[6] Cooling / heating cycle durability test Using the device obtained in [1] to [4] and evaluated as having no crack in the test of [5], a resistance heating element of 16 V was used. 10 cycles of a heat cycle test in which the solid electrolyte body is heated until the temperature of the solid electrolyte body reaches about 1000 ° C., then the application of the voltage is stopped, and the solid electrolyte body is left until the temperature of the solid electrolyte body reaches room temperature. Was. Thereafter, the occurrence of cracks was evaluated by the same test as in [5]. As a result, cracks occurred in 29% of the devices obtained in [4], while cracks occurred in the devices obtained in [1] to [3] at 0%. From these results, it can be seen that the device of the present invention is a device having high durability in which no crack is generated during firing and no crack is generated in a heat cycle test after firing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガスセンサ素子の製造工程を説明する
解説図である。
FIG. 1 is an explanatory diagram for explaining a manufacturing process of a gas sensor element of the present invention.

【図2】本発明のガスセンサ素子の一例の横断面図であ
る。
FIG. 2 is a cross-sectional view of one example of the gas sensor element of the present invention.

【図3】本発明のガスセンサ素子の他例の横断面図であ
る。
FIG. 3 is a cross-sectional view of another example of the gas sensor element of the present invention.

【図4】本発明のガスセンサ素子の他例の横断面図であ
る。
FIG. 4 is a cross-sectional view of another example of the gas sensor element of the present invention.

【図5】本発明の範囲外のガスセンサ素子の一例の横断
面図である。
FIG. 5 is a cross-sectional view of an example of a gas sensor element outside the scope of the present invention.

【図6】本発明のガスセンサの断面図である。FIG. 6 is a sectional view of the gas sensor of the present invention.

【符号の説明】[Explanation of symbols]

1;ガスセンサ素子、11a;第1基体、11b;第2
基体、111;スルーホール、12;発熱抵抗体、12
1;発熱部、122;ヒータリード部、13;緩衝層、
14a;基準電極、14b;検知電極、15;固体電解
質層、151;本体層、152;周辺層、16a;第1
絶縁層、16b;第2絶縁層、162;抑圧層、16
3;介挿層、17;保護層、18;第1補強層、18b
第2補強層、2;ガスセンサ、21:主体金具、21
1;主体金具ねじ部。
1; gas sensor element, 11a; first base, 11b; second
Substrate, 111; Through hole, 12; Heating resistor, 12
1; heating section; 122; heater lead section; 13; buffer layer;
14a; reference electrode, 14b; detection electrode, 15; solid electrolyte layer, 151; main body layer, 152; peripheral layer, 16a;
Insulating layer, 16b; second insulating layer, 162; suppression layer, 16
3; interposed layer, 17; protective layer, 18; first reinforcing layer, 18b
2nd reinforcement layer, 2; gas sensor, 21: metal shell, 21
1; metal shell screw part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳 邦夫 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 Fターム(参考) 2G004 BB04 BE01 BE13 BF04 BJ03 BM07 5G301 CA12 CA28 CD01 CD10  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kunio Yanagi 14-18, Takatsuji-cho, Mizuho-ku, Nagoya Japan F-term (reference) 2G004 BB04 BE01 BE13 BF04 BJ03 BM07 5G301 CA12 CA28 CD01 CD10

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性を有する基体と、該基体上に配設
される固体電解質体とを備えるガスセンサ素子におい
て、該固体電解質体は、本体部と、該本体部よりも厚さ
の薄い周辺部とを備え、且つ該周辺部の少なくとも一部
に上接する抑圧層を備えることを特徴とするガスセンサ
素子。
1. A gas sensor element comprising a substrate having an insulating property and a solid electrolyte disposed on the substrate, wherein the solid electrolyte comprises a main body and a peripheral portion having a thickness smaller than the main body. A gas sensor element comprising: a pressure suppression layer provided on at least a part of the peripheral portion.
【請求項2】 上記固体電解質体は、上記本体部と上記
周辺部の境界において階段状を呈する請求項1記載のガ
スセンサ素子。
2. The gas sensor element according to claim 1, wherein the solid electrolyte body has a stepped shape at a boundary between the main body and the peripheral part.
【請求項3】 上記周辺部に下接する介挿層を備える請
求項1又は2記載のガスセンサ素子。
3. The gas sensor element according to claim 1, further comprising an intervening layer in contact with the peripheral portion.
【請求項4】 上記周辺部と、上記抑圧層と、上記介挿
層の合計厚さが、上記本体部の厚さに等しい請求項3記
載のガスセンサ素子。
4. The gas sensor element according to claim 3, wherein a total thickness of the peripheral portion, the suppression layer, and the interposition layer is equal to a thickness of the main body.
【請求項5】 上記基体は板状であり、上記固体電解質
体は、上記基体の一面に層状に形成されている請求項1
乃至4記載のうちのいずれか1項に記載のガスセンサ素
子。
5. The substrate according to claim 1, wherein the substrate has a plate shape, and the solid electrolyte body is formed in a layer on one surface of the substrate.
The gas sensor element according to any one of claims 4 to 4.
【請求項6】 上記固体電解質体の上記基体側の面に接
して参照電極が形成され、且つ他面に接して検出電極が
形成されている請求項1乃至5のうちのいずれか1項に
記載のガスセンサ素子。
6. The solid electrolyte body according to claim 1, wherein a reference electrode is formed in contact with the surface of the solid electrolyte body on the substrate side, and a detection electrode is formed in contact with the other surface. The gas sensor element according to any one of the preceding claims.
【請求項7】 上記固体電解質体は、上記基体を構成す
る成分を10〜80質量%含有する請求項1乃至6のう
ちのいずれか1項に記載のガスセンサ素子。
7. The gas sensor element according to claim 1, wherein the solid electrolyte body contains 10 to 80% by mass of a component constituting the base.
【請求項8】 上記固体電解質体はジルコニア及びアル
ミナを主成分とし、上記基体はアルミナを主成分とする
請求項7記載のガスセンサ素子。
8. The gas sensor element according to claim 7, wherein the solid electrolyte body contains zirconia and alumina as main components, and the substrate contains alumina as a main component.
【請求項9】 請求項1乃至8のうちのいずれか1項に
記載のガスセンサ素子を備えることを特徴とするガスセ
ンサ。
9. A gas sensor comprising the gas sensor element according to claim 1. Description:
JP2000055025A 2000-02-29 2000-02-29 Gas sensor element and gas sensor including the same Expired - Fee Related JP4166404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000055025A JP4166404B2 (en) 2000-02-29 2000-02-29 Gas sensor element and gas sensor including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000055025A JP4166404B2 (en) 2000-02-29 2000-02-29 Gas sensor element and gas sensor including the same

Publications (2)

Publication Number Publication Date
JP2001242125A true JP2001242125A (en) 2001-09-07
JP4166404B2 JP4166404B2 (en) 2008-10-15

Family

ID=18576211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055025A Expired - Fee Related JP4166404B2 (en) 2000-02-29 2000-02-29 Gas sensor element and gas sensor including the same

Country Status (1)

Country Link
JP (1) JP4166404B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8613844B2 (en) 2002-11-01 2013-12-24 Ngk Spark Plug Co., Ltd. Gas sensor having a laminate comprising solid electrolyte layers and alumina substrate
JP2016211865A (en) * 2015-04-30 2016-12-15 日本特殊陶業株式会社 Gas sensor element, gas sensor, and manufacturing method for gas sensor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8613844B2 (en) 2002-11-01 2013-12-24 Ngk Spark Plug Co., Ltd. Gas sensor having a laminate comprising solid electrolyte layers and alumina substrate
JP2016211865A (en) * 2015-04-30 2016-12-15 日本特殊陶業株式会社 Gas sensor element, gas sensor, and manufacturing method for gas sensor element

Also Published As

Publication number Publication date
JP4166404B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP4050593B2 (en) Gas sensor element and gas sensor using the same
JP4035555B2 (en) Gas sensor element and gas sensor using the same
JPH06300731A (en) Manufacture of oxygen sensor
US6746586B2 (en) Multi-layer gas sensor element and gas sensor comprising the same
JP4125849B2 (en) Oxygen sensor element
JP3683348B2 (en) Manufacturing method of ceramic structure
JP4093784B2 (en) Multilayer gas sensor element, manufacturing method thereof, and gas sensor
KR100322981B1 (en) Insulation layer system for circuit electrical insulation
JP3874690B2 (en) Multilayer gas sensor element, method for manufacturing the same, and gas sensor
JP4583187B2 (en) Ceramic heater element and detection element using the same
JP2000292406A (en) Ceramic lamination body and its manufacture
JP2002286680A (en) Lamination type gas sensor element and its manufacturing method
JP2003279528A (en) Oxygen sensor electrode
JP2004327255A (en) Manufacturing method for ceramic heater structure and ceramic heater structure
JP2001242125A (en) Gas sensor element and gas sensor equipped therewith
JP4166403B2 (en) Gas sensor element and gas sensor including the same
JP4025561B2 (en) Oxygen sensor element
JP4473471B2 (en) Laminated gas sensor element and gas sensor including the same
JP2002365258A (en) Gas sensor element, its manufacturing method and gas sensor
JP2001124723A (en) Oxygen sensor with heater and method for manufacturing the same
JP2003279531A (en) Oxygen sensor element
JP4262764B2 (en) Multilayer gas sensor element
JP4579636B2 (en) Manufacturing method of gas sensor
JP4113479B2 (en) Oxygen sensor element
JP2004327256A (en) Ceramic heater and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees