JP4156154B2 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
JP4156154B2
JP4156154B2 JP33554799A JP33554799A JP4156154B2 JP 4156154 B2 JP4156154 B2 JP 4156154B2 JP 33554799 A JP33554799 A JP 33554799A JP 33554799 A JP33554799 A JP 33554799A JP 4156154 B2 JP4156154 B2 JP 4156154B2
Authority
JP
Japan
Prior art keywords
solid
state imaging
imaging device
package
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33554799A
Other languages
Japanese (ja)
Other versions
JP2001156278A (en
Inventor
隆二 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP33554799A priority Critical patent/JP4156154B2/en
Publication of JP2001156278A publication Critical patent/JP2001156278A/en
Application granted granted Critical
Publication of JP4156154B2 publication Critical patent/JP4156154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CCD(Charge-Coupled Device )等の固体撮像素子をプラスチック又はセラミックス等の容器(パッケージ)内に収納して形成された固体撮像装置に関する。
【0002】
【従来の技術】
図10は従来の固体撮像装置を示す上面図、図11(a)は図10のD−D線による断面図、図11(b)は図10のE−E線による断面図である。
固体撮像素子31はシリコン半導体により形成されており、その一方の面には複数の受光部がマトリクス状に配置されている。以下、固体撮像素子31の受光部が配置されている部分を受光エリアという。
【0003】
固体撮像素子31の厚さは、一般的に約250μm程度である。この固体撮像素子31は、プラスチック又はセラミックス等により形成されたパッケージ32の凹部33内に収納されている。パッケージ32の上部には透明カバーガラス34が取り付けられており、パッケージ32の内部空間の気密性が確保されるようになっている。但し、光は、カバーガラス34を通して固体撮像素子31の受光エリアに到達することができる。
【0004】
パッケージ32の下側には複数本の金属製リード35が突き出しており、パッケージ32の内側にはこれらのリード35とそれぞれ電気的に接続された電極36が形成されている。固体撮像素子31は、これらの電極36とボンディングワイヤ37により電気的に接続されている。
図12は、上記の固体撮像装置を使用したデジタルカメラの模式図である。映像は、撮像レンズ41及び絞り45を介して固体撮像素子31の受光エリアに投影されて電気信号に変換される。この場合、受光エリアの中央部と縁部とでは撮像レンズ41までの距離が異なるため、映像の歪みが生じる。これを収差という。従来、デジタルカメラに使用される固体撮像素子では、収差の影響を小さくするために、マイクロレンズの位置をずらす、いわゆるレンズずらしといわれる手法が採られる。
【0005】
図13はレンズずらしを説明する模式図である。この図13に示すように、固体撮像素子の受光エリアには、各受光部43に対応してそれぞれマイクロレンズ42といわれる微小なレンズが形成されている。固体撮像素子の中央部では受光部43のすぐ上にマイクロレンズ42を配置するが、縁部ではマイクロレンズ42の中心を受光部43の中心からずらすことにより、収差の影響を少なくしている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記のレンズずらしによる収差低減方法は、以下に示す問題点がある。
(1)撮像レンズに応じてマイクロレンズのずれ量を調整する必要がある。このため、マイクロレンズ形成用フォトマスクの種類が多くなり、製造コスト上昇の原因となる。
【0007】
(2)撮像レンズを変更するたびに固体撮像素子を作り直す必要がある。
(3)レンズずらしによる撮像レンズ収差の補正は不完全である。
本発明は、かかる従来技術の問題点に鑑みてなされたものであり、レンズずらしによらず簡単に収差を補正することができ、製造コストを低減することができる固体撮像装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記した課題は、円筒状又は球面状の曲面を有する凹部が設けられたパッケージと、湾曲した状態で前記パッケージ内に収納された固体撮像素子とを有し、前記パッケージには、前記凹部の部分に前記固体撮像素子を吸着するための孔が設けられていることを特徴とする固体撮像装置により解決する。
本発明においては、固体撮像素子が円筒状又は球面状に湾曲した状態でパッケージ内に収納されている。このため、固体撮像素子の各受光部から撮像レンズまでの距離が均一化され、収差を低減することができる。また、各受光部の中心軸が撮像レンズの方向に傾くため、レンズずらしの手法を採る必要がない。このため、マイクロレンズ形成用フォトマスクの設計が容易であり、製造コストを低減することができる。
【0009】
固体撮像素子を円筒状又は球面状に湾曲させるためには、例えばパッケージに円筒状又は球面状の底面を有する凹部を設け、その凹部の底面に沿って固体撮像素子を湾曲させればよい。また、パッケージの凹部の縁部に段差部(小さな突起)を設けその段差部に固体撮像素子の縁部を接合して、固体撮像素子を湾曲させるようにしてもよい。固体撮像素子を湾曲させるためには、固体撮像素子を例えば30μm以下の厚さとし、可撓性を付与することが必要である。固体撮像素子を30μm以下の厚さにする方法としては、例えば化学的機械研磨がある。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について、添付の図面を参照して説明する。
(第1の実施の形態)
図1は本発明の第1の実施の形態の固体撮像装置を示す上面図、図2(a)は図1のA−A線による断面図、図2(b)は図1のB−B線による断面図である。
【0011】
固体撮像素子11は複数の受光部がマトリクス状に配列されてなる受光エリアを有している。この固体撮像素子11は、従来の固体撮像素子の厚さが250μm程度であるのに対し約30μmと薄いことを除けば、基本的に従来の固体撮像素子と同様の構造を有している。固体撮像素子の構造の一例としては、例えば本願出願人による特開平10−136391号公報等に記載されている。但し、本発明においては、上記公報に記載の固体撮像素子の構造に限定されるものではない。
【0012】
パッケージ12はプラスチックにより形成されており、図2(a),(b)に示すように、固体撮像素子11を収納するための凹部13が設けられている。凹部13の底面は、この図2(a),(b)に示すように円筒状に湾曲している。固体撮像素子11は、この円筒状の底面に沿って湾曲した状態でパッケージ12内に収納されている。固体撮像素子11の受光エリアが長方形の場合、受光エリアの長辺側が湾曲するように配置される。
【0013】
パッケージ12の上には透明カバーガラス14が取り付けられており、パッケージ12の内部空間の気密性が確保されるようになっている。また、パッケージ12の下側には複数本の金属製リード15が突き出しており、パッケージ12の内側にはこれらのリード15と電気的に接続された電極16が設けられている。固体撮像素子11は、ボンディングワイヤ17によりパッケージ12内の電極16と電気的に接続されている。また、パッケージ12の底部中央には、直径が1mm程度の吸引孔16が設けられている。
【0014】
以下、本実施の形態の固体撮像装置の製造方法について説明する。
まず、公知技術を使用し、従来と同様の方法により、半導体ウエハに複数の固体撮像素子を形成する。
その後、ウエハの裏面側を化学的機械研磨し、ウエハの厚さを約30μmとしてウエハに可撓性を付与する。化学的機械研磨装置としては、例えば東京精密社製の「ケミカルメカニカルグラインダー」を使用することができる。このような装置を使用することにより、細かい傷に起因するウエハ(又はチップ)の破損を防止しつつ、ウエハを約30μmの厚さにまで研磨することができる。なお、ウエハの研磨方法は特に限定されるものではないが、ウエハを破損することなく可撓性を有する厚さまで研磨できることが必要である。
【0015】
次いで、裏面研磨後のウエハを切断し、各チップ(固体撮像素子11)を相互に分離する。
一方、パッケージ12を用意する。パッケージ12は、例えばプラスチックの金型成形により形成する。この場合、図2に示すように、パッケージ12には凹部13と孔18とを設けておく。凹部13の底面の曲率は固体半導体素子11の受光エリアの大きさや撮像レンズまでの距離に応じて設定する。例えば、固体撮像素子11の受光エリアの大きさが10mm×10mmであり、固体撮像素子11と撮像レンズとの距離が5cmであるとすると、受光エリアの中央部と端部との高さの差aが約100μmとなるように曲率を設定する。また、この例では孔18の直径を1mmとしているが、これに限定するものではなく、後述するように孔18を介して固体撮像素子11を吸引できる大きさであればよい。
【0016】
次に、固体撮像素子11の裏面側又は凹部13の底面に接着剤を塗布し、孔18を吸引装置(排気装置)に接続して、固体半導体素子11を凹部13の底面に吸引し、固体半導体素子11をパッケージ12に接合する。その後、ワイヤボンディング装置を使用し、固体半導体素子11の電極とパッケージ12内の電極16とをワイヤ17で電気的に接続する。次いで、パッケージ12の上部にカバーガラス14を取り付け、固体半導体素子11を密封する。これにより、固体撮像素子の製造が完了する。
【0017】
なお、固体半導体素子11をパッケージ12に接合した後、孔18を樹脂等で塞いでもよい。
本実施の形態においては、固体撮像素子11を化学的機械研磨により極めて薄く研磨し、それによって固体撮像素子11に可撓性を付与する。そして、この可撓性を付与した固体撮像素子11を円筒状の曲面に沿って配置するので、図3に示すように、撮像レンズ21から固体撮像素子の各受光部23までの距離が均一化される。これにより、収差の影響を低減することができ、歪の少ない画像を得ることができる。
【0018】
なお、図3において、22はマイクロレンズを示す。本実施の形態においては、固体撮像素子11を湾曲させて配置するので、マイクロレンズ22はその中心軸を各受光部23の中心軸にあわせて形成すればよい。すなわち、本実施の形態では、上記の方法により収差を低減することができるので、レンズずらしの手法を採用する必要がない。このため、マイクロレンズを形成するためのフォトマスクの設計が容易であり、製造コストを低減することができる。
【0019】
また、本実施の形態においては、パッケージ12の凹部底面の曲率を変更するだけで、撮像レンズの変更に対応することができる。
(第1の実施の形態の変形例)
図4は第1の実施の形態の変形例を示す図である。なお、図4(a)は図1のA−A線による断面図、図4(b)は図1のB−B線による断面図である。図4において、図1,2と同一物には同一符号を付して、その詳しい説明は省略する。
【0020】
この例では、パッケージ12の凹部13の底面を球面状に湾曲させている。従って、固体撮像素子11は、球面に沿って湾曲して配置される。
このように固体撮像素子11を球面に沿って湾曲させて配置することにより、映像の水平方向の収差だけでなく、垂直方向の収差を低減することができる。
(第2の実施の形態)
図5(a),(b)はいずれも本発明の第2の実施の形態の固体撮像装置の断面図である。本実施の形態の固体撮像装置の上面図は図1に示す第1の実施の形態の上面図と同様であるので、ここでは図1も参照して説明する。また、図5(a)は図1のA−A線による断面を示し、図5(b)は図1のB−B線による断面を示している。図5(a),(b)において、図1,図2と同一物には同一符号を付してその詳しい説明は省略する。
【0021】
本実施の形態においては、第1の実施の形態と同様にパッケージ12の凹部13の底面が円筒状又は球面状に湾曲しているが、パッケージ12には孔が設けられていない。固体撮像素子11は約30μmの厚さに形成されており、凹部13の曲面に沿って湾曲した状態でパッケージ12に固定されている。なお、図5(b)では凹部13の底面が球面状の場合を示しているが、凹部13の底面が円筒状の場合は、孔18がないことを除けば、図2(b)に示す断面と同様の断面となる。
【0022】
本実施の形態の固体撮像装置は、第1の実施の形態で説明した方法により固体撮像素子11を形成した後、図6に示すように固体撮像素子11の上側から圧縮空気を吹き付けて、固体撮像素子11を凹部13の曲面に沿った形状に湾曲させてパッケージ12と接合する。そして、固体撮像素子11の電極とパッケージ12の電極とをボンディングワイヤ17で電気的に接続した後、パッケージ12にカバーガラス14を取り付けて、パッケージ12内の空間を封止する。
【0023】
本実施の形態においても、第1の実施の形態と同様の効果が得られる。
(第3の実施の形態)
図7(a),(b)はいずれも本発明の第3の実施の形態の固体撮像装置の断面図である。本実施の形態の固体撮像装置の上面図は図1に示す第1の実施の形態の上面図と同様であるので、ここでは図1も参照して説明する。また、図7(a)は図1のA−A線による断面を示し、図7(b)は図1のB−B線による断面を示している。図7(a),(b)において、図1,図2と同一物には同一符号を付してその詳しい説明は省略する。
【0024】
本実施の形態においては、パッケージ12の凹部13の縁部に段差部(突起)13aが形成されている。この段差部13aには傾斜面が設けられており、この傾斜面に固体撮像素子11の縁部が接合され、固体撮像素子11が円筒状又は球面状に湾曲して、パッケージ12に接合されている。
本実施の形態においても、第1の実施の形態と同様に、パッケージ12に設けられた孔18から固体撮像素子11を吸引して、固体撮像素子11を円筒状又は球面に沿った形状に湾曲させて、パッケージ12に接合する。
【0025】
本実施の形態においても、第1及び第2の実施の形態と同様の効果が得られるのに加えて、パッケージ12内に曲面を形成する必要がないので、パッケージ12の製造が容易であるという利点がある。
(第4の実施の形態)
図8は本発明の第4の実施の形態の固体撮像装置の上面図、図9は図8のC−C線による断面図である。なお、図8,図9において、図1,図2と同一物には同一符号を付してその詳しい説明は省略する。
【0026】
本実施の形態においては、パッケージ12内の四隅に段差部13bが設けられており、固体撮像素子11はその四隅の部分が段差部13bに接合されて、パッケージ12内に球面状(又は,円筒状)に湾曲した状態で固定されている。18は吸引孔であり、第1の実施の形態と同様に、固体撮像素子11をパッケージ12内に固定するときに、孔18から固体撮像素子11を吸引することにより、球面状に湾曲させる。
【0027】
本実施の形態においても、第1及び第2の実施の形態と同様の効果を得ることができるのに加えて、パッケージ12内に曲面を形成する必要がないので、パッケージ12の製造が容易であるという利点がある。
なお、上記の実施の形態ではいずれもパッケージ12がプラスチックにより形成されている場合について説明したが、これによりパッケージ12の材質が限定されるものではなく、パッケージ12は例えばセラミックスにより形成されていてもよい。
【0028】
【発明の効果】
以上説明したように、本発明によれば、固体撮像素子を円筒状又は球面状に湾曲した状態でパッケージ内に収納しているので、撮像レンズから各受光部までの距離が均一化される。これにより、収差の影響が少ない高品質の映像を得ることができる。また、レンズずらしの手法を使用しなくても収差を低減できるので、マイクロレンズを形成するためのフォトマスクの設計が容易であり、製造コストを低減できるという効果もある。更に、固体半導体素子の曲率を変更するだけで、撮像レンズの変更に対応することができる。
【図面の簡単な説明】
【図1】図1は本発明の第1の実施の形態の固体撮像装置を示す上面図である。
【図2】図2(a)は図1のA−A線による断面図、図2(b)は図1のB−B線による断面図である。
【図3】図3は第1の実施の形態の効果を示す模式図である。
【図4】図4は第1の実施の形態の変形例を示す断面図であり、図4(a)は図1のA−A線による断面、図4(b)は図1のB−B線による断面を示す。
【図5】図5(a),(b)は本発明の第2の実施の形態の固体撮像装置の断面図である。
【図6】図6は第2の実施の形態における固体撮像素子とパッケージとの密着方法を示す模式図である。
【図7】図7(a),(b)は本発明の第3の実施の形態の固体撮像装置の断面図である。
【図8】図8は本発明の第4の実施の形態の固体撮像装置の上面図である。
【図9】図9は図8のC−C線による断面図である。
【図10】図10は従来の固体撮像装置を示す上面図である。
【図11】図11(a)は図10のD−D線による断面図、図11(b)は図10のE−E線による断面図である。
【図12】図12は、従来の固体撮像装置を使用したデジタルカメラの模式図である。
【図13】図13はレンズずらしを説明する模式図である。
【符号の説明】
11,31 固体撮像素子、
12,32 パッケージ、
13,33 凹部、
13a,13b 段差部、
14,34 カバーガラス、
15,35 リード、
16,36 電極、
17,37 ボンディングワイヤ、
18 孔、
21,41 撮像レンズ、
22,42 マイクロレンズ、
23,43 受光部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid-state imaging device formed by housing a solid-state imaging device such as a CCD (Charge-Coupled Device) in a container (package) made of plastic or ceramics.
[0002]
[Prior art]
10 is a top view showing a conventional solid-state imaging device, FIG. 11A is a cross-sectional view taken along the line DD in FIG. 10, and FIG. 11B is a cross-sectional view taken along the line EE in FIG.
The solid-state imaging device 31 is formed of a silicon semiconductor, and a plurality of light receiving portions are arranged in a matrix on one surface thereof. Hereinafter, the portion where the light receiving portion of the solid-state imaging device 31 is disposed is referred to as a light receiving area.
[0003]
The thickness of the solid-state image sensor 31 is generally about 250 μm. The solid-state image sensor 31 is housed in a recess 33 of a package 32 formed of plastic or ceramics. A transparent cover glass 34 is attached to the upper part of the package 32 so that the airtightness of the internal space of the package 32 is ensured. However, the light can reach the light receiving area of the solid-state imaging device 31 through the cover glass 34.
[0004]
A plurality of metal leads 35 project from the lower side of the package 32, and electrodes 36 electrically connected to the leads 35 are formed inside the package 32. The solid-state imaging device 31 is electrically connected to these electrodes 36 by bonding wires 37.
FIG. 12 is a schematic diagram of a digital camera using the solid-state imaging device. The video is projected on the light receiving area of the solid-state imaging device 31 through the imaging lens 41 and the diaphragm 45 and converted into an electrical signal. In this case, since the distance to the imaging lens 41 is different between the center portion and the edge portion of the light receiving area, image distortion occurs. This is called aberration. 2. Description of the Related Art Conventionally, in a solid-state imaging device used for a digital camera, a so-called lens shift method is adopted in which the position of a microlens is shifted in order to reduce the influence of aberration.
[0005]
FIG. 13 is a schematic diagram for explaining lens shifting. As shown in FIG. 13, in the light receiving area of the solid-state imaging device, minute lenses called micro lenses 42 are formed corresponding to the respective light receiving portions 43. Although the microlens 42 is disposed immediately above the light receiving unit 43 at the center of the solid-state imaging device, the influence of aberration is reduced by shifting the center of the microlens 42 from the center of the light receiving unit 43 at the edge.
[0006]
[Problems to be solved by the invention]
However, the above-described aberration reduction method by shifting the lens has the following problems.
(1) It is necessary to adjust the shift amount of the microlens according to the imaging lens. For this reason, the types of photomasks for forming a microlens increase, which causes an increase in manufacturing cost.
[0007]
(2) Each time the imaging lens is changed, it is necessary to recreate the solid-state imaging device.
(3) Correction of imaging lens aberration by lens shifting is incomplete.
The present invention has been made in view of the problems of the prior art, and provides a solid-state imaging device that can easily correct aberrations regardless of lens shifting and can reduce manufacturing costs. Objective.
[0008]
[Means for Solving the Problems]
The above-described problem includes a package provided with a concave portion having a cylindrical or spherical curved surface, and a solid-state imaging device housed in the package in a curved state, and the package includes a portion of the concave portion. The solid-state imaging device is provided with a hole for adsorbing the solid-state imaging device.
In the present invention, the solid-state imaging device is housed in the package in a state of being curved into a cylindrical shape or a spherical shape. For this reason, the distance from each light-receiving part of a solid-state image sensor to an imaging lens is equalized, and an aberration can be reduced. Further, since the central axis of each light receiving portion is inclined in the direction of the imaging lens, it is not necessary to adopt a lens shifting method. For this reason, it is easy to design a photomask for forming a microlens, and the manufacturing cost can be reduced.
[0009]
In order to curve the solid-state imaging device into a cylindrical shape or a spherical shape, for example, a concave portion having a cylindrical or spherical bottom surface may be provided in the package, and the solid-state imaging device may be curved along the bottom surface of the concave portion. Further, a stepped portion (small protrusion) may be provided at the edge of the concave portion of the package, and the edge of the solid-state imaging device may be joined to the stepped portion to curve the solid-state imaging device. In order to bend the solid-state image sensor, it is necessary to give the solid-state image sensor a thickness of, for example, 30 μm or less and to provide flexibility. As a method for making the solid-state imaging device 30 μm or less, there is, for example, chemical mechanical polishing.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(First embodiment)
FIG. 1 is a top view showing a solid-state imaging device according to the first embodiment of the present invention, FIG. 2A is a cross-sectional view taken along line AA in FIG. 1, and FIG. 2B is BB in FIG. It is sectional drawing by a line.
[0011]
The solid-state imaging device 11 has a light receiving area in which a plurality of light receiving portions are arranged in a matrix. The solid-state image pickup device 11 basically has the same structure as that of the conventional solid-state image pickup device except that the thickness of the conventional solid-state image pickup device is about 250 μm and is as thin as about 30 μm. An example of the structure of the solid-state imaging device is described in, for example, Japanese Patent Application Laid-Open No. 10-136391 by the applicant of the present application. However, the present invention is not limited to the structure of the solid-state imaging device described in the above publication.
[0012]
The package 12 is made of plastic, and as shown in FIGS. 2A and 2B, a recess 13 for accommodating the solid-state imaging device 11 is provided. The bottom surface of the recess 13 is curved in a cylindrical shape as shown in FIGS. 2 (a) and 2 (b). The solid-state imaging device 11 is accommodated in the package 12 in a state of being curved along the cylindrical bottom surface. When the light receiving area of the solid-state imaging device 11 is rectangular, the long side of the light receiving area is arranged to be curved.
[0013]
A transparent cover glass 14 is attached on the package 12 so that the airtightness of the internal space of the package 12 is ensured. A plurality of metal leads 15 protrude from the lower side of the package 12, and an electrode 16 electrically connected to the leads 15 is provided on the inner side of the package 12. The solid-state imaging element 11 is electrically connected to the electrode 16 in the package 12 by a bonding wire 17. A suction hole 16 having a diameter of about 1 mm is provided at the center of the bottom of the package 12.
[0014]
Hereinafter, a method for manufacturing the solid-state imaging device of the present embodiment will be described.
First, a plurality of solid-state imaging elements are formed on a semiconductor wafer by a known technique using a known technique.
Thereafter, the back side of the wafer is chemically mechanically polished to give the wafer a thickness of about 30 μm and give the wafer flexibility. As the chemical mechanical polishing apparatus, for example, a “chemical mechanical grinder” manufactured by Tokyo Seimitsu Co., Ltd. can be used. By using such an apparatus, it is possible to polish the wafer to a thickness of about 30 μm while preventing breakage of the wafer (or chip) due to fine scratches. The method for polishing the wafer is not particularly limited, but it is necessary that the wafer can be polished to a thickness having flexibility without damaging the wafer.
[0015]
Next, the wafer after the back surface polishing is cut to separate the chips (solid-state imaging device 11) from each other.
On the other hand, a package 12 is prepared. The package 12 is formed by plastic molding, for example. In this case, as shown in FIG. 2, the package 12 is provided with a recess 13 and a hole 18. The curvature of the bottom surface of the recess 13 is set according to the size of the light receiving area of the solid semiconductor element 11 and the distance to the imaging lens. For example, if the size of the light receiving area of the solid-state imaging device 11 is 10 mm × 10 mm and the distance between the solid-state imaging device 11 and the imaging lens is 5 cm, the difference in height between the center portion and the end portion of the light receiving area. The curvature is set so that a is about 100 μm. In this example, the diameter of the hole 18 is 1 mm. However, the diameter is not limited to this, and may be any size as long as the solid-state imaging element 11 can be sucked through the hole 18 as described later.
[0016]
Next, an adhesive is applied to the back surface side of the solid-state imaging element 11 or the bottom surface of the recess 13, the hole 18 is connected to a suction device (exhaust device), and the solid semiconductor element 11 is sucked to the bottom surface of the recess 13 to The semiconductor element 11 is bonded to the package 12. Thereafter, a wire bonding apparatus is used to electrically connect the electrode of the solid semiconductor element 11 and the electrode 16 in the package 12 with a wire 17. Next, a cover glass 14 is attached to the top of the package 12 to seal the solid semiconductor element 11. Thereby, manufacture of a solid-state image sensor is completed.
[0017]
Note that the hole 18 may be closed with a resin or the like after the solid semiconductor element 11 is bonded to the package 12.
In the present embodiment, the solid-state image sensor 11 is polished extremely thinly by chemical mechanical polishing, thereby imparting flexibility to the solid-state image sensor 11. And since the solid-state image sensor 11 which provided this flexibility is arrange | positioned along a cylindrical curved surface, as shown in FIG. 3, the distance from the imaging lens 21 to each light-receiving part 23 of a solid-state image sensor is equalized. Is done. Thereby, the influence of aberration can be reduced, and an image with less distortion can be obtained.
[0018]
In FIG. 3, reference numeral 22 denotes a microlens. In the present embodiment, since the solid-state imaging device 11 is arranged in a curved shape, the microlens 22 may be formed with its central axis aligned with the central axis of each light receiving unit 23. That is, in the present embodiment, the aberration can be reduced by the above method, so that it is not necessary to adopt a lens shifting method. For this reason, the design of the photomask for forming the microlens is easy, and the manufacturing cost can be reduced.
[0019]
Further, in the present embodiment, it is possible to cope with the change of the imaging lens only by changing the curvature of the bottom surface of the recess of the package 12.
(Modification of the first embodiment)
FIG. 4 is a diagram showing a modification of the first embodiment. 4A is a cross-sectional view taken along line AA in FIG. 1, and FIG. 4B is a cross-sectional view taken along line BB in FIG. 4, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0020]
In this example, the bottom surface of the recess 13 of the package 12 is curved into a spherical shape. Therefore, the solid-state image sensor 11 is curved and arranged along the spherical surface.
Thus, by arranging the solid-state imaging device 11 to be curved along the spherical surface, not only the horizontal aberration of the image but also the vertical aberration can be reduced.
(Second Embodiment)
FIGS. 5A and 5B are cross-sectional views of the solid-state imaging device according to the second embodiment of the present invention. Since the top view of the solid-state imaging device of the present embodiment is the same as the top view of the first embodiment shown in FIG. 1, it will be described here with reference to FIG. 5A shows a cross section taken along line AA in FIG. 1, and FIG. 5B shows a cross section taken along line BB in FIG. 5A and 5B, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0021]
In the present embodiment, the bottom surface of the recess 13 of the package 12 is curved in a cylindrical shape or a spherical shape as in the first embodiment, but the package 12 is not provided with a hole. The solid-state imaging device 11 is formed to a thickness of about 30 μm, and is fixed to the package 12 in a state of being curved along the curved surface of the recess 13. FIG. 5B shows a case where the bottom surface of the recess 13 is spherical. However, when the bottom surface of the recess 13 is cylindrical, it is shown in FIG. 2B except that there is no hole 18. The cross section is the same as the cross section.
[0022]
In the solid-state imaging device according to the present embodiment, the solid-state imaging device 11 is formed by the method described in the first embodiment, and then compressed air is blown from above the solid-state imaging device 11 as shown in FIG. The image sensor 11 is bent into a shape along the curved surface of the recess 13 and joined to the package 12. Then, after the electrodes of the solid-state imaging device 11 and the electrodes of the package 12 are electrically connected by bonding wires 17, a cover glass 14 is attached to the package 12 to seal the space in the package 12.
[0023]
Also in this embodiment, the same effect as that of the first embodiment can be obtained.
(Third embodiment)
7A and 7B are sectional views of a solid-state imaging device according to the third embodiment of the present invention. Since the top view of the solid-state imaging device of the present embodiment is the same as the top view of the first embodiment shown in FIG. 1, it will be described here with reference to FIG. 7A shows a cross section taken along line AA in FIG. 1, and FIG. 7B shows a cross section taken along line BB in FIG. 7A and 7B, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0024]
In the present embodiment, a step (projection) 13 a is formed at the edge of the recess 13 of the package 12. The stepped portion 13 a is provided with an inclined surface, and the edge of the solid-state imaging device 11 is joined to the inclined surface, and the solid-state imaging device 11 is curved into a cylindrical shape or a spherical shape and joined to the package 12. Yes.
Also in the present embodiment, as in the first embodiment, the solid-state imaging device 11 is sucked from the hole 18 provided in the package 12 and the solid-state imaging device 11 is bent into a cylindrical shape or a shape along the spherical surface. And bonded to the package 12.
[0025]
Also in this embodiment, in addition to obtaining the same effects as those of the first and second embodiments, it is not necessary to form a curved surface in the package 12, so that the package 12 can be easily manufactured. There are advantages.
(Fourth embodiment)
FIG. 8 is a top view of the solid-state imaging device according to the fourth embodiment of the present invention, and FIG. 9 is a cross-sectional view taken along the line CC of FIG. 8 and 9, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0026]
In the present embodiment, step portions 13 b are provided at the four corners in the package 12, and the solid-state imaging device 11 is joined to the step portions 13 b at the four corner portions so that the package 12 is spherical (or cylindrical). It is fixed in a curved state. Reference numeral 18 denotes a suction hole, which is curved into a spherical shape by sucking the solid-state image sensor 11 from the hole 18 when the solid-state image sensor 11 is fixed in the package 12 as in the first embodiment.
[0027]
Also in the present embodiment, in addition to obtaining the same effects as those of the first and second embodiments, it is not necessary to form a curved surface in the package 12, so that the package 12 can be easily manufactured. There is an advantage of being.
In each of the above embodiments, the case where the package 12 is formed of plastic has been described. However, the material of the package 12 is not limited by this, and the package 12 may be formed of ceramics, for example. Good.
[0028]
【The invention's effect】
As described above, according to the present invention, since the solid-state imaging device is housed in the package in a cylindrical or spherical shape, the distance from the imaging lens to each light receiving unit is made uniform. As a result, a high-quality image with little influence of aberration can be obtained. In addition, since aberrations can be reduced without using a lens shifting method, it is easy to design a photomask for forming a microlens, and the manufacturing cost can be reduced. Furthermore, it is possible to cope with the change of the imaging lens only by changing the curvature of the solid semiconductor element.
[Brief description of the drawings]
FIG. 1 is a top view showing a solid-state imaging device according to a first embodiment of the present invention.
2A is a cross-sectional view taken along line AA in FIG. 1, and FIG. 2B is a cross-sectional view taken along line BB in FIG.
FIG. 3 is a schematic diagram showing an effect of the first embodiment.
4 is a cross-sectional view showing a modification of the first embodiment, FIG. 4 (a) is a cross-sectional view taken along line AA of FIG. 1, and FIG. 4 (b) is a cross-sectional view of FIG. The cross section by B line is shown.
FIGS. 5A and 5B are cross-sectional views of a solid-state imaging device according to a second embodiment of the present invention.
FIG. 6 is a schematic diagram illustrating a method for closely attaching a solid-state imaging device and a package according to a second embodiment.
FIGS. 7A and 7B are sectional views of a solid-state imaging device according to a third embodiment of the present invention.
FIG. 8 is a top view of a solid-state imaging device according to a fourth embodiment of the present invention.
FIG. 9 is a cross-sectional view taken along the line CC of FIG.
FIG. 10 is a top view showing a conventional solid-state imaging device.
11A is a cross-sectional view taken along the line DD of FIG. 10, and FIG. 11B is a cross-sectional view taken along the line EE of FIG.
FIG. 12 is a schematic diagram of a digital camera using a conventional solid-state imaging device.
FIG. 13 is a schematic diagram for explaining lens shifting.
[Explanation of symbols]
11, 31 Solid-state image sensor,
12, 32 packages,
13, 33 recess,
13a, 13b steps,
14, 34 Cover glass,
15,35 leads,
16, 36 electrodes,
17, 37 Bonding wire,
18 holes,
21, 41 Imaging lens,
22, 42 Microlens,
23, 43 Light receiver.

Claims (2)

円筒状又は球面状の曲面を有する凹部が設けられたパッケージと、
湾曲した状態で前記パッケージ内に収納された固体撮像素子とを有し、
前記パッケージには、前記凹部の部分に前記固体撮像素子を吸着するための孔が設けられていることを特徴とする固体撮像装置。
A package provided with a recess having a cylindrical or spherical curved surface ;
A solid-state image sensor housed in the package in a curved state ,
The package is provided with a hole for adsorbing the solid-state imaging element in the concave portion .
前記パッケージは、前記固体撮像素子を収納する前記凹部と、前記凹部の縁部に設けられた段差部とを有し、前記固体撮像素子の縁部又は四隅の部分は前記段差部に固定されていることを特徴とする請求項1に記載の固体撮像装置。The package, said recess for accommodating the solid-state imaging device, and a step portion provided in an edge portion of the recess, edge or corners of the portion of the solid-state imaging device is fixed to the step portion The solid-state imaging device according to claim 1, wherein:
JP33554799A 1999-11-26 1999-11-26 Solid-state imaging device Expired - Fee Related JP4156154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33554799A JP4156154B2 (en) 1999-11-26 1999-11-26 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33554799A JP4156154B2 (en) 1999-11-26 1999-11-26 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2001156278A JP2001156278A (en) 2001-06-08
JP4156154B2 true JP4156154B2 (en) 2008-09-24

Family

ID=18289810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33554799A Expired - Fee Related JP4156154B2 (en) 1999-11-26 1999-11-26 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4156154B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604307B2 (en) * 2000-01-27 2011-01-05 ソニー株式会社 Imaging apparatus, method for manufacturing the same, and camera system
JP4178890B2 (en) * 2002-09-05 2008-11-12 ソニー株式会社 Solid-state imaging device
JP4543605B2 (en) * 2002-09-26 2010-09-15 ソニー株式会社 Solid-state imaging device and manufacturing method thereof
JP2005278133A (en) 2003-07-03 2005-10-06 Fuji Photo Film Co Ltd Solid state imaging device and optical device
JP4315833B2 (en) * 2004-02-18 2009-08-19 三洋電機株式会社 Circuit equipment
JP2006039265A (en) * 2004-07-28 2006-02-09 Seiko Epson Corp Microlens array plate, its manufacturing method, electrooptical device, and electronic equipment
JP2007109848A (en) * 2005-10-13 2007-04-26 Fujifilm Corp Solid imaging device, its manufacturing method, and its manufacturing equipment
US8120168B2 (en) 2006-03-21 2012-02-21 Promerus Llc Methods and materials useful for chip stacking, chip and wafer bonding
CN103311208A (en) * 2006-03-21 2013-09-18 普罗米鲁斯有限责任公司 Methods and materials useful for chip stacking, chip and wafer bonding
JP2007266380A (en) * 2006-03-29 2007-10-11 Matsushita Electric Ind Co Ltd Semiconductor image pickup device and its manufacturing method
JP2008092532A (en) 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Imaging apparatus, manufacturing method therefor and mobile phone unit
JP5004669B2 (en) * 2007-05-28 2012-08-22 京セラ株式会社 Imaging component, imaging unit, and manufacturing method thereof
US9123614B2 (en) 2008-10-07 2015-09-01 Mc10, Inc. Methods and applications of non-planar imaging arrays
JP2012515436A (en) * 2009-01-12 2012-07-05 エムシー10 インコーポレイテッド Non-planar imaging array methods and applications
JP5676171B2 (en) * 2010-07-26 2015-02-25 シャープ株式会社 Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JP2013084880A (en) * 2011-09-27 2013-05-09 Toshiba Corp Solid state imaging device, solid state imaging element, and method for manufacturing solid state imaging element
JP5705140B2 (en) 2011-09-27 2015-04-22 株式会社東芝 Solid-state imaging device and method for manufacturing solid-state imaging device
WO2014073685A1 (en) * 2012-11-12 2014-05-15 コニカミノルタ株式会社 Image capture lens, image capture device, and portable terminal
JP6135109B2 (en) * 2012-12-07 2017-05-31 ソニー株式会社 Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic apparatus
JPWO2016076124A1 (en) * 2014-11-11 2017-08-17 ソニー株式会社 SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD, SEMICONDUCTOR MODULE, AND ELECTRONIC DEVICE
CN107530004A (en) 2015-02-20 2018-01-02 Mc10股份有限公司 The automatic detection and construction of wearable device based on personal situation, position and/or orientation
JP6525687B2 (en) 2015-04-03 2019-06-05 キヤノン株式会社 Imaging device and imaging device
JP6324343B2 (en) * 2015-04-08 2018-05-16 キヤノン株式会社 Imaging apparatus and camera
CN109310340A (en) 2016-04-19 2019-02-05 Mc10股份有限公司 For measuring the method and system of sweat
JP6621951B1 (en) * 2018-12-28 2019-12-18 長瀬産業株式会社 Manufacturing method of semiconductor device
US20220278151A1 (en) * 2019-08-01 2022-09-01 Ningbo Sunny Opotech Co., Ltd. Camera module, and photosensitive assembly and manufacturing method therefor

Also Published As

Publication number Publication date
JP2001156278A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
JP4156154B2 (en) Solid-state imaging device
JP3782406B2 (en) Solid-state imaging device and manufacturing method thereof
JP5030360B2 (en) Method for manufacturing solid-state imaging device
US7367120B2 (en) Method for producing a solid-state imaging device
US7728398B2 (en) Micro camera module and method of manufacturing the same
US20080278617A1 (en) Image capturing device module, manufacturing method of the image capturing device module, and electronic information device
EP1434426A2 (en) Camera module and manufacturing method thereof
JP5676171B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
US8077248B2 (en) Optical device and production method thereof
JP2007510291A (en) Camera module and method of manufacturing such a camera module
JP2005026425A (en) Solid-state imaging device and its manufacturing method
US20050077451A1 (en) Optical device and production method thereof
US20030048378A1 (en) Imaging device module package
US20080296577A1 (en) Camera module package
US8952412B2 (en) Method for fabricating a solid-state imaging package
JP4178890B2 (en) Solid-state imaging device
JP3838573B2 (en) Solid-state imaging device
JP2001333322A (en) Solid-state image pickup device, cover, board and lens unit
JP3896586B2 (en) Solid-state imaging device and solid-state imaging camera
JP4352664B2 (en) Semiconductor device and manufacturing method thereof
JP3166216B2 (en) Solid-state imaging device with on-chip lens and method of manufacturing the same
JP2006332686A (en) Solid-state imaging device
JP3674777B2 (en) Solid-state imaging device
JPH11330442A (en) Optical device
JP4424470B2 (en) Solid-state imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4156154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees