JP4155124B2 - Metal clad plate and manufacturing method thereof - Google Patents
Metal clad plate and manufacturing method thereof Download PDFInfo
- Publication number
- JP4155124B2 JP4155124B2 JP2003186841A JP2003186841A JP4155124B2 JP 4155124 B2 JP4155124 B2 JP 4155124B2 JP 2003186841 A JP2003186841 A JP 2003186841A JP 2003186841 A JP2003186841 A JP 2003186841A JP 4155124 B2 JP4155124 B2 JP 4155124B2
- Authority
- JP
- Japan
- Prior art keywords
- plate
- metal
- rolling
- layer
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、摺動部を有する機械部品に用いる金属材料に最適な金属クラッド板およびその製造方法に関する。
【0002】
【従来の技術】
減速装置のローター板、クラッチ板などの摺動部を有する機械部品に用いる金属板には、第1に、摺動部での発熱と凝着を防止する観点から耐摩耗特性に優れること、および押し付け圧力によって変形しないことが要求される。このためには、金属板は高硬度(具体的には、ビッカース硬さで350以上)であることが必要である。第2に、摺動によって発生する熱を効率的に放散できることが要求されるので、金属板は高い熱伝導性を有することも必要である。
【0003】
高硬度の金属板としては、焼入れ硬化させた炭素鋼板、マルテンサイト系ステンレス鋼板、冷間圧延によって加工硬化させたオーステナイト系ステンレス鋼板、時効熱処理により析出硬化させたβ型チタン合金板などがある。しかし、これらの金属板は、単体では熱伝導性が乏しいために、連続摺動時に発生する熱を放散できず熱変形が生じたり、焼き付きを生じて凝着するという問題がある。
【0004】
このため、上記の機械部品としては、高硬度金属板と熱伝導性に優れる金属板とを積層した金属クラッド板を用いるのが有効である。
【0005】
金属クラッド板の製造方法には、爆着法、溶接肉盛り法、圧延法などがある。これらの製造方法のうち圧延法は、比較的薄肉の金属クラッド板を効率よく生産するのに適している。圧延法においては、まず、圧延圧力により接合素材が展伸してそれぞれの素材に新生表面が生成する。そして、この状態で素材同士が接触し、接合界面での相互拡散が進行して各素材が接合される。
【0006】
従来、圧延法による種々の金属クラッド板の製造方法が開示されている。
【0007】
特許文献1には、170〜250℃に加熱した炭素鋼板と300〜500℃に加熱したアルミニウム板とを圧延圧着してクラッド板を製造する方法が記載されている。特許文献2には、鋼板とアルミニウム板とをアルミニウム部材用ろう材を介して圧延してクラッド板を製造する方法が記載されている。また、特許文献3には、ステンレス鋼板とアルミニウム板との熱間圧延接合に際し、素材の加熱から圧延までの時間を2分以下に抑えるとともに、圧延接合後の捲き取り温度を200℃以上とするクラッド板の製造方法が記載されている。
【0008】
特許文献4には、所定の表面粗さに調整したステンレス鋼板とアルミニウム板またはアルミニウム合金板とを重ね合わせた後、200〜500℃で、総圧下率が15〜40%の条件で圧延するクラッド板の製造方法が記載されている。また、特許文献5には、150〜240℃に加熱したチタン板、370〜430℃に加熱したアルミニウム板、および150〜240℃に加熱したステンレス鋼板または鉄板を重ね合わせて、ワンパスで20〜40%にて圧延した後、350〜430℃で拡散焼鈍するクラッド板の製造方法が記載されている。
【0009】
【特許文献1】
特許第2663811号公報
【特許文献2】
特開平6−63773号公報
【特許文献3】
特開平5−146880号公報
【特許文献4】
特許第3090038号公報
【特許文献5】
特許第3394746号公報
【0010】
【発明が解決しようとする課題】
しかし、いずれの文献に記載される製造方法においても、アルミニウム板またはアルミニウム合金板と接合する金属板として、軟化焼鈍した材料が使用されており、以下に示すように、アルミニウム板などの軟質金属板とビッカース硬さで350以上の高硬度金属板とのクラッド接合にこれらの製造方法を適用することはできない。
【0011】
図1は、高硬度の金属板と熱伝導性に優れた金属板とから2層クラッド板を作製したときの、総圧下率と各素材個別の圧下率との関係を示す図である。なお、高硬度の金属板としては、0.5mm厚さのSUS410Sマルテンサイト系ステンレス鋼板を焼入れしたもの(この鋼板のビッカース硬さは400。以下、単に「SUS410S板」と呼ぶ)を用い、熱伝導性に優れた金属板としては、A1100純アルミニウムを焼鈍したもの(以下、単に「A1100板」と呼ぶ)を用いた。また、各金属板を個別に400℃に加熱した後、圧延に供した。
【0012】
図2は、上記の方法により得た金属クラッド板の総圧下率と接合強度との関係を示す図である。なお、図2中の「接合圧延+熱処理」は、接合界面での相互拡散を進行させるために、上記の方法により得た金属クラッド板に350℃×30分の熱処理を施したものを意味する。また、図2中の接合強度は、金属クラッド板から切り出した10mm幅×120mm長さの短冊試験片の先端部を強制的に剥離した後、図3に示すように、SUS410S板1の端部とA1100板2の端部とを別々の治具3により保持し、長さ方向と垂直方向(図3中の矢印の方向)に引き剥がしたときの引張荷重(N)を測定し、これを試験片の幅(10mm)で除して得た値(N/mm)である。接合強度(以下、「剥離強度」ともいう。)の目標値は、実使用を考慮して10N/mmとした。
【0013】
図1に示すように、総圧下率を増加させていくとA1100板の個別圧下率は上昇していくが、SUS410S板の個別圧下率はほとんど変化せず、総圧下率40%においても高々2%程度である。このため、SUS410S板の表面ではほとんど新生表面が生成していないものと考えられる。このことは、図2に示すように、接合ままの金属クラッド板では剥離強度が1N/mm程度であり、上記の熱処理を施したものでも目標値の10N/mmに達しなかったことからも推測できる。
【0014】
以上のように、アルミニウム板などの軟質金属板とビッカース硬さで350以上の高硬度金属板とを接合してなる金属クラッド板を従来の方法で製造した場合には、十分な接合強度が得られないため、摺動部を有する機械部品に用いることができない。
【0015】
そこで、本発明者らが研究した結果、金属クラッド板の接合過程において、それぞれの金属板を接合圧延するだけの場合と、一旦接合圧延した金属クラッド板を再圧延する場合とで接合面における新生表面の生成挙動が異なることが分かった。そして、本発明者らは、更に研究を重ね、このような再圧延を前提として、接合強度を増大させるのに必要な製造条件を知見して本発明を完成させた。
【0016】
本発明は、少なくとも片面を構成する金属板として高硬度金属板を用い、他の面または中間層の金属板としてアルミニウム板またはアルミニウム合金板を用いた、接合強度に優れる2層または3層のクラッド板、およびその製造方法を提供することを目的とする。
【0017】
なお、熱伝導性に優れた金属板としては銅板、アルミニウム板またはこれらの合金板が挙げられるが、銅を含む金属クラッド板は接合性が悪いため、本発明のクラッド板ではアルミニウム板またはアルミニウム合金板を用いることとした。
【0018】
【課題を解決するための手段】
本発明は、上記の目的を達成するためになされたものであり、下記の(A)〜(D)を要旨とする。
【0019】
(A)少なくとも一方の表面の硬さがビッカース硬度で350以上の金属からなる第1層と、アルミニウムまたはアルミニウム合金からなる第2層とで構成され、層間の剥離強度が10N/mm以上である金属クラッド板。
【0020】
(B) 下記の(1)から(5)の工程により製造することを特徴とする上記(A)に記載の金属クラッド板の製造方法。
【0021】
(1)硬さがビッカース硬度で350以上の金属板と、アルミニウム板またはアルミニウム合金板とを個別に250〜430℃に加熱し、積層する工程、
(2)圧下率10%以上で接合圧延する工程、
(3)300〜500℃で3分以上保持する工程、
(4)得られたクラッド板を2.0%以上、破断伸び値以下の圧下率で圧延する工程、および
(5)300〜500℃で3分以上保持する工程。
【0022】
(C)少なくとも一方の表面の硬さがビッカース硬度で350以上の金属からなる第1層と、アルミニウムまたはアルミニウム合金からなる第2層と、任意の金属からなる第3層とで構成された金属クラッド板であって、中間層がアルミニウムまたはアルミニウム合金であり、第1層および第2層の層間における剥離強度が10N/mm以上である金属クラッド板。
【0023】
(D) 下記の(1)から(5)の工程により製造することを特徴とする上記(C)に記載の金属クラッド板の製造方法。
【0024】
(1)硬さがビッカース硬度で350以上の金属板と、アルミニウム板またはアルミニウム合金板と、任意の金属板とを個別に250〜430℃に加熱し、この順序で積層する工程、
(2)圧下率10%以上で接合圧延する工程、
(3)300〜500℃で3分以上保持する工程、
(4)得られたクラッド板を2.0%以上、破断伸び値以下の圧下率で圧延する工程、および
(5)300〜500℃で3分以上保持する工程。
【0025】
【発明の実施の形態】
1.金属クラッド板について
本発明の金属クラッド板は、少なくとも一方の表面の硬さがビッカース硬度で350以上の金属(以下、「高硬度金属」とも呼ぶ。)からなる第1層およびアルミニウムまたはアルミニウム合金からなる第2層、または更に、任意の金属からなる第3層とで構成された金属クラッド板であって、一方の層または中間層がアルミニウムまたはアルミニウム合金であることを特徴とする。また、第1層および第2層の層間における剥離強度は10N/mm以上である。
【0026】
例えば、ローター板のように板の両面が摺動面となる機械部品には、中間層に熱伝導性に富むアルミニウムまたはアルミニウム合金を有し、その両端面を高硬度金属で挟んだ3層クラッド板を用いることができる。また、クラッチ板のように板の片側表面のみが摺動面となる機械部品には、高硬度金属と、アルミニウムまたはアルミニウム合金とを一枚ずつ積層した2層クラッド板、または高硬度金属板と任意の金属板の中間に熱伝導性に優れた金属板を積層した3層クラッド板を用いることができる。
【0027】
前述のように、高硬度金属板とアルミニウム等の軟質の金属板とからなる金属クラッド板を従来の方法で製造しても、金属板間の接合強度が不十分なものとなり、摺動部を有する金属部品の素材として用いることができない。しかし、後述する方法によれば、高硬度金属とアルミニウム等の軟質の金属からなる金属クラッド板に十分な接合強度(具体的には、剥離強度で10N/mm以上)が得られる。
【0028】
なお、本発明の金属クラッド板に用いる高硬度金属板としては、焼入れ硬化させた炭素鋼板、マルテンサイト系ステンレス鋼板、冷間圧延によって加工硬化させたオーステナイト系ステンレス鋼板、時効熱処理により析出硬化させたβ型チタン合金板などである。また、任意の金属板としては上記の高硬度金属板を用いてもよいし、片面だけに高硬度が求められる場合には硬化処理を施さずに製造した炭素鋼や各種ステンレス鋼のほか、チタン、ニッケルまたはアルミニウムもしくはこれらの合金を含む一般に用いられる金属材料を用いてもよい。
【0029】
2.金属クラッド板の製造方法について
A.工程(1)〜(3)について
本発明の製造方法においては、まず、接合に供する金属板を個別に250〜430℃に加熱、積層し、圧下率10%以上で接合圧延(以下、「第1圧延」と呼ぶ。)した後、300〜500℃で3分以上保持する熱処理(以下、「第1熱処理」と呼ぶ。)に供する必要がある。
【0030】
加熱温度が250℃未満の場合には、接合面の化学的な活性が十分に得られず、430℃を超えると、接合素材の表面に厚い酸化被膜が形成されて金属同士の接合が阻害される。このため、いずれの場合も十分な接合強度が得られなくなる。従って、事前の加熱温度を250〜430℃とした。
【0031】
第1圧延は、第1熱処理で相互拡散を進行させるべく、各金属板を仮接合状態とすることを目的として行う。しかし、その圧下率が10%未満の場合には圧力が不十分であり、その後に、第1熱処理を実施しても接合界面に十分な相互拡散を進行させることができない。従って、第1圧延の圧下率を10%以上とした。圧下率の上限については、特に制限はないが、圧延機への負荷の増大、製品形状の確保の困難性の観点から60%以下とするのが望ましい。
【0032】
第1熱処理は、接合界面での相互拡散を進行させることを目的として行う処理である。この熱処理を施した後に、後述の第2圧延および第2熱処理を施すことにより強固な接合強度が得られる。しかし、第1熱処理の温度が300℃未満の場合には接合界面での相互拡散が進行せず、500℃を超えると接合界面に脆い金属間化合物が生成する。このため、いずれの場合にも最終的に十分な接合強度が得られない。また、接合界面の相互拡散は短時間の熱処理でも進行するが、接合界面全体に均質な相互拡散を得るためには3分以上の熱処理時間が必要である。従って、第1熱処理を300〜500℃で3分以上保持して行うこととした。なお、製造コストの観点からは2時間以下とするのが望ましい。
【0033】
ここで、前述した図2に示すように、第1圧延の後に第1熱処理を施しても、剥離強度の最終目標値(10N/mm以上)は得られない。しかし、本発明の製造方法では、上記の条件で一旦仮接合をした後、後述の第2圧延を施すこととしているので、上記の第1熱処理後の段階で最終目標値に達している必要はなく、第1熱処理後の接合強度としては、引き続き第2圧延を行うことができる程度の接合強度、即ち、剥離強度で3N/mm以上を目標とする。
【0034】
B.工程(4)について
本発明の製造方法においては、上記の第1熱処理後に、2.0%以上、破断伸び値以下の圧下率で圧延(以下、「第2圧延」と呼ぶ。)する必要がある。
【0035】
上述のように、この第2圧延の前では第1熱処理により接合界面での相互拡散が進行した状態となっているため、高硬度金属板とアルミニウム等の金属板とはある程度の強度(具体的には、3N/mm以上)で接合されている。この相互拡散が進行した状態の金属クラッド板を第2圧延に供すると、以下に示すように、各構成材料が同じ圧下率で展伸するので、高硬度金属表面における新生表面の生成が効率的に進行する。
【0036】
図4は、第2圧延時の総圧下率と各素材個別の圧下率との関係を示す図である。なお、この実験では、前掲のSUS410S板およびA1100板を用い、各金属板を個別に400℃に加熱、積層し、総圧下率で30%の第1圧延に供し、350℃×30分の第1熱処理を施した後に、種々の圧下率で第2圧延に供し、その総圧下率と各素材個別の圧下率を測定した。
【0037】
図4に示すように、高硬度金属板(SUS410S板)および軟質金属板(A1100板)それぞれの個別圧下率はいずれも総圧下率とほぼ同一となる。このため、高硬度金属板の表面には総圧下率と同じ比率で新生表面が生成しており、接合過程が進行していると考えられる。従って、本発明の製造方法においては、第1圧延、第1熱処理の後、更に第2圧延を実施することとした。
【0038】
しかし、第2圧延の圧下率が2.0%未満の場合には、その後に後述する第2熱処理を施しても、金属クラッド板の剥離強度を10N/mm以上とすることができない。このため、第2圧延を2.0%以上の圧下率で行うこととした。好ましい範囲は3.0%以上である。一方、第1熱処理後の金属クラッド板の破断伸び値を超える圧下率で第2圧延を行うと、下記の問題が生じる。
【0039】
上記の実験において第2圧延を圧下率12.5%で実施した金属クラッド板の高硬度金属層に断続的な割れが発生し、これより更に大きな圧下率で第2圧延を行うと接合界面に剥離が生じた。一方、上記の第1熱処理後の金属クラッド板について引張試験を実施し、破断伸び値を求めたところ12%であった。同様の実験を金属クラッド板の構成部材を変えて行ったところ、第1熱処理後の金属クラッド板の破断伸び値を超える圧下率で第2圧延を行うと上記と同様の結果が得られた。このため、第2圧延は、第1熱処理後の金属クラッド板の破断伸び値以下の圧下率で行うこととした。
【0040】
上述のように、第2圧延は、高硬度金属板の表面における新生表面の生成を効率的に進行させ、接合強度を増大するのに有用である。そればかりか、通常の金属クラッド板の接合圧延は1パスで完了するため高精度な板厚管理が困難であるが、第2圧延を実施することにより板厚分布を調整することができる。
【0041】
C.工程(5)について
本発明の製造方法では、上記の第2圧延の後、300〜500℃で3分以上保持する熱処理(以下、「第2熱処理」と呼ぶ。)を実施する必要がある。
【0042】
図5は、上記図4に示す実験で得た金属クラッド板の総圧下率と接合強度との関係を示す図である。なお、図5中の「第2圧延+熱処理」は、金属クラッド板に350℃×30分の熱処理を施したものを意味する。図5に示すように、第2圧延を実施したままの金属クラッド板では、その接合強度が剥離強度で2N/mm程度で推移し、目標値の10N/mmに達していないが、金属クラッド板に第2熱処理を施すことによって急激に接合強度が増大する。これは、第2圧延を実施したままの状態の接合界面には高硬度金属側に新生表面が生成しているものの相互拡散が進行していないために接合強度が小さいが、第2熱処理により相互拡散が進行して接合強度が増大したと考えられる。
【0043】
しかし、第2熱処理の温度が300℃未満の場合には接合界面での相互拡散が進行しない。また、500℃を超えると接合界面に脆い金属間化合物が生成する。従って、いずれの場合にも十分な接合強度が得られない。ここで、接合界面全体に均質な相互拡散を得るためには3分以上の熱処理時間が必要である。従って、第2熱処理を300〜500℃で3分以上保持して行うこととした。なお、製造コストの観点からは2時間以下とするのが望ましい。
【0044】
以上の説明では、主として2層の金属クラッド板について説明したが、3層の金属クラッド板の製造に際しても、第1圧延と第2圧延における接合強度の変化挙動は同様である。
【0045】
【実施例】
構成部材と製造条件を変えて金属クラッド板を作製した。各構成部材および製造条件を表1および2に示す。
【0046】
【表1】
【0047】
【表2】
【0048】
なお、表1および2には、第1熱処理後の接合強度、ならびに第2熱処理後の接合強度および第1層の表面硬さを併記した。接合強度は、前述と同様の手法により、第1層の端部と、第2層(または、第2層および第3層)の端部とを別々の治具により保持し、長さ方向と垂直方向に引き剥がしたときの引張荷重(N)を測定し、これを試験片の幅(10mm)で除して得た剥離強度(N/mm)を意味する。第1熱処理後の接合強度(剥離強度)の目標値は3N/mmであり、第2熱処理後の接合強度(剥離強度)の目標値は10N/mmである。また、ビッカース硬さは、JIS Z 2244に規定される方法に従って第1層表面について測定した。
【0049】
第1層の「SUS410S」は焼入れ硬化させたマルテンサイト系ステンレス鋼、「SUS301」は冷間圧延によって加工硬化させたオーステナイト系ステンレス鋼、「SPFC」は焼入れ硬化した炭素鋼、「Ti-20V-3.3Al-1Sn」は冷間圧延後に時効熱処理を行うことによって析出硬化したβ型チタン合金である。また、第2層の「A1100」は純アルミニウムを焼鈍したもの、「A3003」はMnを含むアルミニウム合金、「A6061」および「A7075」は時効熱処理によって高強度化が可能なアルミニウム合金である。
【0050】
表1に示すように、本発明例1〜9はいずれも第2熱処理後の接合強度(剥離強度)が10N/mmを超え、且つ第1層のビッカース硬さが350を超えており、良好な結果が得られた。一方、比較例10および14は、それぞれ第1、第2層の加熱温度が本発明で規定される範囲を下回っており、第1熱処理後の接合強度(剥離強度)が3N/mm未満となった。この結果、第2圧延において構成部材間の剥離が発生した。
【0051】
比較例11は第1圧延における圧下率が本発明で規定される範囲を下回っていた。比較例16は第1層の加熱温度が本発明で規定される範囲を上回っており、第1層であるSPFC材の表面に厚い酸化被膜が生じた。このため、いずれの場合も第1圧延で接合が完了せず、その後の処理を中止した。
【0052】
比較例12は第2熱処理の温度が本発明で規定される範囲を下回っており、比較例17は第2熱処理の温度が本発明で規定される範囲を上回っていた。このため、いずれの場合も一応接合するものの接合強度が目標値に達しなかった。比較例13および20は本発明で規定される条件で製造したものであるが、第1層として用いた金属板のビッカース硬さが350未満であり、最終的に得られた金属クラッド板の第1層のビッカース硬さも350未満であった。
【0053】
比較例15および18は第2圧延の圧下率が本発明で規定される範囲を上回っており、第1層の金属に割れが生じるとともに、構成部材間の剥離が発生した。比較例19は第1熱処理の温度が本発明で規定される範囲を下回っており、第1熱処理後に十分な接合強度が得られず、第2圧延時に構成部材間の剥離が発生した。
【0054】
【発明の効果】
本発明の金属クラッド板の製造方法によれば、ビッカース硬さで350以上の高硬度金属板と軟質のアルミニウム板またはアルミニウム合金板とを強固に接合させることができる。この方法で得られる金属クラッド板は耐摩耗特性および熱伝導性に優れるため、例えば、減速装置のローター板やクラッチ板などの摺動部を有する機械部品の素材として最適な金属クラッド板を提供することができる。
【図面の簡単な説明】
【図1】高硬度金属板と熱伝導性に優れた金属板とから2層クラッド板を作製したときの、総圧下率と各素材個別の圧下率との関係を示す図である。
【図2】金属クラッド板の総圧下率と接合強度との関係を示す図である。
【図3】接合強度の測定方法を示す図である。
【図4】第2圧延時の総圧下率と各素材個別の圧下率との関係を示す図である。
【図5】図4に示す実験で得た金属クラッド板の総圧下率と接合強度との関係を示す図である。
【符号の説明】
1.SUS410S板、2.A1100板、3.治具[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal clad plate optimal for a metal material used for a machine part having a sliding portion and a method for manufacturing the same.
[0002]
[Prior art]
Metal plates used for mechanical parts having sliding parts such as a rotor plate and a clutch plate of a reduction gear are firstly excellent in wear resistance from the viewpoint of preventing heat generation and adhesion at the sliding parts, and It is required not to be deformed by the pressing pressure. For this purpose, the metal plate needs to have high hardness (specifically, a Vickers hardness of 350 or more). Secondly, since it is required that heat generated by sliding can be efficiently dissipated, the metal plate is also required to have high thermal conductivity.
[0003]
Examples of the high-hardness metal plate include quench-hardened carbon steel plate, martensitic stainless steel plate, austenitic stainless steel plate work-hardened by cold rolling, and β-type titanium alloy plate precipitation hardened by aging heat treatment. However, these metal plates have poor heat conductivity, so that heat generated during continuous sliding cannot be dissipated and heat deformation occurs, or seizure occurs and adhesion occurs.
[0004]
For this reason, it is effective to use a metal clad plate in which a high-hardness metal plate and a metal plate excellent in thermal conductivity are laminated as the mechanical component.
[0005]
As a method for producing a metal clad plate, there are an explosion deposition method, a welding overlay method, a rolling method, and the like. Of these manufacturing methods, the rolling method is suitable for efficiently producing a relatively thin metal clad plate. In the rolling method, first, the joining material is expanded by the rolling pressure, and a new surface is generated on each material. In this state, the materials come into contact with each other, and mutual diffusion at the joining interface proceeds to join the materials.
[0006]
Conventionally, various metal clad plate manufacturing methods by a rolling method have been disclosed.
[0007]
Patent Document 1 describes a method of producing a clad plate by rolling and pressing a carbon steel plate heated to 170 to 250 ° C. and an aluminum plate heated to 300 to 500 °
[0008]
Patent Document 4 discloses a clad which is obtained by superposing a stainless steel plate adjusted to a predetermined surface roughness and an aluminum plate or an aluminum alloy plate and then rolling at 200 to 500 ° C. under a total rolling reduction of 15 to 40%. A method for manufacturing a plate is described. In
[0009]
[Patent Document 1]
Japanese Patent No. 2663811 [Patent Document 2]
JP-A-6-63773 [Patent Document 3]
JP-A-5-146880 [Patent Document 4]
Japanese Patent No. 3090038 [Patent Document 5]
Japanese Patent No. 3394746 gazette
[Problems to be solved by the invention]
However, in any of the manufacturing methods described in any document, a soft annealed material is used as a metal plate to be joined to an aluminum plate or an aluminum alloy plate. As shown below, a soft metal plate such as an aluminum plate is used. These manufacturing methods cannot be applied to clad bonding with a high-hardness metal plate having a Vickers hardness of 350 or more.
[0011]
FIG. 1 is a diagram showing the relationship between the total rolling reduction and the rolling reduction of each material when a two-layer clad plate is made from a high hardness metal plate and a metal plate excellent in thermal conductivity. As the high hardness metal plate, a 0.5 mm thick SUS410S martensitic stainless steel plate is used (this steel plate has a Vickers hardness of 400, hereinafter referred to simply as “SUS410S plate”). As the metal plate having excellent properties, A1100 pure aluminum annealed (hereinafter simply referred to as “A1100 plate”) was used. Each metal plate was individually heated to 400 ° C. and then subjected to rolling.
[0012]
FIG. 2 is a diagram showing the relationship between the total rolling reduction of the metal clad plate obtained by the above method and the bonding strength. Note that “joint rolling + heat treatment” in FIG. 2 means that the metal clad plate obtained by the above method is subjected to a heat treatment at 350 ° C. for 30 minutes in order to advance mutual diffusion at the joint interface. . Also, the bonding strength in FIG. 2 is the end of the SUS410S plate 1 as shown in FIG. 3 after forcibly peeling the tip of a 10 mm wide × 120 mm long strip test piece cut out from the metal clad plate. And the end of the
[0013]
As shown in FIG. 1, when the total rolling reduction is increased, the individual rolling reduction of the A1100 plate is increased, but the individual rolling reduction of the SUS410S plate is hardly changed, and even when the total rolling reduction of 40% is 2 at most. %. For this reason, it is considered that almost no new surface is generated on the surface of the SUS410S plate. As shown in FIG. 2, this is presumed from the fact that the peel strength of the as-bonded metal clad plate is about 1 N / mm, and the target value of 10 N / mm was not reached even with the heat treatment described above. it can.
[0014]
As described above, when a metal clad plate obtained by bonding a soft metal plate such as an aluminum plate and a high hardness metal plate having a Vickers hardness of 350 or more is manufactured by a conventional method, sufficient bonding strength is obtained. Therefore, it cannot be used for a machine part having a sliding portion.
[0015]
Therefore, as a result of the study by the present inventors, in the joining process of the metal clad plate, the new surface at the joint surface is obtained when only the metal plate is joined and rolled, and when the metal clad plate once joined and rolled is re-rolled. It was found that the generation behavior of the surface was different. Then, the present inventors have further researched, and on the premise of such re-rolling, the present inventors have completed the present invention by knowing the manufacturing conditions necessary for increasing the bonding strength.
[0016]
The present invention uses a high-hardness metal plate as a metal plate constituting at least one surface, and uses an aluminum plate or an aluminum alloy plate as another surface or intermediate layer metal plate, and has a two-layer or three-layer clad having excellent bonding strength It aims at providing a board and its manufacturing method.
[0017]
In addition, as a metal plate excellent in thermal conductivity, a copper plate, an aluminum plate, or an alloy plate thereof may be mentioned. However, since a metal clad plate containing copper has poor bondability, the clad plate of the present invention has an aluminum plate or an aluminum alloy. A plate was used.
[0018]
[Means for Solving the Problems]
The present invention has been made in order to achieve the above object, and the following (A) to (D) are summarized.
[0019]
(A) at least hardness of one surface is composed of 350 or more metals in Vickers hardness first layer, is composed of a second layer of aluminum or aluminum alloy is the peel strength between the layers is 10 N / mm or more Metal clad plate.
[0020]
(B) The method for producing a metal clad plate according to (A), wherein the metal clad plate is produced by the following steps (1) to (5).
[0021]
(1) A step of individually heating and laminating a metal plate having a Vickers hardness of 350 or more and an aluminum plate or an aluminum alloy plate to 250 to 430 ° C.,
(2) Joining and rolling at a rolling reduction of 10% or more,
(3) A step of holding at 300 to 500 ° C. for 3 minutes or more,
(4) rolling the obtained clad plate at a rolling reduction of 2.0% or more and a breaking elongation value or less; and
(5) The process of hold | maintaining at 300-500 degreeC for 3 minutes or more.
[0022]
(C) metal hardness of at least one surface made of a first layer consisting of 350 or more metals in Vickers hardness, a second layer of aluminum or an aluminum alloy, a third layer of any metal A metal clad plate that is a clad plate, wherein the intermediate layer is aluminum or an aluminum alloy, and the peel strength between the first layer and the second layer is 10 N / mm or more.
[0023]
(D) The method for producing a metal clad plate according to (C), wherein the metal clad plate is produced by the following steps (1) to (5).
[0024]
(1) A process in which a metal plate having a Vickers hardness of 350 or more, an aluminum plate or an aluminum alloy plate, and an arbitrary metal plate are individually heated to 250 to 430 ° C. and laminated in this order,
(2) Joining and rolling at a rolling reduction of 10% or more,
(3) A step of holding at 300 to 500 ° C. for 3 minutes or more,
(4) rolling the obtained clad plate at a rolling reduction of 2.0% or more and a breaking elongation value or less; and
(5) The process of hold | maintaining at 300-500 degreeC for 3 minutes or more.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
1. Metal clad board of the present invention for metal clad plate, at least one surface hardness is 350 or more metals in Vickers hardness (hereinafter, "high-hardness metal", also referred to.) From the first layer and the aluminum or aluminum alloy consisting of second layer of, or in addition, a metal cladding plate and a third layer of any metal, one layer or intermediate layer is characterized in that aluminum or an aluminum alloy. Further, the peel strength between the first layer and the second layer is 10 N / mm or more.
[0026]
For example, a mechanical part such as a rotor plate, in which both sides of the plate are sliding surfaces, has a three-layer clad having an aluminum or aluminum alloy with high thermal conductivity in the intermediate layer and sandwiched between both end surfaces with a hard metal. A plate can be used. In addition, a mechanical component in which only one surface of the plate is a sliding surface, such as a clutch plate, is a two-layer clad plate in which a high-hardness metal and aluminum or an aluminum alloy are laminated one by one, or a high-hardness metal plate A three-layer clad plate in which a metal plate excellent in thermal conductivity is laminated between any metal plates can be used.
[0027]
As described above, even if a metal clad plate made of a high-hardness metal plate and a soft metal plate such as aluminum is manufactured by a conventional method, the bonding strength between the metal plates becomes insufficient, and the sliding portion is It cannot be used as a material for metal parts. However, according to the method described later, a sufficient bonding strength (specifically, a peel strength of 10 N / mm or more) can be obtained for a metal clad plate made of a hard metal and a soft metal such as aluminum.
[0028]
In addition, as the high hardness metal plate used for the metal clad plate of the present invention, quench hardening carbon steel, martensitic stainless steel, austenitic stainless steel work hardened by cold rolling, precipitation hardened by aging heat treatment β-type titanium alloy plate. In addition, the above-mentioned high-hardness metal plate may be used as an arbitrary metal plate, and when high hardness is required only on one side, carbon steel and various stainless steels manufactured without being subjected to hardening treatment, titanium Commonly used metal materials including nickel, aluminum or alloys thereof may be used.
[0029]
2. About the manufacturing method of a metal clad board Regarding the steps (1) to (3), in the production method of the present invention, first, metal plates to be joined are individually heated and laminated at 250 to 430 ° C., and joined and rolled (hereinafter referred to as “No. It is necessary to use for the heat processing (henceforth "1st heat processing") hold | maintained at 300-500 degreeC for 3 minutes or more after calling it.
[0030]
When the heating temperature is less than 250 ° C, the chemical activity of the bonding surface cannot be obtained sufficiently, and when it exceeds 430 ° C, a thick oxide film is formed on the surface of the bonding material and the metal-to-metal bonding is hindered. The For this reason, in any case, sufficient bonding strength cannot be obtained. Therefore, the preheating temperature was set to 250 to 430 ° C.
[0031]
The first rolling is performed for the purpose of bringing each metal plate into a temporarily joined state so that mutual diffusion proceeds in the first heat treatment. However, when the rolling reduction is less than 10%, the pressure is insufficient, and sufficient interdiffusion cannot proceed to the bonding interface even after the first heat treatment is performed. Therefore, the rolling reduction of the first rolling is set to 10% or more. The upper limit of the rolling reduction is not particularly limited, but is preferably 60% or less from the viewpoint of increasing the load on the rolling mill and difficulty in securing the product shape.
[0032]
The first heat treatment is performed for the purpose of promoting interdiffusion at the bonding interface. After this heat treatment, a strong bonding strength can be obtained by performing the second rolling and second heat treatment described later. However, when the temperature of the first heat treatment is less than 300 ° C., mutual diffusion does not proceed at the bonding interface, and when it exceeds 500 ° C., a brittle intermetallic compound is generated at the bonding interface. For this reason, in any case, finally sufficient bonding strength cannot be obtained. Further, the interdiffusion of the bonding interface proceeds even with a short heat treatment, but a heat treatment time of 3 minutes or more is required to obtain a homogeneous interdiffusion over the entire bonding interface. Therefore, the first heat treatment is performed at 300 to 500 ° C. for 3 minutes or more. In addition, from the viewpoint of manufacturing cost, it is desirable to set it to 2 hours or less.
[0033]
Here, as shown in FIG. 2 described above, even if the first heat treatment is performed after the first rolling, the final target value (10 N / mm or more) of the peel strength cannot be obtained. However, in the production method of the present invention, after temporarily joining under the above-mentioned conditions, the second rolling described later is performed, so it is necessary to reach the final target value at the stage after the first heat treatment. In addition, the bonding strength after the first heat treatment is set to a bonding strength at which the second rolling can be continued, that is, a peel strength of 3 N / mm or more.
[0034]
B. Regarding the step (4), in the production method of the present invention, after the first heat treatment, it is necessary to perform rolling (hereinafter referred to as “second rolling”) at a reduction rate of 2.0% or more and a breaking elongation value or less.
[0035]
As described above, since the interdiffusion at the joint interface has progressed by the first heat treatment before the second rolling, the high-hardness metal plate and the metal plate such as aluminum have some strength (specifically Are joined at 3 N / mm or more). When the metal clad plate in the state where the interdiffusion has progressed is subjected to the second rolling, as shown below, each constituent material expands at the same rolling reduction, so that the generation of a new surface on the high-hardness metal surface is efficient. Proceed to.
[0036]
FIG. 4 is a diagram showing the relationship between the total rolling reduction during the second rolling and the rolling reduction for each material. In this experiment, the above-mentioned SUS410S plate and A1100 plate were used, each metal plate was individually heated and laminated to 400 ° C., and subjected to the first rolling of 30% in terms of the total rolling reduction, and 350 ° C. × 30 min. After performing one heat treatment, it was subjected to the second rolling at various rolling reductions, and the total rolling reduction and the rolling reduction of each material were measured.
[0037]
As shown in FIG. 4, the individual reduction ratios of the high-hardness metal plate (SUS410S plate) and the soft metal plate (A1100 plate) are almost the same as the total reduction rate. For this reason, a new surface is generated at the same ratio as the total rolling reduction on the surface of the high-hardness metal plate, and it is considered that the joining process is in progress. Therefore, in the manufacturing method of the present invention, the second rolling is further performed after the first rolling and the first heat treatment.
[0038]
However, when the rolling reduction of the second rolling is less than 2.0%, the peel strength of the metal clad plate cannot be made 10 N / mm or more even if a second heat treatment described later is performed. For this reason, the second rolling is performed at a rolling reduction of 2.0% or more. A preferable range is 3.0% or more. On the other hand, when the second rolling is performed at a rolling reduction exceeding the breaking elongation value of the metal clad plate after the first heat treatment, the following problems occur.
[0039]
In the above experiment, intermittent cracking occurred in the high-hardness metal layer of the metal clad plate subjected to the second rolling at a rolling reduction of 12.5%, and if the second rolling was performed at a higher rolling reduction than this, peeling occurred at the joint interface. occured. On the other hand, a tensile test was performed on the metal clad plate after the first heat treatment, and the elongation at break was determined to be 12%. When the same experiment was performed by changing the constituent members of the metal clad plate, the same result as above was obtained when the second rolling was performed at a rolling reduction exceeding the fracture elongation value of the metal clad plate after the first heat treatment. For this reason, the second rolling is performed at a rolling reduction equal to or lower than the breaking elongation value of the metal clad plate after the first heat treatment.
[0040]
As described above, the second rolling is useful for efficiently generating a new surface on the surface of the high-hardness metal sheet and increasing the bonding strength. In addition, since the ordinary metal clad plate joining rolling is completed in one pass, it is difficult to control the thickness with high accuracy. However, the thickness distribution can be adjusted by performing the second rolling.
[0041]
C. Regarding the step (5), in the production method of the present invention, after the second rolling, it is necessary to perform a heat treatment (hereinafter referred to as “second heat treatment”) held at 300 to 500 ° C. for 3 minutes or more.
[0042]
FIG. 5 is a diagram showing the relationship between the total rolling reduction of the metal clad plate obtained in the experiment shown in FIG. 4 and the bonding strength. Incidentally, the "second rolling + heat treatment" in FIG. 5 is one which was subjected to heat treatment at 350 ° C. × 30 minutes in a metal clad plate. As shown in FIG. 5, in the metal clad plate that has been subjected to the second rolling, the bond strength has changed at a peel strength of about 2 N / mm and has not reached the target value of 10 N / mm. By applying the second heat treatment, the bonding strength is rapidly increased. This is because although a new surface is formed on the high-hardness metal side at the bonding interface in the state where the second rolling is performed, the interdiffusion is not progressing, but the bonding strength is low. It is considered that the diffusion strength has advanced and the bonding strength has increased.
[0043]
However, when the temperature of the second heat treatment is less than 300 ° C., mutual diffusion does not proceed at the bonding interface. Moreover, when it exceeds 500 degreeC, a brittle intermetallic compound will produce | generate in a joining interface. Therefore, in any case, sufficient bonding strength cannot be obtained. Here, in order to obtain uniform interdiffusion over the entire bonding interface, a heat treatment time of 3 minutes or more is required. Accordingly, the second heat treatment is performed at 300 to 500 ° C. for 3 minutes or more. In addition, from the viewpoint of manufacturing cost, it is desirable to set it to 2 hours or less.
[0044]
In the above description, the two-layer metal clad plate has been mainly described. However, in the production of the three-layer metal clad plate, the change behavior of the bonding strength in the first rolling and the second rolling is the same.
[0045]
【Example】
Metal clad plates were produced by changing the constituent members and manufacturing conditions. Each component and manufacturing conditions are shown in Tables 1 and 2.
[0046]
[Table 1]
[0047]
[Table 2]
[0048]
In Tables 1 and 2, the bonding strength after the first heat treatment, the bonding strength after the second heat treatment, and the surface hardness of the first layer are also shown. The bonding strength is determined by holding the end portion of the first layer and the end portion of the second layer (or the second layer and the third layer) with separate jigs in the same manner as described above. It means the peel strength (N / mm) obtained by measuring the tensile load (N) when peeled in the vertical direction and dividing this by the width (10 mm) of the test piece. The target value of the bonding strength (peeling strength) after the first heat treatment is 3 N / mm, and the target value of the bonding strength (peeling strength) after the second heat treatment is 10 N / mm. Further, the Vickers hardness was measured on the surface of the first layer in accordance with a method defined in JIS Z 2244.
[0049]
The first layer “SUS410S” is quench hardened martensitic stainless steel, “SUS301” is austenitic stainless steel work hardened by cold rolling, “SPFC” is quench hardened carbon steel, “Ti-20V- "3.3Al-1Sn" is a β-type titanium alloy that has been precipitation hardened by aging heat treatment after cold rolling. “A1100” in the second layer is an annealed pure aluminum, “A3003” is an aluminum alloy containing Mn, and “A6061” and “A7075” are aluminum alloys that can be strengthened by aging heat treatment.
[0050]
As shown in Table 1, Examples 1 to 9 of the present invention have good bonding strength (peel strength) after the second heat treatment exceeding 10 N / mm, and the first layer has a Vickers hardness exceeding 350. Results were obtained. On the other hand, in Comparative Examples 10 and 14, the heating temperatures of the first and second layers are below the range defined in the present invention, and the bonding strength (peeling strength) after the first heat treatment is less than 3 N / mm. It was. As a result, peeling between the constituent members occurred in the second rolling.
[0051]
In Comparative Example 11, the rolling reduction in the first rolling was below the range specified in the present invention. In Comparative Example 16, the heating temperature of the first layer exceeded the range defined in the present invention, and a thick oxide film was formed on the surface of the SPFC material as the first layer. For this reason, joining was not completed by 1st rolling in any case, and the subsequent process was stopped.
[0052]
In Comparative Example 12, the temperature of the second heat treatment was lower than the range specified by the present invention, and in Comparative Example 17, the temperature of the second heat treatment was higher than the range specified by the present invention. For this reason, in any case, although the joining was temporarily performed, the joining strength did not reach the target value. Comparative Examples 13 and 20 were manufactured under the conditions specified in the present invention, but the Vickers hardness of the metal plate used as the first layer was less than 350, and the final metal clad plate obtained The Vickers hardness of one layer was also less than 350.
[0053]
In Comparative Examples 15 and 18, the rolling reduction ratio of the second rolling exceeded the range defined by the present invention, and the first layer metal was cracked and delamination between the constituent members occurred. In Comparative Example 19, the temperature of the first heat treatment was lower than the range specified in the present invention, and sufficient bonding strength was not obtained after the first heat treatment, and separation between constituent members occurred during the second rolling.
[0054]
【The invention's effect】
According to the method for producing a metal clad plate of the present invention, a high-hardness metal plate having a Vickers hardness of 350 or more and a soft aluminum plate or aluminum alloy plate can be firmly bonded. Since the metal clad plate obtained by this method is excellent in wear resistance and thermal conductivity, for example, it provides an optimum metal clad plate as a material for mechanical parts having sliding parts such as a rotor plate and a clutch plate of a speed reducer. be able to.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the total rolling reduction and the rolling reduction of each material when a two-layer clad plate is produced from a high-hardness metal plate and a metal plate excellent in thermal conductivity.
FIG. 2 is a diagram showing the relationship between the total rolling reduction of the metal clad plate and the bonding strength.
FIG. 3 is a diagram showing a method for measuring bonding strength.
FIG. 4 is a diagram showing the relationship between the total rolling reduction during the second rolling and the rolling reduction for each material.
FIG. 5 is a diagram showing the relationship between the total rolling reduction of the metal clad plate obtained in the experiment shown in FIG. 4 and the bonding strength.
[Explanation of symbols]
1. SUS410S plate, 2. 2. A1100 plate, jig
Claims (4)
(1)硬さがビッカース硬度で350以上の金属板と、アルミニウム板またはアルミニウム合金板とを個別に250〜430℃に加熱し、積層する工程、
(2)圧下率10%以上で接合圧延する工程、
(3)300〜500℃で3分以上保持する工程、
(4)得られたクラッド板を2.0%以上、破断伸び値以下の圧下率で圧延する工程、および
(5)300〜500℃で3分以上保持する工程。It manufactures by the process of following (1) to (5), The manufacturing method of the metal clad board of Claim 1 characterized by the above-mentioned.
(1) A step of individually heating and laminating a metal plate having a Vickers hardness of 350 or more and an aluminum plate or an aluminum alloy plate to 250 to 430 ° C.,
(2) A step of joining and rolling at a rolling reduction of 10% or more,
(3) The process of hold | maintaining at 300-500 degreeC for 3 minutes or more,
(4) A step of rolling the obtained clad plate at a rolling reduction of 2.0% or more and a breaking elongation value or less, and (5) a step of holding at 300 to 500 ° C. for 3 minutes or more.
(1)硬さがビッカース硬度で350以上の金属板と、アルミニウム板またはアルミニウム合金板と、任意の金属板とを個別に250〜430℃に加熱し、この順序で積層する工程、
(2)圧下率10%以上で接合圧延する工程、
(3)300〜500℃で3分以上保持する工程、
(4)得られたクラッド板を2.0%以上、破断伸び値以下の圧下率で圧延する工程、および
(5)300〜500℃で3分以上保持する工程。It manufactures by the process of following (1) to (5), The manufacturing method of the metal clad board of Claim 3 characterized by the above-mentioned.
(1) A step of individually heating a metal plate having a Vickers hardness of 350 or more, an aluminum plate or an aluminum alloy plate, and an arbitrary metal plate to 250 to 430 ° C. and laminating in this order,
(2) A step of joining and rolling at a rolling reduction of 10% or more,
(3) The process of hold | maintaining at 300-500 degreeC for 3 minutes or more,
(4) A step of rolling the obtained clad plate at a rolling reduction of 2.0% or more and a breaking elongation value or less, and (5) a step of holding at 300 to 500 ° C. for 3 minutes or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003186841A JP4155124B2 (en) | 2003-06-30 | 2003-06-30 | Metal clad plate and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003186841A JP4155124B2 (en) | 2003-06-30 | 2003-06-30 | Metal clad plate and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005021899A JP2005021899A (en) | 2005-01-27 |
JP4155124B2 true JP4155124B2 (en) | 2008-09-24 |
Family
ID=34185866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003186841A Expired - Lifetime JP4155124B2 (en) | 2003-06-30 | 2003-06-30 | Metal clad plate and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4155124B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007222934A (en) * | 2006-02-27 | 2007-09-06 | Daido Metal Co Ltd | Method for producing clad material for aluminum bearing |
JP5517196B2 (en) * | 2009-11-20 | 2014-06-11 | 東洋鋼鈑株式会社 | Superconducting compound substrate and manufacturing method thereof |
KR101693927B1 (en) * | 2014-10-14 | 2017-01-09 | 현대자동차주식회사 | Clad plate improved bonding strength and dent-resistance and method for manufacturing the same |
JP6119942B1 (en) * | 2015-09-09 | 2017-04-26 | 新日鐵住金株式会社 | Clad plate and manufacturing method thereof |
JP6377833B1 (en) * | 2017-03-29 | 2018-08-22 | 東洋鋼鈑株式会社 | Rolled joined body and manufacturing method thereof |
JP7502642B2 (en) | 2020-12-16 | 2024-06-19 | 日本製鉄株式会社 | Clad material and manufacturing method |
CN113732059B (en) * | 2021-09-15 | 2023-12-05 | 广东省科学院新材料研究所 | Magnesium-aluminum composite board and preparation method thereof |
CN114101327A (en) * | 2021-09-28 | 2022-03-01 | 材谷金带(佛山)金属复合材料有限公司 | Method for rolling 1050 aluminum/08 AL steel composite plate |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01166890A (en) * | 1987-12-24 | 1989-06-30 | Kawasaki Steel Corp | Manufacture of clad material |
JPH0755384B2 (en) * | 1988-03-02 | 1995-06-14 | 東洋鋼板株式会社 | Clad metal plate manufacturing method and apparatus |
JPH01266981A (en) * | 1988-04-20 | 1989-10-24 | Japan Steel Works Ltd:The | Manufacture of composite material consisting of aluminum or aluminum alloy and stainless steel |
JP2663811B2 (en) * | 1992-10-19 | 1997-10-15 | 住友金属工業株式会社 | Manufacturing method of aluminum clad steel sheet |
JP3079973B2 (en) * | 1995-10-11 | 2000-08-21 | 住友金属工業株式会社 | Aluminum alloy and stainless steel clad plate and method for producing the same |
JP2000117461A (en) * | 1998-10-21 | 2000-04-25 | Sumitomo Metal Ind Ltd | Manufacture of clad plate consisting of aluminum and stainless steel |
JP4256018B2 (en) * | 1999-04-30 | 2009-04-22 | 株式会社Neomaxマテリアル | Aluminum / stainless steel clad material and manufacturing method thereof |
-
2003
- 2003-06-30 JP JP2003186841A patent/JP4155124B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005021899A (en) | 2005-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4256018B2 (en) | Aluminum / stainless steel clad material and manufacturing method thereof | |
US6722002B1 (en) | Method of producing Ti brazing strips or foils | |
EP1765544B1 (en) | Mehod for producing a clad stainless steel substrate | |
US6427904B1 (en) | Bonding of dissimilar metals | |
JP2004522582A (en) | Composite aluminum sheet | |
WO2006068948A1 (en) | Titanium braze foil with a zirconium layer | |
JP4155124B2 (en) | Metal clad plate and manufacturing method thereof | |
WO1999024633A1 (en) | Stainless steel coated with intermetallic compound and process for producing the same | |
JP4343431B2 (en) | Joining dissimilar metals | |
JP3047752B2 (en) | Manufacturing method of titanium clad steel sheet | |
JP4256203B2 (en) | Manufacturing method of aluminum / nickel / stainless steel cladding | |
JP7502642B2 (en) | Clad material and manufacturing method | |
JPH0976076A (en) | Manufacture of al-ti clad plate | |
JP4196776B2 (en) | Brazing composite material and method for producing the same | |
JPS6350113B2 (en) | ||
JPS6350112B2 (en) | ||
JPH11319970A (en) | Ferritic stainless steel/aluminum clad plate excellent in deep drawability | |
JPH02121786A (en) | Manufacture of copper-aluminum clad plate | |
KR101279112B1 (en) | A manufacturing method of clad plate using the precipitation hardening cu alloys as the insert bonding materials and the clad plat obtained using the same | |
JP2541377B2 (en) | Method for producing copper / stainless steel composite material | |
JPH01266981A (en) | Manufacture of composite material consisting of aluminum or aluminum alloy and stainless steel | |
JPH044986A (en) | Manufacture of nickel and stainless steel clad material | |
JPS60203377A (en) | Production of titanium clad material | |
JP3551749B2 (en) | Manufacturing method of surface hardened parts | |
JP2639876B2 (en) | Clad steel sheet, method for producing the same, and safe made of clad steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071210 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20071210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080617 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080630 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4155124 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |