JP2007222934A - Method for producing clad material for aluminum bearing - Google Patents

Method for producing clad material for aluminum bearing Download PDF

Info

Publication number
JP2007222934A
JP2007222934A JP2006050182A JP2006050182A JP2007222934A JP 2007222934 A JP2007222934 A JP 2007222934A JP 2006050182 A JP2006050182 A JP 2006050182A JP 2006050182 A JP2006050182 A JP 2006050182A JP 2007222934 A JP2007222934 A JP 2007222934A
Authority
JP
Japan
Prior art keywords
clad material
aluminum
rolling
clad
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006050182A
Other languages
Japanese (ja)
Inventor
Yasuo Ido
康夫 井戸
Masahiro Nakano
雅裕 中野
Yukio Ogita
幸男 荻田
Yoshiaki Sato
善昭 佐藤
Getsuko Higuchi
月光 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2006050182A priority Critical patent/JP2007222934A/en
Publication of JP2007222934A publication Critical patent/JP2007222934A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the shape precision of a clad material in a thickness direction or width direction in a method for producing the clad plate to be used for the material for forming an aluminum bearing by joining an aluminum material and a steel material. <P>SOLUTION: The aluminum material and the steel material are rolled and pressure-welded, secondary rolling for increasing the shape precision in the thickness direction of the clad material between the aluminum material and the steel material is performed, and thereafter, heat treatment is performed. Alternatively, the clad material is divided into a plurality of parts in a width direction, and thereafter, heat treatment is performed. Alternatively, the clad material is divided into a plurality of parts in a width direction, then, secondary rolling and drawing are performed, and, finally, heat treatment is performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルミニウム材と鋼材とを接合してアルミニウム軸受の形成用材料となるクラッド材を製造する方法に関する。   The present invention relates to a method for manufacturing a clad material which is a material for forming an aluminum bearing by joining an aluminum material and a steel material.

アルミニウム軸受用クラッド材は、従来、連続鋳造後に圧延して板状にしたアルミニウム材と板状の鋼材(帯鋼板)とをロール圧延機に連続的に送り込んで高い圧下率にて圧延圧接して得られる。この圧延圧接により得られたクラッド材では、その後、アルミニウム材の靱性を高め、且つ、アルミニウム材と鋼材との接着強度を高くするために、焼鈍を行うことが不可欠とされている(例えば、特許文献1参照。)。
特願2002−38230号公報
Conventionally, a clad material for an aluminum bearing has been rolled and pressed at a high rolling reduction rate by continuously feeding an aluminum material rolled into a plate shape after continuous casting and a plate-shaped steel material (strip steel plate) to a roll rolling mill. can get. In the clad material obtained by this rolling pressure welding, it is then indispensable to perform annealing in order to increase the toughness of the aluminum material and increase the adhesive strength between the aluminum material and the steel material (for example, patents). Reference 1).
Japanese Patent Application No. 2002-38230

圧延圧接は、被圧延圧接物をロール圧延機に通すことにより行われる。そして、ある種の用途に使用するクラッド材については、断面形状精度(特に長手方向での厚さ寸法精度、即ち、長手方向厚さ寸法精度)を整えるために、焼鈍後に圧延加工(以下、二次圧延とも言う)を行うようにしている。この二次圧延は、数%という低い圧下率でのロール圧延を1回以上実施することによって行われる。しかしながら、長手方向厚さ寸法精度を向上させるために高い圧下率になるまでロール圧延を実施すると、当該クラッド材からすべり軸受を製造した場合、耐疲労性が悪化した。   Rolling pressure welding is performed by passing the material to be rolled through a roll mill. And about the clad material used for a certain kind of use, in order to adjust cross-sectional shape precision (especially thickness dimensional precision in a longitudinal direction, ie, longitudinal direction thickness dimensional precision), rolling processing after annealing (henceforth, 2 (Also called next rolling). This secondary rolling is performed by carrying out roll rolling at a rolling reduction as low as several percent once or more. However, when roll rolling is performed until a high rolling reduction is achieved in order to improve the longitudinal thickness dimensional accuracy, fatigue resistance deteriorates when a plain bearing is manufactured from the clad material.

また、アルミニウム材を鋼材に圧延圧接したクラッド材は、通常、幅広であるから、焼鈍後のクラッド材をスリッタによって幅方向に複数分割する。複数分割されたクラッド材は、その後、所望の長さ寸法に切断されて短冊状のクラッド片に形成され、このクラッド片を半円筒状或いは円筒状に曲げてすべり軸受とする。しかしながら、スリッタによってクラッド材を分割すると、スリッタによる切断端に大きな「ダレ」が生じるため、後でその「ダレ」部分を除去する切削加工を必要とし、生産性低下の要因となっていた。   In addition, a clad material obtained by rolling and welding an aluminum material to a steel material is usually wide, so the clad material after annealing is divided into a plurality of parts in the width direction by a slitter. The clad material divided into a plurality of parts is then cut into a desired length and formed into strip-like clad pieces, which are bent into a semi-cylindrical shape or a cylindrical shape to form a plain bearing. However, when the clad material is divided by the slitter, a large “sag” is generated at the cut end by the slitter, so that a cutting process for removing the “sag” portion later is required, which causes a decrease in productivity.

本発明は上記の事情に鑑みてなされたもので、その目的は、生産性の低下を招来することなく、断面形状精度(長手方向厚さ寸法精度および/または幅方向形状精度)を良くすることができるアルミニウム軸受用クラッド材の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to improve the cross-sectional shape accuracy (longitudinal thickness dimensional accuracy and / or width direction shape accuracy) without causing a reduction in productivity. An object of the present invention is to provide a method for producing a cladding material for an aluminum bearing that can be manufactured.

クラッド材の厚さに関する形状精度(特に長手方向厚さ寸法精度)を向上させるために二次圧延を行うが、そのためには当該工程において圧下率を高くする必要がある。
しかしながら、本発明者の実験によると、アルミニウム材と鋼材とを圧延圧接したクラッド材を焼鈍し、その後に圧下率を高くした二次圧延を行うと、耐疲労性が低下した。本発明者は、この耐疲労性低下の理由を究明するために鋭意研究を重ねた結果、次のような結論を得た。
Secondary rolling is performed in order to improve the shape accuracy (particularly the longitudinal thickness accuracy) of the clad material. For this purpose, it is necessary to increase the reduction ratio in this step.
However, according to the experiments of the present inventors, when the clad material obtained by rolling and welding the aluminum material and the steel material is annealed and then subjected to secondary rolling with a high reduction rate, the fatigue resistance is lowered. As a result of intensive studies in order to investigate the reason for this fatigue resistance reduction, the present inventor has obtained the following conclusion.

クラッド材を製造する場合において、圧延圧接により接合されたアルミニウム材と鋼材とは、その後、熱処理、例えば焼鈍されることにより、機械的な結合から、金属原子が相手材の中に拡散する金属的な結合へと変化するため、接着強度が高くなる。ところが、従来では、長手方向厚さ寸法精度向上のための二次圧延を焼鈍の後工程として実施している。このように二次圧延を焼鈍後に行うと、焼鈍によって互いの金属原子の結合位置が定まったアルミニウム材と鋼材とに対して、この結合位置をずらそうとする力が作用し、そのために接着面における金属原子の結合が破壊されて結合力、即ち、アルミニウム材と鋼材との密着力(接着強度)が低下してしまう。この結合力の低下は、すべり軸受として製造された場合、その耐疲労性を損ねる。以上が、従来のクラッド材の製造方法において、長手方向厚さ寸法精度を向上させるための二次圧延を、高圧下率まで行った場合、すべり軸受の耐疲労性を低下させるに至る理由である。そのため、従来のクラッド材の製造方法では、二次圧延を高圧下率まで行えなかった。   In the case of producing a clad material, the aluminum material and steel material joined by rolling pressure welding are then heat treated, for example, annealed, so that metal atoms diffuse into the counterpart material from mechanical bonds. The bond strength is increased due to the change to a proper bond. However, conventionally, secondary rolling for improving the longitudinal thickness dimensional accuracy is performed as a post-annealing process. When secondary rolling is performed after annealing as described above, a force that shifts the bonding position acts on the aluminum material and the steel material in which the bonding positions of the metal atoms are determined by annealing. As a result, the bond of metal atoms is broken and the bond strength, that is, the adhesion force (adhesion strength) between the aluminum material and the steel material is reduced. This reduction in bonding force impairs fatigue resistance when manufactured as a sliding bearing. The above is the reason why the fatigue resistance of the sliding bearing is lowered when the secondary rolling for improving the longitudinal thickness dimensional accuracy is performed up to the high-pressure reduction rate in the conventional cladding material manufacturing method. . For this reason, in the conventional method for producing a clad material, secondary rolling cannot be performed up to a high pressure reduction rate.

また、従来、幅広のクラッド材をスリッタにより複数分割した場合、分割されたクラッド材の切断端の「ダレ」を除去するために、切削加工を行っていた。もしも、上記の「ダレ」が小さければ、切削加工を行う必要はなく、仮に切削加工を行ったとしても、その切削量は少なくて済む。   Conventionally, when a wide clad material is divided into a plurality of pieces by a slitter, cutting is performed to remove “sagging” at the cut end of the divided clad material. If the “sag” is small, it is not necessary to perform the cutting process. Even if the cutting process is performed, the amount of cutting is small.

アルミニウム材や鋼材は、焼鈍によって軟化する傾向を呈するが、本発明者は、切断端の「ダレ」と、クラッド材の硬さとの関係に着目した。そして、実験の結果、スリッタによりクラッド材を切断した場合、軟質のものでは、スリッタの回転カッタによる「ダレ」が大きくなるが、硬質のものでは、回転カッタによる切削が良好に行い得ると共に、「ダレ」も小さくなるという結論を得た。
本発明は、以上のような本発明者の研究結果に基づいてなされたものである。
Although aluminum materials and steel materials tend to be softened by annealing, the present inventor has focused on the relationship between the “sagging” of the cut end and the hardness of the cladding material. As a result of the experiment, when the clad material is cut by a slitter, the sag caused by the rotating cutter of the slitter is increased in the soft material, but in the hard material, the cutting by the rotating cutter can be performed satisfactorily. I got the conclusion that “Dare” would be smaller.
The present invention has been made based on the above-described research results of the present inventors.

<請求項1の発明>
請求項1の発明は、アルミニウム材と鋼材とを圧延圧接し、この圧延圧接により得られたクラッド材に対して厚さ寸法精度向上のための圧延加工を施した後、熱処理することを特徴とする。この請求項1の発明の工程を図1(a)に示した。
<Invention of Claim 1>
The invention of claim 1 is characterized in that an aluminum material and a steel material are subjected to pressure welding, and the clad material obtained by the rolling pressure welding is subjected to a rolling process for improving the thickness dimensional accuracy, followed by heat treatment. To do. The process of the invention of claim 1 is shown in FIG.

この請求項1の発明のように、クラッド材の厚さに関する形状精度(特に長手方向厚さ寸法精度)を向上させるための圧延加工(二次圧延)を行うことによってアルミニウム材と鋼材との金属原子の結合位置がずれたとしても、その後に行われる熱処理によりアルミニウム材と鋼材とが金属原子の拡散により金属的に結合する。従って、二次圧延において、ロール圧延機によって圧延を高い圧下率まで行っても、二次圧延後に行われる熱処理、例えば焼鈍により、金属原子を相手材の中に拡散させてアルミニウム材と鋼材とを金属的な結合をさせてその接着強度を向上させることができる。このため、二次圧延においてクラッド材を高圧下率まで圧延機に通すことができ、しかも、すべり軸受として製造した場合、その耐疲労性を損なわせることがない。   As in the first aspect of the invention, by performing rolling (secondary rolling) to improve the shape accuracy (particularly the longitudinal thickness accuracy) of the clad material, the metal of the aluminum material and the steel material Even if the bonding position of the atoms is shifted, the aluminum material and the steel material are metallicly bonded by diffusion of metal atoms by the heat treatment performed thereafter. Therefore, in secondary rolling, even if rolling is performed to a high rolling reduction by a roll rolling mill, the metal atoms are diffused into the counterpart material by heat treatment performed after the secondary rolling, for example, annealing, and the aluminum material and the steel material are dispersed. The bond strength can be improved by making a metallic bond. For this reason, in the secondary rolling, the clad material can be passed through a rolling mill to a high pressure reduction rate, and when manufactured as a sliding bearing, its fatigue resistance is not impaired.

例えば、図5(a)および(b)は、ロール圧延機で焼鈍前のクラッド材を圧下率40%まで圧延した場合と焼鈍後のクラッド材を圧下率8%まで圧延した場合の長手方向各部の厚さ寸法のばらつきを示すもので、図5(a)は焼鈍前のクラッド材の長手方向厚さ寸法のばらつき、図5(b)は焼鈍後のクラッド材の長手方向厚さ寸法のばらつきの場合を示す。この図5から、焼鈍前に二次圧延を施すことにより高い圧下率まで二次圧延をすることができた場合には、長手方向における厚さの寸法精度が高いことが分かる。
このように、二次圧延を焼鈍前に行うことにより、圧延回数を多くすることができる、即ち、高圧下率まで二次圧延を施すことができるので、耐疲労性を損なわせることなく長手方向厚さ寸法精度を向上させることができる。
For example, FIGS. 5 (a) and 5 (b) show the respective parts in the longitudinal direction when the clad material before annealing is rolled to a rolling reduction of 40% and when the clad material after annealing is rolled to a rolling reduction of 8% with a roll mill. 5 (a) shows the variation in the longitudinal thickness of the clad material before annealing, and FIG. 5 (b) shows the variation in the longitudinal thickness of the clad material after annealing. This case is shown. From FIG. 5, it can be seen that when the secondary rolling can be performed to a high reduction rate by performing the secondary rolling before annealing, the dimensional accuracy of the thickness in the longitudinal direction is high.
Thus, by performing the secondary rolling before annealing, the number of rolling can be increased, that is, the secondary rolling can be performed up to the high pressure reduction rate, so that the longitudinal direction can be achieved without impairing the fatigue resistance. Thickness dimensional accuracy can be improved.

<請求項2の発明>
請求項2の発明は、アルミニウム材と鋼材とを圧延圧接し、この圧延圧接により得られたクラッド材を機械加工によって所望の幅寸法の分割クラッド材に分割した後、熱処理することを特徴とする。この請求項2の発明の工程を図1(b)に示した。
圧延圧接により得られたクラッド材の幅が製造するすべり軸受に対して広い場合、そのクラッド材を幅方向に複数に分割して分割クラッド材を得る。クラッド材を幅方向に分割するための機械加工としては、例えば、スリッタ用の回転カッタによる切断加工が採用される。回転カッタによってクラッド材を切断すると、切断端の角部に図4(a)および(b)に示すようなダレDa,DbやカエリEa,Ebが生ずる。このダレDa,DbやカエリEa,Ebは、クラッド材の硬軟に応じて大小異なる。
<Invention of Claim 2>
The invention of claim 2 is characterized in that an aluminum material and a steel material are rolled and pressure-welded, and the clad material obtained by the rolling pressure-welding is divided into divided clad materials having a desired width dimension by machining, and then heat-treated. . The process of the invention of claim 2 is shown in FIG.
When the width of the clad material obtained by rolling pressure welding is wider than that of the slide bearing to be manufactured, the clad material is divided into a plurality of pieces in the width direction to obtain a divided clad material. As the machining for dividing the clad material in the width direction, for example, cutting by a rotary cutter for slitter is employed. When the clad material is cut by the rotary cutter, sagging Da, Db and burrs Ea, Eb as shown in FIGS. 4A and 4B are generated at the corners of the cut end. The sagging Da and Db and the burrs Ea and Eb differ depending on the hardness of the clad material.

この場合、従来では、クラッド材を熱処理、例えば焼鈍した後、つまりやや軟化したクラッド材に対して、幅方向に複数分離する加工を行っていたため、図4(a)に示すように切断端の角部のダレDaやカエリEaが大きくなり、断面形状精度(特に幅方向形状精度)を悪くしていた。このような大きなダレDaやカエリEaを残したまますべり軸受として製造することはできないので、ダレDaやカエリEaをバイトで切除する加工を行うが、大きなダレDaやカエリEaに対しては、その切削しろWaが大きくなり、材料ロスが多くなると共に、生産性低下の要因となる。   In this case, conventionally, after the clad material is heat-treated, for example, annealed, that is, a slightly softened clad material is processed to be separated into a plurality of parts in the width direction, as shown in FIG. The sag Da and the burrs Ea at the corners are increased, and the cross-sectional shape accuracy (particularly the width direction shape accuracy) is degraded. Since it cannot be manufactured as a plain bearing that leaves such a large sag Da and burrs Ea, the sag Da and burrs Ea are cut off with a cutting tool. The cutting margin Wa is increased, material loss is increased, and productivity is reduced.

しかしながら、請求項2の発明によれば、クラッド材を複数に分離する加工を、焼鈍前、つまり、硬度の比較的高いクラッド材に対して行うので、図4(b)に示すように、切断端の角部のダレDbやカエリEbを小さくすることができ、幅方向形状精度を向上させることができる。このため、その後のダレDbやカエリEbを除去する加工は、小さな切削しろWbで済み、材料ロスが少なくなると共に、生産性が向上する。   However, according to the invention of claim 2, since the processing for separating the clad material into a plurality is performed before annealing, that is, for the clad material having a relatively high hardness, as shown in FIG. The sagging Db and the burrs Eb at the corners of the end can be reduced, and the shape accuracy in the width direction can be improved. For this reason, the subsequent process of removing the sagging Db and the burrs Eb requires only a small cutting margin Wb, and material loss is reduced and productivity is improved.

<請求項3の発明>
請求項3の発明は、アルミニウム材と鋼材とを圧延圧接し、この圧延圧接により得られたクラッド材に対して厚さ寸法精度向上のための圧延加工を施し、更に、前記圧延加工されたクラッド材を機械加工によって所望の幅寸法の分割クラッド材に分割した後、熱処理することを特徴とする。この請求項3の発明の工程を図1(c)に示した。
このように、二次圧延を行った後に、クラッド材を幅方向に複数分割する加工を行った場合には、クラッド材の断面形状精度(長手方向厚さ寸法精度及び幅方向形状精度)を向上させることができる。
<Invention of Claim 3>
According to a third aspect of the present invention, an aluminum material and a steel material are rolled and pressure-welded, and the clad material obtained by the rolling pressure-welding is subjected to a rolling process for improving the thickness dimensional accuracy. After the material is divided into divided clad materials having a desired width by machining, heat treatment is performed. The process of the invention of claim 3 is shown in FIG.
In this way, after performing secondary rolling, when the clad material is divided into multiple pieces in the width direction, the cross-sectional shape accuracy (longitudinal thickness dimensional accuracy and width direction shape accuracy) of the clad material is improved. Can be made.

<請求項4の発明>
請求項4の発明は、アルミニウム材と鋼材とを圧延圧接し、この圧延圧接により得られたクラッド材を機械加工によって所望の幅寸法の分割クラッド材に分割し、更に前記分割クラッド材に対して厚さ寸法精度向上のための圧延加工を施した後、熱処理することを特徴とする。この請求項4の発明の工程を図1(d)に示した。
このように、クラッド材を幅方向に分割する加工を行った後、二次圧延を行うことにより、分割クラッド材の切断端の角部のダレやカエリを二次圧延によって小さくできるから、より断面形状精度が向上する。
<Invention of Claim 4>
In the invention of claim 4, the aluminum material and the steel material are rolled and pressure-welded, and the clad material obtained by the rolling pressure-welding is divided into divided clad materials having a desired width dimension by machining, and further to the divided clad material. A heat treatment is performed after rolling for improving the thickness dimensional accuracy. The process of the invention of claim 4 is shown in FIG.
In this way, by performing the secondary rolling after performing the process of dividing the clad material in the width direction, the sagging and burrs at the corners of the cut end of the divided clad material can be reduced by secondary rolling. Shape accuracy is improved.

<請求項5の発明>
請求項5の発明は、アルミニウム材と鋼材とを圧延圧接し、この圧延圧接により得られたクラッド材を機械加工によって所望の幅寸法の分割クラッド材に分割し、更に前記分割クラッド材に対して幅方向端部の形状精度向上のための引抜加工を施した後、熱処理することを特徴とする。この請求項5の発明の工程を図1(e)に示した。
このように、クラッド材を複数に分割した後、その分割クラッド材に引抜加工を施すことにより、分割加工時のダレを矯正でき、分割クラッド材の幅方向形状精度を効率良く向上させることができる。
<Invention of Claim 5>
In the invention of claim 5, the aluminum material and the steel material are rolled and pressure-welded, and the clad material obtained by the rolling pressure-welding is divided into divided clad materials having desired width dimensions by machining, and further, A heat treatment is performed after a drawing process for improving the shape accuracy of the end portion in the width direction. The process of the invention of claim 5 is shown in FIG.
Thus, by dividing the clad material into a plurality of pieces and then drawing the divided clad material, the sagging during the division process can be corrected, and the shape accuracy in the width direction of the divided clad material can be improved efficiently. .

例えば、図7(a)は、引抜前の分割クラッド材の長手方向に垂直な断面を示し、図7(b)は、引抜後の分割クラッド材の長手方向に垂直な断面を示す。この図7から明らかなように、引抜前に分割クラッド材の角部にあったダレやカエリは、引抜によって矯正でき、更に引抜ダイスによって分割クラッド材の角部に面取りを施すこともできる。
通常、クラッド材製造後の軸受成形時に機械加工により、幅方向の寸法をその完成品の寸法に仕上げる工程(幅仕上げ工程)を実施する。この請求項5の発明の実施によって、クラッド材製造後に行う幅仕上げ工程を省略することができる。
For example, FIG. 7A shows a cross section perpendicular to the longitudinal direction of the divided clad material before drawing, and FIG. 7B shows a cross section perpendicular to the longitudinal direction of the divided clad material after drawing. As apparent from FIG. 7, the sagging and burrs that existed at the corners of the divided clad material before drawing can be corrected by drawing, and the corners of the divided clad material can also be chamfered by drawing dies.
Usually, a process (width finishing process) of finishing the dimension in the width direction to the dimension of the finished product is performed by machining at the time of molding the bearing after manufacturing the clad material. By carrying out the invention of claim 5, the width finishing step performed after manufacturing the clad material can be omitted.

<請求項6の発明>
請求項6の発明は、アルミニウム材と鋼材とを圧延圧接し、この圧延圧接により得られたクラッド材を機械加工によって所望の幅寸法の分割クラッド材に分割し、更に前記分割クラッド材に対して長手方向厚さ寸法精度向上のための圧延加工と幅方向端部の形状精度向上のための引抜加工とを順に施した後、熱処理することを特徴とする。この請求項6の発明の工程を図1(f)に示した。
この請求項6のようにした場合には、クラッド材の断面形状精度(長手方向厚さ寸法精度、幅方向形状精度)を更に向上させることができる。しかも、クラッド材製造後に行う幅仕上げ工程を省略することができる。
<Invention of Claim 6>
In the invention of claim 6, the aluminum material and the steel material are rolled and pressure-welded, and the clad material obtained by the rolling pressure-welding is divided into divided clad materials having a desired width dimension by machining, and further to the divided clad material. It is characterized by performing a heat treatment after sequentially performing a rolling process for improving the longitudinal thickness dimensional accuracy and a drawing process for improving the shape accuracy of the end portion in the width direction. The process of the invention of claim 6 is shown in FIG.
In this case, the cross-sectional shape accuracy (longitudinal thickness dimensional accuracy, width direction shape accuracy) of the clad material can be further improved. And the width finishing process performed after clad material manufacture can be omitted.

<請求項7の発明>
請求項7の発明は、アルミニウム材と鋼材とを圧延圧接し、この圧延圧接により得られたクラッド材に対して長手方向厚さ寸法精度向上のための圧延加工を施し、更に、前記圧延加工されたクラッド材を機械加工によって所望の幅寸法の分割クラッド材に分割し、この分割クラッド材に対して幅方向端部の形状精度向上のための引抜加工を施した後、熱処理することを特徴とする。この請求項7の工程を図1(g)に示した。
この請求項7のようにした場合には、更に断面形状精度(長手方向厚さ寸法精度、幅方向形状精度)を向上させることができる。また、同様に、クラッド材製造後に行う幅仕上げ工程を省略することができる。
<Invention of Claim 7>
In the invention of claim 7, the aluminum material and the steel material are rolled and pressure-welded, and the clad material obtained by the rolling pressure-welding is subjected to a rolling process for improving the thickness dimensional accuracy in the longitudinal direction. The clad material is divided into divided clad materials having a desired width by machining, and the divided clad materials are subjected to a drawing process for improving the shape accuracy of the end portions in the width direction, and then heat-treated. To do. The process of claim 7 is shown in FIG.
In this case, the cross-sectional shape accuracy (longitudinal thickness dimensional accuracy, width direction shape accuracy) can be further improved. Similarly, the width finishing step performed after the clad material is manufactured can be omitted.

以下、本発明の実施例を説明する。まず、連続鋳造法により製造したすべり軸受用アルミニウム合金板と接着用アルミニウム合金板とを圧延圧接させて、アルミニウム材を製造した。ここでは、すべり軸受用アルミニウム合金板は、Al−Sn−Si系のアルミニウム合金を用いた(Sn:10質量%、Si:3質量%、Al:残部)。また、接着用アルミニウム合金板は、Al−Mn−Cu系のアルミニウム合金を用いた(Mn:1質量%、Cu:0.1質量%、Al:残部)。   Examples of the present invention will be described below. First, an aluminum material was manufactured by rolling and pressing an aluminum alloy plate for a slide bearing and an aluminum alloy plate for bonding manufactured by a continuous casting method. Here, an Al—Sn—Si based aluminum alloy was used as the aluminum alloy plate for the slide bearing (Sn: 10 mass%, Si: 3 mass%, Al: balance). Moreover, the aluminum alloy board for adhesion used the Al-Mn-Cu type aluminum alloy (Mn: 1 mass%, Cu: 0.1 mass%, Al: remainder).

一方、鋼材として、帯鋼板(JISG3141)を用意した。そして、図2に示すように、上記のアルミニウム材1を、鋼材2に重ねるようにしてロール圧延機3に通して圧下率40%で圧延圧接を行い、アルミニウム材1と鋼材2とを接着してなるクラッド材4を得た。このクラッド材4は、厚さ1.4mmのアルミニウム材1と厚さ3.0mmの鋼材2とを圧延圧接して全厚2.6mm、幅200mmとしたものである。
この後、クラッド材4を幅方向に複数の分割クラッド材に分割する分割工程、分割クラッド材9の厚さを整えるための圧延工程(二次圧延)、引抜工程、焼鈍工程を順に行って次の表1に示す実施品1,2を得た。各工程の詳細は後述する。
On the other hand, a strip steel plate (JISG3141) was prepared as a steel material. Then, as shown in FIG. 2, the aluminum material 1 is overlapped with the steel material 2 and passed through the roll rolling machine 3 to perform rolling pressure welding at a reduction rate of 40%, thereby bonding the aluminum material 1 and the steel material 2. Thus obtained cladding material 4 was obtained. The clad material 4 is formed by rolling and pressing an aluminum material 1 having a thickness of 1.4 mm and a steel material 2 having a thickness of 3.0 mm to have a total thickness of 2.6 mm and a width of 200 mm.
Thereafter, a dividing step of dividing the clad material 4 into a plurality of divided clad materials in the width direction, a rolling step (secondary rolling) for adjusting the thickness of the divided clad material 9, a drawing step, and an annealing step are sequentially performed. Examples 1 and 2 shown in Table 1 were obtained. Details of each step will be described later.

Figure 2007222934
Figure 2007222934

上記分割工程は、図3に示すスリッタ5を使用した。このスリッタ5は、主軸6に複数の回転カッタ7を固定してなり、クラッド材4を矢印方向に送りながら主軸6により回転カッタ7を回転させてクラッド材4に分割用のスリット8を形成し、クラッド材4を複数の分割クラッド材9に分割するというものである。この場合の分割クラッド材9の幅は、18.2mmである。
次の二次圧延は、図2のロール圧延機3と同様のロール圧延機を用いて行った。このロール圧延機による二次圧延は、実施品1については、10%の圧下率まで実施し、実施品2については、40%の圧下率まで実施した。
In the dividing step, a slitter 5 shown in FIG. 3 was used. The slitter 5 has a plurality of rotating cutters 7 fixed to the main shaft 6, and the dividing cutter 8 is rotated by the main shaft 6 while feeding the clad material 4 in the direction of the arrow to form slits 8 for division in the clad material 4. The clad material 4 is divided into a plurality of divided clad materials 9. In this case, the width of the divided clad material 9 is 18.2 mm.
The next secondary rolling was performed using a roll mill similar to the roll mill 3 of FIG. Secondary rolling by this roll rolling machine was carried out up to a reduction rate of 10% for the implementation product 1 and up to a reduction rate of 40% for the implementation product 2.

引抜工程は、分割クラッド材9を、図6に示す引抜ダイス10に矢印方向に通すことによって行った。この引抜により、スリッタ5によって切断された分割クラッド材9の幅方向両端部の整形が行われ、図7(a)の断面形状から同図(b)の断面形状へと幅方向の形状精度が高められる。つまり、クラッド材4をスリッタ5により分割して得た分割クラッド材9は、図7(a)に示すように、幅方向両端の角部にダレやカエリが生じている。このダレやカエリは、引抜を施すことによって図7(b)に示すように矯正され且つ角部が面取りされる。ここでは同時に、幅方向の寸法を18.2mmから17.5mmにした。   The drawing process was performed by passing the divided clad material 9 through the drawing die 10 shown in FIG. By this drawing, both ends in the width direction of the divided clad material 9 cut by the slitter 5 are shaped, and the shape accuracy in the width direction is changed from the cross-sectional shape of FIG. 7A to the cross-sectional shape of FIG. Enhanced. That is, in the divided clad material 9 obtained by dividing the clad material 4 with the slitter 5, as shown in FIG. The sagging and burrs are corrected as shown in FIG. 7B by cleaving and the corners are chamfered. At the same time, the dimension in the width direction was changed from 18.2 mm to 17.5 mm.

そして、最後の焼鈍工程は、引抜工程を終えた分割クラッド材9を350℃で10時間、炉内に保持することによって行った。
一方、表1に示す比較品1〜3を得るために、上述と同様にしてアルミニウム材1と鋼材2とを圧延圧接してクラッド材4を得た。この場合のクラッド材4は、厚さ1.0mmのアルミニウム材1と厚さ2.2mmの鋼材2とを圧延圧接して全厚1.7mm、幅200mmとしたものである。そして、このクラッド材4から表1の比較品1〜3を以下のようにして製造した。
And the last annealing process was performed by hold | maintaining the division | segmentation clad material 9 which finished the drawing process in a furnace at 350 degreeC for 10 hours.
On the other hand, in order to obtain comparative products 1 to 3 shown in Table 1, the aluminum material 1 and the steel material 2 were rolled and pressed in the same manner as described above to obtain a clad material 4. In this case, the clad material 4 is formed by rolling and pressing an aluminum material 1 having a thickness of 1.0 mm and a steel material 2 having a thickness of 2.2 mm to have a total thickness of 1.7 mm and a width of 200 mm. And comparative products 1-3 of Table 1 were manufactured from this clad material 4 as follows.

まず、比較品1は、クラッド材4に対し、上記実施品1,2と同条件の焼鈍工程、上記のスリッタ5による分割工程を順に行って得た。従って、比較品1は、アルミニウム材と鋼材との圧延圧接、焼鈍、分割の工程だけを実施し、二次圧延、引抜の各工程は実施していない。分割クラッド材9の幅は、切削加工により幅仕上げをして17.5mmとした。
また、クラッド材4に対し、上記実施品1,2と同条件の焼鈍工程を行い、その後に二次圧延工程、分割工程を順に行って比較品2,3を得た。この場合の二次圧延は、比較品2に対しては圧下率8%まで、比較品3に対しては圧下率10%まで行った。なお、焼鈍工程後に二次圧延を行う場合、10%を超えるような圧下率まで行おうとすると、アルミニウム材と鋼材との間の接着不良が生じてきたので、10%を超える圧下率の比較品は準備しなかった。また、分割工程は図3に示すスリッタ5を用いた。この場合も、分割クラッド材9の幅は、比較品1と同じ17.5mmとした。
First, the comparative product 1 was obtained by sequentially performing an annealing process under the same conditions as the above-described products 1 and 2 and a dividing process using the slitter 5 on the clad material 4. Therefore, the comparative product 1 performs only the rolling press-contact, annealing, and division processes of the aluminum material and the steel material, and does not perform the secondary rolling and drawing processes. The width | variety of the division | segmentation clad material 9 was 17.5 mm by width finishing by cutting.
Further, the clad material 4 was subjected to an annealing process under the same conditions as the above-described products 1 and 2, and then a secondary rolling process and a dividing process were sequentially performed to obtain comparative products 2 and 3. In this case, the secondary rolling was performed for the comparative product 2 up to a reduction ratio of 8% and for the comparative product 3 up to a reduction ratio of 10%. In addition, when secondary rolling is performed after the annealing process, if an attempt is made to achieve a reduction ratio exceeding 10%, a poor adhesion between the aluminum material and the steel material has occurred, so a comparative product with a reduction ratio exceeding 10%. Did not prepare. Further, a slitter 5 shown in FIG. 3 was used in the dividing step. Also in this case, the width of the divided clad material 9 was set to 17.5 mm, which is the same as that of the comparative product 1.

以上のようにして得た実施品1,2および比較品1〜3について、各種の計測、疲労試験を行った。
断面形状精度に関しては、軸受有効投影面積に占める疲労部の面積の割合が5%以下を安定して得られる(当該疲労部の面積の割合については後述する)高圧下率で二次圧延を施した実施品と比較品とをもって比較した。なお、本発明の製造方法を実施すると、40%より高い圧下率でも、疲労部の面積の割合が5%以下のクラッド材を安定して得られた。
Various measurements and fatigue tests were performed on the products 1 and 2 and the comparative products 1 to 3 obtained as described above.
Regarding the cross-sectional shape accuracy, the ratio of the area of the fatigued portion to the effective projected area of the bearing can be stably obtained at 5% or less (the ratio of the area of the fatigued portion will be described later). Comparison was made between the implemented product and the comparative product. When the production method of the present invention was carried out, a clad material having a fatigue area ratio of 5% or less was stably obtained even at a rolling reduction higher than 40%.

<スリッタ5によるダレ>
比較品2と実施品2について、スリッタ5によってクラッド材4を分割して得た分割クラッド材8のダレとカエリの程度を測定し、その測定結果を図4(a)および(b)に示した。比較品2では、図4(a)のように、ダレの幅Waが0.3mmに及んでいたが、実施品2では、図4(b)のように、ダレの幅が0.2mmと小さくなっていた。
<Dare by slitter 5>
About the comparative product 2 and the implementation product 2, the degree of sagging and burrs of the divided clad material 8 obtained by dividing the clad material 4 with the slitter 5 was measured, and the measurement results are shown in FIGS. 4 (a) and 4 (b). It was. In the comparative product 2, the sagging width Wa reached 0.3 mm as shown in FIG. 4A, but in the product 2 the sagging width was 0.2 mm as shown in FIG. 4B. It was getting smaller.

<二次圧延による形状精度>
二次圧延を行った実施品2と比較品2について、二次圧延による形状精度を比較するために、それらの長手方向に沿って連続的に肉厚を測定し、二次圧延によって得るべく肉厚との差を取って図5(a),(b)に示した。
比較品2では、図5(b)のように、二次圧延を行っても肉厚変動は大きい。これに対し、実施品2では、図5(a)のように、肉厚の変動が少なく、厚さ方向の形状精度(長手方向厚さ寸法精度)が高い。
<Shape accuracy by secondary rolling>
In order to compare the shape accuracy by secondary rolling for the product 2 and the comparative product 2 that were subjected to secondary rolling, the wall thickness was measured continuously along their longitudinal direction, and the meat to be obtained by secondary rolling. The difference from the thickness is shown in FIGS. 5 (a) and 5 (b).
In the comparative product 2, as shown in FIG. 5B, the wall thickness variation is large even when the secondary rolling is performed. On the other hand, as shown in FIG. 5A, the embodiment product 2 has little variation in thickness and high shape accuracy in the thickness direction (longitudinal thickness dimensional accuracy).

<引抜による幅方向形状>
図7(a)および(b)は実施品2について、分割クラッド材9の引抜工程前後の断面形状を示す。この引抜工程により、実施品2の幅寸法が18.2mmから17.5mmに、厚さ寸法が1.6mmから1.5mmへと減少している。また、角部に0.5mm、0.2mmの面取りが施され、これによりダレやカエリ部分を切除しなくとも良いようにしている。
<Width direction shape by drawing>
FIGS. 7A and 7B show the cross-sectional shapes of the embodiment product 2 before and after the drawing process of the divided clad material 9. As a result of this drawing process, the width of the product 2 is reduced from 18.2 mm to 17.5 mm, and the thickness is reduced from 1.6 mm to 1.5 mm. In addition, the corners are chamfered by 0.5 mm and 0.2 mm so that the sagging and burrs need not be excised.

<疲労試験>
実施品1,2および比較品1〜3について疲労試験を行った。この疲労試験は、実施品1,2および比較品1〜3の分割クラッド材9から図8に示すように所定長さの短冊状のクラッド片11を取得し、このクラッド片11を半円筒状に曲げ、そして、内面側となったアルミニウム材側を仕上げ加工して図9に示す半割軸受12(試料)を製作した。この半割軸受12を疲労試験機に装着し、最初、30分のなじみ運転を行った後、10分毎に軸受面圧を5MPaずつ最高試験面圧まで高めて行き、そして、最高試験面圧で20時間運転して疲労程度を調べた。最高試験面圧は、100MPa、110MPaに設定し、それぞれについて疲労程度を調べた。
疲労程度は、軸受有効投影面積に占める疲労部の面積の割合で5段階評価することとし、評価1は50%超え、評価2は15%超え〜50%、評価3は5%超え〜15%、評価4は5%以下、評価5は疲労部なし、とした。疲労試験の条件は、次の表2の通りである。
<Fatigue test>
Fatigue tests were performed on the products 1 and 2 and the comparative products 1 to 3. In this fatigue test, strip-shaped clad pieces 11 having a predetermined length are obtained from the divided clad materials 9 of the products 1 and 2 and the comparative products 1 to 3 as shown in FIG. The half bearing 12 (sample) shown in FIG. 9 was manufactured by bending the aluminum material side and finishing the aluminum material side that became the inner surface side. The half bearing 12 is mounted on a fatigue testing machine, and after a 30-minute run-in operation, the bearing surface pressure is increased by 5 MPa to the maximum test surface pressure every 10 minutes. After driving for 20 hours, the degree of fatigue was examined. The maximum test surface pressure was set to 100 MPa and 110 MPa, and the degree of fatigue was examined for each.
The degree of fatigue is evaluated in five stages by the ratio of the area of the fatigue portion to the effective projected area of the bearing. Evaluation 1 exceeds 50%, Evaluation 2 exceeds 15% to 50%, and Evaluation 3 exceeds 5% to 15%. Evaluation 4 was 5% or less, and Evaluation 5 was no fatigue part. The conditions of the fatigue test are as shown in Table 2 below.

Figure 2007222934
Figure 2007222934

疲労評価の結果を表1に示した。   The results of fatigue evaluation are shown in Table 1.

疲労試験の結果を見ると、最高試験面圧100MPaでは、実施品1,2および比較品1〜3のすべての試料が評価5であった。
これに対し、最高試験面圧が110MPaでは、比較品2,3と実施品1,2とで耐疲労性に差が見られた。即ち、焼鈍後に二次圧延を行った比較品2,3では、いずれも疲労評価4の試料が存在し、特に、二次圧延の圧下率が10%と高い比較品3では、疲労評価1の試料が存在する。しかし、二次圧延後に焼鈍を行った実施品1,2では、全ての試料が疲労評価5であった。なお、比較品1は、二次圧延を実施していないため、耐疲労性は実施例品1,2と同程度であった。
Looking at the results of the fatigue test, all samples of Examples 1 and 2 and Comparative Examples 1 to 3 were evaluated 5 at a maximum test surface pressure of 100 MPa.
On the other hand, when the maximum test surface pressure was 110 MPa, there was a difference in fatigue resistance between the comparison products 2 and 3 and the implementation products 1 and 2. That is, in the comparative products 2 and 3 subjected to secondary rolling after annealing, there are samples of fatigue evaluation 4 in particular, and in comparative product 3 where the rolling reduction of secondary rolling is as high as 10%, fatigue evaluation 1 Sample is present. However, in Examples 1 and 2 that were annealed after secondary rolling, all samples had a fatigue rating of 5. Since Comparative Product 1 was not subjected to secondary rolling, its fatigue resistance was about the same as Example Products 1 and 2.

このように焼鈍後に二次圧延を行った比較品2,3では、耐疲労性に劣る。特に、二次圧延の圧下率が高くなるに従って耐疲労性が低下する傾向を呈し、最高試験面圧が100MPaでは未だ良いが、最高試験面圧が110MPaになると、二次圧延圧下率10%の比較品3では、評価1の試料が出現し、圧下率8%の比較品2では、評価4の試料ばかりで、評価5の試料は一つも出現しなかった。   Thus, the comparative products 2 and 3 subjected to secondary rolling after annealing are inferior in fatigue resistance. In particular, the fatigue resistance tends to decrease as the rolling reduction of the secondary rolling increases, and the maximum test surface pressure is still 100 MPa, but when the maximum testing surface pressure is 110 MPa, the rolling reduction of the secondary rolling is 10%. In the comparative product 3, the sample of evaluation 1 appeared, and in the comparative product 2 with a rolling reduction of 8%, only the sample of evaluation 4 and no sample of evaluation 5 appeared.

これに対し、二次圧延を行っても、焼鈍前にその二次圧延を行った実施品1,2では、最高試験面圧110MPaで全ての試料が評価5で、耐疲労性に優れていることが理解される。特に実施品2は、二次圧延を圧下率40%で行ったが、圧下率10%の実施品1と同等の高い耐疲労性を得ることができた。   On the other hand, even if the secondary rolling is performed, in the products 1 and 2 that were subjected to the secondary rolling before annealing, all samples were evaluated 5 at the maximum test surface pressure of 110 MPa, and excellent in fatigue resistance. It is understood. In particular, the product 2 was subjected to secondary rolling at a reduction rate of 40%, and high fatigue resistance equivalent to that of the product 1 having a reduction rate of 10% could be obtained.

焼鈍後に二次圧延を行った比較品2,3で耐疲労性の低下が見られた理由は、二次圧延時にアルミニウム材と鋼材とが外力によって位置ずれを起し、接着強度の低下を招いたからであると思われる。これに対し、焼鈍前に二次圧延を行った実施品1,2では、二次圧延時にアルミニウム材と鋼材とが位置ずれを起しても、その後の焼鈍時にアルミニウム材と鋼材とが互いに原子拡散を起して結合を強化するので、比較品2,3に比べて耐疲労性に優れるものと思われる。
また、実施品1,2では、分割結合板9の幅方向の形状精度を高めるために引抜を行ったが、この引抜工程でアルミニウム材1と鋼材2とが位置ずれを生じたとしても、その後に行われる焼鈍によって、アルミニウム材1と鋼材2との結合が強固になされるので、耐疲労性の低下はないものと思われる。
The reason why the fatigue resistance of the comparative products 2 and 3 that were subjected to secondary rolling after annealing was reduced was that the aluminum material and the steel material were displaced due to external force during the secondary rolling, resulting in a decrease in adhesive strength. It seems that it was because it was. On the other hand, in the products 1 and 2 that were subjected to secondary rolling before annealing, even if the aluminum material and the steel material were misaligned during the secondary rolling, the aluminum material and the steel material did not interact with each other during the subsequent annealing. Since it causes diffusion and strengthens the bond, it seems to be excellent in fatigue resistance as compared with the comparative products 2 and 3.
Moreover, in the implementation products 1 and 2, although the drawing was performed in order to increase the shape accuracy in the width direction of the split coupling plate 9, even if the aluminum material 1 and the steel material 2 were displaced in this drawing process, Since the bonding between the aluminum material 1 and the steel material 2 is strengthened by the annealing performed in the above, it is considered that there is no decrease in fatigue resistance.

なお、本発明は上記し且つ図面に示す実施形態に限定されるものではなく、以下のような拡張或いは変更が可能である。
圧延圧接の圧下率は、40%に限らない。二次圧延の圧下率も10%、40%に限らない。二次圧延では、1回又は複数回の圧延を実施しても良い。
圧延圧接と二次圧延を行った後に焼鈍するようにしても良い。
圧延圧接と分割を行った後に焼鈍するようにしても良い。
圧延圧接、二次圧延、分割を順に行った後、焼鈍するようにしても良い。
圧延圧接、分割、引抜を順に行った後、焼鈍するようにしても良い。
圧延圧接、二次圧延、分割、引抜を順に行った後、焼鈍するようにしても良い。
アルミニウム材と鋼材とに位置ずれを生じさせないような加工であれば、焼鈍後に実施しても良い。
The present invention is not limited to the embodiment described above and shown in the drawings, and can be expanded or changed as follows.
The rolling reduction of rolling contact is not limited to 40%. The rolling reduction of secondary rolling is not limited to 10% and 40%. In secondary rolling, rolling may be performed once or multiple times.
You may make it anneal after performing a rolling press-contact and secondary rolling.
You may make it anneal after performing rolling pressure welding and a division | segmentation.
You may make it anneal, after performing rolling pressure welding, secondary rolling, and a division in order.
Annealing may be performed after rolling pressing, division, and drawing in order.
You may make it anneal, after performing rolling pressure welding, secondary rolling, division | segmentation, and drawing in order.
As long as the aluminum material and the steel material are processed so as not to cause a positional shift, the processing may be performed after annealing.

本発明の製造方法の工程を示す図The figure which shows the process of the manufacturing method of this invention 圧延圧接を行うロール圧延機の概略図Schematic diagram of a rolling mill that performs rolling pressure welding スリッタによりクラッド材を分割する状態を示す斜視図The perspective view which shows the state which divides | segments a clad material with a slitter スリッタにより分割した分割クラッド材の部分断面図であり、(a)は比較品の断面図、(b)は本発明の実施品の断面図である。It is a fragmentary sectional view of the division | segmentation clad material divided | segmented with the slitter, (a) is sectional drawing of a comparative product, (b) is sectional drawing of the implementation product of this invention. 二次圧延後のクラッド材の長手方向の肉厚変化の測定結果を示すもので、(a)は本発明の実施品の肉厚変化を示すグラフ、(b)は比較品の肉厚変化を示すグラフである。It shows the measurement result of the thickness change in the longitudinal direction of the clad material after the secondary rolling, (a) is a graph showing the thickness change of the product of the present invention, (b) is the thickness change of the comparative product. It is a graph to show. 引抜ダイスを示すもので、(a)は縦断側面図、(b)は引抜孔の縦断正面図The drawing die is shown, (a) is a longitudinal side view, (b) is a longitudinal front view of a drawing hole. 分割クラッド材の断面を示すもので、(a)は引抜前の図6中A−A線に沿う断面図、(b)は引抜後の図6中B−B線に沿う断面図である。The cross section of a division | segmentation clad material is shown, (a) is sectional drawing which follows the AA line in FIG. 6 before drawing, (b) is sectional drawing which follows the BB line in FIG. 6 after drawing. 分割クラッド材を所望の長さに切断した状態の斜視図Perspective view of a state in which a divided clad material is cut to a desired length 半割軸受の斜視図Perspective view of half bearing

符号の説明Explanation of symbols

図面中、1はアルミニウム板(アルミニウム材)、2は帯鋼板(鋼材)、3はロール圧延機、4はクラッド材、5はスリッタ、9は分割クラッド材、10は引抜ダイス、12は半割軸受である。   In the drawings, 1 is an aluminum plate (aluminum material), 2 is a steel strip (steel material), 3 is a roll mill, 4 is a cladding material, 5 is a slitter, 9 is a divided cladding material, 10 is a drawing die, and 12 is half It is a bearing.

Claims (7)

アルミニウムまたはアルミニウム合金からなるアルミニウム材と鋼材とを接合してアルミニウム軸受の形成用材料となるクラッド材を製造する方法において、
前記アルミニウム材と鋼材とを圧延圧接し、この圧延圧接により得られたクラッド材に対して厚さ寸法精度向上のための圧延加工を施した後、熱処理することを特徴とするアルミニウム軸受用クラッド材の製造方法。
In a method of manufacturing a clad material which is a material for forming an aluminum bearing by joining an aluminum material made of aluminum or an aluminum alloy and a steel material,
A clad material for an aluminum bearing, wherein the aluminum material and the steel material are subjected to a rolling pressure welding, and the clad material obtained by the rolling pressure welding is subjected to a rolling process for improving the thickness dimensional accuracy, followed by a heat treatment. Manufacturing method.
アルミニウムまたはアルミニウム合金からなるアルミニウム材と鋼材とを接合してアルミニウム軸受の形成用材料となるクラッド材を製造する方法において、
前記アルミニウム材と鋼材とを圧延圧接し、この圧延圧接により得られたクラッド材を機械加工によって所望の幅寸法の分割クラッド材に分割した後、熱処理することを特徴とするアルミニウム軸受用クラッド材の製造方法。
In a method of manufacturing a clad material which is a material for forming an aluminum bearing by joining an aluminum material made of aluminum or an aluminum alloy and a steel material,
An aluminum bearing clad material, wherein the aluminum material and the steel material are rolled and pressure-bonded, and the clad material obtained by the rolling pressure-welding is divided into divided clad materials having a desired width dimension by machining, followed by heat treatment. Production method.
請求項1記載のアルミニウム軸受用クラッド材の製造方法において、
前記圧延加工されたクラッド材を機械加工によって所望の幅寸法の分割クラッド材に分割した後、熱処理することを特徴とするアルミニウム軸受用クラッド材の製造方法。
In the manufacturing method of the cladding material for aluminum bearings according to claim 1,
A method for producing a clad material for an aluminum bearing, comprising: subjecting the rolled clad material to a divided clad material having a desired width by machining and then heat-treating the clad material.
請求項2記載のアルミニウム軸受用クラッド材の製造方法において、
前記分割クラッド材に対して厚さ寸法精度向上のための圧延加工を施した後、熱処理することを特徴とするアルミニウム軸受用クラッド材の製造方法。
In the manufacturing method of the clad material for aluminum bearings according to claim 2,
A method of manufacturing a clad material for an aluminum bearing, comprising subjecting the divided clad material to a heat treatment after rolling to improve thickness dimensional accuracy.
請求項2記載のアルミニウム軸受用クラッド材の製造方法において、
前記分割クラッド材に対して幅方向端部の形状精度向上のための引抜加工を施した後、熱処理することを特徴とするアルミニウム軸受用クラッド材の製造方法。
In the manufacturing method of the clad material for aluminum bearings according to claim 2,
A method of manufacturing a clad material for an aluminum bearing, comprising subjecting the divided clad material to a drawing process for improving the shape accuracy of the end portion in the width direction, and then heat-treating.
請求項4記載のアルミニウム軸受用クラッド材の製造方法において、
前記圧延加工後の前記分割クラッド材に対して、更に幅方向端部の形状精度向上のための引抜加工を施した後、熱処理することを特徴とするアルミニウム軸受用クラッド材の製造方法。
In the manufacturing method of the clad material for aluminum bearings according to claim 4,
A method for producing a clad material for an aluminum bearing, comprising subjecting the divided clad material after the rolling process to a drawing process for improving the shape accuracy of the end portion in the width direction, followed by heat treatment.
請求項3記載のアルミニウム軸受用クラッド材の製造方法において、
前記分割クラッド材に対して幅方向端部の形状精度向上のための引抜加工を施した後、熱処理することを特徴とするアルミニウム軸受用クラッド材の製造方法。
In the manufacturing method of the clad material for aluminum bearings according to claim 3,
A method of manufacturing a clad material for an aluminum bearing, comprising subjecting the divided clad material to a drawing process for improving the shape accuracy of the end portion in the width direction, and then heat-treating.
JP2006050182A 2006-02-27 2006-02-27 Method for producing clad material for aluminum bearing Pending JP2007222934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050182A JP2007222934A (en) 2006-02-27 2006-02-27 Method for producing clad material for aluminum bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006050182A JP2007222934A (en) 2006-02-27 2006-02-27 Method for producing clad material for aluminum bearing

Publications (1)

Publication Number Publication Date
JP2007222934A true JP2007222934A (en) 2007-09-06

Family

ID=38545222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050182A Pending JP2007222934A (en) 2006-02-27 2006-02-27 Method for producing clad material for aluminum bearing

Country Status (1)

Country Link
JP (1) JP2007222934A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487086A (en) * 1987-09-29 1989-03-31 Nippon Dia Clevite Co Production of aluminum alloy bearing material with backing strip
JPH083671A (en) * 1994-06-21 1996-01-09 Furukawa Electric Co Ltd:The Aluminum alloy clad material excellent in formability, weldability, baking hardenability, and corrosion resistance and its production
JP2000328211A (en) * 1999-04-12 2000-11-28 Pechiney Rhenalu Method of producing formed parts of 2024 type aluminum alloy
JP2005021899A (en) * 2003-06-30 2005-01-27 Sumitomo Metal Ind Ltd Metal clad plate and its producing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487086A (en) * 1987-09-29 1989-03-31 Nippon Dia Clevite Co Production of aluminum alloy bearing material with backing strip
JPH083671A (en) * 1994-06-21 1996-01-09 Furukawa Electric Co Ltd:The Aluminum alloy clad material excellent in formability, weldability, baking hardenability, and corrosion resistance and its production
JP2000328211A (en) * 1999-04-12 2000-11-28 Pechiney Rhenalu Method of producing formed parts of 2024 type aluminum alloy
JP2005021899A (en) * 2003-06-30 2005-01-27 Sumitomo Metal Ind Ltd Metal clad plate and its producing method

Similar Documents

Publication Publication Date Title
US20080277454A1 (en) Composite metal article and method of making
US4980245A (en) Multi-element metallic composite article
EP3266535B1 (en) Punch processing method
US7316849B2 (en) Semi-finished product made out of a ductile material with breaking areas
EP2039441B1 (en) Apparatus for manufacturing seam-welded pipe excelling in welded portion characteristic
JP2007222934A (en) Method for producing clad material for aluminum bearing
JP2007203343A (en) Shaping method and shaping die for cylindrical shaft
US6199275B1 (en) Method for forming crank shaft and method for producing crank shaft
JP2007136526A (en) Manufacturing method of stainless steel-made spiral screw
JP4454440B2 (en) Cross section correction method for irregular cross section
JP3620329B2 (en) Punching method for high silicon steel sheet
JP2007136527A (en) Steel plate having excellent in-plane bendability, and plane bending method of steel plate
JP2009537758A (en) Method for manufacturing laminated sets of metal rings for push belts
JP2009191296A (en) Steel fine wire or thin band steel sheet excellent in plastic workability
JP4454441B2 (en) Cross section correction method for irregular cross section strips
JP2022030454A (en) Manufacturing method of processed material
JP2001523580A (en) Parts manufacturing method
FR2792862A1 (en) Multi-sized tape for manufacturing connection grid, terminal, etc., has different hardness values on thin and thick section, with their ratio between zero point nine and one fifty
JP2020172680A (en) Steel sheet
JPS61180631A (en) Production of endless thin plate metallic band
JP2003301237A (en) Clad material and bending mold using the same
KR20190138326A (en) Shaveled laminated metal and its manufacturing method
JPH072242B2 (en) Method for manufacturing flat wire for spiral spring
JP2002181051A (en) Pressed cage for rolling bearing
JP2019030899A (en) Shear processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Effective date: 20110217

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110830

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A02