JPS6350113B2 - - Google Patents

Info

Publication number
JPS6350113B2
JPS6350113B2 JP13984581A JP13984581A JPS6350113B2 JP S6350113 B2 JPS6350113 B2 JP S6350113B2 JP 13984581 A JP13984581 A JP 13984581A JP 13984581 A JP13984581 A JP 13984581A JP S6350113 B2 JPS6350113 B2 JP S6350113B2
Authority
JP
Japan
Prior art keywords
titanium
clad steel
steel plate
plate
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13984581A
Other languages
Japanese (ja)
Other versions
JPS5841688A (en
Inventor
Fumihide Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13984581A priority Critical patent/JPS5841688A/en
Priority to CA000397542A priority patent/CA1180856A/en
Priority to EP82301077A priority patent/EP0060083B1/en
Priority to US06/354,250 priority patent/US4612259A/en
Priority to AT82301077T priority patent/ATE13500T1/en
Priority to DE8282301077T priority patent/DE3263845D1/en
Publication of JPS5841688A publication Critical patent/JPS5841688A/en
Publication of JPS6350113B2 publication Critical patent/JPS6350113B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/005Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a refractory metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group

Description

【発明の詳細な説明】 この発明はチタンクラツド鋼板の製造方法に関
し、特に熱間圧延後更には熱間圧延後の高温にお
ける熱処理後も優れた接合強度と曲げ加工性を有
するチタンクラツド鋼板の製造方法に関するもの
である。 近年、チタンクラツド鋼板の製造方法として、
従来の爆発圧着法に加えてロール圧着法、拡散溶
接法などの研究が進められているが、例えばロー
ル圧着法では熱間圧延の際に脆弱な金属間化合物
を生成して良好な接合強度が得られず、また、拡
散溶接法でも例えば化学成分を改質した母材を用
いたり、中間媒接材を挿入して行う方法が提案さ
れているが、面積的にも小さく工業的に採用され
る迄には至つていない。 従つて、爆発圧着法によるチタンクラツド鋼板
のみが化学装置材料として多用されている。 しかし、この爆発圧着法によるチタンクラツド
鋼板も例えば、工業的に製造されているチタン板
は巾が約1.5m以下であり、これ以上のものは市
販されていない。また、母材が薄板の場合には爆
発圧着後に生じる歪や母材の伸びの低下などから
くる制限もある。更には、設備能力や公害音など
からくる爆薬量の制限もあり、面積の大きいチタ
ンクラツド鋼板については市場の要求に応えるこ
とができなかつた。 この改善のために、該チタンクラツド鋼板を熱
間圧延して広巾かつ長尺のチタンクラツド鋼板を
得る方法が試みられているが、末だ工業的に実施
される迄に至つていない。 例えば、特公昭43−432号公報では脆弱な金属
間化合物と完全接合部領域を限定したチタンクラ
ツド鋼板を、約475〜900℃で熱間圧延することに
より、接合強度の優れた爆着圧延クラツド鋼板を
得る方法が開示されている。 ところが、この方法では通常の鋼板の圧延温度
に較べて低い温度である為に、接合強度の劣化は
ある程度おさえることができても、過度の加工硬
化により、母材の曲げ加工性の低下が著しいこと
がある。このような母材特性の改善を計るために
熱処理を施すと、チタンと鋼との接合力の低下が
著しく、剪断強度がチタンクラツド鋼板のJIS規
格値である14Kg/mm2以下となる場合がある。これ
は熱処理を施すことによつてチタン鋼が互に相互
拡散し硬くて脆い金属間化合物を生成するために
接合力が低下するものである。 これらの欠点を改善する方法として、チタンと
鋼との間に媒接材を介在させて、チタンと鋼との
相互拡散を阻止する方法が提案されている。 媒接材を挿入した多層チタンクラツド鋼板の製
造方法としては、前記拡散溶接のほか、ロール圧
着、溶射法、メツキ法などがあるが、熱間圧延時
の接合力の低下を考慮すれば、爆発圧着により多
層クラツドとするのが最も好ましい。 この媒接材層の介在は、厚肉だと溶接施工を要
するクラツド鋼板では新たな不都合を惹起する恐
れがあるほか、これら媒接材は一般に高級金属の
中から選ばれるので、その使用量は出来るだけ少
なくしなければ工業価値を有しなくなり、必要最
小限の厚さにおさえるべきである。また、拡散を
防止するに必要な媒接材層の厚さは数μないし数
十μあれば充分である。 しかし、通常の爆発圧着法では媒接材厚さを1
mm以下にすることは困難であり、仮に1mm厚さの
媒接材を用いたとしても10〜100倍の圧延が必要
となり、それでは熱間圧延後のクラツド鋼全厚さ
に対する圧延前のクラツド鋼の全厚さは10〜100
倍の厚さが必要となり、実質的にそのようなクラ
ツド鋼を造ることは工業的に採用できない。 かかる欠点を改善するため、本出願人が先に出
願した特願昭54−128047号で実に優れた方法が発
明された。 すなわち、この発明では、先ず相互拡散を防止
するに有効なニツケルモリブデン、白金、金、銀
などの媒接材金属と鋼とを爆発圧着し、このクラ
ツド鋼板を熱間圧延法などで、媒接材として最小
必要限の肉厚まで圧延し、次にこの爆着圧延クラ
ツド鋼板を合材と母材鋼の間に中間媒接材として
介層させ、従来公知の爆発圧着法により爆発圧着
したのち、更にこれを圧延することにより、薄層
の媒接材を介層したクラツド鋼板を得ようとする
ものである。 ところが、チタンクラツド鋼板に限つては、こ
の特願昭54−128047号の方法を適用しても、尚か
つ熱間圧延後の接合強度が充分でなく、更には、
その後の熱処理によつて接合強度が更に低下する
と云う事実が、その後の実験で明らかになつた。 すなわち、前記媒接材であるニツケル、モリブ
デン、白金、金、銀などの媒接材金属は、熱間圧
延後においても母材鋼との接合性能は優れている
が、合材チタンとの熱間圧延後の接合性能が充分
でないことが判明した。 本発明者は、この爆着圧延法によるチタンクラ
ツド鋼板の欠点を改善するため種々の実験検討を
行なつた結果、ついに本発明をなすに至つた。 すなわち、本発明はチタンと鋼との間に、ニオ
ブ、ニオブ合金、タンタル、タンタル合金のうち
の1つを中間媒接材として介在せしめてクラツド
鋼板を製造し、このクラツド鋼板をさらに母材鋼
と合材チタンとの間に挾んで接合し、ついで熱間
圧延することを特徴とするチタンクラツド鋼板の
製造方法である。 以下、本発明の方法を図面によつて詳細に説明
する。 第1図ないし第6図は本発明の工程順にしたが
つた説明図で、第1図中、1はチタン板、2は中
間媒接材、3は鋼板である。中間媒接材2は、チ
タン板1と鋼板3との間で脆弱な金属間化合物を
生成せず、展延性の優れた金属であることが要求
され、研究の結果、工業用純ニオブ、Nb―IZr、
N―Tiなどのニオブ合金あるいは工業用純タン
タル、Ta―Nb、Ta―Tiなどのタンタル合金が
最適であることが判つた。 チタン板1、中間媒接材2、鋼板3は従来公知
の爆発圧着法により接合され、第2図に示す如く
三層クラツド鋼4とされる。この際の爆発圧着方
法としては、まず鋼板3と中間媒接材2とを爆発
圧着し、ついで中間媒接材2の面に、チタン板1
を爆発圧着する方法と、三層を同時に爆発圧着す
る方法があるが、前者の場合には最初の爆着の際
に中間媒接材2の表面に肌荒れを生じ、又ニオブ
やタンタルは表面が活性しやすい金属であるから
酸化し易く、この酸化皮膜を除去するために表面
研磨が必要となり、高価な材料を損失する。これ
にくらべ、後者の三層同時爆着法は、中間媒接材
2がチタン板1と鋼板3との間に圧接と同時に介
層されるため、活性しやすい金属でも大気に触れ
ることがないため酸化せず、研磨の必要がない。
また肌荒れや材料損失がなく効率が良い。 この三層クラツド鋼を熱間圧延することによ
り、第3図に示す如く三層はそれぞれ1′,2′,
3′と圧延され、薄板三層クラツド鋼板5を得る。
この際の熱間圧延の圧下量は圧延温度、圧延時間
などの圧延条件により差異はあるが板厚が、1/1.
2〜1/50になる範囲で圧下するのが好ましい。ま
た圧延後に適当な熱処理を施しても良い。 このようにして得られた薄板三層クラツド鋼板
5自体を中間層とし、第4図に示すように、合材
チタン6と母材鋼7との間に介挿し、従来公知の
接合方法、例えば爆発圧着法や拡散溶接法、ロー
ル圧着法などにより、薄板三層クラツド鋼板5の
チタン板1′と合材チタン6および鋼板3′と母材
鋼7とがそれぞれ接合される。 ここで本発明に用いられるチタン材は、工業用
純チタン、Ti―0.5Pdなどのチタン合金板であ
り、鋼材はJISに規定されているSS材、SB材、
SM材、SUS材およびこれらに類似したものであ
る。 上記の接合の場合も、母材鋼7に薄板三層クラ
ツド鋼板5を接合し、さらにその上に合材チタン
6を接合する方法もあるが、三者を同時に接合す
る方が効率が良い。第5図は接合後のクラツド鋼
8の状態を示す。 つぎに、このクラツド鋼8を所定の板厚のクラ
ツド鋼板9にする場合には、圧延温度や圧延機の
圧下能力により、クラツド鋼8を板厚が約1/1.2
〜1/50になる範囲で熱間圧延し、第6図に示すよ
うに、各層の板厚をそれぞれ変える1″,2″,
3″,4″,5′,6′,7′。 本発明における熱間圧延温度は、前記特公昭43
−432号公報にも示されているが、880℃以上の温
度に加熱すると、チタンの結晶組織が稠密六方系
から体心立方系へ変態を起こし、結晶粒が粗大化
する。さらに、N2、H2、O2などのガスを吸収
し、チタン自体の物性が低下する。したがつて熱
間圧延は475〜900℃好ましくは650〜870℃の温度
範囲で行なうことが望ましい。圧延終了温度が低
温で圧延された場合は、母材鋼の伸びや絞り等が
低くなることがあり、この場合には必要に応じて
熱処理を施し、母材鋼の特性を回復することがで
きる。 このように本発明で熱間圧延する場合、加熱及
び圧延を数回繰り返し実施することも可能であ
り、さらに中間燃鈍を施すことも母材鋼の機械的
性質の低下防止に効果的である。また、クラツド
鋼板9を圧延する際に、合材チタン6、薄板三層
クラツド鋼板5、母材鋼7を圧延により接合しな
がら所定の板厚に仕上げる事も可能であり、薄板
三層クラツド鋼板5と母材鋼7をロール圧延法に
より接合し、さらに他の接合法で合材チタン6を
接合することも可能である。 圧延によつて、クラツド鋼板9における中間媒
接材2″の板厚を数μ〜数十μにコントロールす
るためには、第1図におけるチタン板1、鋼板3
の板厚並びに第3図における薄板三層クラツド鋼
板5に圧延するときの圧下量および第5図から第
6図への圧下量を充分考慮する必要がある。 第6図における圧延上りのままの状態で剪断試
験を行なつたところ、JISで規定されているチタ
ンクラツド板の規格値(14Kg/mm2以上)を充分満
足する値であつた。また、このチタンクラツド鋼
板をさらに625℃×1.5Hr熱処理して剪断試験を
行なつた結果、やはり前記JIS規格値以上の接合
力が確認され、引張試験および曲げ試験の結果か
ら強い接合力と曲げ加工性の優れたチタンクラツ
ド鋼板であることが立証された。 したがつて、本発明の完成により、熱間圧延後
においても、さらには圧延後の熱処理後において
も、優れた接合強度と曲げ加工性を有するチタン
クラツド鋼板の製造方法が確立されるに至つた。 以下本発明の実施例並びに比較例について説明
する。 実施例 1 市販の工業用純ニオブ板2mmt×100mmW×200mm
1枚を、市販のSB42鋼板25mmt×100mmW×200mmL
の表面に爆発圧着法により接合し、さらにそのニ
オブ表面上に、市販のチタン板5mmt×100mmW×
200mmL1枚を爆発圧着法により接合することによ
り(5+2+25)mmt×100mmW×200mmLの三層ク
ラツド鋼1枚を作成した。この三層クラツド鋼を
850℃1時間加熱した後、板厚が1/5となるように
圧延し、(1+0.4+5)mmt×200mmW×500mmLの薄
板三層クラツド鋼板を作成した。 この薄板三層クラツド鋼板と、市販のSB42鋼
板50mmt×200mmW×500mmLとを、鋼同志が接合す
るように爆発圧着し、さらにそのチタン面上に、
市販のチタン板10mmt×200mmW×500mmLを爆発圧
着により接合し、チタン/チタン/ニオブ/鋼/
鋼の5層クラツド鋼を作成した。 この5層クラツド鋼を、850℃1時間加熱した
後、板厚が1/5となるように圧延することにより、
(2.2+0.08+11.0)mmt×500mmW×1000mmLのチタン
クラツド鋼板を作成した。 このチタンクラツド鋼板の界面接合力を、剪断
試験により調査した結果を表1に示す。試験結果
によればJISで規定されているチタンクラツド板
の規格値(14Kg/mm2以上)を充分満足する接合力
を示していることが確認された。 実施例 2 実施例1と同様の条件で作成したチタンクラツ
ド鋼板を、更に625℃、1.5時間熱処理した後、剪
断試験により界面接合力を調査した。表1に試験
結果を併記する。本結果によれば、圧延後更に熱
処理を施しても、接合力の低下はわずかであり、
充分JISに規定されたチタンクラツド板の規格値
を充分満足していることが確認された。 比較例 1 市販の工業用純ニツケル板2mmt×100mmW×200
mmL1枚を、市販のSB42鋼板25mmt×100mmW×200
mmLの表面に爆発圧着により接合した。このニツ
ケルクラツド鋼を900℃、1時間加熱した後、板
厚が1/5となるように圧延し、(0.4+5)mmt×
200mmW×500mmLの薄板クラツド板を作成した。 この薄板クラツド板と市販のSB42鋼板50mmt×
200mmW×500mmLとを、鋼同志が接合するように爆
発圧着し、さらにそのニツケル面上に市販のチタ
ン板10mmt×200mmW×500mmLを爆発圧着により接
合し、チタン/ニツケル/鋼/鋼の4層クラツド
鋼を作成した。 この4層クラツド鋼を、850℃、1時間加熱し
た後、板厚が1/5となるように圧延したところ、
チタン/ニツケル界面において、その面積の1/3
が剥離していた。接合していた2/3の部分から剪
断試験片を採取し、接合力の調査を実施した結果
を表1に併記する。但し、作成した剪断試験片3
ケのうち1ケは、試験片加工中に剥離し試験を行
なうことができなかつた。残り2ケの剪断値も
JISに規定された規格値以下であつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a titanium clad steel sheet, and more particularly to a method for manufacturing a titanium clad steel sheet that has excellent bonding strength and bending workability even after hot rolling and even after heat treatment at high temperatures after hot rolling. It is something. In recent years, as a manufacturing method for titanium clad steel sheets,
In addition to the conventional explosive crimping method, research is progressing on roll crimping and diffusion welding, but for example, roll crimping produces brittle intermetallic compounds during hot rolling, resulting in poor bond strength. In addition, diffusion welding methods have been proposed, such as using a base material with modified chemical components or inserting an intermediate welding material, but they are small in area and have not been adopted industrially. We have not yet reached the point where we can. Therefore, only titanium clad steel sheets produced by the explosive crimping method are frequently used as materials for chemical equipment. However, titanium clad steel plates made by this explosive crimping method, for example, industrially manufactured titanium plates have a width of about 1.5 m or less, and those larger than this are not commercially available. Furthermore, when the base material is a thin plate, there are limitations due to distortion caused after explosive crimping and a decrease in elongation of the base material. Furthermore, there were limitations on the amount of explosives due to equipment capacity and noise pollution, and it was not possible to meet market demands for large-area titanium clad steel sheets. In order to improve this, a method of hot rolling the titanium clad steel plate to obtain a wide and long titanium clad steel plate has been attempted, but this method has not yet been industrially implemented. For example, in Japanese Patent Publication No. 43-432, a titanium clad steel plate with a weak intermetallic compound and a limited area of complete joints is hot rolled at approximately 475 to 900°C to create an explosion-bonded rolled clad steel plate with excellent joint strength. A method for obtaining the is disclosed. However, since this method uses a lower rolling temperature than normal steel plate rolling temperatures, even though the deterioration of joint strength can be suppressed to some extent, the bending workability of the base material is significantly reduced due to excessive work hardening. Sometimes. When heat treatment is applied to improve such base material properties, the bonding strength between titanium and steel decreases significantly, and the shear strength may fall below the JIS standard value of 14 kg/mm 2 for titanium clad steel sheets. . This is because the heat treatment causes the titanium steel to interdiffuse with each other to form a hard and brittle intermetallic compound, resulting in a decrease in bonding strength. As a method for improving these drawbacks, a method has been proposed in which a medium is interposed between titanium and steel to prevent mutual diffusion between titanium and steel. In addition to the above-mentioned diffusion welding, methods for producing multilayer titanium clad steel sheets with intermediate bonding materials include roll crimping, thermal spraying, and plating, but considering the reduction in bonding force during hot rolling, explosive crimping A multilayer cladding is most preferable. The presence of this intermediate layer may cause new problems in clad steel plates that require welding if the thickness is thick, and since these intermediate materials are generally selected from high-grade metals, the amount used is limited. Unless it is reduced as much as possible, it will not have any industrial value, so the thickness should be kept to the minimum necessary. Further, the thickness of the intermediate material layer required to prevent diffusion is sufficient if it is several microns to several tens of microns. However, in the normal explosive crimping method, the thickness of the welding material is reduced to 1
It is difficult to reduce the thickness to less than 1 mm, and even if a 1 mm thick welding material is used, it will require 10 to 100 times more rolling. The total thickness of is 10~100
Since twice the thickness is required, it is practically impossible to make such a clad steel industrially. In order to improve these drawbacks, a truly excellent method was invented in Japanese Patent Application No. 128047/1983, which was previously filed by the present applicant. That is, in this invention, first, a metal such as nickel-molybdenum, platinum, gold, or silver, which is effective in preventing mutual diffusion, is explosively bonded to steel, and then this clad steel plate is subjected to a hot rolling method or the like. This explosion-rolled clad steel plate is then interposed between the composite material and the base steel as an intermediate welding material, and the material is explosively crimped using a conventionally known explosive crimping method. By further rolling this, a clad steel plate with a thin layer of intermediate material interposed therein is obtained. However, even if the method of Japanese Patent Application No. 54-128047 is applied to titanium clad steel sheets, the joint strength after hot rolling is still insufficient, and furthermore,
Subsequent experiments revealed that the bonding strength was further reduced by subsequent heat treatment. In other words, the intermediate metals such as nickel, molybdenum, platinum, gold, and silver have excellent bonding performance with the base steel even after hot rolling, but they have excellent bonding performance with the composite material titanium. It was found that the bonding performance after rolling was not sufficient. The present inventor conducted various experiments and studies in order to improve the drawbacks of titanium clad steel sheets produced by this explosion rolling method, and as a result, he finally arrived at the present invention. That is, the present invention produces a clad steel plate by interposing one of niobium, niobium alloy, tantalum, and tantalum alloy as an intermediate bonding material between titanium and steel, and then further attaches this clad steel plate to base material steel. This is a method for producing a titanium clad steel sheet, which is characterized by sandwiching and joining a titanium composite material and a titanium composite material, and then hot rolling. Hereinafter, the method of the present invention will be explained in detail with reference to the drawings. 1 to 6 are explanatory diagrams following the steps of the present invention. In FIG. 1, 1 is a titanium plate, 2 is an intermediate welding material, and 3 is a steel plate. The intermediate bonding material 2 is required to be a metal with excellent malleability and not to generate brittle intermetallic compounds between the titanium plate 1 and the steel plate 3, and as a result of research, industrial pure niobium, Nb -IZr,
It was found that niobium alloys such as N-Ti, industrial pure tantalum, tantalum alloys such as Ta-Nb, Ta-Ti, etc. are most suitable. The titanium plate 1, intermediate medium welding material 2, and steel plate 3 are joined by a conventionally known explosive crimping method to form a three-layer clad steel 4 as shown in FIG. In this case, the explosive crimping method is as follows: First, the steel plate 3 and the intermediate material 2 are explosively crimped, and then the titanium plate 1 is attached to the surface of the intermediate material 2.
There is a method of explosive crimping two layers, and a method of explosive crimping three layers at the same time, but in the former case, the surface of the intermediate welding material 2 will be rough during the first explosion bonding, and the surface of niobium and tantalum will be rough. Since it is an active metal, it is easily oxidized, and surface polishing is required to remove this oxide film, resulting in the loss of expensive materials. In contrast, in the latter three-layer simultaneous explosion bonding method, the intermediate bonding material 2 is interposed between the titanium plate 1 and the steel plate 3 at the same time as the pressure welding, so even easily activated metals do not come into contact with the atmosphere. Therefore, it does not oxidize and does not require polishing.
It is also highly efficient with no rough skin or material loss. By hot rolling this three-layer clad steel, the three layers are 1', 2', and 2', respectively, as shown in Figure 3.
3' to obtain a thin three-layer clad steel sheet 5.
The amount of reduction in hot rolling at this time varies depending on rolling conditions such as rolling temperature and rolling time, but the reduction amount in hot rolling is 1/1.
It is preferable to reduce the pressure within a range of 2 to 1/50. Further, an appropriate heat treatment may be performed after rolling. The thus obtained thin three-layer clad steel plate 5 itself is used as an intermediate layer, and as shown in FIG. The titanium plate 1' and the composite titanium 6, and the steel plate 3' and the base steel 7 of the thin three-layer clad steel plate 5 are respectively bonded by an explosive crimping method, a diffusion welding method, a roll crimping method, or the like. The titanium material used in the present invention is industrially pure titanium, titanium alloy plate such as Ti-0.5Pd, and the steel material is SS material, SB material specified by JIS,
SM materials, SUS materials, and similar materials. In the case of the above-mentioned joining, there is also a method of joining the thin three-layer clad steel plate 5 to the base steel 7 and then joining the composite titanium material 6 thereon, but it is more efficient to join the three at the same time. FIG. 5 shows the state of the clad steel 8 after welding. Next, when making this clad steel 8 into a clad steel plate 9 of a predetermined thickness, the thickness of the clad steel 8 is approximately 1/1.2 depending on the rolling temperature and rolling capacity of the rolling mill.
The thickness of each layer is changed to 1'', 2'',
3″, 4″, 5′, 6′, 7′. The hot rolling temperature in the present invention is
As also shown in Publication No. 432, when heated to a temperature of 880° C. or higher, the crystal structure of titanium transforms from a close-packed hexagonal system to a body-centered cubic system, and the crystal grains become coarse. Furthermore, it absorbs gases such as N 2 , H 2 , and O 2 , and the physical properties of titanium itself deteriorate. Therefore, hot rolling is preferably carried out at a temperature range of 475 to 900°C, preferably 650 to 870°C. If the rolling end temperature is low, the elongation and reduction of area of the base steel may be low, and in this case, heat treatment can be applied as necessary to restore the properties of the base steel. . As described above, when hot rolling is performed in the present invention, heating and rolling can be repeated several times, and intermediate annealing is also effective in preventing deterioration of the mechanical properties of the base steel. . Furthermore, when rolling the clad steel plate 9, it is also possible to finish the plate to a predetermined thickness while joining the composite titanium 6, the thin three-layer clad steel plate 5, and the base steel 7 by rolling. It is also possible to join 5 and the base steel 7 by a roll rolling method, and further to join the composite titanium 6 by another joining method. In order to control the plate thickness of the intermediate welding material 2'' in the clad steel plate 9 to several μ to several tens of μ by rolling, the titanium plate 1 and the steel plate 3 in FIG.
It is necessary to fully consider the plate thickness, the amount of reduction when rolling the thin three-layer clad steel sheet 5 in FIG. 3, and the amount of reduction from FIG. 5 to FIG. 6. When a shear test was conducted on the as-rolled material shown in FIG. 6, the value fully satisfied the standard value for titanium clad plates (14 kg/mm 2 or more) stipulated by JIS. In addition, as a result of further heat treating this titanium clad steel plate at 625℃ x 1.5 hours and performing a shear test, it was confirmed that the bonding strength exceeded the JIS standard value, and the results of the tensile test and bending test showed that strong bonding force and bending ability It has been proven that this titanium clad steel sheet has excellent properties. Therefore, with the completion of the present invention, a method for manufacturing a titanium clad steel sheet that has excellent bonding strength and bending workability even after hot rolling and even after heat treatment after rolling has been established. Examples of the present invention and comparative examples will be described below. Example 1 Commercially available industrial pure niobium plate 2mm T × 100mm W × 200mm
L 1 piece is commercially available SB42 steel plate 25mm T × 100mm W × 200mm L
A commercially available titanium plate 5mm t × 100mm W ×
A three-layer clad steel sheet of (5+2+25) mm t × 100 mm W × 200 mm L was created by joining one 200 mm L sheet by the explosive crimping method. This three-layer clad steel
After heating at 850°C for 1 hour, it was rolled to reduce the thickness to 1/5 to produce a thin three-layer clad steel plate measuring (1+0.4+5) mm t × 200 mm W × 500 mm L. This thin three-layer clad steel plate and a commercially available SB42 steel plate 50mm t × 200mm W × 500mm L were explosively crimped so that the steels joined together, and then on the titanium surface,
Commercially available titanium plates 10mm t × 200mm W × 500mm L were joined by explosive crimping to form titanium/titanium/niobium/steel/
A five-layer clad steel was created. By heating this 5-layer clad steel at 850°C for 1 hour, and rolling it to a thickness of 1/5,
(2.2 + 0.08 + 11.0) mm t × 500 mm W × 1000 mm L titanium clad steel plate was created. Table 1 shows the results of investigating the interfacial bonding strength of this titanium clad steel plate by a shear test. According to the test results, it was confirmed that the bonding force sufficiently satisfies the standard value (14Kg/mm 2 or more) for titanium clad plates stipulated by JIS. Example 2 A titanium clad steel plate prepared under the same conditions as in Example 1 was further heat treated at 625°C for 1.5 hours, and then the interfacial bonding strength was investigated by a shear test. The test results are also listed in Table 1. According to the present results, even if heat treatment is performed after rolling, there is only a slight decrease in bonding strength.
It was confirmed that the standard values for titanium clad plates specified by JIS were fully satisfied. Comparative example 1 Commercially available industrial pure nickel plate 2mm t × 100mm W × 200
mm L 1 sheet, commercially available SB42 steel plate 25mm T × 100mm W × 200
It was bonded to the surface of mm L by explosive crimping. After heating this nickel clad steel at 900℃ for 1 hour, it was rolled to a thickness of 1/5 (0.4 + 5) mm t ×
A thin clad plate measuring 200mm W x 500mm L was created. This thin clad plate and commercially available SB42 steel plate 50mm t ×
200mm W x 500mm L are explosively crimped so that the steel joins together, and then a commercially available titanium plate 10mm t x 200mm W x 500mm L is bonded on the nickel surface by explosive crimping to form a titanium/nickel/steel/ A four-layer clad steel was created. After heating this 4-layer clad steel at 850℃ for 1 hour, it was rolled to a thickness of 1/5.
1/3 of the area at the titanium/nickel interface
had peeled off. A shear test piece was taken from the 2/3 part that had been joined, and the joint force was investigated. The results are also listed in Table 1. However, the prepared shear test piece 3
One of the samples peeled off during test piece processing and could not be tested. The remaining two shear values are also
It was below the standard value stipulated by JIS. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし、第6図は本発明の工程にしたが
つた説明図である。 1,1′…チタン板、2,2′…中間媒接材、
3,3′…鋼板、4…三層クラツド鋼、5,5′…
薄板三層クラツド鋼板、6,6′…合材チタン、
7,7′…母材鋼、8…クラツド鋼、9…クラツ
ド鋼板。
FIGS. 1 to 6 are explanatory diagrams according to the steps of the present invention. 1, 1'... Titanium plate, 2, 2'... Intermediate welding material,
3, 3'... Steel plate, 4... Three-layer clad steel, 5, 5'...
Thin three-layer clad steel plate, 6,6'...composite titanium,
7, 7'... Base metal steel, 8... Clad steel, 9... Clad steel plate.

Claims (1)

【特許請求の範囲】[Claims] 1 チタンと鋼との間にニオブ、ニオブ合金、タ
ンタル、タンタル合金のうちの1つを中間媒接材
として介在せしめてクラツド鋼板を製造し、この
クラツド鋼板をさらに母材鋼と合材チタンとの間
に挾んで接合し、ついで熱間圧延することを特徴
とするチタンクラツド鋼板の製造方法。
1 A clad steel plate is manufactured by interposing one of niobium, niobium alloy, tantalum, and tantalum alloy as an intermediate bonding material between titanium and steel, and this clad steel plate is further combined with base steel and composite titanium. A method for producing a titanium clad steel sheet, which comprises sandwiching and joining the steel sheets between the two, and then hot rolling.
JP13984581A 1981-03-05 1981-09-07 Production of titanium clad steel plate Granted JPS5841688A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13984581A JPS5841688A (en) 1981-09-07 1981-09-07 Production of titanium clad steel plate
CA000397542A CA1180856A (en) 1981-03-05 1982-03-03 Titanium clad steel plate
EP82301077A EP0060083B1 (en) 1981-03-05 1982-03-03 Titanium clad steel plate
US06/354,250 US4612259A (en) 1981-03-05 1982-03-03 Titanium clad steel plate
AT82301077T ATE13500T1 (en) 1981-03-05 1982-03-03 TITANIUM-PLATED SHEET STEEL.
DE8282301077T DE3263845D1 (en) 1981-03-05 1982-03-03 Titanium clad steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13984581A JPS5841688A (en) 1981-09-07 1981-09-07 Production of titanium clad steel plate

Publications (2)

Publication Number Publication Date
JPS5841688A JPS5841688A (en) 1983-03-10
JPS6350113B2 true JPS6350113B2 (en) 1988-10-06

Family

ID=15254856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13984581A Granted JPS5841688A (en) 1981-03-05 1981-09-07 Production of titanium clad steel plate

Country Status (1)

Country Link
JP (1) JPS5841688A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765530A (en) * 1984-12-17 1988-08-23 The Dow Chemical Company Method for forming a titanium lined electrochemical cell
GB8720248D0 (en) * 1987-08-27 1987-10-07 Imi Titanium Ltd Turbines
US5226579A (en) * 1992-02-14 1993-07-13 E. I. Du Pont De Nemours And Company Process for explosively bonding metals
US6109504A (en) * 1998-07-10 2000-08-29 Clad Metals Llc Copper core cooking griddle and method of making same
CN109202244B (en) * 2018-08-31 2021-04-02 西安理工大学 Intermediate layer alloy applied to resistance spot welding tantalum Ta1 and Q235 steel and preparation method thereof
CN111215855B (en) * 2020-02-20 2021-05-11 有研工程技术研究院有限公司 Titanium/nickel alloy part based on explosive welding and laser additive manufacturing and preparation method

Also Published As

Publication number Publication date
JPS5841688A (en) 1983-03-10

Similar Documents

Publication Publication Date Title
EP0060083B1 (en) Titanium clad steel plate
US7776454B2 (en) Ti brazing strips or foils
US6722002B1 (en) Method of producing Ti brazing strips or foils
US5579988A (en) Clad reactive metal plate product and process for producing the same
EP1365910B1 (en) Method of manufacturing metallic composite material
EP0117671B1 (en) Bonding metals
JPS6350113B2 (en)
JPS6350112B2 (en)
JP4155124B2 (en) Metal clad plate and manufacturing method thereof
JPS6356033B2 (en)
JPH0353074B2 (en)
JP3079973B2 (en) Aluminum alloy and stainless steel clad plate and method for producing the same
JP2002069545A (en) METHOD FOR PRODUCING TiAl BASED INTERMETALLIC COMPOUND BY LAMINATE ROLLING
TWI626093B (en) Titanium composite and titanium for hot rolling
JPS6356034B2 (en)
JP2879725B2 (en) Method of manufacturing clad plate of Ta and Cu
JPS60203377A (en) Production of titanium clad material
JP6848991B2 (en) Titanium material for hot rolling
JPH0456718B2 (en)
JPS643599B2 (en)
AU2002242712B2 (en) Method of manufacturing metallic composite material
JPH02104482A (en) Pipe joint for joining high corrosion resistant stainless steel-titanium and manufacture thereof
JPH05169283A (en) Manufacture of clad steel sheet
Bienvenu et al. Diffusion bonding of thin aluminium foils
JPH0661630B2 (en) Method for manufacturing titanium clad thin steel sheet using copper or copper alloy as an intermediate contact material