【発明の詳細な説明】[Detailed description of the invention]
本発明は高温における熱処理後あるいは熱間圧
延後も充分な接合強度と曲げ加工性とを有する爆
音チタンクラツド鋼板に関するものである。
接合強度が強く、かつ曲げ加工性が良好なチタ
ンクラツド鋼板の製造方法として、爆薬の爆発エ
ネルギーを利用して異種金属板を冶金的に接合す
る爆発圧着法がある。しかしながら、この製造方
法には種々の要因から面積的な制限をうけ、広い
面積のチタンクラツド鋼板を製造することが困難
である。たとえば、工業的に製造されているチタ
ン板は、巾が約1.5mより大きいものは市販され
ていない。また、母材が薄板の場合、爆発圧着後
に生じる歪や伸び等の物性値が劣化することによ
る制限もある。さらに、使用可能な爆薬量からく
る制限もあり、広巾かつ長尺のチタンクラツド鋼
は爆発圧着法では製造されていない。
チタンを鋼に爆発圧着したチタンクラツド鋼を
熱間で圧延し広板のクラツド鋼板を得る方法が特
公昭43−432号公報において開示されている。そ
の要旨とするところは、限定された接合状態のチ
タンクラツド鋼を約475〜900℃の熱間加工温度で
圧延することにある。この方法は優れた方法であ
るが、高温側で圧延終了した該クラツド鋼板にお
いては、接合力の低い場合がある事が多い。低温
側で圧延終了した該クラツド鋼板においては、し
ばしば過度の加工硬化により、伸び、絞り等の低
下が著しく母材の機械的性質が規格値以下となる
場合が多い。このような鋼材の物性改善の為に
は、600℃以上の高温による熱処理が必要である。
しかしながら、従来のチタンクラツド鋼板の場
合、このような熱処理を実施すると、接合力の低
下が著しく、剪断値が規格値が14Kg/mm2以下とな
る場合が多いことが判つた。
本発明は上記圧延クラツド鋼の改善に関するも
のであり、圧延後あるいは圧延後における熱処理
後も優れた接合強度と曲げ加工性とを有する爆着
チタンクラツド鋼板に関するものである。その特
徴とするところは、チタンまたはチタン合金を合
材とし、ニオブあるいはニオブ合金を第1層中間
媒接材とし、銅あるいは銅−ニツケル合金を第2
層中間媒接材とし、鋼を母材とする爆着チタンク
ラツド鋼板である。本発明により、圧延後におい
ても、圧延後の熱処理後においても優れた接合力
を有する爆着チタンクラツド鋼板が得られるに至
つた。
すなわち、従来の2層のチタン−鋼クラツド鋼
においては、高温加熱あるいは熱処理を施すと界
面における接合力が低下することがあつたが、本
発明ではチタンと鋼の間に、2層の中間媒接材を
介在させることによつて、この点を改善したもの
である。
次に図面に従つて、本発明による爆着チタンク
ラツド鋼板について説明する。
図に示す1は、チタンまたはチタン合金よりな
る合材を示している。本発明において使用される
チタン、チタン合金としては工業用純チタン板お
よびTi−0.15Pb、Ti−V合金のように合金元素
を含むチタン合金が用いられる。
2は、第1層中間媒接材である。
第1層中間媒接材のニオブあるいはニオブ合金
としては、工業用純ニオブ板あるいは60%以上ニ
オブを含有するニオブ合金が用いられる。
3は、第2層中間媒接材である。
第2層中間媒接材の銅あるいは銅−ニツケル合
金としては、工業用純銅、50%以上銅を含有する
銅合金あるいは、銅の含有率が30%以上、90%以
下でありニツケルの含有率が10%以上、70%以下
の銅−ニツケル合金が用いられる。
ニオブは周期律表では第Va族に属する体心立
方金属であり、融点が高いため爆着時の高温範囲
での活性度が低く、チタンとの間に脆弱な金属を
作り難いものと考えられる。しかし、かかる第1
層中間媒接材および前記第2層中間媒接材の選択
の理由は、このような反応性とは関係なく、中間
層を薄くできることや、爆着や圧延といつた加工
をする上で必要な延展性を考慮して、最適な材料
として選択したものである。
4は、材質を問わず普通鋼あるいは低合金鋼等
を含む鉄鋼材料よりなる母材であり、たとえば、
SS材(一般構造用圧延鋼材)、SB材(ボイラ用
圧延鋼材)、SM材(溶接構造用圧延鋼材)、SUS
材(ステンレス鋼材)およびこれらに類似した鋼
材である。
本発明によるクラツド鋼板をつくる場合、熱間
圧延を行なうが、熱間圧延の為の加熱温度は900
℃以下が好ましい。前記特公昭43−432号公報に
も示されているように、880℃以上の温度に加熱
するとチタンの結晶組織が稠密六方系から体心立
方系へ変態を起こし、結晶粒が粗大化する。さら
に、N2、H2、O2などのガスを吸収し、チタン自
体の物性が低下する。
したがつて、熱間圧延は475〜900℃、好ましく
は、650〜870℃の間の温度でおこなう。圧延終了
温度が低温で圧延される場合、製造されたチタン
クラツド鋼の母材である鋼材の伸びや絞り等が低
いことがあるが、必要に応じた温度での熱処理を
実施することができる。
圧延倍率は1.5倍以上が好ましい。
本発明品は、加熱圧延を数回実施することも可
能であり、良好なチタンクラツド鋼板を製造する
ことができる。
本発明の爆着チタンクラツド鋼板を、800℃以
上900℃以下の温度に加熱後直ちに圧延し、650℃
以上で圧延を終了したチタンクラツド鋼板は、圧
延あがりのままの状態で強い接合力を有し、十分
な曲げ加工性を有する事が確認された。
また、低温側において圧延されるクラツド鋼板
については、本発明による中間媒接材の効果によ
り、600℃以上の高温による熱処理を実施するこ
とが可能であり、従来のチタンクラツド鋼板にお
いて問題となつていた接合力の低下を起こすこと
なく母材の物性を改善できることが確認された。
以下、本発明の実施例について説明する。
実施例 1
市販のSB42鋼板、板厚50mm、巾100mm、長さ
200mmに、市販の脱酸銅板、板厚2mm、巾100mm、
長さ200mmを爆着し、その上に、工業用純ニオブ
板、板厚2mm、巾100mm、長さ200mmを爆着し、さ
らにその上に、工業用純チタン板、板厚6mm、巾
100mm、長さ200mmを爆着し、本発明の爆着チタン
クラツド鋼板を作成した。この爆着チタンクラツ
ド鋼板を850℃で1時間加熱した後、直ちに圧延
し、総板厚20mm、巾100、長さ600mmのチタンクラ
ツド鋼板を作成した。この時の圧延終了温度は
750℃であつた。
このチタンクラツド鋼板の接合力および曲げ加
工性試験を実施した結果を表1に示す。
実施例 2
実施例1と同種組合せ、同様寸法の爆着チタン
クラツド鋼板を作成し、800℃で1時間加熱後直
ちに圧延し総板厚20mm、巾100mm、長さ600mmのチ
タンクラツド鋼板を作成した。この時の圧延温度
は500℃であつた。
このチタンクラツド鋼に850℃1時間熱処理を
施した後、接合力および曲げ加工性試験を実施し
た結果を表1に示す。
The present invention relates to a titanium clad steel plate having sufficient bonding strength and bending workability even after heat treatment at high temperatures or hot rolling. As a method for manufacturing titanium clad steel sheets that have strong bonding strength and good bending workability, there is an explosive crimping method that metallurgically joins dissimilar metal plates using the explosive energy of explosives. However, this manufacturing method is subject to area limitations due to various factors, making it difficult to manufacture titanium clad steel sheets with a wide area. For example, industrially manufactured titanium plates with a width larger than about 1.5 m are not commercially available. Furthermore, when the base material is a thin plate, there are also limitations due to deterioration of physical properties such as strain and elongation that occur after explosive crimping. Additionally, wide and long lengths of titanium clad steel cannot be manufactured using the explosive crimp method, due to limitations imposed by the amount of explosives that can be used. Japanese Patent Publication No. 43-432 discloses a method of hot rolling titanium clad steel in which titanium is explosively bonded to steel to obtain a wide clad steel plate. The gist is to roll titanium clad steel in a limited bond state at a hot working temperature of approximately 475-900°C. Although this method is an excellent method, the bonding strength of the clad steel sheet that has been rolled on the high temperature side is often low. In the clad steel sheet that has been rolled at a low temperature, excessive work hardening often results in significant reductions in elongation, reduction of area, etc., and the mechanical properties of the base material often fall below standard values. In order to improve the physical properties of such steel materials, heat treatment at a high temperature of 600°C or higher is necessary.
However, in the case of conventional titanium clad steel sheets, it has been found that when such heat treatment is performed, the bonding strength is significantly reduced, and the shear value often falls below the standard value of 14 Kg/mm 2 . The present invention relates to an improvement of the above-mentioned rolled clad steel, and relates to an explosion-bonded titanium clad steel sheet that has excellent bonding strength and bending workability even after rolling or after heat treatment after rolling. Its characteristics are that titanium or titanium alloy is used as the composite material, niobium or niobium alloy is used as the first layer intermediate bonding material, and copper or copper-nickel alloy is used as the second layer intermediate bonding material.
This is an explosion-bonded titanium clad steel plate that uses steel as the base material and serves as an intermediate welding material. According to the present invention, an explosion bonded titanium clad steel sheet can be obtained which has excellent bonding strength both after rolling and after heat treatment after rolling. In other words, in conventional two-layer titanium-steel clad steel, the bonding strength at the interface sometimes decreases when subjected to high-temperature heating or heat treatment, but in the present invention, two layers of intermediate medium are used between titanium and steel. This point has been improved by interposing a contact material. Next, the explosion-bonded titanium clad steel sheet according to the present invention will be explained with reference to the drawings. 1 shown in the figure indicates a composite material made of titanium or a titanium alloy. As titanium and titanium alloys used in the present invention, industrially pure titanium plates and titanium alloys containing alloying elements such as Ti-0.15Pb and Ti-V alloys are used. 2 is a first layer intermediate welding material. As the niobium or niobium alloy for the first layer intermediate junction material, an industrial pure niobium plate or a niobium alloy containing 60% or more of niobium is used. 3 is a second layer intermediate welding material. The copper or copper-nickel alloy for the second layer intermediate bonding material may be industrial pure copper, a copper alloy containing 50% or more copper, or a copper alloy with a copper content of 30% or more and 90% or less and a nickel content. A copper-nickel alloy containing 10% or more and 70% or less is used. Niobium is a body-centered cubic metal that belongs to Group Va in the periodic table, and because of its high melting point, it has low activity in the high temperature range during explosion bonding, and it is thought that it is difficult to form a brittle metal with titanium. . However, such a first
The reasons for selecting the layer intermediate medium bonding material and the second layer intermediate medium bonding material are that the intermediate layer can be made thin and that it is necessary for processing such as explosive bonding and rolling, regardless of such reactivity. It was selected as the most suitable material considering its ductility. 4 is a base material made of steel material including ordinary steel or low alloy steel regardless of the material, for example,
SS materials (rolled steel materials for general structures), SB materials (rolled steel materials for boilers), SM materials (rolled steel materials for welded structures), SUS
steel materials (stainless steel materials) and similar steel materials. When producing the clad steel plate according to the present invention, hot rolling is performed, and the heating temperature for hot rolling is 900°C.
℃ or less is preferable. As shown in the above-mentioned Japanese Patent Publication No. 43-432, when titanium is heated to a temperature of 880° C. or higher, the crystal structure of titanium transforms from a close-packed hexagonal system to a body-centered cubic system, and the crystal grains become coarse. Furthermore, it absorbs gases such as N 2 , H 2 , and O 2 , and the physical properties of titanium itself deteriorate. Therefore, hot rolling is carried out at a temperature between 475 and 900°C, preferably between 650 and 870°C. When rolling is performed at a low rolling end temperature, the elongation, reduction of area, etc. of the steel material that is the base material of the manufactured titanium clad steel may be low, but heat treatment can be performed at an appropriate temperature. The rolling ratio is preferably 1.5 times or more. The product of the present invention can be hot-rolled several times, and a good titanium clad steel sheet can be manufactured. Immediately after heating the explosion-bonded titanium clad steel sheet of the present invention to a temperature of 800°C to 900°C, it is rolled to 650°C.
It was confirmed that the titanium clad steel sheet that had been rolled as described above had strong bonding strength in the as-rolled state and had sufficient bending workability. In addition, for clad steel sheets that are rolled on the low temperature side, due to the effect of the intermediate welding material of the present invention, it is possible to perform heat treatment at a high temperature of 600°C or higher, which was a problem with conventional titanium clad steel sheets. It was confirmed that the physical properties of the base metal could be improved without reducing bonding strength. Examples of the present invention will be described below. Example 1 Commercially available SB42 steel plate, plate thickness 50 mm, width 100 mm, length
200mm, commercially available deoxidized copper plate, plate thickness 2mm, width 100mm,
200mm long is bonded, and on top of that is a commercially pure niobium plate, 2mm thick, 100mm wide, and 200mm long, and on top of that is a commercially pure titanium plate, 6mm thick, and 200mm wide.
A titanium clad steel plate of the present invention was produced by explosive bonding a 100 mm and 200 mm length. This explosion-bonded titanium clad steel plate was heated at 850° C. for 1 hour and immediately rolled to produce a titanium clad steel plate having a total thickness of 20 mm, a width of 100 mm, and a length of 600 mm. The rolling end temperature at this time is
It was 750℃. Table 1 shows the results of the bonding strength and bending workability tests of this titanium clad steel plate. Example 2 Explosion-bonded titanium clad steel plates having the same combination and dimensions as in Example 1 were prepared, heated at 800°C for 1 hour, and immediately rolled to produce titanium clad steel plates with a total thickness of 20 mm, width of 100 mm, and length of 600 mm. The rolling temperature at this time was 500°C. This titanium clad steel was heat treated at 850°C for 1 hour and then subjected to bonding strength and bending workability tests. Table 1 shows the results.
【表】
上記表1に示す通り、実施例1、2のいずれの
場合も圧延して板としたあとも充分な接合力を有
し、かつ、充分な曲げ加工性を有するチタンクラ
ツド鋼板が得られることが確認された。
なお、本実施例においては供試スラブを爆発圧
着法による例を示したが、拡散接合法など、他の
方法により作成されたクラツド鋼を上記圧延条件
により圧延することによつても、優れた性能を有
するチタンクラツド鋼板を作成することが可能と
考えられる。[Table] As shown in Table 1 above, in both Examples 1 and 2, titanium clad steel plates with sufficient bonding strength and sufficient bending workability were obtained even after being rolled into plates. This was confirmed. In this example, an example was shown in which the test slab was made using the explosive crimping method, but it is also possible to obtain excellent results by rolling clad steel made by other methods such as diffusion bonding under the above rolling conditions. It is believed that it is possible to create a titanium clad steel plate with high performance.
【図面の簡単な説明】[Brief explanation of drawings]
図は本発明の爆着チタンクラツド鋼板の態様を
示す断面図である。
1……合材、2……第1層中間媒接材、3……
第2層中間媒接材、4……母材。
The figure is a sectional view showing an embodiment of the explosion bonded titanium clad steel sheet of the present invention. 1...Mixture material, 2...First layer intermediate welding material, 3...
2nd layer intermediate welding material, 4... Base material.