JPH02104482A - Pipe joint for joining high corrosion resistant stainless steel-titanium and manufacture thereof - Google Patents

Pipe joint for joining high corrosion resistant stainless steel-titanium and manufacture thereof

Info

Publication number
JPH02104482A
JPH02104482A JP25472488A JP25472488A JPH02104482A JP H02104482 A JPH02104482 A JP H02104482A JP 25472488 A JP25472488 A JP 25472488A JP 25472488 A JP25472488 A JP 25472488A JP H02104482 A JPH02104482 A JP H02104482A
Authority
JP
Japan
Prior art keywords
titanium
stainless steel
plate
tubular member
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25472488A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sasada
佐々田 泰宏
Tsutomu Konuma
小沼 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25472488A priority Critical patent/JPH02104482A/en
Publication of JPH02104482A publication Critical patent/JPH02104482A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To obtain a pipe joint for joining high corrosion resistant stainless steel to Ti by forming Ta as a joint medium for first and second tubular members and forming alloys of the tubular members and the joint medium at prescribed intervals in the joint medium of the interface between the first tubular member and the joint medium. CONSTITUTION:A Ta plate of the joint medium 2 is subjected to explosive joining to a low C stainless steel plate of base metal 1 and alloy Ti plates 3 are subjected to explosive joining thereon. Further, the two Ti plates thicker than the first layer Ti plate are subjected to explosive joining in order. At the time of explosive joining of the Ti plates 3 of the second and subsequent layers, heat treatment to soften the joining interface between the Ti plates and the stainless steel plate which are subjected to explosive joining is carried out. The above-mentioned heat treatment is carried out at the temperature in which Ta and stainless steel are not diffused mutually substantially and in addition, in Ar where Ti and Ta are not oxidized. The heat treatment is carried out when every explosive joining is finished.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はチタン、又は、チタン合金を溶接した装置部品
とステンレス鋼を溶接した装置部品を接合するために用
いる高耐食性ステンレス鋼−チタン接合用管継手に係り
、特に、機械的性質と耐食性の良好な異材接合用管継手
及びその製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is for highly corrosion-resistant stainless steel-titanium joints used to join equipment parts welded with titanium or titanium alloy and equipment parts welded with stainless steel. The present invention relates to pipe joints, and particularly to a pipe joint for joining dissimilar materials with good mechanical properties and corrosion resistance, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来のステンレス鋼とチタン板との爆発接合は。 Conventional explosion bonding between stainless steel and titanium plates.

特開昭53−10347号公報に記載のように、ステン
レス鋼とジルコニウム板との中間にニッケル層を介して
爆発接合するようになっている。
As described in Japanese Unexamined Patent Publication No. 53-10347, explosion bonding is performed between stainless steel and a zirconium plate with a nickel layer interposed between them.

クラツド鋼は爆接後に圧延を行っても充分な接合強度と
曲げ加工性をもつようにニッケル層を介して爆接したも
のである。
Clad steel is blast welded through a nickel layer so that it has sufficient bonding strength and bending workability even if it is rolled after blast welding.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の異種材の爆発接合技術によって作られたクラ
ツド鋼はクラツド板であるチタン板の表面が腐食環境に
曝されることを考慮して作られており、接合界面が腐食
環境下に曝されることを考慮していない、構造物として
使用される場合に。
The above-mentioned clad steel made by the conventional explosive joining technology of dissimilar materials is made with consideration to the fact that the surface of the titanium plate that is the clad plate will be exposed to a corrosive environment. When used as a structure, no consideration is given to

作用する応力として膜応力を想定しており、チタン板と
ステンレス鋼をひきちぎるような引張応力を考慮して接
合したものではない。すなわち、従来の爆発接合技術に
よる接合部は継手として使用される考慮がされていない
。例えば、配管継手のように継手の爆発接合部が直接腐
食液にさらされるような場合における接合界面での腐食
や媒接材の板厚に起因する強度的な影響について考慮さ
れておらず、接合界面に生じる耐食性の低い金属間化合
物、もしくは、合金層による局部腐食や継手張渡に問題
があった。
It is assumed that the applied stress is membrane stress, and the titanium plate and stainless steel were not joined with consideration to the tensile stress that would cause them to tear apart. That is, joints formed by conventional explosive joining techniques are not considered for use as joints. For example, in cases where the explosion joint of a joint is directly exposed to corrosive liquid, such as in a piping joint, corrosion at the joint interface and the strength effects due to the plate thickness of the welding material are not taken into consideration. There were problems with local corrosion and joint tension due to intermetallic compounds with low corrosion resistance or alloy layers that occur at the interface.

本発明の目的は、硝酸等の高腐食性環境下で耐食性をも
った高耐食性ステンレス鋼とチタンの接合用管継手、及
び、その製造法を提供する゛ことにある。
An object of the present invention is to provide a highly corrosion-resistant stainless steel and titanium joint pipe joint that is resistant to corrosion in highly corrosive environments such as nitric acid, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はステンレス鋼、チタン、又は、チタン合金から
なる第一管状部材とステンレス鋼、チタン、又は、チタ
ン合金からbる第二管状部材との端部が互いに接合され
た異種管継手において、第一管状部材と第二管状部材と
はタンタルを媒接材として金属結合しており、第一管状
部材と媒接材。
The present invention provides a dissimilar pipe joint in which the ends of a first tubular member made of stainless steel, titanium, or a titanium alloy and a second tubular member made of stainless steel, titanium, or a titanium alloy are joined to each other. The first tubular member and the second tubular member are metallurgically bonded using tantalum as a junction material, and the first tubular member and the second tubular member are a junction material.

及び、第二管状部材と媒接材との接合界面は、いずれも
、波模様をもち、第一管状部材と媒接材との界面の媒接
材内に第一管状部材と媒接材との合金が所定の間隔で形
成されていることを特徴とする高耐食性ステンレス鋼−
チタン接合用管継手にある。
The joint interface between the second tubular member and the junction material both has a wave pattern, and the first tubular member and the junction material are in the junction material at the interface between the first tubular member and the junction material. A highly corrosion-resistant stainless steel characterized by an alloy formed at predetermined intervals.
Found in titanium joint pipe fittings.

本発明は、ステンレス鋼板、チタン板、又は、チタン合
金板からなる第一部材にタンタルを媒接材として爆発圧
接した後、媒接材上にステンレス鋼板、チタン板、又は
、チタン合金板からなる第二部材を一層、又は、多層爆
発圧接し、ステンレス鋼とチタン、又は、チタン合金と
の複合板を形成し、複合板を板厚方向に管状に切削加工
し、第一部材からなる第一管状部材と第二部材からなる
第二管状部材との端部が、互いに、接合されたステンレ
ス鋼管とチタン管、又は、チタン合金管との異種管継手
とし、第一管状部材と媒接材、及び、第二管状部材と媒
接材との爆発圧接は、いずれも。
In the present invention, a first member made of a stainless steel plate, a titanium plate, or a titanium alloy plate is explosively welded using tantalum as a welding material, and then a stainless steel plate, a titanium plate, or a titanium alloy plate is placed on the welding material. A composite plate of stainless steel and titanium or a titanium alloy is formed by explosive welding the second member in one layer or in multiple layers, and the composite plate is cut into a tubular shape in the thickness direction. The end portions of the second tubular member consisting of the tubular member and the second member are a dissimilar pipe joint of a stainless steel pipe and a titanium pipe or a titanium alloy pipe, which are joined to each other, and the first tubular member and a junction material, and explosive pressure welding between the second tubular member and the welding material.

波模様が形成されるように行い、第一管状部材と媒接材
との爆発圧接は第一管状部材と媒接材との合金が媒接材
内に所定の間隔で形成されるように行うことを特徴とす
る高耐食性ステンレス鋼−チタン接合用管継手の製造法
にある。
The explosion pressure welding between the first tubular member and the welding material is performed so that a wave pattern is formed, and the explosion pressure welding between the first tubular member and the welding material is performed so that an alloy of the first tubular member and the welding material is formed at predetermined intervals within the welding material. The present invention provides a method for manufacturing a highly corrosion-resistant stainless steel-titanium joint pipe joint.

即ち、本発明の異常種継手は厚板のステンレス鋼板へ、
ステンレス鋼よりはるかに薄いタンタル板を、まず、爆
発接合し、さらに、そのタンタル板へステンレス鋼より
薄いが、タンタル板より厚いチタン板を爆発接合し、必
要に応じて、さらに、チタン板へチタン板の爆発接合を
、順次、行うことにより得られたチタン/タンタル/ス
テンレス鋼からなるクラツド板を板厚方向にくり抜き、
管継手を得ることができる。また、チタン板、又は、チ
タン合金板にタンタルが媒接材として爆発圧接され、そ
の後、タンタル板上にステンレス鋼板を爆発圧接し、こ
れらの複合板より板厚方向に切削加工等によりくり抜き
、ステンレス鋼部とチタン部との端部をもつ管継手を形
成することができる。
That is, the abnormal type joint of the present invention can be applied to a thick stainless steel plate,
First, a tantalum plate, which is much thinner than stainless steel, is explosively bonded, and then a titanium plate, which is thinner than stainless steel but thicker than tantalum plate, is explosively bonded to the tantalum plate, and if necessary, titanium is bonded to the titanium plate. A clad plate made of titanium/tantalum/stainless steel obtained by sequentially explosively bonding the plates is hollowed out in the thickness direction.
You can get pipe fittings. In addition, tantalum is explosively welded to a titanium plate or a titanium alloy plate as a medium bonding material, and then a stainless steel plate is explosively welded to the tantalum plate, and these composite plates are hollowed out in the thickness direction by cutting, etc. A pipe fitting can be formed with ends of a steel section and a titanium section.

このような管継手は、ステンレス鋼とチタンとの接合境
界が高濃度の硝酸等を含む腐食性の環境下にさらされる
継手として高耐食性をもつ。
Such a pipe joint has high corrosion resistance as the joint boundary between stainless steel and titanium is exposed to a corrosive environment containing a high concentration of nitric acid.

〔作用〕[Effect]

ステンレス鋼母材は耐腐食性の面から低炭素、特に、0
.03重量%以下のオーステナイト系。
Stainless steel base material is low carbon, especially 0, from the viewpoint of corrosion resistance.
.. 03% by weight or less austenitic.

オーステナイト−フェライト系二相ステンレス鋼、また
は、フェライト系ステンレス鋼が良く、引張強さはタン
タル板より大いものが良い。板厚はチタン板合材の板厚
の2.5倍程度必要である。母材の板厚が2.5倍以下
になると爆発力により変形が生じたり、割れの怖れがあ
る。そのため、爆発力を弱めると接合が不完全となるの
で、適切な厚さとしたステンレス鋼の多層板とすること
も好ましい。タンタル板は純度99.80%以上が良く
、その他は不純物が炭素、酸素、タングステンは各々0
.03重重景以下、鉄、硅素、ニッケルは0.02%以
下、窒素、水素、チタンは0.01%以下、ニオブは各
々0.1重量%以下である。
Austenite-ferritic duplex stainless steel or ferritic stainless steel is preferable, and it is preferable that the tensile strength is greater than that of tantalum plate. The plate thickness needs to be about 2.5 times the thickness of the titanium plate composite material. If the thickness of the base material is less than 2.5 times, there is a risk of deformation or cracking due to explosive force. Therefore, if the explosive force is weakened, the joining will be incomplete, so it is also preferable to use a multilayer plate of stainless steel with an appropriate thickness. Tantalum plates should have a purity of 99.80% or higher, and other impurities should be 0 for each of carbon, oxygen, and tungsten.
.. Below the 03 heavy picture, iron, silicon, and nickel are 0.02% or less, nitrogen, hydrogen, and titanium are 0.01% or less, and niobium is each 0.1% by weight or less.

この材質の引張強さは25〜35kgf /ns2.伸
びは20%以上とし、硬さはビッカース硬さで130以
下が良い。また、板厚は0.1〜5.0mのものを用い
る。板厚が0.1mm程度より薄くなると接合が技術的
に困難となる。タンタル板が薄いほど強度の高いステン
レス鋼とチタン板との拘束力により継手強度は上昇する
。5.0mm以上では爆発力を大きくする必要があるの
で金属間化合物が発生するようになり、接合界面の耐食
性と強度低下をまねく、また、タンタルの板厚が厚いほ
ど母材と合材との拘束力が小さくなるので、継手の強度
低下をきたす。望ましくは、0.7〜1.5鵬であり、
この場合、継手の強度は母材並みの引張強さが得られる
The tensile strength of this material is 25-35kgf/ns2. The elongation should be 20% or more, and the hardness should be 130 or less on Vickers hardness. Further, a plate having a thickness of 0.1 to 5.0 m is used. When the plate thickness becomes thinner than about 0.1 mm, joining becomes technically difficult. As the tantalum plate becomes thinner, the strength of the joint increases due to the binding force between the stronger stainless steel and the titanium plate. If the thickness exceeds 5.0 mm, it is necessary to increase the explosive force, so intermetallic compounds will be generated, leading to a decrease in corrosion resistance and strength at the joint interface.Also, the thicker the tantalum plate, the more difficult the bond between the base material and composite material will be. Since the restraining force becomes smaller, the strength of the joint decreases. Desirably, it is 0.7 to 1.5 Peng,
In this case, the tensile strength of the joint is comparable to that of the base material.

チタン板は配管の用途に応じたもので、特に。Titanium plates are suitable for piping applications, especially.

規定する必要は無いが、引張強さはタンタル板より高い
ものが良い。特に、伸びは25%以上、望ましくは30
%以上のものが良い。伸び率の良いものほどチタン板の
板厚を厚くして接合することが出来る。この板厚は薄い
程接合性が良いが、接合後のチタン板の板厚をステンレ
ス鋼と同じ板厚に確保するには厚板のチタン板の方が接
合回数が少なくてすむので、チタン板の板厚は6III
11以上が良い。ステンレス鋼の板厚が充分厚い場合チ
タンの板厚は12m程度にしてもよい。チタン板の同種
材の爆発接合では板厚15on程度でも可能である。こ
のような材料を組合せて接合した爆接材は金属間化合物
の生成が無く1強度的にも充分であり、継手として腐食
性環境下で高い信頼性が得られる。このように1本発明
の管継手を構成するクラツド板の製造方法は、ステンレ
ス鋼へのチタン、又は、チタン合金板の積層、又は、こ
の逆のチタン、又は、チタン合金へステンレス鋼を接合
する構成にしてもよく、いずれも積層に当って予め溶接
を考慮して溶接熱影響部が接合部に入らないような厚さ
に積層することが必要である。
Although it is not necessary to specify, it is preferable that the tensile strength is higher than that of tantalum plate. In particular, the elongation is 25% or more, preferably 30%.
% or more is better. The higher the elongation rate, the thicker the titanium plate can be used for joining. The thinner the plate thickness, the better the bonding performance, but in order to ensure that the thickness of the titanium plate after bonding is the same as that of stainless steel, thicker titanium plates require fewer bondings, so titanium plates The plate thickness is 6III
11 or above is good. If the stainless steel plate is sufficiently thick, the titanium plate may be approximately 12 m thick. Explosive bonding of titanium plates of the same type is possible even with a plate thickness of about 15 ounces. An explosion welding material made by combining and joining such materials does not generate intermetallic compounds, has sufficient strength, and can be used as a joint with high reliability in corrosive environments. As described above, the method for manufacturing the clad plate constituting the pipe joint of the present invention involves laminating titanium or titanium alloy plates onto stainless steel, or conversely joining stainless steel onto titanium or titanium alloy. In either case, it is necessary to consider welding in advance and laminate the layers to a thickness that prevents the weld heat affected zone from entering the joint.

前述のように、本発明の異種管継手はタンタルを媒接材
として爆接されており、管状部材におけるいずれの界面
でも波模様を示し、時に、タンタル内に所定の間隔で媒
接材との溶融後、凝固したと思われる合金が形成される
。このような接合界面は適切な爆発接合によって形成さ
れるものである。このような接合界面として高い接合率
と接合界面における媒接材と互いの管状部材との過剰の
合金化、又は、金属間化合物の形成を防止し、高濃度の
硝酸に対する高耐食性を得るには管状部材の厚さ、媒接
材の厚さ、爆接の際のi撃カ、管状部材の硬さ等の種々
の条件が考慮されなければ得ることができない。
As mentioned above, the dissimilar pipe joint of the present invention is explosively welded using tantalum as a welding material, and exhibits a wave pattern at any interface in the tubular member, and sometimes there is a wave pattern between the tantalum and the welding material at a predetermined interval. After melting, an alloy is formed that appears to be solidified. Such a bonding interface is formed by suitable explosive bonding. In order to obtain a high bonding rate as such a bonding interface, prevent excessive alloying between the welding material and each other's tubular members at the bonding interface, or prevent the formation of intermetallic compounds, and obtain high corrosion resistance against high concentration nitric acid. This cannot be achieved unless various conditions such as the thickness of the tubular member, the thickness of the welding material, the impact force during explosion welding, and the hardness of the tubular member are taken into account.

本発明は、その接合条件として管状部材の接合部の硬さ
は接合前のそれぞれの材料硬さに対して20%以上高い
硬さをもつ部分の幅を5mm以下とするように爆接させ
ることにより、より優れた耐食性が得られる。この硬さ
変化は爆接による加工硬化によって生じるもので、いず
れも、界面で最も高くなり、徐々に低下する。
In the present invention, the joining condition is that the hardness of the joint part of the tubular members is 20% or more higher than the hardness of each material before joining, and the width of the part is 5 mm or less. As a result, better corrosion resistance can be obtained. This change in hardness is caused by work hardening due to explosion welding, and is highest at the interface and gradually decreases.

爆接によって硬さが変化した部分の前述の幅は3m以下
が耐食性により好ましく、特に、1〜3Iが好ましい。
The above-mentioned width of the portion whose hardness has changed due to explosive welding is preferably 3 m or less for better corrosion resistance, and particularly preferably 1 to 3 I.

更に、タンタル内に所定の間隔で形成される合金は爆発
圧接による接合性に影響を及ぼすもので、波模様の波長
50〜300μm、波高10〜100μmとするときに
良好な間隔と大きさで形成される。波模様はタンタル側
に形成され、合金は波の間に巻込まれた形でタンタル内
に形成される。波長に対する波高の比は接合界面平均0
.05〜0.3 が好ましい。形成される合金の接合方
向の長さは100μm以下が好ましく、この合金が形成
されるように接合する。
Furthermore, the alloys formed at predetermined intervals in tantalum affect the bonding properties by explosive welding, and when the wave pattern wavelength is 50 to 300 μm and the wave height is 10 to 100 μm, it is necessary to form the alloy with good spacing and size. be done. The wave pattern is formed on the tantalum side, and the alloy is formed within the tantalum in a manner that is wrapped between the waves. The ratio of wave height to wavelength is 0 on average at the bonding interface.
.. 05 to 0.3 is preferable. The length of the alloy to be formed in the joining direction is preferably 100 μm or less, and the joining is performed so that this alloy is formed.

〔実施例〕〔Example〕

〈実施例1〉 第1図は本発明の接合の様式を示す模式図である。母材
1の5US304Lの低炭素のステンレス鋼板30x2
50x300 (++n+) に媒接材2のタン’)ル
板lX300X350 (mm)を爆発接合し、その上
へ合板3のチタン板10X300x350(rrn)を
爆発接合する。さらに、−層目のチタン板より厚いチタ
ン板15X300X350 (m)を順次二枚爆発接合
する。二層目以降のチタン3の爆接に際して、520℃
のアルゴン雰囲中で30分加熱し、爆接されたチタン板
とステンレス鋼との接合界面を軟化させる熱処理を行っ
た。この熱処理はタンタルとステンレス鋼とが実質的に
相互拡散しない温度とし、又、チタン、及び、タンタル
が酸化しないアルゴン中で実施した。この熱処理は真空
中で行っても良い。熱処理時間も接合部の硬化層を軟化
させるために適当な時間を選択した。この時間は長い方
が良いが、アルゴンの純度、真空度、熱処理温度の管理
によっては材質を劣化させるのでこれらの条件を考慮し
て適切に選択する。熱処理はすべての爆発接合が終了し
た時に実施した。第1図では四回の爆発接合を実施した
。第1表は使用材質の化学組成と主な特性を示す。
<Example 1> FIG. 1 is a schematic diagram showing the joining mode of the present invention. Base material 1: 5US304L low carbon stainless steel plate 30x2
50x300 (++n+), a titanium plate 1x300x350 (mm) of the intermediate junction material 2 is explosively welded, and a titanium plate 10x300x350 (rrn) of the plywood 3 is explosively welded thereon. Further, two titanium plates 15 x 300 x 350 (m) thicker than the -th layer titanium plates are explosively bonded one after another. During explosion contact of titanium 3 from the second layer onwards, 520℃
Heat treatment was performed in an argon atmosphere for 30 minutes to soften the bonding interface between the explosively welded titanium plate and stainless steel. This heat treatment was carried out at a temperature at which tantalum and stainless steel do not substantially interdiffuse, and in argon at which titanium and tantalum do not oxidize. This heat treatment may be performed in vacuum. An appropriate heat treatment time was selected to soften the hardened layer at the joint. The longer the time, the better, but the quality of the material may deteriorate depending on the purity of argon, degree of vacuum, and control of heat treatment temperature, so it should be selected appropriately taking these conditions into consideration. Heat treatment was performed when all explosive bonding was completed. In Figure 1, explosive bonding was performed four times. Table 1 shows the chemical composition and main properties of the materials used.

爆発接合に際しては接合界面の波高を小さくすることが
必要であり、好ましくは波高が実質的に生じないで接合
されるのが望ましい。
When performing explosive bonding, it is necessary to reduce the wave height at the bonding interface, and preferably, it is desirable to bond with substantially no wave height.

第2図は接合界面のマイクロヴイツカース硬さ(荷重1
.0g)を示す線図である。5O530牝の硬さ(Hv
)は約210であり、接合前の硬さに対してそれより2
0%以上高い硬さの部分の幅は約3m、及び、チタンの
接合前の硬さ(Hv)は約160であり、この硬さに対
してそれより20%以上高い硬さの部分の幅は約3mで
あった。
Figure 2 shows the microwitzker hardness of the bonding interface (load 1
.. 0g). Hardness of 5O530 female (Hv
) is approximately 210, which is 2% higher than the hardness before joining.
The width of the part whose hardness is 0% or more higher is about 3 m, and the hardness (Hv) of titanium before bonding is about 160, and the width of the part whose hardness is 20% or more higher than this hardness. was approximately 3 m.

5US304Lとタンタルとの接合面の顕微鏡写真では
、規則的な波模様が形成され、タンタル内に5US30
4Lとタンタルとの合金が巻き込まれた形で波と波との
間に形成される。このものの接合面の波長は50〜10
0μmであり、波高は約6〜18μmであった。タンタ
ル内に形成される合金は接合方向の大きさが約40〜7
0μmであった。
In the micrograph of the bonded surface of 5US304L and tantalum, a regular wave pattern is formed and 5US304L is formed in the tantalum.
An alloy of 4L and tantalum is formed between the waves in a rolled-up form. The wavelength of this bonded surface is 50 to 10
The wave height was approximately 6 to 18 μm. The alloy formed in tantalum has a size of about 40 to 7 in the joining direction.
It was 0 μm.

また、他の例では波長200〜260μm、波長40〜
70μm、及び波長80〜150μm、波高12〜30
μmであった。
In other examples, the wavelength is 200 to 260 μm, and the wavelength is 40 to 260 μm.
70 μm, wavelength 80-150 μm, wave height 12-30
It was μm.

タンタルとチタンとの接合面断面の顕微鏡写真では、波
模様が形成され、タンタル内にチタンを巻込んだ形で形
成される。接合面の波長は70〜130μm、波高は2
0〜40μmであった。
In a micrograph of a cross-section of the tantalum and titanium joint surface, a wave pattern is formed, with titanium wrapped around the tantalum. The wavelength of the bonded surface is 70 to 130 μm, and the wave height is 2
It was 0 to 40 μm.

なお、比較のため、媒接材3のタンタル板を用いないで
ステンレス鋼板とチタン板とを、直接、爆発接合して、
管継手を得るためのクラッドを造った。この場合、接合
するのに大きな爆発力を必要とするのでステンレス鋼板
とチタン板との界面は波形の大きな接合界面となり、金
属間化合物が生じた。第2表はステンレス鋼板とチタン
板との接合部の引張試験結果を媒接材タンタルの有無に
ついて比較したものである。
For comparison, a stainless steel plate and a titanium plate were directly explosively bonded without using the tantalum plate as the welding material 3.
I built the cladding to get the pipe fittings. In this case, since a large explosive force is required for joining, the interface between the stainless steel plate and the titanium plate becomes a large corrugated joint interface, and an intermetallic compound is generated. Table 2 compares the results of a tensile test of a joint between a stainless steel plate and a titanium plate with and without tantalum as a junction material.

第  2  表 引張試験片は直径4 、0 mm 、標点間距離5.0
mで、その中央がステンレス鋼とチタン板との接合界面
、または、タンタル媒接材の板厚中心となるようにした
。媒接材としてタンタル板を用いることにより接合部の
延性は良好となる。なお、一連の実験で媒接材のタンタ
ル板が厚くなるに従い、継手特性はタンタル板の特性に
近づき継手強度は低下することが明らかにとなった。媒
接材としてのタンタル板の板厚は0 、5 +m+〜3
.Onmが良く。
Table 2 Tensile test specimens have a diameter of 4.0 mm and a gage distance of 5.0.
m, and its center was set to be the bonding interface between the stainless steel and the titanium plate, or the center of the plate thickness of the tantalum welding material. By using a tantalum plate as a mediating material, the ductility of the joint becomes good. A series of experiments revealed that as the tantalum plate used as the welding material becomes thicker, the joint properties approach those of the tantalum plate and the joint strength decreases. The thickness of the tantalum plate as a mediating material is 0, 5 + m + ~ 3
.. Onm is good.

最大でも5.0mmであり、好ましくは0.5〜1.5
mが良い。チタン板の同種材の接合部の強度は素材より
良好で伸び、絞りが低下するがその傾向は極めて僅かで
あり、むしろ、素材選択で実用上解消される。
The maximum is 5.0 mm, preferably 0.5 to 1.5
m is good. The strength of the joint between titanium plates of the same type of material is better than that of the raw material, and the titanium plate elongates and the aperture decreases, but this tendency is extremely slight and can be practically eliminated by selecting the material.

接合部の硝酸試験を実施した。14規定の1硝酸に10
0ppHの硝酸ルテニウムを添加した沸騰溶液中で48
時間、ステンレス鋼とチタン板との接合界面をもつ試験
片を浸漬した。その結果、媒接材としてタンタル板を用
いない試験片はステンレス鋼表面が30μmの厚さで全
面腐食し、さらに、ステンレス鋼とチタン板との接合界
面が選択的に深<1oooμm程度浸食された。この浸
食は金属間化合物の生成と関連している。なお、チタン
板は腐食されない。一方、本発明の媒接材としてタンタ
ル板を用いたものは、ステンレス鋼表面は25μmの厚
さで全面腐食するが、ステンレス鋼とタンタル板、タン
タル板とチタン板との接合界面の局部腐食等、いかなる
部分にも選択的な腐食は生じなかった。
A nitric acid test was conducted on the joint. 10 to 14 normal nitric acid
48 in a boiling solution with the addition of ruthenium nitrate at 0 ppH.
A specimen with a bonded interface between stainless steel and a titanium plate was immersed for an hour. As a result, the stainless steel surface of the test piece that did not use the tantalum plate as a junction material was completely corroded to a thickness of 30 μm, and the joint interface between the stainless steel and titanium plate was selectively eroded to a depth of <100 μm. . This erosion is associated with the formation of intermetallic compounds. Note that the titanium plate will not corrode. On the other hand, in the case where a tantalum plate is used as the intermediate material of the present invention, the stainless steel surface is fully corroded to a thickness of 25 μm, but there is localized corrosion at the bonding interface between the stainless steel and the tantalum plate, and between the tantalum plate and the titanium plate. , no selective corrosion occurred on any part.

第3図は前述の本発明によって爆発接合したクラツド鋼
板より切削加工して得た溶接継手用の配管部品である。
FIG. 3 shows a piping component for a welded joint obtained by cutting from a clad steel plate that has been explosively welded according to the above-mentioned invention.

ステンレス鋼とチタンの接合はタンタル板を介してほぼ
部品中央にあり、部品軸方向端部は溶接開先4である。
The stainless steel and titanium are joined via the tantalum plate approximately at the center of the part, and the axial end of the part is a welding groove 4.

(a)は継手の肉厚を一定としたものであり、腐食環境
や強度的な面で緩やかな所で使用するのに良い。(b)
は、更に、きびしい環境で使用するのに適している。ス
テンレス鋼とタンタルとの接合界面の肉厚を他の部分よ
り厚くし、タンタル部の強度低下を補強する。この厚肉
部分は開先4を溶接する場合、溶接熱の影響を小さくす
る効果がある。
(a) has a constant wall thickness of the joint, and is suitable for use in corrosive environments and locations where strength is moderate. (b)
is also suitable for use in harsh environments. The thickness of the joint interface between stainless steel and tantalum is made thicker than other parts to compensate for the decrease in strength of the tantalum part. This thick portion has the effect of reducing the influence of welding heat when welding the groove 4.

(c)の部品は最もきびしい環境下で使用するのに適し
ている。(b)に較べて内径がステンレス鋼との接合部
で僅かに大きくなっている。(C)では腐食流体が3の
チタン板側から流れており、ステンレス鋼接合部で局部
的な流体の減圧により腐食を防止する。逆に、流れがス
テンレス鋼側からチタン板側に変る場合は、タンタル板
とチタン板側の内径を僅かに大きくすると良い。
Part (c) is suitable for use in the most severe environments. Compared to (b), the inner diameter is slightly larger at the joint with the stainless steel. In (C), corrosive fluid is flowing from the titanium plate side of 3, and corrosion is prevented by locally reducing the pressure of the fluid at the stainless steel joint. Conversely, if the flow changes from the stainless steel side to the titanium plate side, it is better to slightly increase the inner diameter of the tantalum plate and titanium plate side.

以上の実施例では、中間材のタンタル板はチタン、又は
、チタン合金材よりも硬さが低いことが条件であり、ビ
ッカース硬さで130以下で良いことが判明した。
In the above embodiments, the tantalum plate used as the intermediate material must have a hardness lower than that of titanium or titanium alloy material, and it was found that a Vickers hardness of 130 or less is sufficient.

〈実施例2〉 第1図において、母材1をチタン板とし、その上に媒接
材3のタンタル板を爆発圧着して一体とし、そのタンタ
ル板上に合材2のステンレス鋼を、順次、爆発接合し、
得られたクラツド板より異種管継手を同様に切削加工に
より得た。この実施例は実施例1の母材と合材を逆にし
たものである。
<Example 2> In Fig. 1, the base material 1 is a titanium plate, the tantalum plate of the intermediate material 3 is explosively crimped onto it, and the stainless steel of the composite material 2 is sequentially placed on the tantalum plate. , explosive bonding,
Different types of pipe joints were similarly cut from the obtained clad plate. In this example, the base material and composite material of Example 1 are reversed.

この実施例2の継手の接合界面の耐食性、及び、継手強
度な実施例1と同じ特性を示した。
The joint of Example 2 exhibited the same characteristics as Example 1, such as corrosion resistance at the joint interface and joint strength.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ステンレス鋼とチタン板との間にそれ
らの金属間化合物の生成がない接合継手が得られ、濃硝
酸中での腐食のきびしい環境下で耐食性の高い継手が得
られる。
According to the present invention, a joint can be obtained in which no intermetallic compounds are formed between stainless steel and titanium plates, and a joint with high corrosion resistance can be obtained in an environment where corrosion is severe in concentrated nitric acid.

【図面の簡単な説明】 第1図は本発明の一実施例のクラツド板の断面図、第2
図は本発明のクラツド板の断面のマイクロヴイツカーズ
硬さを示す線図、第3図はステンレス鋼管とチタン管を
接合するための溶接継手の断面図である。 1・・・ステンレス鋼板又はチタン板、2・・・タンタ
ル板、3・・・チタン板又はステンレス鋼板、4・・・
溶接開先。 第1図 第2図 駕 鍵音(4nアノ 第3図
[Brief Description of the Drawings] Fig. 1 is a sectional view of a clad plate according to an embodiment of the present invention;
The figure is a diagram showing the microvitsker's hardness of a cross section of the clad plate of the present invention, and FIG. 3 is a cross-sectional view of a welded joint for joining a stainless steel pipe and a titanium pipe. 1... Stainless steel plate or titanium plate, 2... Tantalum plate, 3... Titanium plate or stainless steel plate, 4...
Welding groove. Figure 1 Figure 2 Kagone Keytone (4n Figure 3)

Claims (1)

【特許請求の範囲】 1、ステンレス鋼、チタン、又は、チタン合金からなる
第一管状部材と、ステンレス鋼、チタン、又は、チタン
合金からなる第二管状部材との端部が互いに接合された
ステンレス鋼、チタン、又は、チタン合金との異種管継
手において、前記第一管状部材と前記第二管状部材とは
タンタルを媒接材として金属結合しており、前記第一管
状部材と前記媒接材及び前記第二管状部材と前記媒接材
との接合界面はいずれも波模様をもち、前記第一管状部
材と前記媒接材との界面の前記媒接材内に前記第一管状
部材と前記媒接材との合金が所定の間隔で形成されてい
ることを特徴とする高耐食性ステンレス鋼−チタン接合
用管継手。 2、ステンレス鋼板、チタン板、又は、チタン合金板か
らなる第一部材にタンタルを媒接材として爆発圧接し、
前記媒接材上にステンレス鋼板、チタン板、又は、チタ
ン合金板からなる第二部材を一層、又は、多層爆発圧接
し、ステンレス鋼とチタン又はチタン合金との複合板を
形成し、前記複合板を板厚方向に管状に切削加工し、前
記第一部材からなる第一管状部材と前記第二部材からな
る第二管状部材との端部が互いに接合されたステンレス
鋼管とチタン管、又は、チタン合金管との異種管継手と
し、前記第一管状部材と前記媒接材及び前記第二管状部
材と前記媒接材との界面にいずれも波模様が形成される
ように前記爆発圧接を行い、前記第一管状部材と前記媒
接材との界面には前記第一管状部材と前記媒接材との合
金が前記媒接材内に所定の間隔で形成されるように爆発
圧接することを特徴とする高耐食性ステンレス鋼−チタ
ン接合用管継手の製造法。
[Claims] 1. A stainless steel product in which the ends of a first tubular member made of stainless steel, titanium, or a titanium alloy and a second tubular member made of stainless steel, titanium, or a titanium alloy are joined to each other. In a dissimilar pipe joint made of steel, titanium, or titanium alloy, the first tubular member and the second tubular member are metallically bonded using tantalum as a junction material, and the first tubular member and the junction material are The joint interface between the second tubular member and the junction material both has a wave pattern, and the first tubular member and the junction material are formed in the junction material at the interface between the first tubular member and the junction material. A highly corrosion-resistant stainless steel-titanium joint pipe joint, characterized in that an alloy with a welding material is formed at predetermined intervals. 2. Explosive pressure welding to a first member made of a stainless steel plate, a titanium plate, or a titanium alloy plate using tantalum as a welding material,
A second member made of a stainless steel plate, a titanium plate, or a titanium alloy plate is explosively welded in one layer or in multiple layers onto the intermediate material to form a composite plate of stainless steel and titanium or a titanium alloy, and the composite plate A stainless steel pipe and a titanium pipe, or a titanium pipe, in which the first tubular member made of the first member and the second tubular member made of the second member are joined to each other by cutting into a tubular shape in the plate thickness direction. A pipe joint of a different type with an alloy pipe is formed, and the explosive pressure welding is performed so that a wave pattern is formed at the interface between the first tubular member and the welding material, and the interface between the second tubular member and the welding material, The interface between the first tubular member and the junction material is explosively welded so that an alloy of the first tubular member and the junction material is formed at a predetermined interval within the junction material. A manufacturing method for highly corrosion-resistant stainless steel-titanium joint pipe fittings.
JP25472488A 1988-10-12 1988-10-12 Pipe joint for joining high corrosion resistant stainless steel-titanium and manufacture thereof Pending JPH02104482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25472488A JPH02104482A (en) 1988-10-12 1988-10-12 Pipe joint for joining high corrosion resistant stainless steel-titanium and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25472488A JPH02104482A (en) 1988-10-12 1988-10-12 Pipe joint for joining high corrosion resistant stainless steel-titanium and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02104482A true JPH02104482A (en) 1990-04-17

Family

ID=17268967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25472488A Pending JPH02104482A (en) 1988-10-12 1988-10-12 Pipe joint for joining high corrosion resistant stainless steel-titanium and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02104482A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185250A (en) * 1991-12-13 1993-07-27 Power Reactor & Nuclear Fuel Dev Corp Joining material for different kinds of metal
CN103909386A (en) * 2014-03-31 2014-07-09 攀钢集团成都钢钒有限公司 Processing method for titanium alloy fuel pipe joints
CN104259645A (en) * 2014-07-28 2015-01-07 舞钢神州重工金属复合材料有限公司 Welding process for titanium tube and tube plate
CN105202285A (en) * 2015-09-01 2015-12-30 大连船舶重工集团爆炸加工研究所有限公司 Anti-seep and anti-corrosion bi-metal transition tube joint and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185250A (en) * 1991-12-13 1993-07-27 Power Reactor & Nuclear Fuel Dev Corp Joining material for different kinds of metal
CN103909386A (en) * 2014-03-31 2014-07-09 攀钢集团成都钢钒有限公司 Processing method for titanium alloy fuel pipe joints
CN104259645A (en) * 2014-07-28 2015-01-07 舞钢神州重工金属复合材料有限公司 Welding process for titanium tube and tube plate
CN104259645B (en) * 2014-07-28 2016-05-11 舞钢神州重工金属复合材料有限公司 A kind of welding procedure of titanium tube and tube plate
CN105202285A (en) * 2015-09-01 2015-12-30 大连船舶重工集团爆炸加工研究所有限公司 Anti-seep and anti-corrosion bi-metal transition tube joint and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4612259A (en) Titanium clad steel plate
US20040134966A1 (en) Method of producing Ti brazing strips or foils and the resulting brazing strips or foils
US3664816A (en) Steel-to-aluminum transition piece
US3060557A (en) Metal cladding process and products resulting therefrom
JPH02104482A (en) Pipe joint for joining high corrosion resistant stainless steel-titanium and manufacture thereof
US2985955A (en) Metal clad article
US3495319A (en) Steel-to-aluminum transition joint
JPH05185250A (en) Joining material for different kinds of metal
JPS6350113B2 (en)
JPH0558838B2 (en)
JPH012787A (en) Highly corrosion-resistant stainless steel-zirconium joint and its manufacturing method
JPH0353074B2 (en)
JP4196776B2 (en) Brazing composite material and method for producing the same
JPS5841685A (en) Titanium clad steel
JPH04182023A (en) Manufacture of clad metallic tube
JPH0471636B2 (en)
JP2984779B2 (en) Welding material for low thermal expansion coefficient alloy and method for manufacturing welded pipe using the welding material
JP2748824B2 (en) Manufacturing method of white copper / stainless steel clad
JP3020649B2 (en) Manufacturing method of clad steel
JPS61165278A (en) Method for welding joint of stainless steel/copper clad
JPH05222506A (en) Wire for arc thermal spraying
JPH0813522B2 (en) Titanium-based metal clad steel and its manufacturing method
JPS643599B2 (en)
JPH0361554B2 (en)
JPS60180685A (en) Clad material